View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Technical Disclosure Common

Technical Disclosure Commons

Defensive Publications Series

April 28,2015

CACHING IMAGE THUMBNAILS AS
COMPRESSED VIDEO BITSTREAMS

Andrew Lewis

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

Recommended Citation

Lewis, Andrew, "CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS", Technical Disclosure
Commons, (April 28, 2015)
http://www.tdcommons.org/dpubs_series/70

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications

Series by an authorized administrator of Technical Disclosure Commons.


https://core.ac.uk/display/234664858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/70?utm_source=www.tdcommons.org%2Fdpubs_series%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Lewis: CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

ABSTRACT
An image thumbnail caching system combines image thumbnails into one or more sets of
video frames. The system then encodes the one or more sets of video frames to generate
corresponding encoded video bitstreams. Then, the system stores the encoded video bitstreams.
The system sends metadata associated with the encoded video bitstreams. Further, a specific
thumbnail can be retrieved, for preview at a device, by decoding one or more of the encoded

video bitstreams based on the metadata.

PROBLEM STATEMENT

Mobile applications often display long lists of image thumbnails representing large visual
data sets, e.g., photo thumbnail galleries, video thumbnail galleries, page preview thumbnails.
The image thumbnails are presented in scrolling list views that a user can navigate through. To
display an image thumbnail on a device, the mobile application may have to store a
corresponding image in the device’s RAM, which is generally limited in the device. Once the
image thumbnail is rendered, the application can store the image thumbnail in the cache of the
device to reduce the time to display the image thumbnail. However, using an image encoder and
decoder for storing and retrieving image thumbnails from a cache takes substantial time,
memory, and power. A more advanced and efficient system for storing and retrieving image

thumbnails from a cache to reduce time, memory, and power consumption is described.

Published by Technical Disclosure Commons, 2015



Defensive Publications Series, Art. 70 [2015]

DETAILED DESCRIPTION

The systems and techniques described in this disclosure relate to an image thumbnail
caching system. The system can be implemented for use in an Internet, an intranet, or another
client and server environment. The system can be implemented locally on a client device or
implemented across a client device and server environment. The client device can be any
electronic device such as a mobile device, a laptop, a smartphone, a tablet, a handheld electronic
device, a wearable device etc.

Fig. 1 illustrates an example method 100 for transforming images into encoded video
bitstreams. The method can be performed by a system that caches image thumbnails as video
bitstreams, for example, the image thumbnail caching system.

The system combines image thumbnails into one or more sets of video frames (102). The
system can combine multiple image thumbnails into a single video frame. The system can use
various methodologies to combine image thumbnails. In one implementation, the system
combines image thumbnails that the system expects to be displayed together on a device into a
single video frame. For example, the system may choose to combine image thumbnails for
images taken at a particular event or location or time into a single video frame. Alternatively, or
additionally, the system combines the image thumbnails which the systems expects to be
accessed together into a single video frame. For example, image thumbnails for pages of a book
can be combined together into a single video frame. Once the system fills a video frame with
image thumbnails, the system can tile a next set of image thumbnails into another video frame.
The combined image thumbnails may be displayed close to each other in a listview, gridview,

thumbnail view, or any other suitable format.

http://www.tdcommons.org/dpubs_series/70



Lewis: CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

Further, the system encodes the one or more sets of video frames to generate
corresponding encoded video bitstreams (104). The system can use a video encoder to encode
video bitstreams from the one or more sets of video frames. The system may choose to employ
any available video encoder to encode the video bitstreams. The system may select the video
encoder based on various criteria, such as, number of video frames to be encoded, length of
frames, throughput requirements, etc. In an example, a video encoder that is designed to handle a
minimum of 30 frames per second is used to encode video bitstreams in a low power and high
throughput environment. In an embodiment, the system can set a keyframe interval of the
bitstream to the minimum. The keyframe interval can be made minimum by making every frame
a key frame, thereby improving encoding or decoding speed. Keyframes are accessible without
reference to other frames, thereby providing fast random access.

In an embodiment, the encoder can be configured to avoid using prediction structures that
reference data for one thumbnail's region from another thumbnail's region, to help eliminate
lossy compression artifacts that are correlated with the content of other thumbnails and to reduce
distortion in stored thumbnails. For example, the top-left corner of a tiled thumbnail rectangle
can be aligned to a macroblock boundary and its boundary macroblocks can be made not to
predict its contents based on the macroblocks outside the thumbnail.

The system then stores the encoded video bitstreams in a storage or a memory associated
with the device (106). The memory can be a built-in memory of the device or a remote memory
at a server. Further, the system sends metadata associated with the stored encoded video

bitstreams (108). The metadata can include identification information associated with each image

Published by Technical Disclosure Commons, 2015



Defensive Publications Series, Art. 70 [2015]

thumbnail, e.g., EXIF data, or frame number and/or location information of the thumbnail in the
video. The system can send the metadata out-of-band.

Fig. 2 illustrates an example method 200 for retrieving images from the encoded video
bitstreams. The system receives a request to preview a specific image thumbnail (202). The
system can receive the request from a user of a device. The user may request to view a specific
thumbnail from a photo or video thumbnail gallery, a page preview thumbnail for an electronic
book, etc. In an example, the system receives a request to preview multiple image thumbnails
together. The request includes a unique identifier for the required thumbnail.

On receiving the request, the system identifies the encoded bitstream that contains the
specific image thumbnail (204). A mapping exists between thumbnail identifiers and encoded
bitstreams. The system looks up the requested thumbnail identifier with the metadata associated
with the encoded bitstreams to identify which encoded video bitstream that contains the
requested image thumbnail.

Further, the system decodes the video frame that contains the specific image thumbnail
from the identified encoded video bitstream (206). The system can use a video decoder to decode
the video frame that contains the specific image thumbnail. The system may choose to employ
any available video decoder to decode the video bitstreams. The system may select the video
decoder based on various criteria, such as the number of video frames to be decoded, length of
frames, throughput requirements, etc. In an example, a video decoder that is designed to handle a
minimum of 30 frames per second is used to decode video bitstreams in a low power and high
throughput environment. The video decoder can use metadata received from the video encoder to

decode the video frame. The decoding can be performed at the device or at a server. Then, the

http://www.tdcommons.org/dpubs_series/70



Lewis: CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

system provides the specific image thumbnail (208). The system can provide the specific image
thumbnail to the user’s electronic device for preview. The system may choose to employ any
available decoder application program interface (API) to present the specific image thumbnail. In
an example, if the system’s applied decoder output surface is an Open Graphics Library
(OpenGL) API texture, then sub-regions of the decoder’s output surface texture can be shown in
image views. Alternatively, or additionally, several OpenGL views in a scrolling list view may
show the same output surface texture with different texture transformations applied to them.

Fig. 3 is a block diagram of an exemplary environment that shows components of a
system for implementing the techniques described in this disclosure. The environment includes
client devices 310, servers 330, and network 340. Network 340 connects client devices 310 to
servers 330. Client device 310 is an electronic device. Client device 310 may be capable of
requesting and receiving data/communications over network 340. Example client devices 310 are
personal computers (e.g., laptops), mobile communication devices, (e.g. smartphones, tablet
computing devices), set-top boxes, game-consoles, embedded systems, and other devices 310’
that can send and receive data/communications over network 340. Client device 310 may execute
an application, such as a web browser 312 or 314 or a native application 316. Web applications
313 and 315 may be displayed via a web browser 312 or 314. Server 330 may be a web server
capable of sending, receiving and storing web pages 332. Web page(s) 332 may be stored on or
accessible via server 330. Web page(s) 332 may be associated with web application 313 or 315
and accessed using a web browser, e.g., 312. When accessed, webpage(s) 332 may be
transmitted and displayed on a client device, e.g., 310 or 310°. Resources 318 and 318’ are

resources available to the client device 310 and/or applications thereon, or server(s) 330 and/or

Published by Technical Disclosure Commons, 2015



Defensive Publications Series, Art. 70 [2015]

web pages(s) accessible therefrom, respectively. Resources 318’ may be, for example, memory
or storage resources; a text, image, video, audio, JavaScript, CSS, or other file or object; or other
relevant resources. Network 340 may be any network or combination of networks that can carry
data communication.

The subject matter described in this disclosure can be implemented in software and/or
hardware (for example, computers, circuits, or processors). The subject matter can be
implemented on a single device or across multiple devices (for example, a client device and a
server device). Devices implementing the subject matter can be connected through a wired
and/or wireless network. Such devices can receive inputs from a user (for example, from a
mouse, keyboard, or touchscreen) and produce an output to a user (for example, through a
display). Specific examples disclosed are provided for illustrative purposes and do not limit the

scope of the disclosure.

http://www.tdcommons.org/dpubs_series/70



Lewis: CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

DRAWINGS

100

Combine image thumbnails into one or more sets of video

frames

Encode the one or more sets of video frames to generate
corresponding encoded video bitstreams

|

Store the encoded video bitstreams

:

Send metadata associated with the encoded video
bitstreams

Fig. 1

Published by Technical Disclosure Commons, 2015



200

Defensive Publications Series, Art. 70 [2015]

Receive a request to preview a specific image thumbnail

202

l

dentify the encoded bitstream that contains the specific

204
L~

image thumbnail

Decode a video frame that contains the specific image
thumbnail from the identified encoded video bitstream

l

Provide the specific image thumbnail

http://www.tdcommons.org/dpubs_series/70

Fig. 2



Lewis: CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS

Client Device 310

Online Web Browser
312

Web Application
313

Offline Web Browser
314

Web Application
315

Native Application 316

Network
340

Resources 318

Published by Technical Disclosure Commons, 2015

Fig. 3

Server(s) 330

Web Page(s) 332

Resources 318’




	Technical Disclosure Commons
	April 28, 2015

	CACHING IMAGE THUMBNAILS AS COMPRESSED VIDEO BITSTREAMS
	Andrew Lewis
	Recommended Citation


	tmp.1430259180.pdf.jTfpa

