
Technical Disclosure Commons

Defensive Publications Series

March 23, 2015

PARALLEL, SPACE-EFFICIENT HASH TABLE
RESIZE
Geoffrey Pike

Justin Lebar

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Pike, Geoffrey and Lebar, Justin, "PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE", Technical Disclosure Commons,
(March 23, 2015)
http://www.tdcommons.org/dpubs_series/42

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/42?utm_source=www.tdcommons.org%2Fdpubs_series%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

TECHNICAL FIELD

[0001] This disclosure generally relates to hash tables.

BACKGROUND

[0002] A hash table may be a data structure used to map keys to objects. A hash

table may use one or more hash functions on keys to compute an index into an array of

buckets. Hash tables may be re-sized as the number of keys mapped by the hash table

increase or decrease. However, the process of re-sizing a hash table may use

significantly more memory than used by the hash table itself.

SUMMARY

[0003] In general, an aspect of the subject matter described may involve a process

for resizing a hash table. In some implementations, a hash table may be resized by

incrementally de-allocating buckets of an old hash table and incrementally allocating

buckets of a new hash table. In some implementations, a hash table may be resized by

re-allocating buckets from the old hash table to the new hash table and then re-

arranging the buckets of the new hash table. In some implementations, a hash table

with chaining may be resized by copying the elements of the old hash table to

corresponding buckets of the new hash table and indicating which elements are not

necessarily in a final position. After copying, final positions may be determined for the

buckets that are indicated as not necessarily in a final position.

DESCRIPTION OF DRAWINGS

[0004] FIG. 1 is an example process for resizing a hash table.

[0005] FIG. 2 is another example process for resizing a hash table.

[0006] FIG. 3 is an example process for resizing a hash table with chaining.

2

Pike and Lebar: PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

Published by Technical Disclosure Commons, 2015

DETAILED DESCRIPTION

[0007] FIG. 1 is an example process 100 for resizing a hash table by incrementally

de-allocating buckets of an old hash table and incrementally allocating buckets of a new

hash table. The process may 100 include starting at the beginning bucket of an old

hash table (110). For example, the process 100 may include starting at a bucket with

an index zero, e.g., bucket [0], of a hash table with four buckets.

[0008] The process 100 may include determining if an element is stored in the

bucket, and if so, trying to insert the element into a new hash table (120). For example,

the process 100 may include determining that bucket [0] includes an element, and

inserting the element into the new hash table. The process 100 may include, if the

insertion fails, storing the element at the beginning of the old hash table in a bucket after

any other elements that have failed to be inserted (130). For example, if inserting an

element of bucket [2] fails, the element may be stored in bucket [0] if no other element

has failed to be inserted.

[0009] The process 100 may include, de-allocating buckets of the old hash list

including the current bucket to the bucket after the last bucket that stores an element

that failed to be inserted (140). If no elements have failed to be inserted, then the

buckets of the old hash list including the current bucket to the beginning bucket may be

de-allocated. For example, if bucket [3] is the current bucket and bucket [0] stores the

last unsuccessfully inserted element, buckets [1]-[3] may be de-allocated.

[0010] The process 100 may include iterating until all buckets are iterated through

(150). The process 100 may include inserting elements stored at the front of the old

hash table that were previously failed to be inserted in the new hash table (160).

[0011] FIG. 2 is an example process 200 for resizing a hash table by re-allocating

buckets from the old hash table to the new hash table and then re-arranging the buckets

of the new hash table. The process 200 may include re-allocating buckets of an old

hash table to a new hash table and including a paired duplicate bucket following each

3

Defensive Publications Series, Art. 42 [2015]

http://www.tdcommons.org/dpubs_series/42

bucket in the new hash table from the old hash table (210). For example, if an old hash

table includes buckets [0]-[3], those buckets may be re-allocated to buckets [0], [2], [4],

and [6], respectively, of a new hash table. Bucket [1] may be duplicate from bucket [0],

bucket [3] may be duplicated from bucket [2], etc.

[0012] The process 200 may include starting at a beginning bucket of the new hash

table (220). The process 200 may include determining if elements of the current bucket

and a following bucket are the same, and if so, inserting the element into the new hash

table and emptying the bucket and the following bucket (230). For example, the

process 200 may include determining if bucket [0] and bucket [1] include the same

element, and if so, inserting the element into the new hash list. In the example, bucket

[0] and [1] may be set to empty after the insertion of the element into bucket [4].

[0013] The process 200 may include determining if the element was inserted into a

bucket that had the same element stored in that bucket’s paired bucket, and if so,

emptying the paired bucket (240). For example, the process 200 may include

determining if bucket [4] previously stored the same element as bucket [5], and if so,

emptying bucket [5]. In another example, if an element is inserted into bucket [3], and

bucket [2] stored a different element than bucket [3] had stored, then bucket [2] may not

be emptied. The process 200 may include iterating (230) and (240) sequentially

through the buckets of the new hash table until (230) and (240) are performed for all the

remaining even numbered buckets (250).

[0014] FIG. 3 is an example process 300 for resizing a hash table with chaining may

be resized by copying the elements of the old hash table to corresponding buckets of

the new hash table and indicating which elements are not necessarily in a final position.

The process 300 may include starting at a beginning bucket of an old hash table (310).

For example, the process 300 may start with bucket [0] of the old hash table with four

buckets. The process 300 may include determining if the bucket includes an element,

and if the bucket includes an element, storing the element in a corresponding bucket of

a new hash table (320). For example, the process 300 may determine that bucket [1] of

4

Pike and Lebar: PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

Published by Technical Disclosure Commons, 2015

the old hash table includes an element, and store the element in bucket [1] of a new

hash table that includes eight buckets. The process 300 may include indicating that the

element stored in the new hash table is not necessarily in a final position (330). For

example, the process 300 may include setting a next value of the element to point to

itself. The process 300 may include de-allocating buckets of the old hash table (340).

For example, the current bucket of the old hash table may be de-allocated. The

process 300 may include iterating through buckets of the old hash table (350). For

example, (320)-(340) may be sequentially repeated for each bucket of the old hash

table. The process 300 may include for each element of the new hash table that is

indicated as not necessarily in a final position, determining a final position for the

element (360).

[0015] More details of implementation are described in the following, where src may

refer to a source hash table and dst may refer to a destination hash table with a different

number of buckets. A process similar to process 100 shown in FIG. 1 may be

implemented with the following, Algorithm 1:

for (i = 0, j = 0; i < B; i++)
if (src[i] contains a key) {

if (!TryInsert(src, i, dst)) {
If touching src[j] might fail because told the

OS didn't need that memory, tell the OS need it.
src[j++] = src[i];}}

(Optional) Tell the OS that memory between src[j] and src[i] is not
needed }
while (j>0) {

Insert(dst, src[j]);
(Optional) Occasionally tell the OS that memory between src[j]

and the end of src is not needed}
Subroutine Insert:

This can be a hashtable insertion algorithm.
Subroutine TryInsert:

Try to insert src[i] into dst using the same algorithm as Insert, but do access
elements of dst outside of some set, S. If successful, return true. Otherwise,
return false.

[0016] Variation V1 - Permute src before starting one of the above algorithms. For

example, resize from B to 1.99B buckets, with a probing strategy of open addressing

5

Defensive Publications Series, Art. 42 [2015]

http://www.tdcommons.org/dpubs_series/42

with linear or quadratic probing. For example, first permute src so that items likely to

land close together in dst are close together in src. For example, compute e(k) for each

key and sort by that, with e(k) = floor((16/1.99B) * (likeliest destination index in [0,

1.99B] for k)). If the sort causes long runs of empty buckets, may tell the OS that won't

access those empty buckets again.

[0017] Variation V2 - Intermix moving elements around in src and moving elements

from src to dst. For example, during the sort step of V1, if some key's e(k) is less than

5, then immediately move it to dst, or move it to dst if TryInsert() can succeed without

touching any destination page that hasn't yet been touched. Or, rather than doing a

sort, opportunistically swap elements of src with empty buckets in src that are found by

probing near their estimated to be optimal spot.

[0018] A process similar to process 200 shown in FIG. 2 may be implemented with

the following, Algorithm 2: Rearrange data in the destination array. In some cases, the

data structure may be able to increase the size of the array of buckets without copying

any data, e.g., via reallocation. Even if that isn't possible, elements may be copied to

the destination array without regard to placing them in their correct positions, and then

rearranged so that all the data structure's invariants are met. This may be performed

with an additional bookkeeping data structure, e.g., a set implemented as a bit vector

that keeps track of which items in the destination array needn't be moved because

they're known to be in a reasonable position. Alternatively, memory of the destination

array may be used only. For example:

for (j = 0, i = 0; i < B; i++)
if (src[i] contains a key) {

dst[j] = src[i]; dst[j+1] = src[i]; j += 2;}
if ((i+1) mod some constant is 0) tell the OS that memory from

src[0] through src[i] is no longer needed}
src is no longer needed
for (i = 0; i < j; i += 2) Rearrange(i);

Subroutine Rearrange:

if dst[i] != dst[i+1] return;
tmp = dst[i]; dst[i] = empty; dst[i+1] = empty
while (true) {

6

Pike and Lebar: PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

Published by Technical Disclosure Commons, 2015

Insert tmp using the hashtable's normal insertion routine, except
that buckets, b, with dst[b] == dst[b xor 1], are treated as empty

If that insertion was to a bucket b that didn't have dst[b] == dst[b
xor 1] then return

tmp = dst[b xor 1]; dst[b xor 1] = empty;}

[0019] A process similar to process 300 shown in FIG. 3 may be implemented with

the following:
for (i = 0; i < B; i++)

Node *n = src[i];
while (n != NULL) {

dst[j] = n; n = n->next; j++;
dst[j]->next = dst[j];} // oneNode circular list, to indicate

"not necessarily in final position"
if ((i+1) mod some constant is 0) tell the OS that memory from

src[0] through src[i] is no longer needed}
src is no longer needed
for (i = 0; i < j; i++) if (dst[i] != NULL && dst[i]>next ==dst[i]) ...etc.

[0020] Additionally or alternatively, parallelizing algorithms may be applied. For

example, transactional memory or mutexes may be used. In the latter case, a constant

Q may be chosen and have a mutex for chunks of Q elements in src or dst, with the

code arranged to take locks in lowest to highest order in cases where multiple locks

may be held simultaneously. A parallel implementation of Algorithm 1 with Variation V1

or V2 may provide advantages. For example, with a parallel permutation step, and

worker threads each responsible for inserting in dst all elements in some part of the

permuted src array, contention may be reduced because the elements handled by a

given worker may likely be moving to destinations near each other.

7

Defensive Publications Series, Art. 42 [2015]

http://www.tdcommons.org/dpubs_series/42

ABSTRACT OF THE DISCLOSURE

Methods, systems, and apparatus, including computer programs encoded on a

computer storage medium, for parallel, space-efficient hash table resize. An aspect

may include a hash table that may be resized by incrementally de-allocating buckets of

an old hash table and incrementally allocating buckets of a new hash table. Additionally

or alternatively, an aspect may include a hash table that may be resized by re-allocating

buckets from the old hash table to the new hash table and then re-arranging the buckets

of the new hash table. Additionally or alternatively, an aspect may include a hash table

with chaining that may be resized by copying the elements of the old hash table to

corresponding buckets of the new hash table and indicating which elements are not

necessarily in a final position. After copying, final positions may be determined for the

buckets that are indicated as not necessarily in a final position. Additionally or

alternatively, an aspect may include parallezing algorithms for resizing hash tables.

8

Pike and Lebar: PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

Published by Technical Disclosure Commons, 2015

1/3

START AT BEGINNING BUCKET OF OLD HASH TABLE

IF ELEMENT STORED IN BUCKET, TRY TO INSERT ELEMENT
INTO NEW HASH TABLE

IF INSERTION FAILS, STORE ELEMENT NEAR BEGINNING OF
OLD HASH TABLE

FIG. 1

110

120

130

100

DE-ALLOCATE BUCKET IN OLD HASH TABLE

140

ITERATE UNTIL ALL BUCKETS ITERATED THROUGH

150

INSERT ELEMENTS STORED NEAR BEGINNING OF OLD HASH
TABLE PREVIOUSLY FAILED TO BE INSERTED

160

9

Defensive Publications Series, Art. 42 [2015]

http://www.tdcommons.org/dpubs_series/42

2/3

RE-ALLOCATE BUCKETS OF OLD HASH TABLE TO NEW HASH
TABLE, AND INCLUDE A PAIRED DUPLICATE BUCKET

FOLLOWING EACH BUCKET IN NEW HASH TABLE FROM OLD
HASH TABLE

START AT BEGINNING BUCKET IN NEW HASH TABLE

IF ELEMENTS OF BUCKET AND FOLLOWING BUCKET ARE THE
SAME, INSERT THE ELEMENT INTO THE NEW HASH TABLE AND

EMPTY THE BUCKET AND FOLLOWING BUCKET

FIG. 2

210

220

230

200

IF ELEMENT IS INSERTED INTO A BUCKET THAT HAD THE SAME
ELEMENT STORED IN THAT BUCKET’S PAIRED BUCKET, EMPTY

THE PAIRED BUCKET

240

ITERATE ABOVE FOR ALL REMAINING EVEN NUMBERED
BUCKETS

250

10

Pike and Lebar: PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE

Published by Technical Disclosure Commons, 2015

3/3

START AT BEGINNING BUCKET OF OLD HASH TABLE

IF ELEMENT STORED IN BUCKET, STORE ELEMENT IN
CORRESPONDING BUCKET OF NEW HASH TABLE

INDICATE THAT ELEMENT IN NEW HASH TABLE IS NOT
NECESSARILY IN FINAL POSITION

FIG. 3

310

320

330

300

DE-ALLOCATE BUCKET OF OLD HASH TABLE

340

ITERATE UNTIL ALL BUCKETS ITERATED THROUGH

350

FOR EACH ELEMENT OF NEW HASH TABLE THAT IS INDICATED
AS NOT NECESSARILY IN FINAL POSITION, DETERMINE FINAL

POSITION FOR ELEMENT

360

11

Defensive Publications Series, Art. 42 [2015]

http://www.tdcommons.org/dpubs_series/42

	Technical Disclosure Commons
	March 23, 2015

	PARALLEL, SPACE-EFFICIENT HASH TABLE RESIZE
	Geoffrey Pike
	Justin Lebar
	Recommended Citation

	Microsoft Word - DPub-31700 - 16113-6800001 - Defensive Publication.docx

