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ABSTRACT 

Soil degradation is a phenomenon that has always had an adverse effect on productivity of soil. It occurs when 

soil loses its quality as a result of human activities resulting from improper use usually for agricultural, industrial 

or urban purposes. Right from the beginning of human existence, soil has played a major part in human survival 

by being the backbone of Agriculture. But over the years, man’s activities on the soil such as farming, use of 

fertilizers, deforestation, bush burning, etc. have all had adverse effect on the soil. Erosion has invariably led to 

degradation of the soil nutrients hence a necessity to monitor the rate and state of soil’s degradation in order to 

take adequate measures it. 

In order to achieve this, fuzzy model was used to predict the degradation after some factors have been quantified. 

Fuzzy model as an artificial intelligence technique has proven to be useful approach for addressing problems 

associated with simulating complex processes and environment in variety of Earth science disciplines. The 

model used was Fuzzy Based Dynamic Soil Erosion Model (FuDSEM). The model was used with different 

parameters and data to help its predictive ability. The results obtained from the output using the FuDSEM model 

shows that the area has low runoff potential. The results show that Fuzzy Logic model is reasonably accurate in 

predicting reliability of farm tractors. The fuel system was observed to be the most reliable of the tractor 

systems.  

 

INTRODUCTION 

Global warming and climate change has taken over the world and the fact that land degradation is the most 

important environmental issue has been ignored. Rising population is putting additional pressure on the land 

around the world and people are not aware of the economic, health and environmental influence of land 

degradation. Land degradation is an evolution that occurs when land loses its quality and productivity. Human 

activities and natural disasters are primarily responsible for land degradation. There are three main types of land 

degradation namely soil erosion, desertification, and salinization. 

Soil erosion is one of the leading environmental problems of the world. In many areas, loss of this valuable 

natural resource takes place most imperceptibly, and slowly affects the long-term productivity of the land. Soil 

erosion also contributes to the degradation of the quality of surface and ground waters by adding transported 

sediments, nutrients, pesticides and increased turbidity.  

Desertification can be caused by natural climate change that causes prolonged drought; human activities that 

reduce or degrade top land; increased population and livestock pressure on marginal lands; and deforestation. 

Desertification can lead to economic losses; prolonged drought; lower living standards and is a major threat to 

biodiversity. 

Salinization is caused by high level of salt in the soil, over cultivation, irrigation mismanagement, and climate 

trends that favor accumulation. The consequences are: it stunts crop growth; lowers crop yield; destroys fertility 

and plants; damage to infrastructures and reduction of water quality. 

Prediction is about how things will happen in the future. Land degradation prediction therefore entails using 

some parameters to determine the state of a land in the future. There are several models that have been used in 
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the prediction of land degradation. The conventional methods for modeling are either empirical or process-based. 

Examples of the empirical models are Universal Soil loss equation (USLE), which was later developed to 

Revised Universal Soil Loss Equation (RUSLE), Modified Universal Soil Loss Equation (MUSLE). Examples 

of process-based models are the Water Erosion Prediction Project model (WEPP), Dynamic Water Erosion 

Prediction Project Model (DWEPP), European Soil Erosion Model (EUROSEM) (Mitasova et al., 1996; 

Yitayew et al., 1999). 

To address some of the problems associated with conventional modeling, several erosion models have made use 

of Artificial Intelligence (AI) technologies. AI has developed rapidly in recent years providing sophisticated 

tools to simulate complex environmental processes (Tayfur and Singh, 2006; Svoray et. al., 2007). Among AI 

technologies, one of the most promising is the Fuzzy logic. It proposes a mathematic calculus to translate the 

subjective human knowledge of the real processes. It is a way to manipulate practical knowledge with some level 

of uncertainty. The fuzzy sets theory was initiated by Lofti Zadeh in 1965. The behavior of such systems is 

described through a set of fuzzy rules, like: IF <premise> THEN <consequent> that uses linguistic variables with 

symbolic terms. Each term represent a fuzzy term. Land degradation, is a major threat to the environment and 

which also affects the economy of that area. Areas of land degradation need to be identified and appropriate 

conservation measures implemented. Prediction of land degradation therefore becomes necessary as a method of 

conservation and there is a need for emerging nations to develop simple methods for predicting areas of 

extensive land erosion using imprecise, but real-world input data at least cost with considerable accuracy.  The 

study thus aimed at evaluating the performance of both fuzzy and neuro-fuzzy models in predicting land 

degradation. Due to the importance of land to human life (as it provides food) and to the society (as it provides 

land and housing), it becomes important that land degradation (erosion) should be avoided as much as possible. 

Therefore, if it can be predicted the problem can be avoided and mitigation measures be taken against it. 

Fuzzy Systems 

Fuzzy logic was introduced by Zadeh in 1965 to represent or manipulate data and information possessing non-

statistical uncertainties. Fuzzy logic as an artificial intelligence technique has proven to be a useful approach for 

addressing problems associated with simulating complex processes and environment in a variety of Earth 

Science disciplines (Zhu et. al., 1996; Tayfur and Singh, 2006; Svoray et. al., 2007). The prime advantages of 

fuzzy logic are its ability to represent and process uncertain data in the form of moderately continuous classes 

(Metternicht, 2001); to efficiently model processes with indeterminate boundaries (Burrough, 1996); and to 

facilitate more flexible knowledge-based modeling developments. These capabilities enable fuzzy logic to deal 

with imprecise and uncertain data and relationships allowing modelers to use inherent dependencies on empirical 

features when designing a model. 

Types of Fuzzy Models 

There are three major types of fuzzy models and they are: linguistic fuzzy model, Fuzzy relational model and 

Takagi-Sugeno model. Also, there are other categories of fuzzy models as described by Pedryez and Gomide 

(2007). They are tabular fuzzy models, rule-based fuzzy models, and fuzzy relational models including 

associative memories, fuzzy decision trees and fuzzy neural networks and fuzzy cognitive maps (Pedryez and 

Gomide, 2007). In land sciences, fuzzy logic is traditionally used to improve the spatial classification of various 

land features such as land stability (Burrough et. al., 1992). Land erosion modeling has also been addressed with 

fuzzy logic in a variety of procedures and to various degrees. Some studies have used the proven ability of fuzzy 

logic in spatial classification of lands to improve the spatial characteristics of a given model, such as the USLE 

(Ahmad et. al., 2000). Others have modified a model (e.g. the RUSLE) to fit the fuzzy logic approach thereby 

improving its performance and overcoming issues of uncertainty, while increasing model flexibility and realistic 

description of the relationships between its parameters. Fuzzy logic algorithms have been successfully employed 

in several hydrological watershed management studies (Tayfur et. al., 2003). They have also been used for 

designing a simple catchment land erosion model (Mitra et. al., 1998) which has proved to be used in 

applications with low quality inputs. Most of the related studies have indicated that fuzzy logic is a flexible and 

easy-to-apply approach, a vital benefit for both modelers and end-users. The need for further improvement of 

fuzzy logic based erosion model is noted in many publications. The advantage of using fuzzy logic for erosion 

modeling was suggested in the discussion of the MEDRUSH, physically-based, catchment-scale model (Kirkby 

and McMahon, 1999). A simple fuzzy logic sediment transport model was compared to a physically-based 

model, showing that fuzzy-logic despite its various advantages, cannot replace a physically-based model (Tayfur 

et. al., 2003). There is therefore a need for the development of a more physically-based fuzzy logic model to 

address these issues, a simple and easy-to-apply catchment-scale land erosion model is introduced, designed for 

catchment interface and management purposes by: (1) using relatively common input data; (2) having a modular 
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model structure; and (3) a clear and easily interpretable output analysis, by producing possibility or potential 

rather than quantitative erosion maps. The model is FUDSEM (Fuzzy-based Dynamic Land Erosion Model). 

FUDSEM is explicit and temporarily dynamic and is formalized and based on fuzzy logic equations. FUDSEM 

was initially evaluated on a small data-rich catchment and was found well calibrated; it was then evaluated on a 

medium-sized heterogeneous catchment in a catchment in central Israel. Initial evaluations of the model-scale 

were conducted by: (1) comparison of FUDSEM run-off predictions against measured run-off from five 

hydrological stations and (2) a site specific evaluation of the FUDSEM multi-year erosion prediction in two sub-

catchments. FUDSEM was compared with two other erosion models (a temporarily static version of itself and a 

known physically-based model). The results showed the advantages of FUDSEM over the other two models in 

evaluating the relative distribution of erosion, thereby emphasizing the benefits of its temporarily dynamic and 

fuzzy structure. Catchment-scale erosion modeling is particularly desirable, since it facilitates more efficient land 

erosion conservation planning (De Jong et. al., 1999) by providing spatial data over large areas, data that may be 

used to decrease erosion related problems (Jetten et. al., 2003). The potential of such models for erosion for 

environmental management and planning is clear, but most state-of-the-art land erosion models are difficult to 

apply over large areas due to intensive detailed and data requirements (Meritt et. al., 2003). 

Several large scale erosion models such as WEPP (Nearing et. al., 1989), EUROSEM (Morgan et. al., 1992), 

LISEM (De Roo et. al., 1996), EROSION 3D (Schmidt et. al., 1999), and MEDRUSH (Kirkby and McMahon, 

1999) have been reported and examined. Despite their important contribution to understanding, quantifying and 

predicting land erosion, most models do not reliably predict erosion yield over large heterogeneous areas 

(Trimble and Crosson, 2000). The most prominent reasons for this lack of reliability are: (1) insufficient input 

data with high spatial and temporal resolution; (2) insufficient calibration (Folly et. al., 1999); and (3) 

uncertainty associated with model parameters (De Roo, 1998). Few erosion models have been developed to 

continuously simulate the erosion process over long periods, because they do not incorporate temporally 

dynamic variables such as vegetation growth and ground water dynamics (Jetten et. al., 1999). In recent years, 

some of the models that address some of the problems described above have been published. For example, 

SEDEM (Van Rompaey et. al., 2001) uses the empirical RUSLE as a simple erosion rate platform in a spatially 

distributed model and is to address low-detail distribution data in large catchments. Despite its simplicity, the 

model accurately calculates sediment delivery but the empirical RUSLE requires intensive calibration. 

Temporally, dynamic erosion calculations have been addressed by a variety of landscape evolution models, such 

as SIBERIA (Willgoose et. al., 1991), GOLEM (Tucker and Slingerland, 1994), LAPSUS (Schoorl et. al., 2000), 

CHILD (Tucker et. al., 2001) and CAESAR (Coulthard et. al., 2002). Such landscape evolution models 

successfully simulate the spatial and temporal distribution of sediment, but are usually complicated to operate 

and analyze; moreover, detailed input data and outstandingly powerful computers are required. In general, the 

advantages of fuzzy systems are many. 

METHODOLOGY 

Fuzzy Based Dynamic Soil Erosion Model (Fudsem)  

Fuzzy logic provides a systematic tool to incorporate human experiences. It is based on three core concepts 

namely; fuzzy sets, linguistic variables and possibility distributions. Fuzzy set is used to characterize linguistic 

variables whose values can be described qualitatively using a linguistic expression and quantitatively using a 

membership function (MF). Linguistic expressions are useful for communicating concepts and knowledge with 

human being whereas membership functions (MF) are useful for processing numeric input data. When a fuzzy 

set is assigned to a linguistic variable, it imposes an elastic constraint called a possibility distribution on the 

possible values of the variable. Fuzzy logic is a rigorous mathematical discipline while fuzzy reasoning is a 

straight forward formalism for encoding human knowledge or common sense in a numerical frame work. As a 

theory in formal mathematics, it enables a definitive solution to be obtained for problems that are complex, 

uncertain and unstructured (Bojorquez-Tapia et. al., 2002). A general fuzzy system is composed of three primary 

elements; fuzzy sets membership functions (mfs) and fuzzy production rules. A fuzzy set A may be defined as 

follows (Burrough et. al., 1992): 

For each � = ��, �����	
��                                                                     (1) 

where X = {x} is a finite set of points and µA(x) is the membership of x in A 

The membership function describes the variable’s membership assigned to A and therefore it may quantify the 

influence of the variable x on the predicted phenomenon as it is grasped by the developer (Burrough and 

McDonnel, 2000). To integrate the effects of a number of variables, several membership functions can be 
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merged in a variety of joint membership functions (JMF). Both membership and joint membership functions 

provide a simple membership grade in a range 0-1, where 1 is full membership and 0 is no membership. In 

FUDSEM, the term ‘potential’ is used to describe this mathematical grade; using more process- related 

terminology. For instance, run-off potential means that the membership grade has a high possibility of run-off 

development. In general, FUDSEM predicts the hillslope soil erosion potential for each day that exceeds a user-

defined precipitation depth value in meteorological data base. It is based on the infiltration excess run-off 

mechanism on hillslopes; with emphasis on the temporal dynamics of this process. FUDSEM divides the erosion 

process into a sequence of four sub-routines including: Antecedent condition of soil moisture, Runoff generation, 

Transport capacity and Soil erosion.  Using fuzzy logic, each subroutine is calculated by an individual JMF that 

combines the relevant parameters (represented by membership functions). It is executed as follows:   

i. Soil moisture potential (JMF1) is explicitly calculated; 

ii. Run-off potential (JMF2) is calculated by considering the soil moisture potential; 

iii. Run-off potential is spatially accumulated, based on digital elevation model data (DEM); 

iv. Run-off transport  capacity potential (JMF3) is calculated, based on the accumulated Run-off potential; 

v. Soil erosion (JMF4) is calculated, based on the transport capacity potential; and  

vi. The model proceeds to the next day in the metrological database, until we reach the last day in the wet 

season. 

 

Figure 1: FuDSEM flow chart 

From Figure 1 FUDSEM operates in daily intervals divided into four subroutines, each calculated by distinct 

JMF. All model parameters are represented in membership functions, converting their values into a membership 

score assigned to the relevant set. JMF1 represents the cell moisture potential that acts as input parameter; JMF2 

represents the cell Run-off potential which is spatially accumulated, based on a flow direction layer. The original 

and accumulated Run-off potential acts as input parameters in JMF3 calculation, which is the Run-off sediment 

transport capacity. JMF3 acts as an input parameter in the final subroutine which is the calculation of a cell’s 

erosion potential (JMF4). After producing the erosion potential map, FuDSEM advances to the next day on the 

database and recalculates the four subroutines with the new values. The functions and weights used in FUDSEM 

are the outcome of generalized interpretation of common knowledge of erosion processes. Unlike standard 

physically-based models, the weights are not intended to represent an accurate quantitative relationship between 

the parameters, but to provide a general interpretation as envisaged by the modeler (Baja et. al; 2002; Robinson, 

2003). This is acceptable since the model predicts the potential of the parameters, thus representing its relative 

spatial and temporal distribution, rather than providing a quantitative prediction of erosion yield. Therefore, the 

relationship between the parameters i.e. functions and weights are not directly linked to specific study, but were 

chosen through a combination of information taken from the relevant literature and expert knowledge. 
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Soil Moisture Potential (JMF1)  

Antecedent soil moisture conditions are an important parameter in runoff generation. They may vary 

considerably over time (Jetten et al., 1999), especially in semi-arid environments characterized by scattered 

rainfall events. FuDSEM estimates soil moisture conditions by linking four parameters:  (1) time elapsed from 

the previous rainfall event (Te); (2) wetness index (WI; Barling et al., 1994); (3) hillslope aspect (SA); and (4) 

soil field capacity (FC). The membership functions assigned to the parameters in this sub-routine represent the 

membership score for the high soil moisture conditions set (A1). The membership score of Te assigned to A1 is 

calculated, using the ‘left shoulder sigmoidal’ membership function (Robinson, 2003; Figure 2d) generally 

described by: 

µAi=
�

��������                                                                                                                  (2)                         

where α is the mid membership value of x and b is the function slope. The left shoulder sigmoidal function was 

chosen on the basis of the exponential ratio in soil moisture decrease with time (Hillel, 1998). The function 

parameters (α and β listed in Table 1), were estimated, based on expert knowledge.  

a.       b.	 

 

 � = ������
���������    � = cos� � ������

���������! ≠  #�$ 

c.        d.	 

 

  � = �
�������%�      � = �

������%� 	
Figure 2: Schematics of four membership functions used in FuDSEM: (a) linear (Robinson, 2003); (b) sigmoidal 

(Urbanski, 1999); (c) left shoulder sigmoidal (Robinson, 2003); (d) right shoulder sigmoidal (Robinson, 2003).  

The wetness index is a widely used equation, based on division of the cell slope by its contributing area; 

&'�=(� ) *+,
-��.,/                                                                                                                  (3) 

Where: �0� = upper drainage area of a given cell (1) m
2
, 1 = the gradient of the cell in degrees (Barling et. al., 

1994). 

Natural logarithms are used to avoid the large numbers that may be produced in large drainage areas. High WI 

values indicate a higher membership score assigned to the set A1. The WI membership score assigned to A1 is 

calculated by a mirror version of the sigmoidal membership function (Urbanski, 1999) generally described by 

Eq. (4) 

��� = 230�  ���45%��
�45%��45,6�

#
�$                                                                                                                                           (4) 
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Table 1: Summary of FuDSEM parameters  

JMF   Factor Membership Function Type α β Pmin Pmax 

1. Wetness index 

Aspect 

Field capacity 

Time 

             Sigmoidal 

             Sigmoidal 

             Linear 

             Left shoulder 

 

 

 

      2 

 

 

 

    1 

      0 

      0 

     6.1 

0.32 

360 

42 

       

2. Infiltration Excess 

Rain depth 

NDVI 

             Sigmoidal 

             Sigmoidal 

             Linear 

        0 

      0 

      0 

2000 

40 

0.95 

       

3. Accumulation 

Slope 

             Linear 

             Right shoulder 

 

    30 

 

 0.1 

      0 10 

       

4. k-index              Linear       0.33 0.52 

 

The hill-slope aspect represents the influence of solar radiation flux on soil moisture as a function of aspect 

azimuth. In the northern hemisphere, south-facing slopes are commonly less humid, due to higher solar exposure 

(Oliphant et. al., 2003). Therefore, the SA membership score assigned to A1 increases as a function of radial 

distance from a 180 degrees aspect azimuth. Based on Svoray et. al. (2004), the membership score of SA 

assigned to A1 was calculated using a sigmoidal membership function (Urbanski, 1999) generally described by 

the following equation: 

��� = 230�  ���45,6�
�45%��45,6�

#
�$                                                                                                                                             (5) 

where 
 is the input value and 7��� and 7���  are the minimum and maximum values of the variable 
.   

The function’s parameters (7���89:	7���), listed in Table 1 are based on the values reported in Svoray et al. 

(2004). The effect of soil characteristics on soil moisture is represented by the field capacity of the soil in each 

cell. The water holding capacity of the soil varies considerably with soil texture, organic matter content and other 

physical characteristics (Hillel, 1998). Thus, high FC values increase the cell membership assigned to the set A1. 

Based on De Jong (1994) and Svoray et. al. (2004) the membership score is described by a mirror version of the 

linear membership function (Robinson, 2003) generally described by the following equation: 

��� = − 45,6��
45%��45,6

$                                                                                         (6) 

The function parameters (Pmax and Pmin) are simply the maximum and minimum values of the database. The 

JMF, combining the soil moisture potential parameters, which were formulated with the ‘No Trade Off’ (NTO) 

convex combination JMF (Urbanski, 1999) generally described by; 

JMF	=  ∑ =>�*?
�>@� $ ^  ∑ =>�*?

�>@� $                                                                            (7) 

Where λ1, n are the weights of the membership functions and ^ is the minimum between the two groups of 

membership functions. This operator was chosen on the assumption that if sufficient time has passed since the 

last rainfall event, the top soil will dry out regardless of any other parameters. Under these conditions, the 

dominant parameter influencing the soil moisture potential is Te; thus, if Te = 0, then JMF1 = 0. The weight 

assigned to Te in the JMF is double that of the other parameters, due to its important role in the moisture loss 

process in semi-arid regions. All the other parameters were assigned an equal weight, under an assumption of 

equal contribution to the soil moisture potential. The final soil moisture potential JMF is presented in the 

following equation: 

BCD1 = F 0.0																																									IJ = 0
0.4IJ + 0.2N� + 0.2DO + 0.2&'                            (8)            
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Run-Off Potential (JMF2) 

The daily runoff potential is simulated only in cells with infiltration excess. Cells with no excess infiltration are 

assigned a zero runoff potential. Calculating the runoff potential for a cell with excess infiltration is undertaken 

by joining four parameters:  (1) Soil moisture potential (JMF1);        (2) Excess infiltration (IE); (3) Daily rainfall 

depth (RD); and (4) Vegetation cover (NDVI – normalized difference vegetation index; Tucker, 1979). The 

membership functions assigned to the parameters in this sub-routine represent the membership score of the set of 

highest runoff generation potential (A2). The value of JMF1 represents the cell membership assigned to A2, 

under the assumption that high soil moisture content increases the possibility for runoff generation. Excess 

infiltration is calculated by subtracting the saturated hydraulic conductivity of the soil from the daily rainfall 

intensity. The mirror version sigmoidal membership function (Urbanski, 1999) is used to convert the excess 

infiltration values into the membership score assigned to A2, based on the relationship described in Moody and 

Martin (2001) and Valmis et al. (2005). The function parameters (Pmax and Pmin), listed in Table 1, are simply the 

maximum and minimum values of the database. Based on the relationship reported in USDA-SCS (1985), the 

membership score of daily rainfall depth of A2 is described by the mirror version sigmoidal membership function 

(Urbanski, 1999; Eq.(4)). Vegetation cover affects runoff generation by decreasing raindrop energy and 

increasing its infiltration rate (Yair and Kossovsky, 2002; Calvo-Cases et. al., 2003). Vegetation cover in semi-

arid regions is characterized by patchy and heterogeneous distribution, creating a high spatio-temporal variability 

in water redistribution along the hill slopes (Svoray and Shoshany, 2004). Based on FAO (1967), the 

membership score of NDVI assigned to A2 is calculated by a linear membership function (Robinson, 2003; 

Figure 2a), which is generally described by the following equation: 

��� = �5%���
�5%���5,6

                                                                                                     (9) 

Combining the four membership functions, the calculation of the overall runoff potential is carried out with the 

NTO JMF (Urbanski, 1999; Eq. (7)), in order to introduce IE as a threshold parameter. As mentioned above, 

negative or zero IE values yield zero runoff potential. The weight assigned to NDVI is double the weight 

assigned to the other parameters due to its importance in semi-arid environments (Yair and Kossovsky, 2002). 

All other parameters were assigned an equal weight under the assumption of equal contribution to runoff 

potential. The final runoff potential JMF2 is presented in the following equation: 

 BCD1 = F 0.0																																									IJ = 0
0.4IJ + 0.2N� + 0.2DO + 0.2&'                                                               (10a) 

BCD2 = P0.0																																																																								'� ≤ 0
0.2'� + 0.2RS + 0.4TSU' + 0.2BCD1 + '� > 0         (10b) 

 

Transport Capacity (JMF3) 

The ability of runoff to transport sediments is influenced by a variety of parameters; among them shear stress, 

vegetation cover and soil and topographic characteristics (Thornes, 1980). The initiation of erosion and transport 

of sediment by water is performed on hill slopes by unconcentrated runoff and by rill flow. Further downstream, 

it occurs in and forms gullies and channels. No distinction is made between these in our FuDSEM model, which 

is acceptable in non-mechanistic models (Hillel, 1998). Three parameters are linked to calculate the runoff 

transport capacity potential in the model:  (1) Run-off potential (JMF2); (2) Run-off accumulation (Acc); and (3) 

Local slope decline (S).  The membership functions assigned to the parameters in this sub-routine represent the 

membership score assigned to the set with the highest run-off transport capacity potential (A3). Runoff potential 

(JMF2) represents the cell membership score of A3, under the assumption that a high value of run-off increases 

cell transport capacity. Run-off volume and transport capacity in a given cell are influenced by the runoff 

generated in situ and by run-off accumulated from its upslope contributing area. Accumulation to a given cell 

(Acc) is influenced, not only by the contributing area, but also by land cover characteristics of the accumulating 

catchment. A cell with high run-off potential is regarded as a source for the down-slope cells, while, by contrast, 

a cell with low run-off potential is considered a sink. Therefore, the runoff accumulation procedure is important 

for describing the spatio-temporal dynamics of runoff flow. The Acc. membership function assigned to A3 is 

described by the mirror linear function (Robinson, 2003; Eq. (6)). Slope represents the effect of gravitational 

force on runoff discharge. A steep slope increases runoff discharge, resulting in a higher transport capacity. 

Based on De Jong et al. (1999), we used the ‘right shoulder sigmoidal’ membership function (Robinson, 2003; 

Fig. 2c) to describe the membership score of slope ofA3, as follows: 
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��� = �
���������                                                                                                          (11) 

The parameters α and β (Table 1) were evaluated from the results of a small pan experiment (Kirkby, 1980). 

Combining the three membership functions to calculate the transport capacity potential is undertaken with the 

‘convex combination operation function’ (Burrough et al., 1992), which is generally described by: 

  BCD = =��*� + =��*� +⋯+ =��*�                                                                    (12) 

The three parameters were assigned equal weights in the final transport capacity potential JMF, under an 

assumption of equal contributions to the process 

JMF3= 0.33S+0.33Acc+0.33JMF2                                                                          (13) 

Soil Erosion Potential (JMF4) 

The final sub-routine calculates the erosion potential by assuming that in a specific transport capacity, the 

entrainment of sediments is a function of topsoil erodibility: sediment entrainment and thus, erosion are expected 

to increase in more erodible soils. Therefore, the daily erosion potential is calculated by linking the runoff 

transport capacity (JMF3) with K, the soil erodibility index (Wischmeier and Smith, 1978).  The membership 

functions assigned to the parameters in this sub-routine represent the membership score to the highest erosion 

potential set (A4). JMF3 represents the effect of high transport capacity on the overall erosion potential and K 

represents topsoil sensitivity to erosion. A high value of erodibility results in higher erosion potential for given 

runoff conditions. The membership score of K, assigned to A4, is described by the mirror version linear 

membership function (Robinson, 2003; Eq. (6)) and based on Mitra et. al., (1998). Combining the two 

membership functions to calculate the erosion potential is undertaken with the ‘convex combination operation 

functions (Burrough et. al., 1992; Eq. (12)). We assume that the transport capacity potential dominates the final 

erosion calculation, so we assign it a considerably higher weight than K. The erosion potential JMF is 

represented by 

BCD4 = 0.1X + 0.9BCD3          (14) 

                                                      

RESULTS AND DISCUSSION 

Fuzzy Based Dynamic Soil Erosion Model (FuDSEM), under fuzzy logic model was used in the prediction of 

soil erosion and evaluations were made using the results from the model. The result of the prediction was 

obtained from the value of JMF4 from day one to day 30. The results show that the area used for the prediction 

has low erosion potential. The set of data for this work was gathered based on expert knowledge and from 

predictions carried out previously on soil erosion. 
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Table 2: Fudsem Data 

Days Wetness 

Index (m) 

Aspect 

(Deg) 

Field 

Capacity 

(m
3
/m

3
) 

Time 

Elapsed 

(Hr) 

Infiltration 

Excess (mm/Hr) 

Rain 

Depth 

(mm) 

Ndvi Acc Slope K 

Index 

1 0.19 135 6.1000 20 0.1598 0.75 0.25 10 0.05 0.0835 

2 0.19 135 6.1000 18 0.1467 0.72 0.25 10 0.05 0.0835 

3 0.19 135 6.1000 16 0.1457 0.65 0.25 10 0.05 0.0835 

4 0.19 135 6.1000 21 0.142 0.64 0.25 10 0.05 0.0835 

5 0.19 135 6.1000 17 0.156 0.64 0.25 10 0.05 0.0835 

6 0.19 135 6.1000 20 0.153 0.6 0.25 10 0.05 0.0835 

7 0.19 135 6.1000 21 0.157 0.56 0.25 10 0.05 0.0835 

8 0.19 135 6.1000 17 0.156 0.75 0.25 10 0.05 0.0835 

9 0.19 135 6.1000 15 0.157 0.65 0.25 10 0.05 0.0835 

10 0.19 135 6.1000 12 0.159 0.56 0.25 10 0.05 0.0835 

11 0.19 135 6.1000 14 0.158 0.64 0.25 10 0.05 0.0835 

12 0.19 135 6.1000 10 0.143 0.75 0.25 10 0.05 0.0835 

13 0.19 135 6.1000 19 0.145 0.64 0.25 10 0.05 0.0835 

14 0.19 135 6.1000 11 0.156 0.63 0.25 10 0.05 0.0835 

15 0.19 135 6.1000 17 0.159 0.56 0.25 10 0.05 0.0835 

16 0.19 135 6.1000 16 0.153 0.6 0.25 10 0.05 0.0835 

17 0.19 135 6.1000 15 0.156 0.56 0.25 10 0.05 0.0835 

18 0.19 135 6.1000 12 0.157 0.66 0.25 10 0.05 0.0835 

19 0.19 135 6.1000 13 0.158 0.73 0.25 10 0.05 0.0835 

20 0.19 135 6.1000 19 0.156 0.72 0.25 10 0.05 0.0835 

21 0.19 135 6.1000 10 0.158 0.73 0.25 10 0.05 0.0835 

22 0.19 135 6.1000 17 0.154 0.64 0.25 10 0.05 0.0835 

23 0.19 135 6.1000 19 0.153 0.63 0.25 10 0.05 0.0835 

24 0.19 135 6.1000 18 0.154 0.62 0.25 10 0.05 0.0835 

25 0.19 135 6.1000 16 0.154 0.65 0.25 10 0.05 0.0835 

26 0.19 135 6.1000 13 0.156 0.63 0.25 10 0.05 0.0835 

27 0.19 135 6.1000 15 0.157 0.56 0.25 10 0.05 0.0835 

28 0.19 135 6.1000 14 0.143 0.55 0.25 10 0.05 0.0835 

29 0.19 135 6.1000 12 0.156 0.65 0.25 10 0.05 0.0835 

30 0.19 135 6.1000 13 0.146 0.64 0.25 10 0.05 0.0835 
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Table 3: Output of Fudsem Data 

Days JMF 1 JMF 2 JMF 3 JMF 4 (Final output) 

1 0.3676 0.7680 0.5720 0.3851 

2 0.3676 0.7680 0.5720 0.3851 

3 0.3676 0.7680 0.5720 0.3851 

4 0.3676 0.7680 0.5720 0.3851 

5 0.3676 0.7680 0.5720 0.3851 

6 0.3676 0.7680 0.5720 0.3851 

7 0.3676 0.7680 0.5720 0.3851 

8 0.3676 0.7680 0.5720 0.3851 

9 0.3676 0.7680 0.5720 0.3851 

10 0.3676 0.7680 0.5720 0.3851 

11 0.3676 0.7680 0.5720 0.3851 

12 0.3676 0.7680 0.5720 0.3851 

13 0.3676 0.7680 0.5720 0.3851 

14 0.3676 0.7680 0.5720 0.3851 

15 0.3676 0.7680 0.5720 0.3851 

16 0.3676 0.7680 0.5720 0.3851 

17 0.3676 0.7680 0.5720 0.3851 

18 0.3676 0.7680 0.5720 0.3851 

19 0.3676 0.7680 0.5720 0.3851 

20 0.3676 0.7680 0.5720 0.3851 

21 0.3676 0.7680 0.5720 0.3851 

22 0.3676 0.7680 0.5720 0.3851 

23 0.3676 0.7680 0.5720 0.3851 

24 0.3676 0.7680 0.5720 0.3851 

25 0.3676 0.7680 0.5720 0.3851 

26 0.3676 0.7680 0.5720 0.3851 

27 0.3676 0.7680 0.5720 0.3851 

28 0.3676 0.7680 0.5720 0.3851 

29 0.3676 0.7680 0.5720 0.3851 

30 0.3676 0.7680 0.5720 0.3851 
 

The FuDSEM models divides its erosion prediction process into four subroutines and they are soil moisture 

potential (JMF1), runoff potential (JMF2), transport capacity potential (JMF3) and finally soil erosion potential 

(JMF4) which is actually the destination point. Each of these subroutines has some parameters that are linked 

together to estimate a particular a subroutine, which can also be called sub-subroutines. For instance, the soil 

moisture potential has the following parameters linked together to estimate it: time elapsed from previous rainfall 

(Te), wetness index (WI), hillslope aspect (SA), and field capacity.  The membership functions of the data of 

these parameters are calculated using the formula given in (Figure 3a: Interface Showing User inputs) depending 

on the parameter being calculated since the raw data cannot be used directly in this model, they are integrated 

together into joint membership functions (JMFs), that is the membership function of the subroutine as a whole. 

The same process was carried out for 30 days with the total number of parameters used was ten. And the final 

output was the JMF4 (soil erosion potential) which is described to be between the ranges of 0 and 1 i.e. 0 for low 

potential and 1 for high potential, gave an output with the value 0.3851 implying that over a period of 30 days, 

the estimated area had low soil erosion potential. The model data was computed using MATLAB. Matlab is a 

high performance language for technical computing. It integrates computation, visualization, and programming 

in an easy to use environment where problems and solutions are expressed in familiar mathematical notation 

(Figure 3b: Interface Showing User outputs). 
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Figure 3a: Interface Showing User Inputs 

 

Figure 3b: Interface Showing User Outputs                              

 

CONCLUSION 

This study was done using properties of fuzzy models to predict soil degradation, precisely soil erosion. From 

the work, FuDSEM was better defined than other ordinary models and it’s simpler to use due to its definition. 

Also, it is incapable of generalizing as it only answers what is written in the rule base. It is not robust in the 

relation to topological changes of the system as such changes would demand operations in the rule base. This 

model is therefore recommended to be used in the agricultural sector of the economy to predict lands that are 

prone to degradation as it will help to adequately monitor the rate of degradation in soil after cultivation so that 

adequate measures can be taken to guide against it.  
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