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Abstract 

The Pan-African Dahomeyide belt exposed in Southeastern, Ghana, consist of granitoid gneisses locally known 

as Ho gneiss. These rocks are thought to be part of the West African Craton (WAC) which was reworked during 

the Pan-African Orogeny, and may be time equivalent with the Kara gneisses. Petrographical and whole rock 

geochemical analyses have been used to evaluate the characteristics, petrogenesis and mode of emplacement of 

the granitoids. The new data reasonably suggest that the Ho gneiss consist mainly of biotite augen gneisses of 

both mafic and felsic rock suites. Geochemically, these rocks show tonalitic to quartz monzonite but mainly 

granodiorites affinities. They are metaluminous to weakly peraluminous, I-type, magnesian to ferroan and calcic 

to alkali calcic. With these varying features, the granitoids mimic mantle derived magma source which mixed or 

mingled with crustally derived melt. The rocks display varying REEs and trace elements patterns but, their 

LREEs and LILE enrichment with  the noticeable enrichment in Rb, Ba, K and especially Pb and negative Ti, Ta, 

Nb observed among majority of the samples are typical signature of ‘‘arc rocks’’ or continental crustal materials. 

Their incompatible trace element ratios, such as Th/U (1.07 – 13.87), K/Rb (272 – 574.47), Th/Yb (0.79 – 

15.09), Ta/Yb (0.25 -0.64 ), Ce/Pb (mainly 1.62 – 7.88 ) and high Ba/Nb (19.55 – 314.17, with TA = 1565.00), 

are similar to those of the continental crust. The rocks are characterised by subduction related Sr/Y content (< 

100), except sample MA8 that shows high concentration of Sr/Y (227.71). The magnesian affinity reflects 

relatively hydrous, oxidizing source which is consistent with origins that are broadly subduction related. Their 

high – K nature also points to an important petrogenetic role of remelting and differentiation of arc – 

accretionary complex crust. These geochemical signatures are likely to be related to metasomatism of the sub – 

continental lithospheric mantle via crustal recycling. In conclusion, the granitoids may have from melting of 

igneous source in a subduction related environment. 
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1.0 Introduction 

The Trans Saharan belt of Africa occurs north and east of the West African craton (WAC) and comprises several 

Neoproterozoic orogenic belts. Assemblages of ophiolites, accretionary prisms, island-arc magmatic suites and 

high-pressure metamorphic rocks are clear indications of ocean opening, followed by a subduction or collision 

related evolution (Kroner and Stern, 2005). The southern portion of the large Trans – Saharan orogenic belt is 

marked by the Dahomeyide belt that forms southeastern boundary with the WAC; its northern extension being 

the Iforas in Mali. It is believed to have been formed during the Neoproterozoic Pan African event in the 

northeast Gondwana assembly (Trompette, 1994).  The tectonic setting of this belt has been a subject of debate. 

Several studies, both petrographically and geochemically have been conducted and different origins have been 

outlined (Kalsbeek et al., 2010). According to Villeneuve and Cornée, (1994), Trompette, (1997) the belt 

represents a pre – orogenic rift phase that evolved to an active margin, with subduction and calc – alkaline 

magmatism occurring between 700 Ma and 600 Ma and final collision against the eastern margin of the WAC at 

610–600 Ma, producing granulite – facies metamorphism. Post – collisional plutonism occurred until 500 Ma. 

For Burke and Dewey (1972), the belt was formed by subduction of oceanic crust and collision of two 

continental plates. However, for Clifford (1972), the belt represents cratonic chains of reactivated continental 

basement and supracrustal rock formed during the Neoproterozoic Pan African orogeny. In Mali, it is believed 

the belt resulted from collision between two continental crusts with west being dioritic accreted crust (Caby and 

Moussine – Pouchkine, 1978).  

Caby (1998) recognized seven tectonic elements that make up the Dahomeyide belt in the southeastern 

portion of the West African Craton. In southeastern Ghana and adjoining parts of Togo and Benin, the 

Dahomeyide is a well – organized orogen that is interpreted to have resulted from easterly subduction of the 

rifted margin of WAC (Affaton et al., 1991; Agbossoumondé et al., 2004; Attoh and Nude, 2008). The 
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Dahomeyide orogenic terrain is made up of three nappe complexes (Affaton, 1990; Attoh et al., 1997 ; Nude et 

al., 2012) :  the western external units made up of deformed eastern edge of the WAC with its cover rocks ( Togo 

and the Buem structural units), a suture zone assemblage of mafic and ultramafic rocks and the eastern internal 

units made of granitoid gneiss – migmatite assemblages comprising the Accra and Benin Plains units that 

underly much of the Benin – Nigerian shield at east of the suture zone (Fig.1) Attoh 1998a. The western external 

and the eastern internal units may be highly associated with the lower and upper plates respectively in a 

convergent collisional orogeny (Agbossoumondé et al., 2004). Autochthonous rocks of the deformed edge of 

WAC are mainly the 2.0 Ga granitoid gneisses which have been transformed into proto – mylonitic gneiss and 

locally referred to as the Ho gneisses (Attoh 1998a; Attoh et al., 2007; Nude et al., 2009).  

Agyei et al. (1987) determined Rb–Sr whole rock isochron ages of 2176 ± 44 Ma (Eburnean age) for 

the Ho gneiss. The interpretation is that the Ho gneisses may have formed by an  extensive ductile shear and are 

part of the WAC that was reworked during the Pan-African orogeny, and may be time equivalent of the Palimé – 

Amlamé Pluton (PAP), (Attoh et al., 1997; Hirdes and Davis, 2002; Agbossoumondé et al., 2007), Kara 

orthogneiss, North Togo (Affaton et al., 1991) or of the Bourré Granite, Mali (La Boisse and Lancelot, 1977; 

Caby and Moussine - Pouchkine, 1978). This study presents the first time geochemical characteristics of the Ho 

gneisses. The geochemical features have been compared to reference igneous series through chemical 

discrimination diagrams in order to define their possible mode of emplacement, origin and tectonic setting. 

 

2.0 Geological Setting 

The Pan – African Dahomeyide belt in Ghana occurs at the southeastern corner, roughly that part of a line drawn 

N – NE from Accra to intersect Ghana – Togo boundary near Agome in the republic of Togo (Kesse, 1985). It is 

separated from Paleoproterozoic rocks of WAC and rocks of the Voltaian Supergroup by north – south trending, 

westwards directed frontal thrust. East of the thrust, metamorphic grade and deformation systematically increase 

eastwards to northwestwards. The western external units of the Dahomeyide belt is made up of deformed eastern 

edge of the WAC locally known as the Ho gneisses with its cover rocks (Togo and the Buem structural units) 

deposited on the rift passive margin (Attoh et al., 2013). Bounded to the east of the external zone are the high 

pressure (HP) mafic rocks forming the suture zone (Attoh, 1998a, Agbossoumondé et al., 2001; Attoh and 

Morgan, 2004; Nude et al., 2009; Nude et al., 2012) which mark the collisional zone of the WAC and the 

presumed exotic blocks to the east (Attoh et al., 2013). The eastern internal units are made of granitoid gneiss – 

migmatite assemblages postulated to include juvenile crust representing an arc terrain that formed during 

easterly subduction associated with ocean closure (Attoh et al., 2013). According to the earlier workers, (e.g. 

Agyei et al., 1987[19]) the Ho gneisses are thought to be part of the WAC reworked during the Pan – African 

orogeny. 

 

3.0 Materials and Methods 

3.1 Field Relation 

Representative fresh Ho gneisses samples were taken from the deformed eastern margin of the WAC for this 

study (Fig. 1). Outcrops are mainly biotite gneisses with NE strike and intermediate dip to the east (Fig. 2a). The 

rocks appear to have experienced deformation. Some (AB2, KL5, TO3, SO5) are light coloured, weakly foliated 

with head and tail augen structures developed in them (Fig. 2b). This rock suite is well exposed in Ho, Sokode, 

and Klefe areas; some outcrops characterized by exfoliation surfaces. Outcrops of this rock type were referred to 

as felsic augen gneiss in the field. In Matse area, outcrops are found in low – lying areas, around Labo River, 

northeast of Akolikope, northwest of Matse Ando and west of Matse Dzokpe. The rocks observed are brownish 

grey in colour when fresh and reddish – brown when weathered (Fig. 2b). The rocks are coarse grained and K-

feldspar rich granitoid gneiss. The rocks appear to have experienced several episodes of deformation evident by 

series of crosscutting joints, fractures and faults of varied thickness. The rocks trend NE – SW with SE dip 

direction. Outcrops observed at Takla area also look a bit different from the other biotite gneisses described 

above. The rocks are dark coloured and characterized by larger "eye"-shaped crystals of light (quartz and 

feldspar) and dark (biotite) minerals (Fig.2d). The rocks are weakly foliated but hard due to intense silicification 

and occur close to the contact between the suture zone mafic granulites and the external nappes rocks. In the 

field, this type of rocks was referred to as mafic augen gneiss.  
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Figure 1. Tectonic map of the Dahomeyide orogen in southeastern Ghana and adjoining part of Togo (After, 

Attoh, 1998a). 
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Figure 2. Field photographs of representative samples of the Ho gneiss form SE Ghana. (a) Felsic augen gneiss 

from Ho area (b) Felsic augen gneiss showing head and tail augen structure (c) Felsic granitic gneiss from Matse 

(MA8) and (d) Mafic gneiss from Takla area. 

 

3.2 Petrography 

Representative rock samples were selected for petrographic studies to determine the textures and mineralogical 

compositions. The results from the petrography (Table 1) showed that the felsic augen gneiss (AB2, KL5, SO5 

and TO3) are composed mainly of quartz (45 – 60 %), plagioclase (15 – 25 %), biotite (10 – 25 %), muscovite (5 

– 15 %), sericite (0 – 5 %). The quartz crystals are colourless under plane polarized light and lack cleavages but 

a few of the minerals show fractures and sutured boundaries. The plagioclase observed is colourless under plane 

polarized light with mostly subhedral crystal shape. Under cross polarized light, few crystal show weak twining 

but the majority of them is untwinned. The micas (both biotite and muscovite) are seen to surround the 

plagioclase (Fig.3a). 
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Figure 3. Photomicrographs showing the mineral composition of the Ho gneiss samples (a) Felsic augen gneiss 

from Ho area (b) Felsic granitic gneiss from Matse. Qz – Quartz, Bt – Biotite, Ms – Muscovite, Pl – Plagioclase, 

Or – Orthoclase (Adapted after, Kretz, 1983). 

 

The K – feldspar rich granitic gneiss (MA8) is composed of quartz (60%), plagioclase (18%), biotite 

(10%), K- feldspar (12%) and muscovite (< 1%) (Table 1). Quartz is subhedral with nearly defined boundaries, 

exhibit sharp undulose extinction with several choncoidal fractures occurring in them. Some of the quartz show 

iron stains on their surfaces. Plagioclase have irregular and poorly defined outlines with anhedral shapes, and 

show albite twining and sericitic alterations. The K – feldspars in the have irregular outlines (Fig. 3b). They are 

anhedral with poorly defined boundaries and exhibit carlsbad twinning. The micas show cleavage in one 

direction and occur mostly as laths in with muscovite marked by micro – fractures. The mafic augen gneiss (TA5) 

is composed basically of quartz (30%), plagioclase (25%), biotite (35%) and muscovite (10). The quartz have 

euhedral to subhedral crystal shapes and are colourless under plane polarized light, with few of the minerals 

showing fractures and sutured boundaries. Under cross polarized light it shows grey to white interference colours 

and undoluse extinction. The extinction is not uniform but is shadowy; this shadowy extinction is mainly a 

characteristic of deformed rocks. Plagioclase is colourless under plane polarized light. Biotite in this rock 

appears to be high (Bt=35%) and show high pleochroism appearing pale brown under plane polarized light with 

the usual  euhedral shape and perfect cleavages making easy to be split in thin flexible sheets. Both the biotites 

and muscovites turn to align themselves to define the foliation via physical orientation of the rock. The presences 

of biotite in all the rock suites reflect the close affinity to hydrous, oxidizing magma source. The detail 

petrographic results are shown in the table 1. 

 

  



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol.4, No.15, 2014 

 

51 

Table 1. Modal composition of the representative samples of Ho gneisses 

 
 

3.3 Geochemical Technique  

The major and trace element compositions of the representative samples were also determined.. The samples 

were washed in distilled water followed by ethanol and dried in sun for four days. The dried samples were 

wrapped in plastic zip lock bags with the sample IDs written boldly on them. The samples were then crushed 

into smaller fractions of about 30mm in diameter and further into sizes of about 5 mm in diameter. These small 

splintered rock – chips were finally taken and pulverized into smaller sizes using an agate mortar. The samples 

were finally sieved using 500µm mesh to obtain powdered samples used for the chemical analyses. The sample 

preparation was carried out at the GHARR-1 Centre of National Nuclear Research Institute (NNRI), Ghana 

Atomic Energy Commission (GAEC). Whole rock elements analyses on the selected samples were performed at 

the ALS laboratory in Vancouver, Canada. The major and trace elements analyses were done using inductively 

coupled plasma atomic emission spectrometry (ICP-AES) and multi elements fusion inductively coupled plasma 

mass spectrometry (ICP-MS) respectively. Loss on ignition was determined at 1000 °C. The detail analytical 

procedures are available at ALS laboratory. 

 

4.0 Results 
4.1 Chemical Alteration 

Geochemical changes are common phenomenon of granitoids. High loss – on – ignition (LOI) values are mostly 

the indications of increased dispersion and movement of major and large ion lithophile elements (LILE). Studies 

have shown that, even for rocks of prehistoric inheritance, the concentrations of such ‘mobile’ elements do not 

significantly change from their background abundances (e.g. Whalen et al., 1999). Due to the relatively 

immobile nature of high field strength (HFSE) and rare earth elements (REEs) under most conditions (e.g., 

Pearce and Cann, 1973; Whalen et al., 1999), they have often been used for igneous petrogenetic and tectonic 

studies. On the other hand, due to high susceptibility to mobility during processes such as metamorphism and 

hydrothermal activities, major elements have mostly been used to give background information. However, if the 

dispersion of the major elements is minor, they could still reveal the principal igneous processes involved in the 

formation of the rocks. Nevertheless, the extent to which the Dahomeyide granitoid gneisses had been altered 

was investigated using the chemical index of alteration (CIA) calculations of Nesbitt and Young (1982). 

According to Nesbitt and Young (1982), CIA value of any rock above 60 indicates alteration. The CIA values 

for the Ho gneiss samples ranges between 53 and 62 (Table 2) which indicates that the rocks have not gone 

through much alteration. 

 

  

Sample ID Tectonic Unit Description Rock name

AB2 Ho gneiss (Qz = 45) + (Pl = 25) + (B t= 20) + (Ms = 5) + (Ser = 5) Felsic augen gneiss

KL5 Ho gneiss (Qz = 45) + (Pl = 15) + (Bt = 25) + (M s= 15) Felsic augen gneiss

TO3 Ho gneiss (Qz = 60) + (Pl = 20) + (B t= 10) + (Ms = 5) + (Se r =5) Felsic augen gneiss

SO5 Ho gneiss (Qz = 45) + (Pl =25) + (Bt =10) + (Ms =15) Felsic augen gneiss

TA5 Ho gneiss (Qz =25) + (Pl=20) + (Bt=45) + (Ms=10) Mafic augen gneiss

MA8 Ho gneiss (Qz = 60) + (Pl= 35 + (Bt=30) + (Or=12)  + (Ms<1) K-feldspar rich augen gneiss
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Table 2. Major elements composition of the Ho gneisses (wt. %) 

 
 

4.2 Major Elements 

Despite lithological differences observed among the samples, all the analyzed granitoid gneiss (Ho gneiss) 

samples from the Dahomeyide belt SE Ghana show similar major elements composition. Thirteen major 

elements were determined on the Ho gneisses (Table 2). The concentration of SiO2 ranges between 56.00 and 

68.90 wt. %. The rocks have high Al2O3 content of 12.85 – 16.30 wt. %; TiO2 of 0.46 – 1.26 wt. % and wide 

range of FeOt values (2.65 to 14.85wt. %). The rocks are composed also of MnO 0.02 – 0.12 wt.%;  MgO of  

0.94 – 4.85 wt.%; CaO of 2.06 – 8.70 wt.%; Na2O of 2.43 – 3.71 wt.%; and  K2O of 0.70 – 4.19wt.%). The CaO, 

MgO, TiO2, and FeOt contents apparently decrease with increasing SiO2 content, whereas Al2O3 and Na2O 

increase with SiO2 (Fig. 4). Harkar plots of SiO2 against some selected trace elements (not shown) show 

decrease in Y, Ni, V, Nb and increase in Sr and Ba with increasing SiO2 content. 

 

SAMPLE AB 2 KL 5 SO 5 TO 3 MA 8 TA 5

ME-ICP06 ME-ICP06 ME-ICP06 ME-ICP06 ME-ICP06 ME-ICP06

SiO2 63.40 56.00 67.50 68.80 68.90 56.10

Al2O3 14.15 16.30 12.85 15.30 14.35 13.90

Fe2O3 5.10 8.12 4.95 3.42 2.94 11.70

CaO 3.00 4.85 2.06 2.54 2.66 8.70

MgO 1.54 3.09 1.54 0.98 0.94 4.85

Na2O 2.82 3.71 2.43 3.55 3.00 2.69

K2O 3.12 3.21 4.19 3.69 2.88 0.70

Cr2O3 0.02 0.02 0.02 0.02 0.01 0.03

TiO2 0.82 1.26 0.81 0.54 0.46 0.69

MnO 0.05 0.10 0.04 0.03 0.02 0.12

P2O5 0.31 0.51 0.33 0.23 0.30 0.09

SrO 0.09 0.10 0.06 0.07 0.08 0.03

BaO 0.20 0.21 0.22 0.20 0.32 0.05

Total 96.14 98.81 98.89 100.23 98.86 100.51

LOI 1.52 1.33 1.89 0.86 2.00 0.86

FeOt  4.59 7.31 4.45 3.08 2.65 10.53

Mg# 37.42 42.98 38.12 36.20 38.77 45.08

MALI 2.94 2.07 4.56 4.70 3.22 -5.31

F* 0.75 0.70 0.67 0.94 0.74 0.68

A/CNK 1.05 0.89 1.05 1.06 1.11 0.66

A/NK 1.77 1.70 1.51 1.56 1.78 2.68

ASI 1.08 0.92 1.08 1.08 1.14 0.67

CIA 61.28 58.07 59.68 61.00 62.69 53.48

CIPW Norm (Vol. %)

Q 6.90 25.86 31.41 33.39 8.05 12.23

C 0.00 1.42 1.36 2.18 0.00 0.00

Or 18.97 18.44 24.76 17.02 1.95 4.14

Ab 31.39 23.86 20.56 25.39 32.83 22.76

An 18.34 12.86 8.06 11.24 17.35 23.79

Ne 0.00 0.00 0.00 0.00 0.00 0.00

Di 1.95 0.00 0.00 0.00 13.52 15.38

Hy 11.57 6.79 4.14 4.06 5.39 13.30

Ol 0.00 0.00 0.00 0.00 0.00 0.00

Mt 11.77 7.40 7.18 4.26 7.89 16.96

Il 2.39 1.56 1.54 0.87 4.66 1.31

Hm 0.00 0.00 0.00 0.00 11.06 0.00

Ap 1.21 0.73 0.78 0.71 0.83 0.21
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Figure 4. Plots of SiO2 versus the other major elements (wt. %). 

The overall decreasing trends of FeOt, MgO, Y, Ni, Nb suggest fractionation of mafic minerals. The 

rocks contain high K2O content (> 2.0) with TA5 showing relatively low K2O content (< 1) and K/N values of < 

1 except sample SO5 that has K/N value of 1.13. The total alkalis A/NK [molar (Al2O3/ Na2O+K2O)] and 

A/CNK [molar (Al2O3/ CaO+Na2O+K2O)] contents range from 1.51–2.68 and 0.66–1.14 respectively (Table 2). 

The alumina saturation index [ASI= molar [Al/ (Ca – 1.67P + Na + K]] contents also range from 0.67–1.14 

which is typical I-type signature. The rocks have relatively high magnesium number (Mg#: 36 – 46) and iron 

number (Fe*) between 0.67 – 0.94. These characteristics are typical for both ferroan and magnessian rich rocks. 

Cross – Iddings – Pirsson –Washington (CIPW) norm calculations were performed for all the rocks using ferric – 

ferrous iron ratio of 0.15 to mollify any effect that might have resulted from post – emplacement oxidation 

processes. The results show that all the granitoid gneisses are quartz – normative (6.90 – 33.39). They contain 

normative hypersthene in the range of 4.06 – 13.30, anorthite in the range of 8.06 – 23.79 but none of the 

samples contain normative olivine. The detail major elements composition and the normative mineral 

assemblages are presented in table 2 above. 

 

4.3 Trace and Rare Earth Elements 

The REEs and trace elements data on the Ho gneisses show related characteristics. The REE patterns of the Ho 

gneisses show enrichments in LREE relative to the HREE (Table 3). On the chondrite normalized rare earth 

elements (REEs) variation diagram (Fig. 5), the rocks display fractionated patterns with an overall negative slope. 

They are characterised by decreasing abundance from LREEs to HREEs with noticeable negative Tm and 

slightly negative Eu anomalies (Eu/Eu* = 0.68 - 0.94). (AB2, KL5, SO5, TA5) with samples TO3 and MA8 

portraying positive Eu anomaly (Eu/Eu* =1.19 and 2.10 respectively). The rocks show highly fractionated 
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(La/Yb)N, (La/Lu)N and Ce/YbN contents of 16.87 - 76. 33, 16.59 – 64.90 and 2.24 – 31.94 respectively. The 

rocks have, Ce/SmN and (La/Sm)N contents of, 1.11 – 2.37 and 2.70 – 7.79. Samples TA5 and AB2 show varying 

characteristics of REEs. AB2 shows negative Yb anomaly and extremely high (La/Yb)N and Ce/YbN contents of 

5369.00 and 3889.00 whereas the TA5 shows very low (La/Lu)N and (La/Yb)N contents of 3.71 and 4.19 

respectively (Fig.5 and Table 2). 

In the incompatible trace-element concentrations normalized to the primitive mantle using Sun and 

McDonough (1989) normalized values (Fig. 6), the Ho gneisses display nearly linear distribution characterised 

by decreasing abundance from large ion lithophile elements (LILE) down to high field strength elements (HFSE). 

Samples AB2, KL5, SO5, and TO3 show gentle slope pattern with noticeable positive Rb, Ba, K, Pb and slightly 

Pr-Hf enrichment and are depleted in Cs, Th, U, Ta, Nb, Ti with slightly negative Eu anomaly except TO 3 that 

shows slightly positive Eu anomaly. MA8 show enrichment in Ba, K, Pb, Sr, Zr, Hf, Eu, Lu and negative Cs, Th, 

U, Ta, Nb and Tm anomaly. TA5 is characterised by negative Cs, Rb, K, Ta, Nb, Sr, Th, Zr, Hf, Ti, and Tm and 

are enriched in Ba, U and Pb. The marked depletion in Nb and Sr content characterize them as typical crustal 

derived magmas (Deniel et al., 1987).  

The trace elements characteristics give indication of varying sources for the Ho gneisses but, the 

depletion in Nb, Ta, and Ti and rich in Ba, K, especially Pb, are typical signatures of ‘‘arc rocks’’ or continental 

crustal materials (i.e., the familiar ‘‘arc signature’’ or ‘‘crustal signature’’). Lavecchia et al. (2006) suggested 

this distribution requires a high oxygen (O2) fugacity in the source region to allow HFSE fractionation which 

could also produce the Eu anomaly. While this interpretation may be possible, the negative Eu anomaly is more 

likely a source inheritance (Guo et al., 2013). Their incompatible trace element ratios, such as Th/U (1.07 – 

13.87), K/Rb (272 – 574.47), Th/Yb  (0.79 – 15.09), Ta/Yb  (0.25 -0.64 ), Ce/Pb (mainly 1.62 – 7.88 ) and high 

Ba/Nb (19.55 – 314.17, with TA = 1565.00), are similar to those of the continental crust (Rudnick and Fountain, 

1995; Rudnick and Gao, 2003), and resemble the values recorded by magmas that formed in active continental 

margins (Wilson, 1989).  

On the other hand, the Eu anomalies may be attributed to the varying concentration of plagioclase 

minerals observed among the samples which is typical of processes in crustal magma chambers and matches 

field and petrographic evidence of the abundance of plagioclase phenocrysts. The rocks are characterised by 

subduction related Sr/Y content (< 100), except sample MA8 that showing high concentration of Sr/Y (227.71). 

Taking into account these data, the involvement of a crustal - derived or subduction – modified component in 

mantle sources is apparent.  
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Table 3. REEs and Trace elements composition (ppm) of the Ho gneisses 

 

SAMPLE AB 2 KL 5 TO 3 SO 5 MA 8 TA 5

ME-MS81 ME-MS81 ME-MS81 ME-MS81 ME-MS81 ME-MS81

Ce 95.20 37.50 94.60 34.10 107.00 27.10

Cs 0.14 0.33 1.26 0.04 0.32 0.12

Rb 69.90 68.80 97.50 4.70 116.00 71.20

Ba 1885.00 798.00 1890.00 258.00 1930.00 3130.00

Th 1.82 1.65 3.85 2.73 8.60 0.44

U 0.48 0.40 1.01 0.46 0.62 0.41

K 25900.00 21500.00 26600.00 2700.00 34800.00 24000.00

Ta 0.20 0.70 0.90 0.80 0.30 0.10

Nb 6.00 9.70 14.60 13.20 7.80 2.00

La 50.90 18.00 44.90 14.40 60.60 16.30

Pb 12.00 12.00 12.00 21.00 15.00 6.00

Pr 12.50 4.94 14.00 5.12 14.40 3.23

Sr 764.00 327.00 856.00 141.00 519.00 797.00

Nd 48.10 19.80 58.50 21.30 51.00 11.90

Zr 333.00 226.00 502.00 220.00 304.00 236.00

Hf 8.80 6.40 12.70 5.80 8.10 6.10

Sm 6.96 3.82 10.75 5.15 6.91 1.80

Eu 1.65 1.37 2.51 1.74 1.70 1.05

Ti 4920.00 4680.00 7600.00 14700.00 4860.00 3240.00

Gd 4.81 3.85 8.67 6.08 4.45 1.30

Tb 1.82 1.65 3.85 2.73 8.60 0.44

Dy 2.42 3.57 5.34 6.55 2.24 0.71

Y 10.60 19.90 25.30 35.30 10.50 3.50

Ho 0.42 0.75 0.95 1.40 0.40 0.12

Er 0.97 2.15 2.39 3.77 0.89 0.32

Tm 0.09 0.30 0.32 0.44 0.09 0.01

Yb 0.63 2.09 1.91 3.17 0.57 0.25

Lu 0.11 0.35 0.29 0.55 0.10 0.05

Sr/Y 72.08 33.83 95.91 49.43 227.71 6.86

Th/U 3.79 4.13 3.81 5.93 13.87 1.07

K/Rb 370.53 312.50 272.82 574.47 300.00 337.08

K/N 0.73 0.57 0.68 1.13 0.63 0.17

Ba/Nb 314.17 82.27 129.45 19.55 247.44 1565.00

Th/Yb 2.89 0.79 2.02 0.86 15.09 1.76

Ta/Yb 0.32 0.33 0.47 0.25 0.53 0.40

Ce/Pb 7.93 3.13 7.88 1.62 7.13 4.52

Eu/Eu* 0.87 0.79 1.19 0.94 2.10 0.68

(La/Lu)N 49.60 16.59 56.38 64.90 34.91 3.71

(La/Sm)N 4.72 2.70 7.79 5.66 5.85 2.06

(Ce/Sm)N 3.42 2.20 5.38 3.87 3.77 1.81

(La/Yb)N 5369.00 16.87 72.31 76.33 46.79 4.19

(Gd/Yb)N 585.25 3.76 4.55 6.46 4.30 1.72

Ce/YbN 2380.00 8.42 30.58 31.94 18.44 2.24

Ce/SmN 2.09 1.35 3.29 2.37 2.30 1.11
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Figure 5. Chondrite normalized REEs distribution pattern of the studied granitoid (Ho gneiss) samples (after Sun 

and Mc Donough 1989). 

 

 
Figure 6. Primitive mantle normalized trace elements distribution pattern of the studied granitoid (Ho gneiss) 

samples (after Sun and Mc Donough 1989). 

 

5.0 Discussion 
5.1 Classification 

Several classification schemes, which involve parameters such as presumed origin of granitoids, geochemistry, 

and tectonic setting, have been proposed for the classification of granitoids (Frost et al., 2001). In this study, the 

Ho gneiss rocks have been classified in selected geochemical schemes. The classification of rocks, based on 

normative Ab – An – Or scheme (O’Connor, 1965; Barker, 1979), are shown in Figure 7. The rocks plot mainly 

in the field of granodiorite, close to the boundary with quartz – monzonite, with samples MA8 and TA5 plotting 

in the quartz – monzonite and tonalite fields respectively. On the classification scheme of Frost et al. (2001), the 

Ho gneisses display magnesian to ferroan characteristics (Fig. 8a), mainly calc – alkalic with few showing calcic 

(TA5) and alkali – calcic affinities (KL5) (Fig. 8b). They are metaluminous to weak peraluminous reflecting the 

presence of biotite and muscovite, but I - type in nature (Fig. 8c). These characteristics together with the 

positions of the samples on the A/CNK-A/NK diagram (Shand, 1943; Maniar and Piccoli 1989) further support I 

– type affinity for the Ho gneiss (Fig. 9). On the classification plot of SiO2 versus K2O of Peccerillo and Taylor, 

(1976) (Fig. 10), the rocks plot mainly in the field of high – K series field  and  TA5 plotting in the field of 

medium – K, close to the boundary with low K series. All these characteristics give an indication of varying 

source of the Ho gneiss rocks. 

.  
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Figure 7: A ternary plot Ab-An-Or of the studied samples (after O’Connor, 1965). 

 

5.2 Petrogenesis 

The origin and the magmatic suite of the Ho gneiss from the Dahomeyide belt, Southeastern Ghana have been 

evaluated using the major and trace elements compositions. The major element compositions of the samples 

reveal an evolutionary trend for the rocks. The CaO, MgO, TiO2, and FeOt contents apparently decrease with 

increasing SiO2 content, whereas Al2O3, K2O and Na2O increase with SiO2 (Fig. 4). Harkar plots of SiO2 against 

some selected trace elements (not shown) show decrease in Y, Ni, V, Nb and increase in Sr and Ba with 

increasing SiO2 content. The apparent negative correlation between SiO2 and FeOt, MgO, CaO, Y, Ni, and Nb 

contents in the rocks indicate fractional crystallization involving the assemblage plagioclase and biotite which is 

in good agreement with the field and petrographic evidence of the abundance of plagioclase phenocrysts and 

biotite. The abundance of hydrated minerals (e.g. biotite) in the plutonic rocks suggests that the melting of the 

protolith took place under hydrous conditions. The mostly granodioritic with few tonalitic and quartz - 

monzonitic features observed (Fig. 7), the high Na2O and K2O contents (Table 2) together with their affinity for 

calc – alkalic with a few plotting in the calcic and alkalic  – calcic fields (Fig. 8b) may be compared to the 

Achaean TTG suites (Frost et al., 2001). They have comparable Sr/Y (< 100) ratio with relatively low Y contents 

which are characteristics of transitional composition between TTGs and an arc rocks (Defant and Drummond, 

1990; Agbossomoundѐ et al., 2007). It is noted however that, Archaean TTGs complexes are characterised by 

subduction signatures coupled with steep rare earth profiles (LILE enrichment) and hence may originate by 

fusion of basalt in a subduction setting (Rapp et al., 1991). 
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 Figure 8: Binary plot for classification of the granitoid gneiss from Dahomeyide orogenic belt (after Frost et al. 

2001). (a) SiO2 versus FeOt/ (FeOt MgO) (b) SiO2 versus (Na2O+K2O-CaO) (c) ASI versus A/NK (after Frost et 

al.  2001). 

 

The geochemical differences between the samples may also support the idea of crystal fractionation 

probably, during the ascent of the melts from the lower crust where they were generated up to the upper crust 

where they finally solidified. Frost et al. (2001) observed from MALI diagram that most granitoids follow sub – 

parallel alkali – lime trends during differentiation. Hence, any observed crossing of trend divides or lines by a 

granitoid suite may indicate mixed magma sources or extreme differentiation of the parent magma for the rocks. 

On the Frost et al. (2001) diagrams, the Ho gneisses show magnesian to ferroan, calcic to alkali calcic (Fig. 8a – 

b), metaluminous to weakly peraluminous with I – type imprints (Fig.8c and 9). Iron enriched melts derived 

from reduced basaltic sources (either tholeiitic or mildly alkalis) make important contribution to ferroan 

granitoids and reflects a close affinity to relatively anyhydrous, reduced magmas and source regions (Frost and 

Frost, 1997). According to the latter authors, because these magmas are hotter, they are likely to undergo 

extensive fractionation towards iron rich alkali compositions; magnesian rocks in contrast are probably related 

magmas which follow relatively oxidizing differentiation trends. 
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Figure 9: Geochemical plot of (a) A/CNK versus A/NK (after Shand, 1943 Maniar and Picolli 1989). 

 

 

  
Figure 10: Classification plot of SiO2 versus K2O (after Peccerillo and Taylor, 1974; Rickwood, 1989). SHO – 

Shoshonite series, HKCA – High-K Calc-alkaline, CA – Calc Alkaline, TH – Tholeiite series. 

 

A secondary effect on Fe* which seem particularly at high silica contents is the composition of the 

crustal melt with wide range of Fe* may be explanation for the population of ferroan granitoids and magnesian 

nature may be source inheritance. However, according to Chappell and White (1974), I – type granitoids, 

metaluminous to weak peraluminous, relatively sodic, with wide range of silica contents are formed from mafic 

meta – igneous source, possibly by partial melting of continental crust. The studied rocks show elevated 

concentration of K with K2O > 1 and plot in the High – K fields, except TA5 that has K2O<1 and also plot in the 

medium – K field. Their High – K to medium – K and metaluminous to weakly peraluminous character requires 

a metaluminous and high – medium – K source material or protoliths. The geochemical features of high – K 

granitoids are supportive of origin in relation to a convergent margin setting, pointing to an important 

petrogenetic role of remelting and differentiation of arc – accretionary complex crust. Although there are some 

controversies, it is generally accepted that water plays a major role in producing high – K, I – type, calc – alkalic 

magmas Murphy (2007).  

Several experimental studies (e.g. Sisson and Grove 1993; Grove et al. 2003) suggest that calc – alkalic 

magmas form by hydrous melting of the mantle, and then rise to the shallow crust where they undergo fractional 

crystallization under near - H2O saturated conditions. Proposed mechanisms of formation begin with partial 

melting of subducted material and of mantle peridotite altered by water and melts derived from subducted 

material. The LREE– enriched patterns with mostly negative Eu anomalies together with the high – K imprints 

are typical of many subduction related magmas from island arcs or active continental margins (Kumar and 
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Sreejith, 2011). This is well in line with distinctive features of convergent plate margin magmatism, resulting 

from melting of igneous source in a subduction related environment (Kumar and Sreejith, 2011). Even though 

the nature of this component may be unclear, but the main inference from this study is the involvement of a 

recycled component  into  the  mantle, which might be associated with lower crustal material and that is why the 

rocks show trace element ration consistent with the continental crust (Table 3). Many of these granitoids at the 

western side of the Pan-African mobile belt in Ghana, Togo and Bénin have been associated with 

Paleoproterozoic age (Agbossoumondé et al., 2007).  

In relation to the Pan African orogenic zonation (Caby, 1989; Affaton et al., 199) these granitoids 

belong either to the active margin i.e. the Bénin – Nigerian shield or to the passive margin, i.e. the West African 

Craton. According to Agbossoumondé et al., (2007), many Paleoproterozoic granitoids appear as klippens and 

inliers on the western side of the main Pan-African suture and consist of basement nappes closely associated 

with Pan-African metasedimentary rocks and mafic to ultramafic meta-igneous rocks. The indication that the 

WAC would be associated with the incorporation of continental crustal rocks into the mantle further supports our 

proposals involving either continental subduction or delamination.  

 

5.3 Tectonic Setting 

Several schemes exist for assigning granitoids to various tectonic environments by means of their geochemical 

characteristics (e.g., Pearce et al., 1984; Maniar and Piccoli, 1989; Pearce, 1996a). Trace elements have been 

paramount in such schemes. However, few of the major-element schemes have been useful in discriminating 

between the granitoids that belong to different tectonic environments. The nearly linear negative slope pattern 

with enrichment in LREEs and LILE (Rb, Ba, K, Pb, Sr-Hf) and depleted in HFSE with negative Ta, Nb, Ti are 

typical arc roots together with the enrichment in LREES and LILE with negative Sr, Zr, K, Hf, Nb and Ti also 

observed in TA5 (Fig. 5 and 6) together with the ferroan to magnesian, and calcic to alkali calcic characteristics 

may also testify magmatic activity involving mixing sources. Ferroan granitoids reflect a close affinity to 

relatively anyhydrous, reduced magmas and source regions. Such are conditions are common in extensional 

environment (Frost and Lindsley, 1991; Frost et al., 2001). Magnesian series reflect close affinity to relatively 

hydrous, oxidizing magmas and sources region which is consistent with origins that are broadly subduction 

related (Frost and Lindsley, 1991; Frost et al., 2001). These give indication of mixing tectonic setting but, as 

already discussed, a secondary effect on Fe* which seem particularly at high silica contents is the composition of 

the crustal melt with wide range of Fe* may be explanation for the population of ferroan granitoids at high silica 

content (Frost et al., 2001). The primitive mantle – normalized multi-element plots (Fig. 6) of these rocks show 

elevated concentration of LILE with typical arc like signatures (deep Nb, Ta and Ti troughs together with large 

positive Pb anomalies) Orejana et al. (2009). The enhanced level of LILE relative to HFSE in the Ho gneisses 

points to the subduction – zone enrichment and/or crustal contamination of the source region (Arvin and 

Rotstamizadeh, 2000). Such crustal influence is also reflected in the incompatible trace element ratios and major 

element as explained above. According to Kumar and Sreejith (2011), the LREE – enriched patterns with 

negative Eu anomalies together with high – K signatures are also typical of many subduction related magmas 

from island arcs or active continental margins.  

Accordingly, in order to infer the geotectonic environment of emplacement of the Ho gneiss, we have 

used various tectonic discrimination diagrams. The rocks show subduction related signatures with Sr/Y<100 

(Huang et al., 2010) except MA8 and plot in the field of Sr/Y vs Y consistent with subduction components (Fig. 

11a). On the R1-R2 diagram Batchelor and Bowden, (1985), all the samples plot in the field 6 (syn –collisional) 

with only one sample (TA5) plotting in the field of pre – collision granites field (2). Syn collisional is 

synonymous to the volcanic arc granite (VAG) in the scheme of Pearce et al. (1984) and Pearce (1996a). Syn – 

collision settings are linked to the process of crustal thickening, usually by the underthrusting of one crustal 

'slice' beneath another (Batchelor and Bowden 1985), which was founded in the chemical classification scheme 

of De La Roche et al. (1980). Syn-collision granites linked to continent – arc collision are the last intrusions in 

the life – cycle of a volcanic arc where they form metaluminous, I – type granites with biotite as one of most 

common ferromagnesian minerals. For comparison, reference samples such as volcanic arc granite (VAG) from 

Chile and within plate granite (WPG) from Oslo are plotted together with the samples. All the granitoid gneisses 

follow similar trend as the VAG with positive Rb, Ba, Th Ce and negative Ta, Nb, and Yb (Fig.12).  

The trace elements tectonic discriminant plots of Y+Nb versus Rb, Y versus Nb, Ta+Yb versus Rb and 

Yb versus Ta (Fig. 13) also suggest volcanic arc roots for the granitoids and are plotted in the volcanic arc 

granitoids (VAG) field Pearce et al. (1984). Volcanic arc granites (VAG) form discrete, often zoned plutons in 

island arc terranes and linear, composite batholiths at active continental margins. They commonly form I-type 

granodiorite and tonalite intrusions which are metaluminous, calc – alkaline, with biotite as common 

ferromagnesian minerals have standard subduction signatures with enrichment in LIL elements relative to HFS 

(high field strength) elements (Pearce, 1996a).  
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Figure 11: Plot of (a) Y versus Sr/Y (b) R1 versus R2 (after, Batchelor and Bowden, 1985). 

 

  
Figure 12: ORG-normalized diagram of granitoid gneisses from Dahomeyide belt of Ghana (after Pearce et al., 

1984). 
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Figure 13: Trace elements ratio plots for tectonic classification of the granitoids from Dahomeyide orogenic belt 

(i) Y + Nb versus Rb (ii) Y versus Nb (iii) Ta + Yb versus Rb (iv) Yb versus Ta (After Pearce, 1996a).  

However, the high K2O contents of the Ho gneiss rocks reveal their high – K nature. As well as having 

enhanced K contents as a result of  high K2O contents of the Ho gneiss, their enrichment in other incompatible 

elements reflects the importance of crustal rocks in the magma source (s) (Roberts et al., 1993; Arvin and 

Rotstamizadeh, 2000). Such an enrichment event accounts for the arc – like signatures of this mantle - derived 

rocks and explains the addition of volatiles to the mantle source. This geochemical signature is likely to be 

related to metasomatism of the sub – continental lithospheric mantle via crustal recycling. Taking into account 

these data, the involvement of a crustal – derived or subduction – modified component in the mantle sources is 

apparent. The crustal component may have derived from partial melting of rocks of WAC as it outcrops at the 

western margin of the Pan African belt. The Ho gneisses in conclusion are believed to have formed in 

continental subduction during the Pan African collision. These interpretations therefore, support the previous 

work that proposed easterly subduction of the rifted margin of WAC (Affaton et al., 1991; Agbossoumondé et al., 

2004; Attoh and Nude, 2008) for the Pan – African Dahomeyide orogenic belt.  

 

6.0 Conclusion  

The granitoid gneisses from the Pan African belt, southeastern, Ghana have been studied petrographically and 

geochemically. The studied granitoids are classified mainly as biotite augen gneisses. Geochemically, the 

granitoids display mainly granodioritic affinity with few showing tonalitic and quartz - monzonite affinities. 

They represent various facies of granitoids, from I–type, metaluminous to weak peraluminous, magnesian to 

ferroan, clacic to calc alkalic and high – K series. The LREE-enriched patterns with negative Eu anomalies 

observed together with high – K characteristics are typical of many subduction related magmas from island arcs 

or active continental margins. The rocks show LREEs and LILE enrichment consistent with source with strong 

affinity to VAG and appear to be characterized by mingling of mantle derived magma and crustally derived 

melts. Thus, involvement of a recycled component into the mantle, which might be associated with lower crustal 

material, may be possible. The crustal component may have derived from partial melting of rocks of WAC as it 

outcrops at the western margin of the Pan African belt. Such an enrichment event accounts for the arc - like 

signatures of these mantle derived rocks and explains the addition of volatiles to the mantle source. This 

geochemical signature is likely to be related to metasomatism of the sub – continental lithospheric mantle via 

crustal recycling. The association of WAC with continental crustal rocks into the mantle may be possible source; 

this further supports our proposals involving continental subduction during the Pan African collision. 
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