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Abstract 
An interpretation of in-phase anomaly of very low frequency electromagnetic (VLF-EM) data was carried out 

using the analysis of the Hilbert transform of the in-phase component and the amplitude of its analytic signal. 

The analysis was used to delineate the source and depth to the top of a subsurface conductive body. The 

amplitude of the analytical signal of the data was observed to mimic the conventional Fraser-filtered operation 

and was used to locate the exact location of the anomalous body. The in-phase component with the Hilbert 

transform yields an approximate depth to the top of the conductor which agree with the result of the vertical 

electrical sounding conducted at the vicinity of the anomalous body.  

Keywords: VLF-EM method, Hilbert transform, analytical signal, in-phase, Fraser filtering. 

 

1. Introduction 
The anomaly observed in any geophysical survey is usually associated with the deviation of the measured signal 

from the normal level, and this deviation is a result of the response of the subsurface geological objects of 

interest. The measured signal can be processed for locating the geological structures which are causing the 

anomaly and then quantitatively interpreted in terms of depths, width, dip, physical properties etc. There are 

many well-known methods for processing and interpretation of geophysical signals particularly employing 

integral transforms like Fourier, Hilbert, Mellin, Hartley (Nabighian 1972; Mohan et al. 1982; Mohan et al. 1986; 

Sundararajan & Ramabrahmam 1997; Sundararajan et al. 1998). 

In VLF-EM geophysical survey, both the in-phase and quadrature components of VLF-EM data contain valuable 

diagnostic information about the subsurface targets. However, only a few schemes exist for extracting the 

required information and thereby relating the observed anomalies to the causative source. Although the 

conventional Fraser and Karous–Hjelt filtering techniques provide first hand information regarding the relative 

disposition of the discrete conductors, the disadvantage with these filters is that it causes a loss of 20 to 30% of 

data on either side of the profile, which sometimes complicates the interpretation of the data (Sundararajan et. al. 

2011). In this study the interpretation procedures employ the use of amplitude analysis of in-phase component of 

VLF-EM data and its Hilbert transform to provide information about the depth to the top of the conducting body. 

The interpretation is based mainly on certain characteristic points of the amplitude of the analytical signal and 

the abscissa of the point of intersection of the in-phase component and its Hilbert transform. 

 

2. Study area 
Geologically the study area is part of the Kaimur series of the Upper Vindhyan Supergroup located in the 

southern part of Uttar Pradesh State (Figure 1). The area falls within the survey of India toposheets 63L/9, 

63L/10, 63L/13, 63L/14. The Vindhyan Supergroup is composed mostly of low dipping formations of sandstone, 

shale and carbonate, with a few conglomerate and volcaniclastic beds, separated by a major regional and several 

local unconformities (Bhattacharyya 1996). The regional unconformity occurs at the base of the Kaimur Group 

and divides the sequence into two units: the Lower Vindhyans (Semri Group) and the Upper Vindhyans (Kaimur, 

Rewa and Bhander Groups). The outcrop pattern of the Supergroup resembles a simple saucershaped syncline. It 

is generally believed that the Vindhyan basin was a vast intra-cratonic basin formed in response to intraplate 

stresses (Bose et al. 2001). The Kaimur consists of a lower shale unit overlain by quartz rich sandstone 

containing basin wide volcaniclastic deposit. Sandstones and quartzites are prominent horizons with wide 

distribution in the Kaimur Group. All the major sandstone horizons form the scrap while the shale horizons form 

gentle slopes (Bose et al. 2001).  
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Figure 1. Site map and VLF-EM traverse location. 

 

3. Basic theory of vlf-em method 
The very low frequency – electromagnetic (VLF-EM) technique is a passive method that uses radiation from 

ground-based military radio transmitters as the primary EM field for geophysical survey. These transmitters 

generate plane EM waves that can induce secondary eddy currents, particularly in electrically conductive 

elongated 2-D targets. The EM waves propagate through the subsurface and are subjected to local distortions by 

the conductivity contracts in this medium. These distortions indicate the variations in geoelectrical properties 

which may be related to the presence of groundwater (Shendi 1997). The subsurface occurrence of these 

conductive bodies creates a local secondary field which has its own components. Measurement of these 

components may be use as an indicator for locating the subsurface conductive zones.  

The VLF-EM waves travel in three modes: skywave, spacewave (wave-guided by the ionosphere and earth 

surface), and groundwave. As the groundwave is attenuated through long distances, only the skywave and 

spacewave are received as the primary wave (Jeng et al. 2004). The depth of penetrations of these waves 

depends on the frequencies and the electrical conductivity of the ground. This depth increases as both the 

frequencies and ground conductivity decreases as (keary and Brooks 1984) 

    � =  � �
���	      ≅ ���

√��      = 500√�
�     (1) 

where; 

δ = Skin depth in meters (i.e the depth of penetration of a wave passing into a conductor in which the amplitude 

of the wave is attenuated to 1/e of its amplitude at the surface of the conductor). 

µo = Magnetic permeability of free space  = 4π x 10
-7

 Henry/m. 

w = Angular frequency (2πf) 

σ = Electrical conductivity of earth material (mho/m) (Inverse of resistivity, ρ) 

f = Signal frequency. 

At very large distances from a source of electromagnetic waves, attenuation of this type would control the depth 

of exploration. Effective depth of exploration, Ze, defines the maximum depth a body can be buried and still 

produce a signal recognizable above the noise. It is given as (keary and Brooks 1984) 

    �� = 100√�
�      (2) 

For VLF-EM, the frequencies are too high for much penetration, so that the method is useful only for shallow 

geologic mapping. According to Fischer et al. (1983), VLF ground surveys provide a quick and powerful tool for 

the study of geologic features within about 100 m of the surface. 

The magnetic component of the VLF wave is mainly used for field measurement. According to the basic EM 

theory, the primary EM field is shifted in phase when encountering a conductive body and the conductive body 

then becomes the source of a secondary field. The VLF instrument detects the primary and secondary fields, and 

separates the secondary field into in-phase and quadrature components based on the phase lag of the secondary 

field. These two components of the secondary field are sometimes referred to as the tilt (in-phase) and ellipticity 

(quadrature). When the VLF-EM method is used for geophysical survey, the in-phase response is sensitive to 
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metal or good conductive bodies. The quadrature response, on the other hand, is sensitive to the variation of the 

earth electrical properties (Jeng et al. 2004).  

 

4. Material and method 
VLF-EM data were collected using WADI instrument manufactured by ABEM. For the purpose of this work, 

seven traverses were conducted at seven different locations where electrical sounding were conducted. The 

equipment used measured the real (in phase) and quadrature (out of phase) components of the vertical to 

horizontal magnetic field ratio. 

The electrical soundings were conducted using ABEM SAS 1000 Terrameter.  

4.1. Hilbert transform 

The use of Hilbert transform for interpretation of VLF-EM data for possible depth estimation is analogy with the 

interpretation of gravity/magnetic/self potential data data (Sinha 1990; Sundararajan & Srinivas 1996; Ramesh 

Babu et. al. 2007). Hilbert transform is a phase shifter of 90 degrees or a linear operation which corresponds to a 

filter by means of which the amplitude of the spectral components remain unchanged but the phase is advanced 

by 90 degrees for positive frequencies and retarded by 90 degrees for negative frequencies (Thomas 1969). It is 

mathematically expressed as  

    ���� =  �
�  � ������ cos���� −  $����sin ����'(�∞

�  (3) 

where RF(w) and IF(w) are the real and imaginary parts of the Fourier transform of f(x) expressed as 

    ��)� =  � *���e,ω-.(� = $���� − /�����,∞

∞
  (4) 

4.2. Amplitude of analytical signal  

The amplitude of the analytical signal is a key factor that is extensively used for locating the precise origin of 

subsurface features beside its role in estimating the depth to the top of the feature in the interpretation of gravity, 

magnetic and self-potential anomalies. The amplitude of the analytical signal gives a symmetrical curve and in 

general attains its maximum exactly over the origin of regular geometrical structures; however, the peak of the 

amplitude corresponds to the origin for all structures (Sundararajan et. al. 2011). This property exhibited by the 

amplitude of analytical signal is highly useful to determine the exact spatial location of sources. For VLF-EM 

anomaly, if f(x) is the in-phase component and H(x) its Hilbert transform, then the analytical signal can be 

expressed as 

    0��� =  *��� −  /����       (5) 

and the amplitude of the analytical signal as  

    00��� =  1*���� +  �����      (6) 

Based on certain characteristic points of the amplitude of the analytical signal and the abscissa of intersection of 

the in-phase components and its Hilbert transform, the dept to the top of a targeted anomaly can be estimated. 

Work done on potential fields of magnetic and SP anomaly shows that the dept to the top of a detected anomaly 

is the abscissa of the point of intersection of the anomaly and the Hilbert transform (Sundararajan et. al. 1985; 

Sundararajan & Srinivas 1996). In this study, we used the intersection points x1 and x2 from the in-phase 

component and its Hilbert transform with certain characteristic points of the amplitude of the analytical signal to 

determine the depth to top of the conductor. The depth, h, can be estimated as (Dondurur & Pamukcu 2003, 

Sundararajan & Srinivas 2010 ) 

     ℎ =  45 6 47
�        (7) 

 

5. Result and discussion 
A plot of the in-phase, quadrature, Fraser-filtered and amplitude analytical signal of the in-phase component of 

seven traverses, located in seven different locations as seen in Figure 1 was first carried out in order to compare 

how well the Fraser-filtered and the amplitude analytical signal can be used to locate the exact position of an 

anomaly. The result for all the traverses Figure 2(a) shows how the maximum of the bell-shape symmetrical 

curve of the amplitude analytical signal compares very well with the peak of the Fraser-filtered data over the 

crossover points between the in-phase and quadrature (indicated with an arrow). A qualitative interpretation of 

VLF-EM data is based on the cross-over point between the real and imaginary data which appears as positive 

peaks in the Fraser-filtered real curve, these regions constitute anomalous zones which can be attributed to the 

presence of vertical conductor or lateral contacts of different resistivities beneath the surface (Srigutomo et al. 

2005). This therefore ascertains a simple fact that the amplitude analytical signal of the in-phase component 

mimics the Fraser-filtered of the in-phase component as seen in Figure 2(a).  
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T 3 at location S-I 

 

T 1 at location S-II 
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T 2 at location S-III 

 

T 3 at location S-IV 

 

T 3 at location S-V 
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Figure 2 (a). Plot of the in-phase, quadrature, Fraser-filtered and amplitude analytical signal of the in-

phase component at different locations of the survey area 

Further analysis involved the plotting of the Hilbert transform, amplitude analytical signal and in-phase 

component of the traverses (Figure 2(b)). Analysis of anomalous body that exists close to where electrical 

sounding was conducted, were carried out for comparison. Such points are shown in Figure 2(b) with a vertical 

line and the source marked as x0. The abscissa of the point of intersection between the in-phase and Hilbert 

transform over the envisaged anomaly were marked as x1 and x2. Based on the procedure of the abscissa of the 

point of intersection of an anomaly and the Hilbert transform, the approximate depth to the top of the conductors 

is computed using Equation (7). 

 

  

T 3 at location S-VI 

T 2 at location S-VII 
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T 2 at location S-III 

 

T 3 at location S-IV 
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T 3 at location S-V 
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Figure 2 (b). Plot real component of VLF-EM data, its Hilbert transform and amplitude of analytical signal at 

different locations of the survey area 

5.1. Electrical resistivity sounding result 

The initial interpretation of the VES data was accomplished using conventional partial curves matching 

technique utilizing master curves (Koefoed 1979) and the corresponding auxiliary curves (Orellana & Mooney 

1966) from which the resistivity values and thicknesses of the layers were obtained. The models derived from 

the manual interpretation were improved upon through the use of computer iteration technique using the 

computer algorithm 1X1D (Interprex Ltd 1998) and WinResist Version 1.0 (Vender Velpen 1988) which 

successfully reduced the interpretation errors to acceptable levels. The computer program has provision of 

accomplishing three tasks: (i) smoothing of noisy field data, (ii) accurate computation of apparent resistivity 

models, and (iii) inversion of resistivity data (Vender Velpen 1988). The output is the inverse resistivity model 

providing layer wise distribution of resistivity value and thickness of the corresponding layer are shown below.  

 

(a)                (b) 

 
 

  

T 3 at location S-VII 
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 (c)                (d) 

 
 

(e)                (f) 

 
 

 

(g) 

 
Figure 3 a-g). Model result of VES curves 

The computed model of the electrical sounding results depicts four, five and six-layer curves (Figure 3 a-g), and 

the inferred lithology is presented in Table 1. 
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Table 1. Geoelectrical and lithologic parameter of the Ves points 

VES 
No. 

No. of 
layers 

Apparent 
resistivity 

(Ωm) 

Thickness 
(m) 

Depth from ground 
surface (m) 

Lithology 

3 4 10.3 2.2 0.0 Surface soil 

  3.6 4.8 2.2 Clay 

  300.1 66.0 7.0 Semi-fractured/weathered sandstone 

  3057.9 -- 70.8 compacted sandstone 

      33 6 282 0.4 0.0 Surface soil 

  8.1 2.7 0.4 Clay (wet) 

  35.2 9.0 3.1 Clay 

  37.0 11.6 12.1 Clay/kankar 

  41.8 52.3 23.7 Fractured sandstone 

  7472.1 -- 76.7 Compacted sandstone 

 

49 6 1003.6 0.3 0.0 Surface soil 

  16.3 3.8 0.3 Clay 

  35.4 12.0 4.1 Clay/kankar 

  532.8 21.5 16.1 Semi-fractured/weathered sandstone 

  39.7 45.1 37.6 Fractured sandstone 

  2344.1 -- 82.8 Compacted sandstone 

 

32 5 1841.7 0.3 0.0 Surface soil 

  6.3 4.8 0.3 Clay  

  754.3 11.2 5.1 Semi-compacted/weathered sandstone 

  34.3 43.2 16.3 Fractured sandstone 

  8413.2 -- 59.4 Compacted sandstone 

      

30 5 696 0.6 0.0 Surface soil 

  12.0 13.8 0.6 Clay 

  246.6 18.0 14.4 Clay/kankar 

  16.5 29.8 32.6 Fractured sandstone 

  3166.8 -- 62.2 Compacted sandstone 

      

69 6 604.3 0.3 0 Surface soil 

  9.3 1.0 0.3 Wet clay 

  397.4 20.0 11.9 Semi-compacted/weathered sandstone 

  37.0 52.8 31.9 Fractured sandstone 

  7159.2 --- 84.7 Compacted sandstone 

      

17 6 555 0.5 0.0 Surface soil 

  12.3 2.2 0.5 Clay 

  34.6 7.8 2.7 Clay/kankar 

  410.5 15.7 10.5 Semi-fractured/weathered sandstone 

  40.2 40.9 26.2 Fractured sandstone 

  10551 -- 67.1 Compacted sandstone 

 
A comparison of the result of the depth to the top of the anomaly estimated from the amplitude of the analytical 

signal analysis and the interpreted vertical electrical sounding id presented in Table 2. 
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Table 2. Comparison of the depth to the top of a conductor obtained from the analytical signal analysis and the 

vertical electrical sounding at different locations. 

Locations of traverse Depth from analytical signal analysis (m) Depth from ves (m) 

S-I 8.5 7.0 

S-II 21.0 23.7 

S-III 42.0 37.6 

S-IV 14.0 16.3 

S-V 35.0 32.6 

S-VI 5.0 31.9 

S-VII 30.0 26.2 

 

6. Conclusion 
From Table 2, it is observed that the depth to the top of the conductors computed, fairly agrees with the depth 

obtained from VES survey conducted around the vicinity of the anomaly for all the locations except at location 

S-VI where the discrepancy is very wide. In addition to the location of the origin of an anomaly, it can be 

concluded that this analysis procedure is also necessary for the purpose of interpretation of depth.  

 

References 
Bhattacharyya, A., (1996), Recent Advances in Vindhyan Geology, Geol. Soc. India Memoir, 36, 331. 

Bose, P.K., Sarkar, S., Chakrabarty, S. & Banerjee, S. (2001), Overview of Meso- to Neoproterozoic evolution 

of the Vindhyan basin, Central India [J]. Sediment. Geol., 142, 395–419. 

Dondurur, D. & Pamukcu, O.A. (2003), Interpretation of magnetic anomalies from dipping dike model using 

inverse solution, power spectrum and Hilbert transform, Journal of Balkan Geophysical Society, 6(2), 127-136. 

Fischer, G., Le Quang, B.V. & Muller, I. (1983), VLF ground surveys, a powerful tool for the study of shallow 

two-dimensional structures, Geophys. Prosp., 31, 977-991. 

Interprex Limited (1998), Resix Scientific Software Program. Interprex Limited. 

Jeng, Y., Lin, M.J. & Chen, C.S. (2004) A very low frequency-electromagnetic study of the geo-enviromental 

hazardous areas in Taiwan, Enviro. Geol., 46, 748-795. 

Kearey, P. & Brooks, M. (1984), An introduction to geophysical exploration, Blackwell, Oxford, 296. 

Koefoed, O. (1979), Geosounding principles, 1: Resistivity Sounding Measurements, Elsevier. 

Mohan, N.L, Sundararajan, N. & Seshagiri Rao, S.V. (1982), Interpretation of some two dimensional bodies 

using the Hilbert transform, Geophysics, 47(3), 376–387. 

Mohan, N.L., Anand Babu, L. & Seshagiri Rao, S.V. (1986), Gravity interpretation using the Mellin Transform, 

Geophysics, 51(1), 114–122. 

Nabighian, M.N. (1972), The analytic signal of two-dimensional magnetic bodies with polygonal cross-section, 

its properties and use for automated anomaly interpretation, Geophysics, 37, 507-512. 

Orellana, E. & Mooney, H. M. (1966), Master tables and curves for vertical electrical sounding over layered 

structures, Inerciencia. 

Rai, S.N., Thiagarajan, S., Ratna Kumari, Y. Anand Rao, V. & Manglik, A. (2013), Delineation of aquifers in 

basaltic hard rock terrain using vertical electrical soundings data, J. Earth Syst. Sci., 122(1),  29–41. 

Ramesh Babu, V., Ram, S. & Sundararajan, N. (2007), Modeling of magnetic and VLF-EM with an application 

to basement fractures: a case study from Raigarh, India, Geophysics, 71, 133–40. 

Sinha, A.K. (1990), Interpretation of ground VLF-EM data interms of inclined sheet-like conductor model, 

PAGEOPH., 132(4), 733-755. 

Shendi, E.A. (1997), On the effectiveness of the VLF-method for groundwater prospecting in basement terrains, 

Sinai Egypt, Qatar University Science Journal, 17(1), 143-152. 

Srigutomo, W., Harja, A., Sutarno, D. & Kagiyama, T. (2005), Vlf data analysis through transformation into 

resistivity value: Application to synthetic and field data, Indonesia Journal of Physics, 16(4), 127-136. 

Sundararajan, N. & Srinivas, Y. (1996), A modified Hilbert transform and its application to self potential 

interpretation, J. Appl. Geophys., 36, 137–43. 

Sundararajan, N. & Srinivas, Y. (2010), Fourier-Hilbert versus Hartley_Hilbert transforms with some 

geophysical applications, J. Appl. Geophys., 71, 157-161. 

Sundararajan, N. & RamaBrahmam, G. (1997), Spectral analysis of gravity anomalies caused by slab-like 

structures: a Hartley transform technique, J. Appl. Geophys., 39, 53–61. 

Sundararajan, N, Mohan, N.L., Seshagiri Rao, S. V. & Vijaya Raghava, M. S. (1985), Hilbert transform in the  

interpretation of magnetic anomalies of various components due to a thin infinite dyke, PAGEOPH., 123, 557-

566. 



Journal of Environment and Earth Science                                                                                                                                        www.iiste.org 

ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) 

Vol. 3, No.11, 2013 

 

24 

Sundararajan, N, Srinivasa Rao, P. & Sunitha, V. (1998), An analytical method to interpret self-potential 

anomalies caused by 2D inclined sheets, Geophysics, 63(5), 1151–1155. 

Sundararajan, N., Ramesh Babu, V. & Chaturvedi, A. K. (2011), Detection of basement fractures favourable to 

Uranium mineralizatio from VLF-EM signal, J. Geophys. Eng., 330-340. 

Thomas, J. B. (1969), An introduction to statistical communication theory, John-Wiley and Sons, Inc., New 

York. 639. 

Vender Velpen, B.P.A. (1988), A computer processing package for DC resistivity interpretation for IBM 

compatibles, The Netherlands ITC J. 1–4.. 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/journals/   The IISTE 

editorial team promises to the review and publish all the qualified submissions in a 

fast manner. All the journals articles are available online to the readers all over the 

world without financial, legal, or technical barriers other than those inseparable from 

gaining access to the internet itself. Printed version of the journals is also available 

upon request of readers and authors.  

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Recent conferences:  http://www.iiste.org/conference/ 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/

