PRIMITIVITY OF PERFECT RESIDUUM OF
 PERMUTATION GROUPS

M. Bello
Mathematics and computer science department, Federal University Kashere, Gombe State, Nigeria P.M.B 0182, Gombe State Nigeria.

Tel: +2348060971976, Email: mbatap560@gmail.com

Mustapha Danjuma

Mathematics and Statistics Department, School of science, Abubakar Tatari Ali Polytechnic, Bauchi State Nigeria
Tel: +2348037025131, Email: mustaphdanjuma@gmail.com
Y. Atomsa

Mathematics and computer science department, Federal University Kashere, Gombe State, Nigeria
P.M.B 0182, Gombe State Nigeria.

Tel: +2347034945570, Email: au.nlar@gmail.com

Sani Musa
Mathematics and Statistics Department, School of science, Abubakar Tatari Ali Polytechnic, Bauchi State Nigeria
Tel: +2348028909358, Email: aksanimusa@gmail.com

The research is financed by Federal University Kashere and Abubakar Tatari Ali Polytechnic, Bauchi

Abstract

In this paper, the construction of permutation groups which include symmetric groups, alternating groups, dihedral groups and the groups generated by the semidirect product (wreath products) of two permutation groups. The perfect residuum of the constructed groups has been obtained and their primitivity status has been investigated which enable us to formulate some results on such properties concerning the groups. A standard computer program, Groups algorithm and programming (GAP) has been employed in enhancing and validating the result obtained.

Keywords: Primitive groups, Perfect Residuum, permutation groups.

Introduction

The concept of residuum is very important in the theory of permutation groups more especially on investigating the solvability status of groups. The research adopted the concept of M. Bello et all (2017), work on a numerical search for polycyclic and locally nilpotent permutation groups.

Definition 1.1

A smallest normal subgroup of a group that has solvable factor group is called a perfect residuum of the group.

Definition 1.2

A subgroup N of a group G is normal in G if the left and right cosets are the same, that is if $g H=H g \forall g \in G$ and a subgroup H of G .

Definition 1.3

A group G is said to act on a set X when there is a map $\emptyset: G \times X \rightarrow X$ such that the following conditions holds for all elements $x \in X$.
i. $\quad \phi(8, x)=x$ where e is the identity element of G
ii. $\phi(g, \phi(h, x))=\emptyset(g h, x) \forall g, h \in G$

Definition 1.4

A group action is transitive if it possess only a single group orbit. That is for every pair of elements x and y , there is a group element $\mathrm{g} \exists g x=y$. A group is said to be intransitive if it is not transitive.
If for every two pairs of points x_{1}, x_{2} and y_{1}, y_{2} there is a group element $\exists g x_{1}=y_{i}$, then the group action is called doubly transitive. Similarly, a group action can be triply transitive and in general, a group action is ktransitive if every set $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of 2 k distinct elements has a group element $g \exists g x_{\mathrm{i}}=y_{i}$
An action is k-fold transitive if for any k-tuples of distinct elements $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ there is $B \in G \exists y_{i}=\left(x_{i}, g\right), i=1,2, \ldots, k$

Definition 1.5

A group action is primitiveif there is no non-trivial partition of X preserved by the group G . A doubly transitive group action is primitive and a primitive action is transitive, but neither the, converse holds.

Definition 1.6

Let G be a transitive group. A subset X of Ω is said to be a set of imprimitivity for the action of G on Ω, if for each $g \in G$ either $X_{g}=X$ ar X_{B} and X are disjoint. In particular, 1 - element subsets of Ω and the empty set are obviously sets of imprimitivity of every group G on Ω; these are called trivial sets of imprimitivity. We say that G is primitive on Ω if the only sets of imprimitivity are the trivial ones; otherwise G is imprimitive on Ω

Definition 1.7

The factor group of the normal subgroup N in a group G written as G / N is the set of cosets of N in G .

Definition 1.8

A composition series for a group G is a finite chain of subgroups
$G=G_{D}>G_{1}>G_{2}>\cdots>G_{n}=(1)$
such that, for $i=0,1, \ldots, n-1, G_{i+1}$ is a normal subgroup of G_{i} and the quotient group G_{i} / G_{i+1} is simple.
The quotient groups $G_{D} / G_{1}, G_{1} / G_{2}, \ldots, G_{-1} / G_{n}$
are called the composition factors of G.

Example

Let $G=S_{4}$, and consider the following chain of subgroups:
$S_{4}>A_{4}>V_{4}>\{(1-2)(34)\}>1$.
We know that $A_{4} \leq S_{4}$ and $V_{4} \leq A_{4}$. Since V_{4} is an abelian group,
$\{(12)(34)\} \leq V_{4}$. Certainly $1 \leq((12)(34))$. Hence (4.1) is a series of
subgroups, each normal in the previous one. We can calculate the order of
each subgroup, and hence calculate the order of the quotient groups:

$$
\begin{aligned}
& \left|S_{4} / A_{4}\right|=2 \\
& \left|A_{4} / V_{4}\right|=3 \\
& \left.\mid V_{4} /(12)(34)\right\} \mid=2 \\
& |\{(12)(34)\rangle|=2
\end{aligned}
$$

Thus the quotients are all of prime order. We now make use of the fact that a group G of prime order p is both cyclic and simple (see Example 3.6), to see that the factors for the series (4.1) are cyclic simple groups. Thus (4.1) is composition series for S 4 , with composition factors

$$
C_{2}, C_{3}, C_{2}, C_{2}
$$

Definition 1.9

Let G be a group. A subnormal series of G is a finite chain of subgroups
$G=G_{D}>G_{1}>G_{2}>\cdots>G_{n}=$ (1)
such that G_{i+1} is a normal subgroup of G_{i} for $i=0,1, \ldots, n-1$. The collection of quotient groups
$G_{0} / G_{1}, G_{1} / G_{2}, \ldots, G_{-1} / G_{n 1}$ are the factors of the series, and the length of the series is n.
Note that we do not require each subgroup in the subnormal series to be normal in the whole group, only that it is normal in the previous subgroup in the chain.
A normal series is a series where G_{i} is a normal subgroup of G for all i. Note also that the length n is also the number of factors occurring.
We will be interested in three different types of subnormal series in this research, and for all three we will require special properties of the factors. The first case is where the factors are all required to be simple groups.

Definition 1.10

The series of subgroups $G_{0}, G_{1}, G_{2}, \ldots, G_{n}$ Such that $G=G_{n} \supset G_{n-1} \supset G_{n-2} \supset \cdots \supset G_{1} \supset G_{0}=\{1\}$ where G_{i} / G_{i+1} is abelianis called a solvable series.

Definition 1.11 (Milne, J.S, 2009)

A group G is solvable if there is a finite collection of groups $G_{D} G_{1} \ldots G_{n}$ such
that(1) $=G_{0} \subseteq G_{1} \subseteq \cdots \subseteq G_{n}=G$ where $G_{i} \leq G$ and G_{i+1} / G_{i} is abelian.If $|G|=1$ then G is considered as solvable group.
Theorem 1.1 (Audu M.S, 2003)
Let C and D be permutation groups on Γ and Δ respectively. Let C^{Δ} be the set of all maps of Δ into the permutation group C. That is $C^{\Delta}=\{f: \Delta \rightarrow C\} \forall f_{1} f_{2} \in C$ in _. Let $f_{1} f_{2}$ in C^{Δ} be defined $\forall \delta$ in Δ by

$$
\left(f_{1} f_{2}\right)(\delta)=f_{1}(\delta) f_{2}(\delta)
$$

With respect to this operation of multiplication C^{Δ} acquire a structure of a group.

Proof

(i) C^{Δ} is non-empty and is closed with respect to multiplication. If $f_{1} f_{2} \in C^{\Delta}$ then $f_{1}(\delta) f_{2}(\delta) \in c$. Hence $f_{1}(\delta) \cdot f_{2}(\delta) \in C$. This implies that $\left(f_{1} f_{2}\right)(\delta) \in C$ and so $f_{1} f_{2} \in C^{\Lambda}$
(ii) Since multiplication is associative so also is the multiplication in C^{A}.
(iii) The identity element in C^{Δ} is the map e : $\Delta \rightarrow \mathrm{C}$ given by $\mathrm{e}(\delta)=1$ for all $\delta \in \Delta$ and $1 \in \mathrm{C}$.
(iv) Every element $\mathrm{f} \in C^{\Delta}$ is defined for all $\delta \in \Delta$ by $f^{-1}(b)=f(\delta)^{-1}$. Thus $\mathrm{C} \Delta$ is a group with respect to the multiplication defined above. (We denote this group by P).

Lemma 1.2 (Audu M.S, 2003)
Assume that D acts on P as follows: $f^{d}(\delta)=f\left(\delta d^{-1}\right) f o r a l i \delta \in \Delta d \in D$. Then D acts on P as a group.

Proof

Take $f f_{1} f_{2} \in P$ and $d d_{1} d_{2} \in D$ then
(i) $\left(f^{d_{1}}\right)^{d_{2}}(\delta)=f^{d_{1}}(\delta d-12)=f\left(\delta d_{2}^{-1}\right)=f\left(\delta d_{2}^{-1} d_{1}^{-1}\right)=f^{d_{1} d_{2}(\delta)}$
(ii) $f^{1}(\delta)=f\left(\delta 1^{-1}\right)=f(\delta)$
(iii) $\left(f_{1} f_{2}\right)^{d}(\delta)=f_{1} f_{2}\left(\delta d^{-1}\right)=f_{1}\left(\delta d^{-1}\right) f_{2}\left(\delta d^{-1}\right)=f_{1}^{d}(\delta) f_{2}^{d}(\delta)$. Thus D acts on P as a group

Theorem 1.3 (Audu M.S, 2003)
Let D act on P as a group. Then the set of all ordered pairs ($f d$) with $f \in P$ and $d \in D$ acquires the structure of a group when we define for all $f_{1} f_{2} \in P$ and $d_{1} d_{2} \in D\left(f_{1} \alpha_{1}\right)\left(f_{2} d_{2}\right)=\left(f_{1} f_{2}^{d_{1}-1} d_{1} d_{2}\right)$

Proof

(i) Closure property follows from the definition of multiplication.
(ii) Take $f_{1} f_{2} f_{3} \in$ Fand $\alpha_{1} d_{2} d_{3} \in D$. Then

$$
\begin{aligned}
& {\left[\left(f_{1} d_{1}\right)\left(f_{2} d_{2}\right)\right]\left(f_{3} d_{7}\right)=\left(f_{1} f_{2}^{d_{1}^{-1}} d_{1} d_{2}\right)\left(f_{3} \alpha_{3}\right)} \\
& =\left(f_{1} f_{2}^{d_{1}-1} f_{3}^{\left(d_{1} d_{2}\right)^{-1}} d_{1} d_{2} d_{3}\right) \\
& =\left(f_{1} f_{2}^{d_{1}^{-1}} f_{1}^{d_{2}^{-1} d_{1}^{-1}} d_{1} d_{2} d_{3}\right)
\end{aligned}
$$

Also we have in the same manner that

$$
\begin{aligned}
& {\left[\left(f_{1} \alpha_{1}\right)\left(f_{2} \alpha_{2}\right)\right]\left(f_{3} \alpha_{3}\right)=\left(f_{1} \alpha_{1}\right)\left(f_{2} f_{3}^{d_{2}-1} \alpha_{2} \alpha_{3}\right)} \\
& =\left(f_{1}\left(f_{2} f_{3}^{d_{2}^{-1}}\right) \alpha_{1}^{-1} \alpha_{1} \alpha_{2} \alpha_{3}\right)
\end{aligned}
$$

$=\left(f_{1} f_{2} d_{1}^{-1} f_{1}^{d_{2}-1} d_{1}^{-1} d_{1} d_{2} d_{3}\right)$.
hence multiplication is associative.
(iii) We know that for every $f \in P f^{-1}=f$. Now for every $d \in D$ the map $f \rightarrow f^{d}$ is an automorphism of P. Also if e is the identity element in P then $\varepsilon^{d}=\theta$. Also $\left(f^{-1}\right) d=\left(f^{d}\right)^{-1}$. Now
$\left(f d^{d}\right)\left(\beta^{1}\right)=\left(f \theta^{d-1} d^{d}\right)=\left(f \beta^{d-1} d^{d}\right)=\left(f\left(\beta^{-1}\right) d\right)=\left(f d^{2}\right)$. Also using the reverse order we have that
$(\theta 1)(f d)=\left(\theta f^{1^{-1}} 1 d\right)=(\theta f d)=(f d)$ Thus identity element exists.
(iv) $\left.\left.(f d)\left(\left(f^{-1}\right) d d^{-1}\right)=\left(f^{(f-1}\right) d\right)^{-1} d d^{-1}\right)=\left(f\left(f^{-1}\right) d d^{-1} d d^{-1}\right)$

$$
=\left(f\left(f^{-1}\right)^{1} d^{\prime} d^{-1}\right)=(B 1)
$$

$$
\begin{aligned}
& \text { Also } \\
& \begin{array}{l}
\left.\left(f^{-1}\right)^{d} d^{-1}\right)\left(f d^{d}\right)=\left(\left(f^{-1}\right)^{d} f^{d} d^{-1} d\right) \\
\left.=\left(f f^{-1}\right)^{d} d^{-1} d\right)=\left(\theta^{d} 1\right)=(\theta 1)
\end{array}
\end{aligned}
$$

Thus when D acts on P the set of all ordered pairs ($f d$) with $f \in D d \in D$ is a group if we define $\left(f_{1} d_{1}\right)\left(f_{2} a_{2}\right)=f_{1} f_{2}^{d_{1}}\left(a_{1} d_{2}\right)$ In what follows we supply a formal definition of Wreath Product of permutation groups.

WREATH PRODUCT (Audu M.S, 2003)

The Wreath product of C by D denoted by $\mathrm{W}=\mathrm{C}$ wr D is the semidirect product of P by D so
that $W=\{f(d) \mid f \in P a \in D\}$ with multiplication in W defined as $\left(f_{1} \alpha_{1}\right)\left(f_{2} \alpha_{2}\right)=f_{1} f_{2} d_{1}^{-1}\left(\alpha_{1} \alpha_{2}\right)$ for all $f_{1} f_{2} \in P$ and $d_{1} d_{2} \in D$. Henceforth we write $f d$ instead of $(f d)$ for elements of W.
Theorem 1.4 (Audu M.S, 2003)
Let D act on P as $f^{d}(\delta)=f\left(\delta d^{-1}\right)$ where $f \in P d \in \operatorname{D}$ and $\delta \in \Delta$. Let W be the group of all juxtaposed symbols fd with $f \in P d \in D$ and multiplication given by $\left(f_{1} d_{1}\right)\left(f_{2} d_{2}\right)=f_{1} f_{2}{ }^{d_{1}^{-1}}\left(d_{1} d_{2}\right)$. Then W is a group called the semi-direct product of P by D with the defined action.
Based on the forgoing we note the following:

* If C and D are finite groups then the wreath product W determined by an action of D on a finite set is a finite group of order $|W|=|C|^{|O|},|D|$.
* P is a normal subgroup of W and D is a subgroup of W.
* The action of W on $\Gamma \times \Delta$ is given by $(\alpha \beta) f 0=(\alpha f(\beta) \beta \lambda)$ wherea $\in \Gamma$ and $\beta \in \Delta$.

We shall at this point identify the conditions under which a sup group will be soluble or nilpotent and study them for further investigation.
Theorem 1.5 (Thanos G., 2006)
G is solvable if and only if $G^{(n)}=1$, for some n.
Proposition 2.1
Let G be solvable and $H \leq G$. Then

1. H is solvable.
2. If $H \triangleleft G$, then G / H is solvable.

Proof

Start from a series with abelian slices. $G=G_{0} \geq G_{1} \geq \cdots G_{n}=\{1\}$. Then
$H=H \cap G_{0} \unrhd H \cap G_{1} \unrhd \cdots \unrhd H \cap G_{n}=\{1\}$. When H is normal, we use the canonical projection
$\pi: G \rightarrow G / H$ to get $\bar{G} / H=\pi\left(G_{\mathrm{D}}\right) \unrhd \cdots \boxtimes \pi\left(G_{\mathrm{n}}\right)=\{1\}$, the quotients are abelian as well, so G / H is still solvable.
Proposition 1.6
Let $N \leq G$. Then G is solvable if and only if N and G / N are solvable.

Proof

(\Rightarrow) This is obvious by Proposition 2.1.
(\Leftarrow) Stick together a series for N with abelian slices with the lift to G of a series for G / N, using the fourth isomorphism law.

RESULT

2.1 Symmetric groups
2.1.1 Consider the symmetric group acting on $\Omega_{1}=\{1,2,3\}$
$S_{1}=\{(1),(23),(13),(132),(123),(12)\}$ with primitive perfect residuum (1)
2.1.2 Consider the symmetric group acting on $\Omega_{2}=\{1,2,3,4\}$
S_{4}
$=\{(1),(34),(24),(243),(234),(23),(14),(143),(142),(1432),(1423),(14)(23),(124),(1243),(12),(12)$
$(34),(123),(1234),(134),(13),(1342),(132),(13)(24),(1324)\}$
with primitive perfect residuum (1)
2.1.3 Consider the symmetric group acting on $\Omega_{3}=\{1,2,3,4,5\}$
$S_{5}=((1),(45),(35),(354),(345),(34),(25),(254),(253),(2543),(2534),(25),(34),(235),(2354),(23)$,
$(23)(45),(234),(2345),(245),(24),(2453),(243),(24)(35),(2435),(15),(154),(153),(1543),(1534),(15)(34)$
$,(152),(1542),(1532),(15432),(15342),(152)(34),(1523),(15423),(15)(23),(154)(23),(15)$
$(234),(15234),(1524),(15)(24),(15324),(15)(243),(153)(24),(15243),(125),(1254),(1253)$, $(12543),(12534),(125)(34),(12),(12)(45),(12)(35),(12)(354),(12)(345),(12)(34),(123)$, $(123)(45),(1235),(12354),(12345),(1234),(124),(1245),(124)(35),(12435),(12453),(1243)(135)$, $(1354),(13),(13)(45),(134),(1345),(1352),(13542),(132),(132)(45),(1342),(13452),(13)$
$(25),(13)(254),(1325),(13254),(13425),(134)(25),(13524),(135)(24),(1324),(13245),(13)(24),(13)$
$(245),(145),(14),(1453),(143),(14)(35),(1435),(1452),(142),(14532),(1432),(142)(35)$,
$(14352),(14523),(1423),(145)(23),(14)(23),(14235),(14)(235),(14)(25),(1425),(14)(253),(14325)$, (14253), (143)(25)\}
with primitive perfect residuum A_{5}
2.2 Alternating group
2.2.1 Consider the alternating group acting on $\Omega_{4}=\{1,2,3\}$
$A_{1}=\{(1),(123),(132)\}$ with primitive perfect residuum (1)

2.2.2 Consider the alternating group acting on $\Omega_{4}=\{1,2,3,4\}$

$A_{4}=\{(1),(243),(234),(143),(14)(23),(142),(134),(132),(13)(24),(124),(12)(34),(123)\}$
with primitive perfect residuum (1)
2.2.3 Consider the alternating group acting on $\Omega_{4}=\{1,2,3,4,5\}$
$A_{5}=\{(1),(354),(345),(254),(25)(34),(253),(245),(243),(24)(35),(235),(23)(45),(234),(154)$,
$(15)(34),(153),(15)(24),(15243),(15324),(152),(15432),(15342),(15234),(15)(23),(15423),(145),(143)$,
$(14)(35),(142),(14352),(14532),(14)(25),(14325),(14253),(14523),(14)(23),(14235),(125)$,
$(12543),(12534),(12)(45),(12)(34),(12)(35),(124),(12435),(12453),(123),(12354),(12345)$,
$(135),(13)(45),(134),(13542),(13452),(132),(13524),(13245),(13)(24),(13)(25),(13254),(13425)\}$
with primitive perfect residuum A_{5}
2.3 Dihedral group
2.3.1 Consider the dihedral group acting on $\Omega_{4}=\{1,2,3\}$
$\mathrm{D}_{6}=\{(1),(23),(132),(13),(123),(12)\}$ with primitive perfect residuum (1)
2.3.2 Consider the dihedral group acting on $\Omega_{4}=\{1,2,3,4\}$
$\mathrm{D}_{2}=\{(1),(24),(13)(24),(13),(1432),(14)(23),(1234),(12)(34)\}$ with primitive perfect residuum (1)
2.3.3 Consider the dihedral group acting on $\Omega_{4}=\{1,2,3,4,5,6,7\}$
$D_{14}=\{(1),(27)(36)(45),(1765432),(17)(26)(35),(1642753),(16)(25)(34),(1526374),(15)(24)$
$(67),(1473625),(14)(23)(57),(1357246),(13)(47)(56),(1234567),(12)(37)(46))$
with primitive perfect residuum (1)
2.4 Wreath product
2.4.1 Consider the permutation groups M_{1} and L_{1}
$M_{1}=\{(1),(123),(132)\}, L_{1}=\{(1),(45)\}$ acting on the sets $S_{1}=\{1,2,3\}$ and $\Delta_{1}=\{4,5\}$ respectively.
Let Let $P=L_{1}{ }^{A_{2}}=\left\{f: \Delta_{1} \rightarrow L_{1}\right\}$ then $|P|=\left|M_{1}\right|^{\Delta_{1}}=3^{2}=9$
We can easily verify that G_{1} is a group with respect to the operations
$\left(f_{1} f_{2}\right) \delta_{1}=f_{1}\left(\delta_{1}\right) f_{2}\left(\delta_{1}\right)$ where $\delta_{1} \in \Delta_{1}$.
The wreath product of P_{1} and Q_{1} is given by W_{1}, where
$W_{1}=\{(1),(465),(456),(132),(132)(465),(132)(456),(123),(123)(465),(123)(456),(14)(25)(36)$,
$(143625),(142536),(163524),(162435),(16)(24)(35),(152634),(15)(26)(34),(153426)\}$
with imprimitive perfect residuum (1)
2.4.2 Consider the permutation groups M_{2} and L_{2}
$M_{2}=\{(1),(15432),(14253),(13524),(12345)\}$
, $\boldsymbol{L}_{2}=\{(1),(678),(687)\}$ acting on the sets $S_{2}=\{1,2,3,4,5\}$ and $\Delta_{2}=\{6,7,8\}$ respectively.
Let Let $P=L_{2}{ }^{A_{2}}=\left\{f: \Delta_{2} \rightarrow L_{2}\right\}$ than $|F|=\left|M_{2}\right|^{A_{2}}=5^{3}=125$
We can easily verify that G_{1} is a group with respect to the operations
$\left(f_{1} f_{2}\right) \delta_{1}=f_{1}\left(\delta_{1}\right) f_{2}\left(\delta_{1}\right)$ where $\delta_{1} \in \Delta_{1}$.
The wreath product of M_{2} and L_{2} is given by W_{2}, where
$W_{2}=\{(1),(1115141312),(1114121513)(1113151214)(1112131415)(610987)(610987)$
$(1115141312)(610987)(1114121513)(610987)(1113151214)(610987)(1112131415)(697108)$
$(697108)(1115141312)(697108)(1114121513)(697108)(1113151214)(697108)$
$(1112131415)(681079)(681079)(1115141312)(681079)(1114121513)(681079)$
$(1113151214)(681079)(1112131415)(678910)(678910)(1115141312)(678910)$
$(1114121513)(678910)(1113151214)(678910)(1112131415)(15432)(15432)$ $(1115141312)(15432)(1114121513)(15432)(1113151214)(15432)(1112131415)$ $(15432)(610987)(15432)(610987)(1115141312)(15432)(610987)$ $(1114121513)(15432)(610987)(1113151214)(15432)(610987)(1112131415)$
$(15432)(697108)(15432)(697108)(1115141312)(15432)(697108)$ $(1114121513)(15432)(697108)(1113151214)(15432)(697108)(1112131415)$
$(15432)(681079)(15432)(681079)(1115141312)(15432)(681079)$
$(1114121513)(15432)(681079)(1113151214)(15432)(681079)(1112131415)$
$(15432)(678910)(15432)(678910)(1115141312)(15432)(678910)$
$(1114121513)(15432)(678910)(1113151214)(15432)(678910)(1112131415)$
$(14253)(14253)(1115141312)(14253)(1114121513)(14253)(1113151214)$
$(14253)(1112131415)(14253)(610987)(14253)(610987)(1115141312)$
$(14253)(610987)(114121513)(14253)(610987)(1113151214)(14253)$ $(610987)(1112131415)(14253)(697108)(14253)(697108)(1115141312)$ $(14253)(697108)(1114121513)(14253)(697108)(1113151214)(14253)$ $(697108)(1112131415)(14253)(681079)(14253)(681079)(1115141312)$
$(14253)(681079)(1114121513)(14253)(681079)(1113151214)(14253)$ $(681079)(1112131415)(14253)(678910)(14253)(678910)(1115141312)$
$(14253)(678910)(1114121513)(14253)(678910)(1113151214)(14253)$ $(678910)(1112131415)(13524)(13524)(1115141312)(13524)(1114121513)$ $(13524)(1113151214)(13524)(1112131415)(13524)(610987)(13524)$ $(610987)(1115141312)(13524)(610987)(1114121513)(13524)(610987)$ $(1113151214)(13524)(610987)(1112131415)(13524)(697108)(13524)$ $(697108)(1115141312)(13524)(697108)(1114121513)(13524)(697108)$ $(1113151214)(13524)(697108)(1112131415)(13524)(681079)(13524)$ $(681079)(1115141312)(13524)(681079)(1114121513)(13524)(681079)$ $(1113151214)(13524)(681079)(1112131415)(13524)(678910)(13524)$ $(678910)(1115141312)(13524)(678910)(1114121513)(13524)(678910)$ $(1113151214)(13524)(678910)(1112131415)(12345)(12345)(1115141312)$ $(12345)(1114121513)(12345)(1113151214)(12345)(1112131415)(12345)$ $(610987)(12345)(610987)(1115141312)(12345)(610987)(1114121513)$ $(12345)(610987)(1113151214)(12345)(610987)(1112131415)(12345)$ $(697108)(12345)(697108)(1115141312)(12345)(697108)(1114121513)$ $(12345)(697108)(1113151214)(12345)(697108)(1112131415)(12345)$ $(681079)(12345)(681079)(1115141312)(12345)(681079)(1114121513)$ $(12345)(681079)(1113151214)(12345)(681079)(1112131415)(12345)$ $(678910)(12345)(678910)(1115141312)(12345)(678910)(1114121513)$
$(12345)(678910)(1113151214)(12345)(678910)(1112131415)(1116)(2127)$ $(3138)(4149)(51510)(111105159414831372126)(111941472121051583$ $136)(111831310515721294146)(111721283139414105156)(111651510$ $414931382127)(111104148212651593137)(111931365158212104147$ $)(111821293131041465157)(1117)(2128)(3139)(41410)(5156)(11164149$ $2127515103138)(111103137515921264148)(11192121031364147515$ 8) $(1118)(2129)(31310)(4146)(5157)(111751564141031392128)(1116313$ $85151021274149)(111102126313741485159)(1119)(21210)(3136)(4147)$ $(5158)(111851574146313102129)(111741410212851563139)(1116212$ $73138414951510)(11110)(2126)(3137)(4148)(5159)(1119515841473136$ $21210)(111841462129515731310)(111731395156212841410)(11510514$ $9413831272116)(115941372111051483126)(115831210514721194$ $136)(115721183129413105146)(1156)(2117)(3128)(4139)(51410)$ $(115104138211651493127)(115931265148211104137)(11582119312$ $1041365147)(1157)(2118)(3129)(41310)(5146)(115651410413931282117)$ $(115103127514921164138)(115921110312641375148)(1158)(2119)$ $(31210)(4136)(5147)(115751464131031292118)(115641392117514103$ $128)(115102116312741385149)(1159)(21110)(3126)(4137)(5148)$
$(115851474136312102119)(115741310211851463129)(11563128514$ $1021174139)(11510)(2116)(3127)(4138)(5149)(115951484137312621110)$ $(115841362119514731210)(115731295146211841310)(11562117312$ $8413951410)(114941272151051383116)(114831110513721594126)$ $(114721583119412105136)(1146)(2157)(3118)(4129)(51310)(1141051394$ $12831172156)(114931165138215104127)(114821593111041265137)$ $(1147)(2158)(3119)(41210)(5136)(114651310412931182157)(1141041282$ $15651393117)(114921510311641275138)(1148)(2159)(31110)(4126)$ $(5137)(114751364121031192158)(114641292157513103118)(11410311$ $7513921564128)(1149)(21510)(3116)(4127)(5138)(11485137412631110$ $2159)(114741210215851363119)(114631185131021574129)(11410215$ $6311741285139)(114951384127311621510)(11484126215951373$ 1110) (114731195136215841210$)(114621573118412951310)(11410)$ $(2156)(3117)(4128)(5139)(113831510512721494116)(1137214831594$ $11105126)(1136)(2147)(3158)(4119)(51210)(113105129411831572146)$ $(113941172141051283156)(113821493151041165127)(1137)(2148)$ $(3159)(41110)(5126)(113651210411931582147)(113104118214651293$ $157)(113931565128214104117)(1138)(2149)(31510)(4116)(5127)$ $(113751264111031592148)(113641192147512103158)(113103157512$ $921464118)(113921410315641175128)(113851274116315102149)$ $(113741110214851263159)(113631585121021474119)(113102146315$ $741185129)(1139)(21410)(3156)(4117)(5128)(113841162149512731510)$ $(113731595126214841110)(113621473158411951210)(11310)(2146)$ $(3157)(4118)(5129)(113951284117315621410)(112721383149415105$ $116)(1126)(2137)(3148)(4159)(51110)(112105119415831472136)$ $(112941572131051183146)(112831410511721394156)(1127)(2138)$ $(3149)(41510)(5116)(112651110415931482137)(112104158213651193$ $147)(112931465118213104157)(112821393141041565117)(11275116$ $4151031492138)(112641592137511103148)(112103147511921364158$ $)(112921310314641575118)(1128)(2139)(31410)(4156)(5117)(112741510$ $213851163149)(112631485111021374159)(11210213631474158511$ $9)(1129)(21310)(3146)(4157)(5118)(112851174156314102139)(1127314$ $95116213841510)(112621373148415951110)(11210)(2136)(3147)(4158)$ $(5119)(112951184157314621310)(112841562139511731410)(1611)$ $(2712)(3813)(4914)(51015)(161151015491438132712)(1611491427125$

```
\(10153813)(161138135101527124914)(161127123813491451015)\) \((161551014491338122711)(161549132711510143812)(16153812510\) \(1427114913)(161527113812491351014)(1615)(2711)(3812)(4913)(51014)\)
\((161449122715510133811)(161438115101327154912)(1614271538\) \(11491251013)(1614)(2715)(3811)(4912)(51013)(161451013491238112715)\) \((161338155101227144911)(161327143815491151012)(1613)(2714)\) \((3815)(4911)(51012)(161351012491138152714)(161349112714510123\) \(815)(161227133814491551011)(1612)(2713)(3814)(4915)(51011)\) \((161251011491538142713)(161249152713510113814)(16123814510\) \(1127134915)(110155914481337122611)(110154813261159143712)\) \((110153712591426114813)(110152611371248135914)(11015)(2611)\) \((3712)(4813)(5914)(110144812261559133711)(110143711591326154\) \(812)(110142615371148125913)(11014)(2615)(3711)(4812)(5913)\) \((110145913481237112615)(110133715591226144811)(11013261437\) \(1548115912)(11013)(2614)(3715)(4811)(5912)(110135912481137152614)\)
\((110134811261459123715)(110122613371448155911)(11012)(2613)\) \((3714)(4815)(5911)(110125911481537142613)(110124815261359113\) \(714)(110123714591126134815)(11011)(2612)(3713)(4814)(5915)\) \((110115915481437132612)(110114814261259153713)(11011371359\) \(1526124814)(110112612371348145915)(191447122101558133611)\)
```

```
(19143611581321015 4712)(191421015361147125813)(1914)(21015)
(3611)(4712)(5813)(1914581347123611 21015)(191336155812210144
711)(191321014361547115812)(1913)(21014)(3615)(4711)(5812)
(1913581247113615 21014)(191347112101458123615)(19122101336
1447155811)(1912)(21013)(3614)(4715)(5811)(191258114715361421013)
(191247152101358113614)(191236145811210134715)(1911)(21012)
(3613)(4714)(5815)(191158154714361321012)(19114714210125815 3
    613)(191136135815 210124714)(191121012361347145815)(19155814
4713361221011)(19154713210115 814 3612)(191536125814210114713
)(191521011361247135814)(1915)(21011)(3612)(4713)(5814)(181331015
571229144611)(181329143101546115 712)(1813)(2 914)(31015)(4611)
(5712)(181357124611310152914)(181346112914571231015)(181229
133101446155711)(1812)(2913)(31014)(4615)(5711)(18125711461531014
2913)(181246152913571131014)(181231014571129134615)(1811)
(2912)(31013)(4614)(5715)(181157154614310132912)(1811461429125
71531013)(181131013571529124614)(181129123101346145715)
(181557144613310122911)(181546132911571431012)(18153101257
1429114613)(181529113101246135 714)(1815)(2911)(31012)(4613)(5714)
(1814461229155713 31011)(181431011571329154612)(18142915310
1146125713)(1814)(2915)(31011)(4612)(5713)(181457134612310112915)
(171228133914410155611)(1712)(2813)(3914)(41015)(5611)(171256114
101539142813)(171241015281356113 914)(171239145611281341015)
(1711)(2812)(3913)(41014)(5615)(171156154101439132812)(1711410142
81256153913)(171139135615281241014)(1771128123913410145615)
(171556144101339122811)(171541013281156143912)(1715391256
14281141013)(171528113912410135614)(1715)(2811)(3912)(41013)(5614)
(171441012281556133911)(171439115613281541012)(1714281539
11410125613)(1714)(2815)(3911)(41012)(5613)(171456134101239112815)
(171339155612281441011)(171328143915410115612)(1713)(2814)
(3915)(41011)(5612)(171356124101139152 814)(171341011281456123
915)}
```

with imprimitive perfect residuum (1)

SUMMARY OF RESULT

$>$ The perfect residuum of a solvable group is always identity while for unsolvable group is not trivial.
$>$ The perfect residuum of permutation group is prirmitive

3.1 VALIDATION

3.1.1 Algorithm for the result in 2.1.1

gap> S3:=SymmetricGroup (3);
$\operatorname{Sym}([1 . .3])$
gap> P1:=PerfectResiduum(S1);
Group(())
gap> IsPrimitive(P1);
true
gap>quit;

3.1.2 Algorithm for the result in 2.1.2

gap> S4:=SymmetricGroup(4);
$\operatorname{Sym}([1 . .4])$
gap> P2:=PerfectResiduum(S4);
Group(())
gap> IsPrimitive(P2);
true
gap>quit;

3.1.3 Algorithm for the result in 2.1.3

gap $>$ S5:=SymmetricGroup(5);
$\operatorname{Sym}([1 . .5])$
gap> P3:=PerfectResiduum(S5);
Alt([$1 . .5$])
gap> IsPrimitive(P3);
true
gap>quit;

3.1.4 Algorithm for the result in 2.2.1

gap> A3:=AlternatingGroup(3);
$\operatorname{Alt}([1 . .3$])
gap> P4:=PerfectResiduum(A3);
Group(())
gap $>$ IsPrimitive(P4);
true
gap>quit;
3.1.5 Algorithm for the result in 2.2.2
gap> A4:=AlternatingGroup(4);
Alt([1..4])
gap>P5:=PerfectResiduum(A4);
Group(())
gap $>$ IsPrimitive(P5);
true
gap>quit;

3.1.6 Algorithm for the result in 2.2.3

gap> A5:=AlternatingGroup(5);
$\operatorname{Alt}([1 . .5])$
gap> P6:=PerfectResiduum(A5);
$\operatorname{Alt}([1 . .5])$
gap $>$ IsPrimitive(P6);
true
gap>quit;
3.1.7 Algorithm for the result in 2.3.1 gap> D6:=DihedralGroup(IsGroup,6);
$\operatorname{Group}([(1,2,3),(2,3)])$
gap> P7:=PerfectResiduum(D3);
Group(()$)$
gap> IsPrimitive(P7);
true
gap>quit;

3.1.8 Algorithm for the result in 2.3.2

gap> D8:=DihedralGroup(IsGroup,8);
Group([$(1,2,3,4),(2,4)])$
gap>P8:=PerfectResiduum(D2);
Group(())
gap> IsPrimitive(P8);
true
gap>quit;

3.1.9 Algorithm for the result in 2.3.3

gap> D14:=DihedralGroup(IsGroup,14);
$\operatorname{Group}([(1,2,3,4,5,6,7),(2,7)(3,6)(4,5)])$
gap> P9:=PerfectResiduum(D4);
Group(())
gap> IsPrimitive(P9);
true
gap>quit;

3.1.10 Algorithm for the result in 2.4.1

gap> M1:=Group(($1,2,3)$);
$\operatorname{Group}([(1,2,3)])$
gap> L1:=Group((4,5));
Group([$(4,5)])$
gap> W1:=WreathProduct(M1,L1);
$\operatorname{Group}([(1,2,3),(4,5,6),(1,4)(2,5)(3,6)])$
gap> P10:=PerfectResiduum(W1);
Group(())
gap> IsPrimitive(P10);
true
gap>quit;
3.1.11 Algorithm for the result in 2.4.2
gap> M2:=Group((1,2,3,4,5));
$\operatorname{Group}([(1,2,3,4,5)])$
gap> L2:=Group($(6,7,8)$);
$\operatorname{Group}([(6,7,8)])$
gap> W2:=WreathProduct(M2,L2);
$\operatorname{Group}([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)])$
gap> P11:=PerfectResiduum(W2);
Group(())
gap> IsPrimitive(P11);
true
gap>quit;

Reference

1. Audu M.S., K.E Osondu, A.R.j. Solarin (2003)," Research Seminar on Groups, Semi Groups and Loops," National Mathematical Centre, Abuja, Nigeria (October).
2. Burnside W. (2012),'"Theory of Groups of Finite Order," Ebooks \$ 40395.
3. Hall M. Jr. (1959)," The Theory of Groups" Macmillan Company New York.
4. Hamma S. and Mohammed M.A. (2010),"Constrcting p-groups From Two Permutation Groups by Wreath Products Method",Advances in Applied Science Research, 2010, 1(3), 8-23
5. Hielandt, H. (1964)," Finite Permutation Groups", Academic Press, New York, London.
6. Thanos G. (2006), " Solvable Groups-A numerical Approach"
7. Joachim Neubüser et al(2016), "Groups Algorithm and Programming", 4.8.5, 25-Sep-2016, build of 2016-09-25 14:51:12 (GMTDT)
8. Kurosh A.G. (1956), "The theory of groups" , 1-2, Chelsea (1955-1956) (Translated from Russian) M. 9 .
9. Bello et al. (2017), "a numerical search for polycyclic and locally nilpotent permutation groups", International Journal of scientific and engineering research, Vol. 8, issue 8, 2017.
10. Milne J.S. (2009)," Theory of groups" September 21, 2009
11. William Burnside (2012)''Theoryof Groups of Finite order''Ebook\$40395.
