Calculation Energy Levels, B(E2), Electric Quadrupole Moment and (P.E.S.) of the Even-Even ${ }^{156,158}$ Dy Isotopes Using IBA-1

Prof.Dr. Mohammed A. Al Shareefi ${ }^{ *}$ Mohammed A. Mohammed
Babylon University / Facility of Science / Physics Department
PO box 4, Babylon, Iraq
*E-Mail: alshareefim@yahoo.com
**E-Mail: mhmd_babil@yahoo.com

Abstract

: Nuclear structure of ${ }^{156,158}$ Dy isotopes have been studied in the frame work of the interacting boson approximation model (IBM-1). The contour plot of the potential energy surfaces, $\mathrm{V}(\beta, \gamma)$, shows that the nucleus ${ }^{156}$ Dy is deformed and has transitional characters between $\mathrm{SU}(3)$ and $\mathrm{O}(6)$ limits, and the nucleus ${ }^{158} \mathrm{Dy}$ is deformed and has rotational characters, $\mathrm{SU}(3)$. Levels energy spectra belonging to the $\mathrm{g}, \beta, \gamma$ bands, electromagnetic transition rates $\mathrm{B}(\mathrm{E} 2)$, electric quadrupole moment (Q) are calculated. The calculated values are compared with the available theoretical and experimental data and show reasonable agreement.

Keywords: potential energy surfaces; nuclear structure; ${ }^{156,158} \mathrm{Dy}$; B(E2).

1. Introduction :

Arima and Iachello (1979) [1] have developed the interacting boson model (IBM), which is based on the well-known shell model and on geometrical collective model of the atomic nucleus. This model is to describe nuclear properties such as spins, energies of the levels, decay probabilities for the emission of gamma quanta, probabilities of electromagnetic transition and their reduced matrix elements for different transitions multipole moment and mixing ratios [1,2].

The (IBM-1) is used in the present work, this model represents very important step formed in the description of collective nuclear excitations. The underlying $\mathrm{U}(6)$ group structure of model basis leads to a simple Hamiltonian which is capable of describing the three specific limits of collective structure vibrational $\mathrm{SU}(5)$, rotational $\mathrm{SU}(3)$ and gamma unstable $\mathrm{O}(6)[1,3]$.

In the simplest version of the interacting boson model (IBM-1), its assumed that low-lying collective states in even-even nuclei away from closed shells are dominated by excitation of the valence protons and the valence neutrons (particles outside the major closed shell) while the closed shell core is inert. Furthermore, its assumed that the particle configurations which are most important in shaping the properties of the low-lying states are these in which identical particles are coupled together forming pairs of angular momentum 0 and 2 [1,4,5].

2. (IBA-1) Model

The IBA-1 model was applied to the positive parity low-lying states in even-even ${ }^{156,158}$ Dy isotopes. The proton, π, and neutron, v, bosons are treated as one boson and the system is considered as an interaction between s-bosons and d-bosons. Creation ($\mathrm{s}^{+}, \mathrm{d}^{+}$) and annihilation (s, d) operators are for s and d bosons.

2.1. The Hamiltonian Operator of The (IBM-1) :

The Hamiltonian employed for the present calculation is given as [6,7]:

$$
\begin{equation*}
\hat{\mathrm{H}}=\varepsilon \hat{\mathrm{n}}_{\mathrm{d}}+\mathrm{a}_{\mathrm{o}} \hat{\mathrm{P}} \cdot \hat{\mathrm{P}}+\mathrm{a}_{1} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~L}}+\mathrm{a}_{2} \hat{\mathrm{Q}} \cdot \hat{\mathrm{Q}}+\mathrm{a}_{3} \hat{\mathrm{~T}}_{3} \cdot \hat{\mathrm{~T}}_{3}+\mathrm{a}_{4} \hat{\mathrm{~T}}_{4} \cdot \hat{\mathrm{~T}}_{4} \tag{1}
\end{equation*}
$$

Where;
n_{d} is the number of boson; P.P, L.L, Q.Q, $\mathrm{T}_{3} . \mathrm{T}_{3}$ and $\mathrm{T}_{4} . \mathrm{T}_{4}$ represent pairing, angular momentum, quadrupole, octupole and hexadecupole interactions between the bosons respectively; ε is the boson energy; and $a_{0}, a_{1}, a_{2}, a_{3}$, a_{4} is the strengths of the pairing, angular momentum, quadrupole, octupole and hexadecupole interactions respectively.

2.2. $\mathrm{O}(6) \rightarrow \mathrm{SU}(3)$ Transition Region :

In this region nuclei have transitional properties between $(\mathrm{SU}(3))$ and $(\mathrm{O}(6))$ and the Hamiltonian is give by [8]:

$$
\begin{equation*}
\hat{\mathrm{H}}^{(\mathrm{II}+\mathrm{III})}=\mathrm{a}_{\mathrm{o}} \hat{\mathrm{P}} \cdot \hat{\mathrm{P}}+\mathrm{a}_{1} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~L}}+\mathrm{a}_{2} \hat{\mathrm{Q}} \cdot \hat{\mathrm{Q}} \tag{2}
\end{equation*}
$$

Nuclei fall in this region depends on the ratio $\left(\mathrm{a}_{0} / \mathrm{a}_{2}\right)$. When this ratio is large the properties will be near to $\mathrm{O}(6)$ limit and when this ratio is small the properties will be near to $\mathrm{SU}(3)$.

2.3. Rotational Limit $\mathrm{SU}(3)$:

Hamiltonian function operator for dynamical symmetry $\mathrm{SU}(3)$ in terms of creation and annihilation operators can be given according to the following equation [9-12] :
$\hat{H}=a_{1} \hat{I^{2}}+a_{2} \hat{Q^{2}}$
The rotation dynamical symmetry represented by sub-group $\mathrm{SU}(3)$ and its quantum numbers that make it has diagonal attribute can be described as $[9,13,14]$:

Where [N] is the total number of bosons ($N=N_{\pi}+N_{\nu}$).
The values of (λ, μ) contained in each $[\mathrm{N}]$ are given by :
$[N]=(2 N, 0)$

$$
\begin{align*}
& \oplus(2 N-4,2) \oplus(2 N-8,4) \oplus \ldots \oplus\left\{\begin{array}{l}
(0, N) \\
2, N-1
\end{array}\right\}\left\{\begin{array}{ll}
\text { if } & N=\text { even } \\
\text { if } & N=\text { odd }
\end{array}\right\} \\
& \left.\oplus(2 N-6,0) \oplus(2 N-10,2) \oplus \ldots \oplus\left\{\begin{array}{l}
(0, N-3) \\
(2, N-4)
\end{array}\right\} \text { if } \begin{array}{ll}
\text { if } & N-3=\text { even } \\
(0,3 d d
\end{array}\right\} \\
& \oplus(2 N-12,0) \oplus(2 N-16,2) \oplus \ldots \ldots . . \oplus\left\{\begin{array}{l}
(0, N-6) \text {, if } \\
(0, N-6=\text { even } \\
(0, N-7 \\
\text { if } \\
N-6=o d d
\end{array}\right\} \\
& \mu=0,2,4, \ldots . \\
& \tilde{X}=0,2,4, \ldots, \min (\lambda, \mu) \tag{5}
\end{align*}
$$

2.4. Transition Rates :

The electric quadrupole transition operator employed in this study is given by [15,16] :
$\mathrm{T}_{\mathrm{m}}{ }^{(\mathrm{E} 2)}=\alpha_{2}\left[\mathrm{~d}^{\dagger} \mathrm{s}+\mathrm{s}^{\dagger} \mathrm{d}\right]_{\mathrm{m}}{ }^{(2)}+\beta_{2}\left[\mathrm{~d}^{\dagger} \mathrm{d}\right]_{\mathrm{m}}{ }^{(2)}$
(6)

Where;
α_{2} and β_{2} are the parameters which is used to description the different terms in operator. The reduced electric quadrupole transition rates between $\mathrm{L}_{\mathrm{i}} \rightarrow \mathrm{L}_{\mathrm{f}}$ states are given by [1] :
$\mathrm{B}\left(\mathrm{E} 2, \mathrm{~L}_{\mathrm{i}} \rightarrow \mathrm{L}_{\mathrm{f}}\right)=\frac{1}{2 L i+1}\left|\left\langle\mathrm{~L}_{\mathrm{f}}\left\|\hat{\mathrm{T}}^{(\mathrm{E} 2)}\right\| \mathrm{L}_{\mathrm{i}}\right\rangle\right|$
And the electric quadrupole moment $\left(\mathrm{Q}_{1}{ }^{+}\right)$is [17] :

$$
\begin{equation*}
Q_{2_{1}^{+}}=-\alpha_{2} \sqrt{\frac{16 \pi}{40}} \frac{2}{7}(4 N+3) \tag{8}
\end{equation*}
$$

As to the potential energy surface operator is given by [18] :

$$
V(N, \beta, \gamma)=\frac{N}{1+\beta^{2}}\left(\varepsilon_{s}+\varepsilon_{d} \beta^{2}\right)+\frac{N(N-1)}{\left(1+\beta^{2}\right)}\left(A_{1} \beta^{2}+A_{2} \beta^{3} \cos 3 \gamma+A_{3} \beta^{2}+A_{4}\right)_{(\mathbf{9})}
$$

Where;
β is the magnitude of nuclear deformation taken the values (0-2.4);
γ asymmetry angle taken the values $\left(0^{\circ}-60^{\circ}\right) ; \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$ parameters relationship with the function of the surface potential.

3. Results and Discussion

3.1. Energy Levels :

In this work we have studied the nuclear structure of even-even $\mathrm{Dy}(\mathrm{A}=156)$ isotope which is classified to $\mathrm{O}(6) \rightarrow \mathrm{SU}(3)$ transition region and even-even $\mathrm{Dy}(\mathrm{A}=158)$ isotope which is classified to rotational dynamical
symmetry $\operatorname{SU}(3)$ by comparing the energy ratios $\frac{E 0_{2}^{+}}{E 2_{1}^{+}}, \frac{E 8_{1}^{+}}{E 2_{1}^{+}}, \frac{E 6_{1}^{+}}{E 2_{1}^{+}}, \frac{E 4_{1}^{+}}{E 2_{1}^{+}}$with ideal values [19,20] for three dynamical symmetries $\mathrm{SU}(5), \mathrm{O}(6)$ and $\mathrm{SU}(3)$ of IBM-1 (shown in figures (1) to (4)).

Table (1) presents the isotopes used in the present work according to its atomic mass number, total number of boson and the corresponding Hamiltonian parameters used in the IBM-Code according to $\mathrm{O}(6) \rightarrow \mathrm{SU}(3)$ transition region (in ${ }^{156} \mathrm{Dy}$) and rotational dynamical symmetry $\mathrm{SU}\left(3\right.$) (in ${ }^{158} \mathrm{Dy}$).

Tables (2) and (3) and figures (5) and (6) present values of the energy levels (present work), according to energy bands (g, β, and γ bands) in comparison with available experimental data.

This table list the new energy levels belong to, $\beta_{1}, \beta_{2}, \gamma_{1}$ and γ_{2} bands with their spins and parties. The results show that, the β-band is a large extent emerge than the γ-band for the dynamical symmetry $\operatorname{SU}(3)$, while the emergence of γ-band is increasing for the isotopes having the transitional dynamical symmetry $\operatorname{SU}(5)-\mathrm{O}(6)$.

The β-band is not difficult to see it in the dynamical symmetry $\operatorname{SU}(3)$, in the low spin states, while the γ-band is difficult to find it due to the high spin state.

3.2. B(E2) and Electric Quadrupole Moments (Q) :

More information can be obtained by studying the reduced transition probabilities B(E2). The (IBMT-code) have been employed. The parameters E2SD and E2DD which are used in the present calculations have been determined.
where;
$\mathrm{E} 2 \mathrm{SD}=\alpha_{2}$ and $\mathrm{E} 2 \mathrm{DD}=\sqrt{5} \beta_{2}$
Table (4) presents the values of (E2SD) and (E2DD) used in the present work with the experimental values of B(E2) taken from ref. [24].

The quadrupole moment (Q) is an important property for nuclei. It is defined as the deviation from the spherical charge distribution inside the nucleus. From the quadrupole moment, we can determine if the nucleus is spherical, deformed oblate or prolate shapes.

A comparison between our theoretical calculations and the recent available experimental data for $\mathrm{B}(\mathrm{E} 2)$ taken from refs. [25-28] and the previous theoretical work [25,29,30] are presented in Tables (5) and (6).

The branching ratios $\left(R, R^{\prime}\right.$ and $\left.R^{\prime \prime}\right)$ for the three dynamical limits are defined as $[1,31]$:

$$
\mathrm{R}=\mathrm{R}=\mathrm{R}=2[\mathrm{~V}-1) \mathrm{M}]=2 \rightarrow \mathrm{SU}(5)
$$

$$
\begin{align*}
& =1.4, \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=0 \rightarrow \mathrm{SU}(3) \quad \text { (11) } \frac{10}{7} \frac{(N-1)(2 N+5)}{N(2 N+3)} \mathrm{R}= \\
& \approx 1.4, \frac{10}{7} \frac{(N-1)(N+5)}{N(N+4)} \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=0 \rightarrow \mathrm{O}(6)
\end{align*}
$$

The calculated branching ratios and the typical values [1,31] for the limits $\mathrm{SU}(5), \mathrm{SU}(3)$ and $\mathrm{O}(6)$ are presented in Table (7).

3.3. Potential Energy Surface (P.E.S.) :

One of methods to knowledge the deformation of nuclear structure, calculation the potential energy surface.
In the present work, we were used the IBM-1 analysis for the set of the plots potential energy surface function $\mathrm{V}(\mathrm{N}, \beta, \gamma)$ calculate by using the parameters (A's) infer from (IBMP-Code) program, as shown in table (8). Figures (7) and (8) show the potential energy surface as a function of deformed parameters (β, γ).

4. Conclusions :

The interacting boson model version one (IBM-1) gives us a very closing value with the experiment.
Since the energy levels depends on the total boson number so that only the ground state band will appear.
The even-even ${ }^{156,158}$ Dy isotopes have (66) protons and $(89,90)$ neutrons respectively. The core is taken at ${ }_{158}$ mar closed shell (82) for protons and neutrons. Therefore, the number of bosons were determined for ${ }^{156} \mathrm{Dy}$ and ${ }^{158}$ Dy, is equal (12) and (13) bosons respectively.

Hamiltonian parameters in table (1) are very small so that these parameters vary to any change may occurs in any one of these parameters, so that it is difficult to get the coincidence values between the energy levels in high energy states.

In case of quadruple electrical transitions B (E2) for even-even nuclei, we find that the values of α_{2} and β_{2} parameters increase whenever the number of bosons increases in one element isotopes.

The study of the reduced transition probability $\mathrm{B}\left(\mathrm{E} 2: 2_{1}{ }^{+} \rightarrow 0_{1}{ }^{+}\right)$that it decreases as the mass number increase, and this is a key signature that the nuclei evolve from $\mathrm{O}(6)$ to $\mathrm{SU}(3)$ limits.

The electric quadruple moment increase as the mass number increase.
The nuclear deformation increases with the increasing of valance boson number.

5. References :

1. Airma A. and Iachello F. (1987), "Interacting Boson Model" Ed. Iachello Pub. Cambridge University of Cambridge, England. PP. 32-36.
2. Banatsos D. (1988), Inter. Ed. Hoclgsou P.E., Pub. Oxford University Press, New Lorle P.P. 1.264.
3. Brown B. A. and Wildenthal B. H. (1983), Phys. Rev. C., 27, 1296.
4. Krane K.(1987), "Introductory Nuclear Physics", John Wiely and Sons, New York.
5. Walter P. (1998), "An Introduction to the IBM of the atomic nucleus" part 1, Walter,(4-8).
6. R. Casten and D. Warner (1988), Rev. Mod. Phys. 60, 389.
7. Feshband H. and Iachello F. (1974), Ann. Phys., v. 84, 211.
8. A. Arima and F. Iachellon (1978), Ann. Phys . 111, 201.
9. Bonatsos D. (1988), "Interacting Boson Models of Nuclear Structure", Clarendon Press Oxford.
10. S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, and P.H. Sielson (1989), Atomic data nuclear data tables, Vol. 42, P.(1).
11. H.G. Borner, W.F. Davidson, J. A. Pinston, and Schrecken Bachk (1978), Nucl. Phys. A, Vol. 297,P.(373).
12. Herman Feshbach (1992) ,"Theoretical nuclear physics", John Wiley \& Sons.
13. Honzatko J., Bondarenko V., Tomandl I., Von Egidy T., Wirth H. F., Burescu D., Ponomarev V. Yu. ,Marginean N., Hertenberger R., Eisermann Y., Graw G. and Rubacek L. (2005), 50375 - 9474 (05) 00470-7 / FLA AID: 9877 , Nupha : m1 V1.36 prn.
14. F. Iachello (1983), Nucl. Phys. A, 369, 233.
15. J . Jabber, (1989) "Decay Schemes From the (n, γ) Reaction on ${ }^{151} \mathrm{Eu}$ and ${ }^{181} \mathrm{Ta}$ ", Ph. D Thesis , London University.
16. O. Scholten, F. Iachello and A. Arima (1978), "Interacting Bosons Model of Collective Nuclear States III. The Transition Form $\operatorname{SU}(5)$ to $\mathrm{SU}(3)$.",Ann.phys. 115 .
17. A. Abdul Ameer (1991), " Investigations of Nuclear Energy Levels in ${ }^{82} \mathrm{Kr},{ }^{76} \mathrm{Se}$ and ${ }^{194} \mathrm{Pt}$.", Ph. D Thesis, London University.
18. Su .Youn .Lee and J.H.Lee (2006), Journal of the Korean physical Society,Vol.49,2,p.501-506.
19. R. Casten and D. Warner (1988), Rev. Mod. Phys. 60, 389.
20. F. Rosel , H.M. Fries, K. Alder, and H.C. Pauli (1978), "Internal conversion coefficients for all atomic shells", Atomic Data and Nuclear Data Tables, Vol. 21, No. 4-5.
21. K. Tuli,"National Nuclear Data Center", Brookhaven National Laboratory, Upton, New York, USA. (March 2005): http://www.nndc.bnl.gov/nndc/ensdf/.
22. C. W. Reich (2012), Nuclear Data Sheets 113, 2537.
23. R. G. Helmer (2004), Nuclear Data Sheets 101, 325.
24. S. Raman, C. W. Nestor and P. Tikkanen (2001), Atomic Data and Nuclear Data Tables, 78,1 .
25. Carlos E. \& Jorge G. (2004), Physical Review c, Vol.70.
26. Balrag Singh (2001), Nuclear Data Sheets 93, 243.
27. S. Raman (2001), C. W. Nestor, and P. Tikkanen, Atomic Data and Nuclear Data Tables, 78,1.
28. G. Audi and A. H. Wapstra (1995), Nucl. Phys. A595, 409.
29. J. E. Garcia-Ramos, J.M.Arias, J.Barea and A.Frank (2008), arXiv:nucl-th, Vol.1.
30. Suram Singh, Amita Dua, Chetan Sharma and Arun Bharti (2012), Journal of Biosphere, Vol.1.
31. A. Arima, T. Otsuka. F. Iachello and I. Talmi (1977), Phys. Lett. B 66, 205.

Figure (1): The Comparison of $\mathrm{E4}_{1}{ }^{+} / \mathbf{E} 2_{1}{ }^{+}$Theoretically, Experimentally [21-23] and with the Typical Values [19,20] for Each Limit.

Figure (2): The Comparison of $\mathrm{E6}_{1}{ }^{+} / \mathbf{E} 2_{1}{ }^{+}$Theoretically, Experimentally [21-23] and with the Typical Values $[19,20]$ for Each Limit.

Figure (3): The Comparison of $\mathrm{ES}_{1}{ }^{+} / \mathrm{E} 2_{1}{ }^{+}$Theoretically, Experimentally [21-23] and with the Typical Values $[19,20]$ for Each Limit.

Figure (4): The Comparison of $\mathrm{EO}_{2}{ }^{+} / \mathbf{E} 2_{1}{ }^{+}$Theoretically, Experimentally [21-23] and with the Typical Values [19,20] for Each Limit.

Table (1): The Hamiltonian Parameters Used in the IBM-Code for ${ }^{156,158}$ Dy Isotopes.

Isotope	$\begin{gathered} \text { EPS } \\ \text { MeV)(} \end{gathered}$	$\begin{gathered} \text { P.P. } \\ (\mathbf{M e V}) \end{gathered}$	$\begin{aligned} & \text { L.L. } \\ & (\mathbf{M e V}) \end{aligned}$	$\begin{aligned} & \text { Q.Q. } \\ & (\mathrm{MeV}) \end{aligned}$	$\begin{gathered} \mathbf{T}_{3} \cdot \mathrm{~T}_{3} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{4} \cdot \mathrm{~T}_{4} \\ (\mathrm{MeV}) \end{gathered}$	CHI	SO6
${ }^{156} \mathrm{Dy}$	0.0000	0.2220	0.0158	-0.0082	0.0000	0.0000	-1.1422	1.0000
${ }^{158}$ Dy	0.0000	0.0000	0.0100	-0.0138	0.0000	0.0000	-1.3220	1.0000

Table (2): Comparison between Experiment [21,22] and Calculated Energy Levels in MeV for ${ }^{156}$ Dy Isotope.

Band	g -band or β-band (γ-band) [21,22] (MeV)						
	$0^{+}\left(2^{+}\right)$	$2^{+}\left(3^{+}\right)$	$4^{+}\left(4^{+}\right)$	$6^{+}\left(5^{+}\right)$	$8^{+}\left(6^{+}\right)$	$10^{+}\left(7^{+}\right)$	$12^{+}\left(8^{+}\right)$
g-(Exp.)	0.000	0.138	0.404	0.770	1.216	1.725	2.286
g-(IBM-1)	0.000	0.110	0.368	0.774	1.227	1.829	2.481
$\beta_{1-\text {-(Exp.) }}$	0.676	0.890	1.168	1.437	1.859	2.316	2.707
β_{11}-(IBM-1)	0.741	0.953	1.215	1.628	1.798	2.504	3.160
β_{2}-(Exp.)	----	1.382	----	1.525	1.959	2.448	2.997
β_{2}-(IBM-1)	1.378	1.504	1.527	1.631	2.190	2.700	3.561
γ_{1}-(Exp.)	0.829	1.022	1.088	1.336	----	1.729	----
γ_{1}-(IBM-1)	0.577	0.687	0.835	1.020	1.242	1.501	2.192
γ_{2}-(Exp.)	--	----	1.627	----	----	----	2.787
γ_{2}-(IBM-1)	1.259	1.375	1.757	1.960	2.195	2.220	2.949

Table (3): Comparison between Experiment [21,23] and Calculated Energy Levels in MeV for ${ }^{158}$ Dy Isotope.

Band	g-band or β-band (γ-band) [21,23] (MeV)						
	$0^{+}\left(2^{+}\right)$	$2^{+}\left(3^{+}\right)$	$4^{+}\left(4^{+}\right)$	$6^{+}\left(5^{+}\right)$	$8^{+}\left(6^{+}\right)$	$10^{+}\left(7^{+}\right)$	$12^{+}\left(8^{+}\right)$
g-(Exp.)	0.000	0.099	0.317	0.638	1.044	1.520	2.049
g-(IBM-1)	0.000	0.091	0.304	0.638	1.094	1.672	2.271
β_{1}-(Exp.)	---	0.946	1.164	1.486	1.893	2.478	2.807
$\beta_{1-(I B M-1)}$	1.036	1.126	1.338	1.573	2.129	2.707	3.206
β_{2}-(Exp.)	0.991	1.086	----	----	----	----	----
β_{2}-(IBM-1)	1.505	1.595	2.208	2.543	2.998	3.577	4.276
γ_{1}-(Exp.)	----	1.045	1.280	1.315	1.547	1.676	----
$\gamma_{1-(1 B M-1)}$	1.127	1.218	1.339	1.491	1.674	1.886	2.130
γ_{2}-(Exp.)	1.362	1.513	1.514	1.920	2.154	----	2.528
γ_{2}-(IBM-1)	1.996	2.088	2.209	2.261	2.544	2.756	2.999

Figure (5): Comparison between Experiment [21,22] and Calculated Energy Levels for ${ }^{156}$ Dy Isotope.

Figure (6): Comparison between Experiment [21,23] and Calculated Energy Levels for ${ }^{158}$ Dy Isotope.

Table (4): The Experimental Values [24] of B(E2) and the Coefficients (E2SD, E2DD) for ${ }^{156,158}$ Dy Used in the Present Work.

Isotope	$\mathbf{B}\left(\mathbf{E 2}: \mathbf{2}_{\mathbf{1}}{ }^{+} \rightarrow \mathbf{0}_{\mathbf{1}}{ }^{+}\right) \mathbf{e}^{\mathbf{2}} \mathbf{b}^{\mathbf{2}} \mathbf{[2 4]}$	$\mathbf{E 2 S D}$ (eb)	$\mathbf{E 2 D D}$ (eb)
${ }^{156} \mathbf{D y}$	0.7420	0.0831	-0.2599
${ }^{158} \mathbf{D y}$	0.9320	0.0996	-0.2711

Table (5): The Experimental and Calculated B(E2) \downarrow Using IBMT-Code and the Quadrupole Moment Q2 $_{1}{ }^{+}$ for ${ }^{156}$ Dy Isotope.

$\mathrm{J}_{\mathrm{i}}^{\boldsymbol{\pi}} \rightarrow \mathrm{J}_{\mathrm{f}}^{\boldsymbol{\pi}}$	B(E2) $\downarrow \mathbf{e}^{2} \mathbf{b}^{2}$		
	Exp.	IBM-1	Previous Work
$\mathbf{2 1}^{+} \rightarrow 0_{1}{ }^{+}$	0.7420 [27]	0.7424	0.6260 [30]
$\mathbf{2}_{1}{ }^{+} \mathbf{0}_{\mathbf{2}}{ }^{+}$	----	0.0003	----
$\mathbf{2 1}^{+}{ }^{+} \mathbf{0}_{3}{ }^{+}$	----	0.0000	0.0000 [29]
$\mathbf{2 2}^{+} \rightarrow \mathbf{0}_{\mathbf{1}}{ }^{+}$	---	0.0000	0.0000 [29]
$\mathbf{2}_{2}{ }^{+} \mathbf{0}_{\mathbf{2}}{ }^{+}$	----	0.0085	----
$\mathbf{2}_{2}{ }^{+} \mathbf{2}_{1}{ }^{+}$	----	0.0432	----
$\mathbf{2 3}^{+} \rightarrow \mathbf{0}_{1}{ }^{+}$	----	0.0044	0.0063 [29]
$\mathbf{2 3}^{+}{ }^{+} \mathbf{0}_{\mathbf{2}}{ }^{+}$	--	0.5912	----
$\mathbf{2 a}_{3}{ }^{+} \mathbf{0}_{\mathbf{3}}{ }^{+}$	----	0.0025	----
$\mathbf{2 4}^{+} \rightarrow \mathbf{0}_{2}{ }^{+}$	----	0.0035	----
$\mathbf{2 4}^{+} \rightarrow \mathbf{0}_{3}{ }^{+}$	----	0.3537	----
$\mathbf{2 1}^{+}{ }^{+} \mathbf{2}^{+}{ }^{+}$	--	0.0432	----
$\mathbf{4 1}^{+} \mathrm{Cl}_{1}{ }^{+}$	1.3240 [26,28]	1.2000	1.0900 [29]
$\mathbf{4 1}^{+}{ }^{+} \mathbf{2 3}^{+}{ }^{+}$	----	0.0103	----
$\mathbf{4 2}^{+}{ }^{+} \mathbf{2 1}^{+}$	----	0.0000	----
$\mathbf{4}_{2}{ }^{+} \mathbf{2}_{2}{ }^{+}$	----	0.2959	----
$\mathbf{4 2}^{+} \rightarrow \mathbf{2 3}^{+}$	----	0.0115	----
Q2 ${ }^{+}$	----	-1.7760	----

Table (6): The Experimental and Calculated B(E2) \downarrow Using IBMT-Code and the Quadrupole Moment Q2 ${ }_{1}{ }^{+}$ for ${ }^{158}$ Dy Isotope.

$\mathrm{J}^{\boldsymbol{\pi}} \rightarrow \mathrm{J}_{\mathrm{f}}^{\boldsymbol{\pi}}$	B(E2) $\downarrow \mathbf{e}^{2} \mathbf{b}^{2}$		
	Exp.	IBM-1	Previous Work
$\mathbf{2 1}_{1}{ }^{+} \mathbf{0 1}^{+}$	0.9320 [27]	0.9333	1.0362 [25]
$\mathbf{2}_{1}{ }^{+} \mathbf{O}_{\mathbf{2}}{ }^{+}$	----	0.0002	0.0000 [29]
$\mathbf{2 1}_{1}{ }^{+} \mathbf{0}_{3}{ }^{+}$	----	0.0000	0.0000 [29]
$\mathbf{2}_{\mathbf{2}}{ }^{+} \mathbf{0}_{\mathbf{1}}{ }^{+}$	----	0.0000	----
$\mathbf{2}_{\mathbf{2}}{ }^{+} \mathbf{0}_{\mathbf{2}}{ }^{+}$	--	0.3200	0.5040 [25]
$\mathbf{2}_{2}{ }^{+} \mathbf{2}_{1}{ }^{+}$	--	0.0020	--
$\mathbf{2 3}_{3}{ }^{+} \mathbf{0}_{\mathbf{1}}{ }^{+}$	0.0300 [25]	0.0200	0.0218 [25]
$\mathbf{2 3}_{3}{ }^{+} \mathbf{0}_{2}{ }^{+}$	----	0.7366	----
$\mathbf{2 3}^{+} \rightarrow \mathbf{0}_{3}{ }^{+}$	----	0.0026	----
$\mathbf{2 4}^{+}{ }^{+} \mathbf{0}_{\mathbf{2}}{ }^{+}$	---	0.0033	----
$\mathbf{2 4}^{+}{ }^{+} \mathbf{0}^{+}{ }^{+}$	----	0.4585	----
$\mathbf{2 1}_{\mathbf{1}}{ }^{+} \mathbf{2}^{+}{ }^{+}$	----	0.0020	----
$\mathbf{4 1}^{+} \mathbf{2 1}_{1}{ }^{+}$	1.3780 [26,28]	1.3091	1.4650 [20]
$\mathbf{4 1}^{+} \mathrm{T}_{3}{ }^{+}$	0.0056 [25]	0.0098	0.0006 [20]
$\mathbf{4 2}^{+}{ }^{\mathbf{2}} \mathbf{2 1}^{+}$	----	0.0000	----
$\mathbf{4}_{2}{ }^{+} \mathbf{2 F}^{+}{ }^{+}$	----	0.9766	1.1080 [20]
$\mathbf{4}_{2}{ }^{+} \mathbf{2 3}^{+}{ }^{+}$	----	0.0018	0.0010 [20]
Q2 ${ }^{+}$	----	-2.0550	----

Table (7): The Comparison between the Calculated B(E2) Branching Ratios and the Typical Values [1,31] for the Limits $\operatorname{SU}(5), S U(3)$ and $\mathbf{O}(6)$ for ${ }^{156,158}$ Dy Isotopes.

B(E2) Ratios	${ }^{156} \mathbf{D y}$	${ }^{158} \mathbf{D y}$	SU(5) Limit	SU(3) Limit	O(6) Limit
$R=\frac{B\left(E 2: 4_{1}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	1.616	1.403	2	1.4	1.4
$R^{\prime}=\frac{B\left(E 2: 2_{1}^{+} \rightarrow 2_{2}^{+}\right)}{B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	0.058	0.002	2	0	1.4
$R^{\prime \prime}=\frac{B\left(E 2: 0_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	0.002	0.001	2	0	0
$R^{\prime \prime \prime}=\frac{B\left(E 2: 2_{2}^{+} \rightarrow 0_{1}^{+}\right)}{B\left(E 2: 2_{2}^{+} \rightarrow 2_{1}^{+}\right)}$	0.000	0.000	0	0	0
$R^{\prime \prime \prime \prime}=\frac{B\left(E 2: 4_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2: 4_{2}^{+} \rightarrow 2_{2}^{+}\right)}$	0.000	0.000	0	0	0

Table (8): Parameter Used for Potential Energy Surface Calculations in (IBMP-Code) Program for ${ }^{156,158}$ Dy Isotopes.

Isotope	\mathbf{N}	$\mathbf{E P S}$	$\mathbf{E P D}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{4}}$
${ }^{156} \mathbf{D y}$	12	-0.041	0.076	0.052	-0.020	-0.022	0.000
${ }^{158} \mathbf{D y}$	13	-0.069	0.872	-0.007	-0.088	-0.002	0.000

Figure (7) :
(a): The Contour Plot for the ${ }^{156}$ Dy Isotope at $\gamma=60^{\circ}$.
(b): The Axial Symmetric for the ${ }^{156}$ Dy Isotope.

Figure (8) :
(a): The Contour Plot for the ${ }^{158}$ Dy Isotope at $\gamma=60^{\circ}$.
(b): The Axial Symmetric for the ${ }^{158} \mathrm{Dy}$ Isotope.

