Journal of Natural Sciences Research ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.3, No.8, 2013

New Benzotriozole Phthalocyanine Nickel(II) Photostabilizer for Low Density Polyethylene

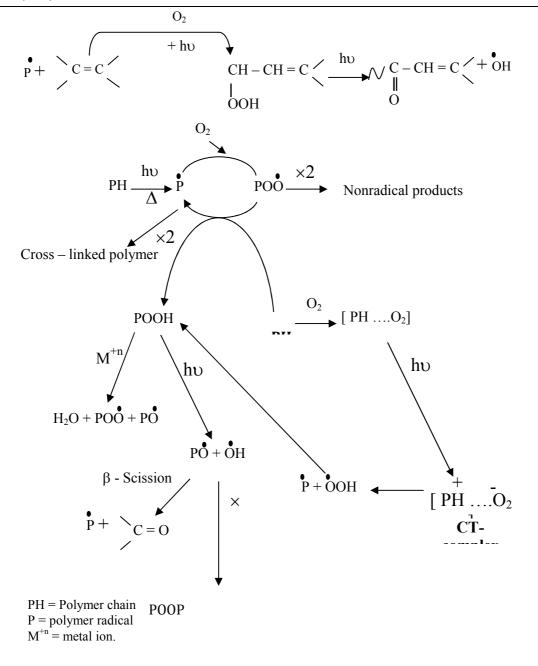
Ziade T.Almalki¹,Einas A. Al-Nasir¹, Ali H. Al-Mowali^{2*}, Ebrahim K. Ebrahim¹ and Fais J. Mohammed³ 1.Chemistry Department,Polymer Research Centre,University of Basrah 2.Chemistry Department ,College of Science, University of Basrah 3.Basrah Petrochemical complex,Basrah *E-Mail of the corresponding author: ali almoali@yahoo.com

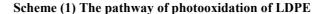
Abstract

Benzotiozole Phthalocyanine Nickel(II) has been prepared and characterized by elemental analysis and FT-IR techniques. This new compound imposes three bathways to stablize low density polyethylene (LDPE) due to nature of its complex structure. The prepared complex contains four benzotrizoles which absorb U.V. light while Nickel(II) derivative destroye hydrogen peroxides and scavenge free radicals. The experimental investigation carried out on Benzotrizole phthalocyanine Nickel(II) shows that this complex has excellent photostabilizer for LDPE compared with commercial antioxidants.

Keywords: Photostabilizer, Phthalocyanine Nickel(II) derivatives, LDPE

1. Introduction


Pure LDPE is not effected by U.V. light since it composes from C-C and C-H bonds but practically LDPE during its preparation at high temperature and storage produces trace materials such as hydroperoxides, carbonyl groups and unsaturated Vinylidine group. The presence of one or more of these groups initiate photooxidation by U.V. light (280-400 nm). Scheme(1) shows the pathway of photooxidationtext of LDPE (Rabek 1987, Jelcic et al 2003, Al-Mowali et al 2007, Hsu et al 2012). Four classes of photostablizer are known depend on their action such as U.V. Screeners, U.V. absorber, Excited state quenchers and Free radical Scavenger (Al-Mowali et al 2002, Kawamura et al 2003, Peterson et al 2004, Pham et al 2008, Karak 2009).


The aim of this work is to prepare new photostablizer which hopfully include all four classes described before. Theefore a complex of the form 2, 2', 2'', 2'''-2H-Benzotriazole-3, 3', 3'', 3'''-triamino phthalocyanine (NiNH₂B4 has been synthesized and characterized by CHN and FT-IR techniques and photostabilization to LDPE is fully examined and compared to standared photostabilizers.

2.Experimental

2.1 Materials

Phthali anhydride, Nickel chlorid ,Urea, Nitrobenzene, o-Nitroaniline were obtained from Fluka, Ammonium molybdatetetrahydride, Ammonium Chloride, Sodium Nitrite were obtained from Aldrich ,zinc powder was obtained from Merek. Solvents were used after being purified according standar method. LDPE obtained from Basrah petrochemical company with specification(Density=0.921-0.924 gm/cm², Melt index = (0.28-0.38 gm/10 min).

2.2 Instruments

IR spectra were recorded on FT-IR (type Buck modle 500) as KBr disk in wave number region 4000-400 cm⁻¹. The elemental analysis was performed on Thermo Finnigan –Eagger 300F. Supper Pressure Mercury Lamb (200 W) manfactured by Bausch and Lamb was used to irradiate the samples used in this study. Mixture – 600 attached to Haake Rechared Torque Rheometer from Haake company was used for mixing (NiNH₂B4) with LDPE. The PHI automatic compression press from Haake was used to prepared the homogenius films for U.V irradiation.

2.3 Preparation of 3,3`,3``,3```-tetranitrophtalocyanine Nickel(II) compound (NiNO₂).

4.73 g (32mmole) of phthalic anhydride was mixed with 100 ml nitro benzene and 3.32g (8mmole) NiCl₂, then excess urea 30g (416mmole), 0.5 g (9mmole) ammonium chloride and 0.2 g ammonium molbdate tetrahydrate were added with stirring under reflux for 5 hours (Al-Lami et al , 2013). The hot mixture was filtered and washed twice with ethanol, the product was dried and added to 200ml of 1N HCl, then refluxed for 1 hour, cooled to room temperature, filtered then treated with 200ml of 1N NaOH, filtered and washed with distilled

water . Fine crystals was obtained with 85% yield .

2.4 Preparation of 3,3',3''-tetraaminophthalocyanine Nickel(II) compound (NiNH₂)

NiNO₂ compound (10mmole) in 45ml of distilled water was added to (40mmole) of sodium polyphosphide dissolved in 25ml of distilled water at 20°C. The mixture was stirred vigrously at 20°C for 24 hours , and then added to 50ml of 1N HCl with stirring for about 30 minutes (Al-Lami et al , 2013). The solid product was collected and added to 50ml of 1N NaOH , stirred for about 30 minutes and the fine crystals was obtained with 87% yield .

2.5 Synthesis of 2, 2`,2``,2``'-2H-Benzotriazole-3,3`,3``,3```-tetraamino phthalocyanine Nickel(II) complex NiNH₂B4

6.9g (0.05mole) of o-nitroaniline was added to heated Conc. HCl at 70°C and then the mixture was cool to zero degree . To this mixture 50ml of distilled water was added and then 50g of ice to cool the mixture at -5° C . 12.5ml of 5N sodium nitrite NaNO₂ was added through 30 minutes and pale yellow of dizonium salt was formed . To the diazonium salt formed 0.5g (0.008 mole) of urea in distilled water was added followed by 5.5 g (0.05mole) of phthalocyanine complex , 4 g (0.1mole) of NaOH and 0.15 mole of sodium carbonate dissolved in 150 ml disilled water with stirring . The mixture was stirred further for about 4 hours at temperture between - 15°C to 10°C , and then the azo dye was filtered and dried under normal atmosphere for 24 hours . The azo dye was dissolved in 25% NaOH solution and then 7.5g zinc dust was added gradually for about 20 minutes with stirring . The mixture was stirred further neutralize by concentrated HCl (pH=7) in order to precipitate unreacted zinc followed by filteration of solid product and washed with CH₂Cl₂ . The CH₂Cl₂ solvent was removed by rotatory evaporator to form the final product , which recrystalized from the menthanol to give 30% fine crystals . Figure (1) shows the structure of the prepared complex .

2.6 Preparation of samples for IR test

1 gm from each sample was inserted in the press at 175°C and 5 tons for 3 minutes . Then the pressure was increased to 15 tons for 9 minutes . The mixture was cooled to room temperature , then molded as a sheat of 0.05 mm thickness . FT-IR spectra for all samples were measured before and after mixing with NiNH₂B4 . Samples of LDPE with and without NiNH₂B4 , were exposed to UV light of 200 watt as a function of irradiated light times .Samples of LDPE containing NiNH₂B4 were prepared by mixing them using Hakee mixture at (140-150)°C for 15 minutes .

3 Results and Discussion

3.1 Structural characterization

The prepared complex structures were established from FT-IR (Table 1) and elemental analysis (Table 2). FT-IR spactra for all complexes (Figs 2-4) show two weak bands at (520-570)cm⁻¹ which attributed to stretching vibration of Ni-N, strong peaks at (1591-1600) cm⁻¹ which attributed to stretching vibration of C=C bond and strong bands at (1680-1692) cm⁻¹ for stretching vibration of C=N group. Complexe NiNO₂, NiNH₂ and NiNH₂B4 show also stretching vibration and bending vibration bands for NO₂, NH₂ for complexes NiNO₂, NiNH₂ and stretching vibration for -C=N-, C=C and -N=C- groups for benzotriazole part of complex NiNH₂B. The elemental analysis for the prepared compounds are in good agreement with the calculated values as shown

in table (2).

3.2 Efficiency of the prepared complex NiNH₂B4 as photostabilizer .

The efficiency of the prepared complex NiNH₂B4 U.V photostabilizer for low density polyethylene was compare with blank LDPE which containing no additive, LDPE containing BHT and irdanox 1076(1) and with LDPE cotaining comercial Viosorb 510 [2,(2'-hydroxy 5'-t-octyl phenyl)benzotriazol] photostabilizer (B). All films containing the above materials were placed at the same distance away from mercury lamp and exposed at the same periode of times to the U.V. source (Fig.5). The photodegradation of the samples were followed by FT-IR from measurment of the change of transmittance intensity of carbonyl band against the time of U.V. irradiation according to the following equation (Al-Assadi 2012):

$$\%\Delta \text{CO} = [\text{T}_{\text{t}}\text{-}\text{T}_{\text{o}}]/\text{T}_{\text{t}}] \times 100$$

Where T_o : Transimitance befor U.V. irradiation

T_t: Transimitance of carbonyl bond after time (t) of U.V. irradiation

Figure (5) indicates that the prepared complex NiNH₂B4 is most effective as photostabilizer for LDPE. Percent of transmittance of % Δ CO as a function of irradiatad U.V. light is more less than that of other compounds . This most probably because the compound behave as screener , absorber , quencher and free radical scavenger when exposed to U.V. light .

3.3 Conclusion

The design of NiNH₂B4 as photostabilizer for LDPE is very successful since its structure may acts as U.V. screeners , U.V. absorbers , excited state quenchers and free radical scavengers which all together drop the precent of transmittance of carbonyl group compared with other additives.

References

Rabek J.F. (1987), Mechanism of photophysical and photochemical processes, John Wiley and Sons, London. Jelcic Z, Misak M.M, Jelencic J, Bravar M, (2003), Photooxidative ageing of low density polethylene, Die Ang. Macromolekule, 208(1), 25-28.

Al-Mowali A.H, Majeed N.N, Moussa H.K, Antioxidant properties of New α -(p-alkoxy phenyl)-N-phenyl nitrones, Iraqi J.polymer, 11(2), 2007

Hus Y.C, Weir M.P, Truss R.W, Garvey C.J, Nicholson T.M , Halley P.J, (2012) , Afundamental study on photo-oxidative degradation of linear low density polyethylene film at embrittlement , polymer , 53(12),2385-2393.

Al-Mowali A.H, Majeed N.N, Marderos (2002), Synthesis and spin trapping properties of som derivative of α (phenyl)– α (methyl)-N-benzyl nitrones, Basrah J. Science, 20(2), 1-8.

Kawamura Y, Ogawa Y, Nishimura T., Kikuchi Y, Nishikawa, Nishihara T, Tanamoto K, (2003), Estrogenic Activities of UV stabilizer used in Food contact plastic and benzophenone derivatives, J. of health science, 49(3), 205-212.

Peterson M.J, Robb M.A,Blancafort L., DeBellis A.D, (2004), Theoretical study of benzotriazole UV stabilizer, J.Amr.Chem.Society, 126, 2912-2922.

Pham L.A, He H., Huy C.P, (2008), Free radicals Antioxidants in disease and health, Inter J.of Biomedical science, 4(2), 89-96.

Karak N, (2009), Fundamentals of polymer raw material to finished products, Amazon.com, New Delhi

Al-Lami A.K, Majeed N.N, Al-Mowali A.H, (2013), Synthesis mesomorphic and molar conductivity studies of som macrocyclic phthalocyanine palladium (II), Chemistry and material research, 3(4) 59-67.

Al-Assadi K.A, (2012), Ph.D thesis, antioxidant activity of some new dimeric nitrons, Basrah university.

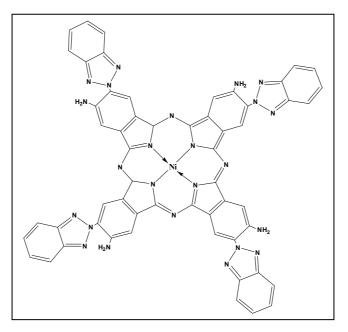


Fig (1) : Structure of NiNH₂B4 photostabilizer

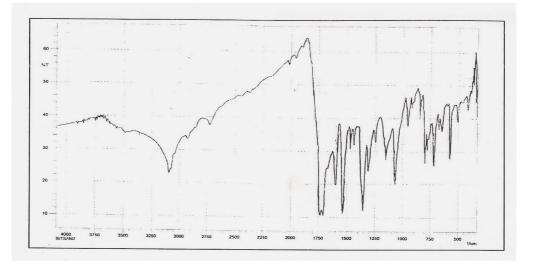
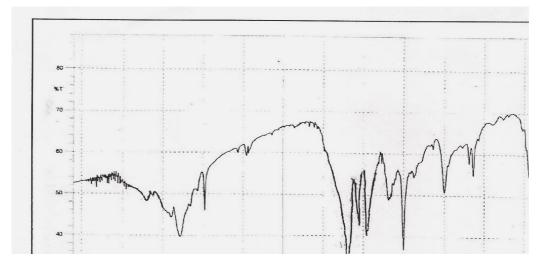
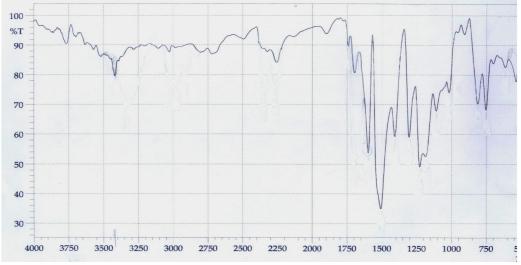




Fig (2) : IR spectrum of $NiNH_2$

Fig(3) : IR spectrum of NiNO₂

Fig(4) : IR spectrum of NiNH₂B4

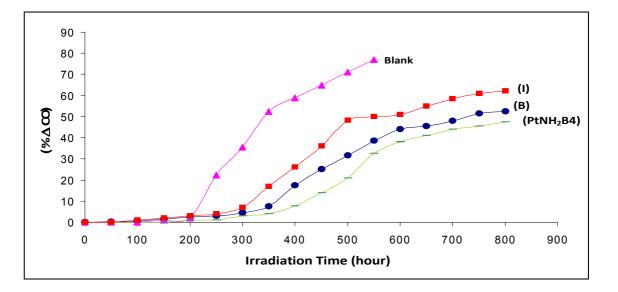


Fig (5): change of transmittance intensity of carbonyl band againist the time of U.V. irradiation

Comp.	v (C=N)	v (C=C)	v (Ni-N)	v _{asm} (C-H)	v _{asy} (NO ₂)	v _{sy} (NO ₂)	v _{str.amin} (N-H)	v _{bend} (N-H)
NiNO ₂	1692	1595	525 570	3085	1540	1356	-	-
NiNH ₂	1680	1591	533 560	3030	-	-	3410	1620
NiNH ₂ B4	-	1600	505 540	3050	-	-	3420	-

Table (1) : The IR absorption for the most important groups of prepared compounds

compound	Chamical structure	experimental			theoretical		
	Chemical structure	% C	% H	% N	% C	% H	% N
(NiNH ₂ B4)	C56H36N24Pt	54.01	3.00	27.21	54.23	2.905	27.11
(NiNH ₂)	C32H24N12Pt	49.55	3.20	21.62	49.80	3.11	21.78
(NiNO ₂)	$C_{32}H_{16}O_8N_{12}Pt$	42.00	1.66	21.91	43.09	1.79	21.89

Table (2) : Elemental analysis of the prepared compounds

This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE's homepage: <u>http://www.iiste.org</u>

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There's no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** <u>http://www.iiste.org/Journals/</u>

The IISTE editorial team promises to the review and publish all the qualified submissions in a **fast** manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

