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Abstract: 

 In this final part, we report the consubstantiate model and investigate the Solutional behaviour, stability 

analysis and asymptotic stability. For details, reader is kindly referred to part one. Philosophy merges 

with ontology, ontology merges with univocity of being, analogy has always a theological vision, not a 

philosophical vision, and one becomes adapted to the forms of singular consciousness, self and world. 

The univocity of being does not mean that there is one and the same being; on the contrary, beings are 

multiple and different they are always produced by disjunctive synthesis; and they themselves are 

disintegrated and disjoint and divergent; membra disjuncta.like gravity. Like electromagnetism; the 

constancy of gravity does not mean there does not exist total gravity, the universal theory depends upon 

certain parameters and it is disjoint; conservations of energy and momentum is one; but they hold good 

for each and every disjoint system; so there can be classification of systems based on various parametric 

representationalitiesof the theory itself. This is very important. Like one consciousness, it is necessary to 

understand that the individual consciousness exists, so does the collective consciousness and so doth the 

evolution too. These are the aspects which are to be borne in my mind in unmistakable terms .The 

univocity of being signifies that being is a voice that is said and it is said in one and the same 

"consciousness”. Everything about which consciousness is spoken about. Being is the same for 

everything for which it is said like gravity, it occurs therefore as a unique event for everything. For 

everything for which it happens, eventum tantum, it is the ultimate form for all of the forms; and all these 

forms are disjointed. It brings about resonance and ramification of its disjunction; the univocity of being 

merges with the positive use of the disjunctive synthesis, and this is the highest affirmation of its 

univocity, highest affirmation of a Theory be it GTR or QFT. Like gravity; it is the eternal resurrection or 

a return itself, the affirmation of all chance in a single moment, the unique cast for all throws; a simple 

rejoinder for Einstein’s god does not play dice; one being, one consciousness, for all forms and all times. 

A single instance for all that exists, a single phantom for all the living single voice for every hum of 

voices, or a single silence for all the silences; a single vacuum for all the vacuumes; consciousness should 

not be said without occuring; if consciousness is one unique event in which all the events communicate 

with each other. Univocity refers both to what occurs to what it is said, the attributable to all states of 

bodies and states of affairs and the expressible of every proposition. So univocity of consciousness means 

the identity of the noematic attribute and that which is expressed linguistically and sensefullly. Univocity 

means that it does not allow consciousness to be subsisting in a quasi state and but expresses in all 

pervading reality; Despite philosophical overtones, the point we had to make is clear. There doth exist 

different systems for which universal laws are applied and they can be classified. And there are situations 

and conditions under which the law itself breaks; this is the case for dissipations or detritions coefficient 

in the model. 

 

Introduction: 

We  incorporate the following forces: 
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1. Electro Magnetic Force (EMF) 

2. Gravity 

 

3. Strong Nuclear Force 

4. Weak Nuclear Force   

 

 

 

Notation :  

Electromagnetism And Gravity: 

    : Category One Of gravity               

    : Category Two Of Gravity 

    : Category Three Of Gravity      

    : Category One Of Electromagnetism 

    : Category Two Of Electromagnetism  

    :Category Three Of Electromagnetism  

 

Strong Nuclear Force And Weak Nuclear Force 

    : Category One Of Weak Nuclear Force               

    : Category Two Of Weak Nuclear Force 

    : Category Three Of Weak Nuclear Force 

    : Category One Of Strong Nuclear Force 

    : Category Two Of Strong Nuclear Force  

    : Category Three Of Strong Nuclear Force 
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( ) (   )
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( ) (   )
( ) (   )

( ) (   )
( ) (   )

( ) (   )
( )  

(   )
( ) (   )

( ) (   )
( ): are Accentuation coefficients  
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(   
 )( ) (   

 )( ) (   
 )( )  are Dissipation coefficients 

 

Governing Equations: Of The System Electromagnetic Force And Gravitational Force:  

The differential system of this model is now   
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 (   
  )( )(     )    First augmentation factor   

 (   
  )( )(   )     First detritions factor   

Governing Equations: System: Strong Nuclear Force And Weak Nuclear Force:  
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The differential system of this model is now  
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  )( )((   )  )]       

 (   
  )( )(     )    First augmentation factor   

 (   
  )( )((   )  )     First detritions factor   

Electro Magnetic Force-Gravity-Strong Nuclear Force-Weak Nuclear Force-  

The Final Governing Equations 
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  )( )(     )   are first augmentation coefficients for 
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  )( )(   )  are first detrition coefficients for 
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  )(   )(     ) are second augmentation coefficients 

for category 1, 2 and 3  
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Where  (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )  are first augmentation coefficients 

for category 1, 2 and 3 
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category 1, 2 and 3    

 (   
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  )(   )(   )   are second detrition coefficients for 

category 1, 2 and 3    

 

Where we suppose  

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(   )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

(C)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (   )    (  )
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Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants     

              and              

 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
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( )         
    (  ̂   )( )   

 (  
  )( )(    )  (  
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( )          (  ̂   )( )   

 

 

 

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

   )   and(  
  )( )(     )   (   

   ) and (     ) are points belonging to the interval  

[(  ̂   )
( ) (  ̂   )

( )] . It is to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of 

the fact, that if (  ̂   )
( )    then the function  (  

  )( )(     ) , the first augmentation coefficient  would 

 



Journal of Natural Sciences Research                                                             www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.2, No.4, 2012 

 
 

155 

 

be absolutely continuous.  

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 
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( ) which together with (  ̂   )
( ) (  ̂   )

( )   
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( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
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(G) The functions (  
  )( ) (  
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They satisfy  Lipschitz condition:  
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With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is 

to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )  

  then the function  (  
  )( )(     ) , the SECOND augmentation coefficient would be absolutely 

continuous.  

 

  Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(I) (  ̂   )
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( )   are positive constants 
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Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with  (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )      

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )
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Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying 

the conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the 

conditions 

Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

PROOF:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy                                              
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Where  (  )  is the integrand that is integrated over an interval (   ) 
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Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy           
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  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

(a) The operator  ( ) maps the space of functions satisfying CONCATENATED EQUATIONS 

into itself .Indeed it is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 

.Indeed it is obvious that 
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  ∫ [(   )
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( ) (  ̂   )( ) (  ))] 
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           (  (   )
( ) )   

  
(   )( )(  ̂   )( )
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 From which it follows that 
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(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 
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(  ̂   )
( )     (  ̂   )

( ) large to have 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    

 

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 

 Indeed if we denote   

Definition of  ̃  ̃ :     (  ̃  ̃ )   ( )(   ) 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

 

| ( )   ( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis (34,35,36) the result 

follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )       
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From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ( ( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions OF THE GLOBAL 

SYSTEM 

 

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    
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 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

Indeed if we denote   

Definition of    ̃    ̃ :     (    ̃    ̃ )   ( )(       ) 

 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

 

Where  (  ) represents integrand that is integrated over the interval       
From the hypotheses  it follows 

 

 

|(   )
( )  (   )

( )|  (  ̂  )( )  

 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (((   )

( ) (   )
( )  (   )

( ) (   )
( )))  

 

 

And analogous inequalities for          . Taking into account the hypothesis the result follows  

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 
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 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

 

    (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that     is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

Behavior of the solutions OF THE GLOBAL SYSTEM: 

Theorem 2: If we denote and define 

 Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(a)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )   

 

  (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(   )  (   
  )( )(   )   (  )

( )  

 

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( )  ( )  ( ) : 

(b) By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots of    the 

equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )  

   

 

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) : 

  By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  roots of the equations 

(   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     and  (   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )     

 

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) (  )
( ) :- 

(c) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by 

      (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

      and  (  )
( )  

   
 

   
   

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

 

and analogously 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 



Journal of Natural Sciences Research                                                             www.iiste.org 

ISSN 2224-3186 (Paper)   ISSN 2225-0921 (Online) 

Vol.2, No.4, 2012 

 
 

162 

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined  respectively 

Then the solution of GLOBAL CONCATENATED EQUATIONS satisfies the inequalities 

    
  ((  )( ) (   )( ))     ( )     

  (  )( )  

where (  )
( ) is defined  

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

( 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

  (  )( )    (   
 )( )       

   (   
 )( ) )  

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    
 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))    

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

(   )( )   
 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

 

 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  

              (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   

 )( )  (   )
( )  

 

Behavior of the solutions of GLOBAL EQUATIONS 

If we denote and define 

 

Definition of  (  )
( )  (  )

( )  (  )
( )  (  )

( ) : 

(d)   )
( )  (  )

( )  (  )
( )  (  )

( )   four constants satisfying 

 

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )(      )  (   
  )( )(      )   (  )

( )    

 (  )
( )   (   

 )( )  (   
 )( )  (   

  )( )((   )  )  (   
  )( )((   )  )   (  )

( )   

Definition of  (  )
( ) (  )

( ) (  )
( ) (  )

( ) :  

By   (  )
( )     (  )

( )    and respectively (  )
( )     (  )

( )    the roots  

(e) of    the equations  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )      

and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )    and  

Definition of  ( ̅ )
( )  ( ̅ )

( ) ( ̅ )
( ) ( ̅ )

( ) :  

By ( ̅ )
( )     ( ̅ )

( )    and  respectively  ( ̅ )
( )     ( ̅ )

( )    the  

roots of the equations (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )     
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and  (   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( )      

Definition of  (  )
( )  (  )

( )  (  )
( ) (  )

( ) :-  

(f) If we define (  )
( )  (  )

( )  (  )
( ) (  )

( )    by  

(  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( )   

(  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )   

      and   (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )   

and analogously 
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( )  (  )

( )    (  )
( )  (  )

( )  

 (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

and (  )
( )  
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( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )    

Then the solution of GLOBAL EQUATIONS satisfies the inequalities 

     
  ((  )( ) (   )( ))     ( )     

  (  )( )  

 

(  )
( ) is defined  

 

 

 

 

      (  )( )    
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Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):-  

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )   

             (  )
( )  (   )

( )  (   )
( )  
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PROOF : From GLOBAL EQUATIONS we obtain   
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  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

 

      (  )
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(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]
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[ (   )( )((  )( ) (  )( ))  ]
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(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 
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( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]
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And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
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Now, using this result and replacing it in CONCATENATED SYSTEM OF EQUATIONS we get easily 

the result stated in the theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

PROOF : From GLOBAL EQUATIONS we obtain (PLEASE REFER PART ONE OF THE PAPER) 

  ( )
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 )( )  (   

 )( )  (   
  )( )(     ))  (   
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And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

 Now, using this result and replacing it in GLOBAL SOLUTIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )
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We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  
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( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 
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      (   )
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has a unique positive solution , which is an equilibrium solution for the system  
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 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution for   

Proof:  

(a) Indeed the first two equations have a nontrivial solution          if  
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(a) Indeed the first two equations have a nontrivial solution          if  
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Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  

     
(   )( )   
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 )( ) (   

  )( )(   
 )]

      ,           
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 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that  

 

there exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first 

equations  
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 )( ) (   
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(c) By the same argument, the equations 92,93  admit solutions         if  
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 Where in  (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

 

(d) By the same argument, the equations (SOLUTIONAL EQUATIONS OF THE GLOBAL 

EQUATIONS)  admit solutions         if  
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Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   

is a decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that 

there exists a unique    
  such that  ((   )
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Finally we obtain the unique solution 
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Obviously, these values represent an equilibrium solution  
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Obviously, these values represent an equilibrium solution   

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions 

(  
  )( )     (  

  )( )  Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

     
             ,      
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Then taking into account equations GLOBAL EQUATIONS  and neglecting the terms of power 2, we 

obtain 
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 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stable 
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Denote 

Definition of       :- 
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taking into account equations (SOLUTIONAL EQUATIONS TO THE GLOBAL EQUATIONS) and 

neglecting the terms of power 2, we obtain 
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The characteristic equation of this system is  
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and 

this proves the theorem. 
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