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Abstract 

Maternal Mortality Rate (MMR) is the quantity of maternal deaths in a given duration per 100,000 of 

reproductive aged (15-49) women. This amounts to both the obstetric risk and the rate of recurrence at which 

women are unprotected to this risk. In Bayelsa State, the maternal mortality has high rates. The driving reasons 

for death are related with hypertensive disorder, severe bleeding, infection and other complications of delivery 

that could be avoided. This research aims to develop a maternal mortality system using Data mining techniques; 

estimation of maternal mortality rate in Otuasega Cottage Hospital in Ogbia Local Government Area in Bayelsa 

State was carried out by analyzing the causes of death during pregnancy; Naive Bayes was used in Bayes Server 

to classify Hypertensive diseases into preeclampsia and gestational, identifying the symptoms and risk factors. 

Among other causes of maternal death evaluated, Hypertensive disease was the highest cause of maternal death 

in Bayelsa State between 2012 to 2018. We developed a Bayesian maternal mortality estimation model, that 

catches increasing speeds and deceleration in the rate of progress in the maternal death rate. Result shows that 

the trend was as low as 2 maternal deaths in every 202 live births in 2012 but increased to 12 per 210 live births 

in 2016. The maternal mortality rate continued its upward trend and increased to 14 deaths per 172 live births in 

the year 2018. Maternal mortality rate which was very low have increased significantly, and most death were 

caused by Hypertensive, followed by bleeding, complications and little of infections.  
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1. Introduction 

Universally, childbirth is an occasion that pulls in festivity; however, this is not so for some women who 

experience childbirth as torment and catastrophe that may end in death. Nigeria has a population of 140 million 

individuals with women of youngster bearing age establishing around 31 million and kids under five years old 

comprising 28 million (National Bureau of statistics, 2010). Women of child bearing age and kids under five 

years old thusly comprise a noteworthy level of the country's population. Nigeria, which comprises only 1% of 

the total population, represents 10% of the world's maternal and under-five death rates. Nigeria positions second 

on the planet, after India, in the size of maternal mortality with the rate of 800 deaths for each 100000 live births. 

Till date, Nigeria is second on maternal death rate on the planet with around 144 young ladies and women dying 

on consistently from intricacy of pregnancy and childbirth. 1 in each 18 women die conceiving an offspring 

contrasted with 1 of every 4800 in the US (Pitterson, 2010). Presently, Nigeria ranks 7th in the world, and as a 

fast growing country, its population is over 200 million (Akinyemi, 2018). Government can improve the health 

facilities to decrease maternal mortality if a control system is set up to report death rate in the nation. As 

indicated by an examination, health facilities and human health possessions, (for example, prepared medical 

clinics and well trained personnel) are progressively profitable for rustic networks (Jennet et al., 2015), along 

these lines, the conveyance of these services remotely using accessible technology could help to level up the 

unequal access to health services. Electronic health records, risk assessment systems, and remote control are just 

some examples of how technology can be applied in the healthcare field. This gigantic measure of information 

surpasses the capacity of traditional techniques to examine and look for fascinating examples and data that is 

hidden in them. Hence, new strategies and tools for finding helpful data in these information stores are ending up 

and the more demanding. In this thesis, a maternal mortality rate registry operating in Bayelsa State is used as 

the data source. This paper proposes a Naïve and Bayesian model that uses Data Mining (DM) techniques 

capable for operating in a data set to extract patterns and assist in knowledge discovery. Identifying risk factors 

of hypertensive disease that complicate pregnancy. Its impact is in a meaningful reduction of death of pregnant 

women. Bayesian maternal mortality estimation model is used to produce estimates of maternal mortality rate 

based on the available data. 

 

2. Related Literature 

Maternal Mortality Rate (MMR) is the quantity of maternal deaths in a given duration per 100,000 of 

reproductive aged (15-49) women. This amounts to both the obstetric risk and the rate of recurrence at which 

women are unprotected to this risk (Graham et al, 2008). The meaning of maternal mortality has transformed 

after some time, that brought about irregularities in estimations and recent concerns to regulate declines in 
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maternal mortality. What's more, the presentation of the meaning of "pregnancy related death" rather than 

"maternal demise" has been a wellspring of estimation variety. For example, an investigation from Bangladesh 

revealed 15% more pregnancy-related death contrasted with maternal death (Hill et al., 2006). The blend of the 

three predominant direct therapeutic reasons for maternal death (dying, disease and hypertensive illnesses) 

instigated the biggest extent of MMR per 100,000 live births (Khan et al., 2006). (Han & Kamber, 2006) 

characterized data mining as the way toward finding intriguing learning from a lot of data put away in 

knowledgebase, data distribution centers, or other data storehouses. (Witten et al., 2005) characterized data 

mining as the way toward separating verifiable, already obscure and conceivably valuable data from data. (Hand, 

et al., 2011) characterized data mining as the investigation of observational informational index to discover 

unsuspected connections and to condense the data in novel ways that are both justifiable and helpful to the data 

proprietor. (Gandhi & Singh, 2015) proposed way to predict heart disease using different data mining techniques. 

Author suggests classification methods for prediction of heart diseases using decision tree representation, neural 

network. (Shegaw, 2012) anticipates tyke mortality designs on the use of data mining innovation. An 

informational collection adding together 1,100 records of kids was utilized to manufacture and test both neural 

system and choice tree models. So as to assemble models that could foresee the danger of tyke mortality, a few 

models were worked by utilizing both neural system and choice tree methodologies. The superlative 

accomplishment of neural system model and choice tree classifier were then picked and assessed utilizing ten 

beforehand inconspicuous data of kids. (Arvind & Gupta, 2012) talked about how Data mining contributed with 

essential advantages to the blood donation center division. J48 calculation and WEKA device have been utilized 

for the total research work. Characterization rules executed well in the grouping of blood givers, whose 

exactness rate achieved 89.9%. (Elias, 2014) examined the AIDS is the ailment brought about by HIV, which 

debilitates the organization's insusceptible framework until it can never again fend off the straightforward 

contaminations that most solid individuals' invulnerable framework can stand up to. From the earlier calculation 

it is utilized to find affiliation rules. WEKA 3.6 is utilized as the data mining apparatus to actualize the 

Algorithms. The J48 classifier accomplishes order with 81.8% exactness in foreseeing the HIV status. 

 

3. Naïve Bayes Classifier for Maternal Mortality 

The Naïve Bayes classifier is appropriate in health care when there is a set of attributes that represents each risk 

factor. Every single one of these attributes occurred in a particular hypertensive disorder as shown in Figure 1. 

This classifier based on Bayes theorem is used to determine the probability of each hypertensive disease from 

symptoms never seen based on trained examples. 

 
Figure 1: Naïve Bayes Classifier 

Risk factors associated with Preeclampsia and Gestational Hypertensive are age (under 20), age (40 above), 

first pregnancy, multiple fetuses, diabetes, overweight before pregnancy, preexisting high blood pressure and 
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kidney disease. 

Symptoms for Preeclampsia and Gestational Hypertensive are: severe headache, swelling, abdominal pain, 

dizziness, excessive vomiting and blurred vision. 

For instance; 

Let (a1, a2,…, an) represent set of hypertensive disorder 

XMAP  

pr yp

                                              (1) 

Where, 

Xj is the data not seen 

XMAP  is the case with maximum  posteriori probability 

The probability of observed (a1, a2,…, an)  is precisely the product of the probabilities associated with each 

attribute 

P(a1, a2,…, an|Xj)                                                                           (2) 

 

4. Bayesian Maternal Mortality Model 

Modelling of maternal mortality is required to produce estimates based on the available data from Otuasega 

Cottage Hospital, Bayelsa State Ogbia Town. 

Estimated  maternal mortality rate: 

 is the main quality to be estimated, which is the number of maternal deaths for Bayelsa State b for any 

period (t1; t2). pe  ( ).

 is the number of maternal deaths in Bayelsa State b in calendar year t. 

 is the final outcome of interest. 

Bayelsa State-year estimates for births, deaths and HYPERTENSIVE deaths to women of reproductive ages are 

denoted by 

B denotes birth 

D denotes death 

DHYPER denotes HYPERTENSIVE deaths 

 
i denotes the hospital of the observation (where data are gotten). 

si denotes the start date  

ei denotes the end date 

ti denotes to the calendar year of the midpoint of the observation period. 

Therefore, 

  and  

 
A model used to obtain estimates, in which maternal deaths were modelled as the sum of non-HYPERTENSIVE 

maternal deaths  and  

HYPERTENSIVE maternal deaths      

Xb,t                                                    (3) 

HYPERTENSIVE maternal deaths are deaths as a result of high blood pressure before or during delivery. The 

non-HYPERTENSIVE maternal deaths refer to maternal deaths due to Severe bleeding (mostly bleeding after 

childbirth), Infections (usually after childbirth), and other Complications from delivery. 

 

5. Modelling HYPERTENSIVE maternal deaths 

The modelling of HYPERTENSIVE maternal deaths     is as follows: 

                             (4) 

Where, 

 is the number of HYPERTENSIVE deaths. 

 is the proportion of HYPERTENSIVE deaths that occurs during the maternal risk 

period. pe

 is the proportion of HYPERTENSIVE deaths among women during the 
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maternal risk period that qualify as maternal because of some causal relationship with the pregnancy, delivery. 

 

6. Modelling non-HYPERTENSIVE maternal deaths 

The non-HYPERTENSIVE maternal deaths refer to maternal deaths due to Severe bleeding (mostly bleeding 

after childbirth), Infections (usually after childbirth), and other Complications from delivery. ),

/

(u ly

/  is the proportion of non-HYPER maternal deaths among the total number of 

non-HYPER deaths of women of reproductive age. 

 = 

ep

 + 

ag

                                  (5) 

Maternal deaths are modelled for Bayelsa State-(2017-2018) as the sum of non-HYPERTENSIVE and 

HYPERTENSIVE maternal deaths. 

 

7. Results and Discussion 

 
Figure 2 Mothers Registration Form 

 

 
Figure 3: Hypertensive Disease Classification 
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Table 1: Evidence of each Risk Factors 

Evidence of Age (under 20) Risk Factor Evidence of Preexisting High Blood Pressure Risk 

Factor 

Hypertensive 

Disease 

Symptoms Hypertensive Disease Symptoms 

Preeclampsia 

(70.13%) Severe headache (3.89%) 

Preeclampsia (24.08%) 

Severe headache (8.55%) 

Gestational (29.87%) Swelling (18.35%) Gestational (75.92%) Swelling (19.91%) 

 Abdominal pain (25.90%)  Abdominal pain (27.92%) 

 Dizziness (12.98%)  Dizziness (14.23%) 

 Excessive vomiting 

(18.97%) 

 

Excessive vomiting (16.06%) 

 Blurred vision (19.90%)  Blurred vision (13.34%) 

 Evidence of Age (40 above) Risk Factor Overweight before Pregnancy Risk Factor 

Hypertensive 

Disease  

Symptoms Hypertensive Disease Symptoms 

Preeclampsia 

(35.35%) Severe headache (7.41%) 

Preeclampsia (66.99%) 

Severe headache (4.21%) 

Gestational (64.65%) Swelling (19.53%) Gestational (33.01%) Swelling (18.46%) 

 Abdominal pain (27.43%)  Abdominal pain (26.04%) 

 Dizziness (13.92%)  Dizziness (13.06%) 

 Excessive vomiting 

(16.77%) 

 

Excessive vomiting (18.77%) 

 Blurred vision (14.94%)  Blurred vision (19.46%) 

Evidence of First Pregnancy Risk Factor Evidence of Kidney Disease Risk Factor 

Hypertensive 

Disease 

Symptoms Hypertensive Disease Symptoms 

Preeclampsia 

(60.77%) Severe headache (4.84%) 

Preeclampsia (42.47%) 

Severe headache (6.69%) 

Gestational (39.23%) Swelling(18.67%) Gestational (57.53%) Swelling (19.28%) 

 Abdominal pain (26.31%)  Abdominal pain (27.11%) 

 Dizziness (13.23%)  Dizziness (13.73%) 

 Excessive vomiting 

(18.38%) 

 

Excessive vomiting (17.22%) 

 Blurred vision (18.57%)  Blurred vision (15.96%) 

Evidence of First Multiple Fetuses Risk Factor   

Hypertensive 

Disease 

Symptoms   

Preeclampsia 

(47.62%) Severe headache (6.17%) 

  

Gestational (52.38%) Swelling (19.11%)   

 Abdominal pain (26.89%)   

 Dizziness (13.59%)   

 Excessive vomiting 

(17.55%) 

  

 Blurred vision (16.69%)   

Evidence of Diabetes Risk Factor   

Hypertensive 

Disease 

Symptoms   

Preeclampsia 

(97.39%) Severe headache (1.14%) 

  

Gestational (2.62%) Swelling (17.43%)   
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Table 2: Maternal Mortality 

  

 

 
Figure 4: Maternal Mortality Rate 

 
 

 

A web-based application that monitors maternal mortality in Bayselsa State using PHP and BMat estimates 

for Otuasega Cottage Hospital, Bayelsa State was done using Bayes Server. The BMat estimates for Otuasega 

Cottage Hospital, Bayelsa State are given by the adjusted maternal mortality data for a period of 7years  (2012-

Figure 5: Cause of death 
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2018). The maternal mortality system software meets user requirement relating to entering patient data as shown 

in Figure 2. Hypertensive disease was classified using Bayes Server. Classification of Hypertensive disease was 

based on Preeclampsia and Gestational Hypertensive. Risk factors associated with Preeclampsia and Gestational 

Hypertensive are age (under 20), age (40 above), first pregnancy, multiple fetuses, diabetes, overweight before 

pregnancy, preexisting high blood pressure and kidney disease. Symptoms for Preeclampsia and Gestational 

Hypertensive are: severe headache, swelling, abdominal pain, dizziness, excessive vomiting and blurred vision. 

Preeclampsia hypertensive has a probability of 51.00% and Gestational hypertensive of 49.00%, each attributes 

has a certain probability. In risk factors, first pregnancy has the highest probability of 24.52%. In symptoms, 

abdominal pain has the highest probability of 26.74%. Hypertensive disease node, risk factors node and 

symptoms node are discrete while range node is continuous as shown in Figure 3. The evidence of each risk 

factors affects the probability value of hypertensive disease and symptoms as shown in Table 4.1. Calculating 

the evidence of the risk factors; evidence of age (under 20) shown that most women under 20 of age have 

preeclampsia with 70.13% and blurred vision symptom of 19.90%, evidence of age (40 above) shown that most 

women 40 years and above have Gestational Hypertensive disease with 64.65% and abdominal pain 27.43%. 

Estimated maternal mortality rate in Otuasega Cottage Hospital in Ogbia Local Government Area in Bayelsa 

State as shown in Table 2, on maternal mortality we observed that the trend was as low as 2 maternal deaths in 

every 202 live births in 2012 but increased to 12 per 210 live births in 2016. The maternal mortality rate 

continued its upward trend and increased to 14 deaths per 172 live births in the year 2018. Figure 4 shows that 

maternal mortality rate which was very low, increased significantly, and most death were caused by 

Hypertensive disorder, followed by bleeding and complications and little of infections as shown in Figure 5. 

 

8. Conclusion 

Maternal deaths are fueled by poor utilization of healthcare facilities and services in Bayelsa State. As a result of 

the increase in Maternal Mortality in Bayelsa State by 2018, it is important to invest more in women education 

and sensitization as well as improve medical facilities in Hospitals both in rural and urban region. The study 

provides important information on community perception on maternal health services in rural area in Bayelsa 

State. Naïve Bayes classification and to predict probability of Hypertensive disease (Preeclampsia and 

Gestational) and Bayesian maternal estimates of Maternal Mortality Rate was achieved. 
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