
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.8, No.9, 2017

10

Estimation of Cost and Efforts in Agile Methodologies - A Review

Venkata. Krishna Mohan.CH
Ph.D., Scholar, CSE- Dept.

GITAM University, Rishikonda, Vizag, India

Dr.G.V.S Raj kumar
Associate-Professor, CSE- Dept.

GITMA University, Rishikonda, Vizag, India

Abstract
The concept of Traditional software Development slowly started converting into a new methodology called as
AGILE Methodology. Where in agile methodology the aim is to satisfy the customer, faster development times
with less defects. Where as in traditional software development the effort and cost estimation methods are more
when compared with Agile Methodology even though agile process is itself a software development process it
has its own limitations generally used techniques or methods. In this paper we explain all the existing techniques
which we discuss along with newly introduced methods.
Keywords - Agile methodology, FPA, COCOMO, EJ

1. Introduction
Software Engineering is one of the main objectives for developing good software applications all these
Applications are developed using different types of process, models & techniques where we can ultimately give
the customer better software by meeting all his requirements. There are number of methods for the cost
estimation in the conventional process like SDLC where in this process the software development is done in a
structured format like Requirements gathering, Analysis, design, code, testing and maintenance. Here the cost
and effort estimation is done by using different methods where we have Algorithmic and non-Algorithmic
methods. The main principle for cost estimation in Agile Methodology is to welcome the changing requirements
estimate the cost and effort perfectly.

2. Techniques for Estimation
There are so many techniques for estimation of cost and effort in the software industry. These techniques were
categorized into two Algorithmic Non-Algorithmic models.

2.1 Algorithmic Model
Cost estimation by using the algorithmic cost model is based on mathematical formulas. In this model to
estimate the cost consider size of project, type of software, software team, and software attributes etc. There are
different types of models which are used like Function points (FP) based model, Putnam Model, COCOMO
Model all these methods uses mathematical formulae’s
2.1.1 COCOMO model (Constructive Cost Model)
This is widely used cost estimation model for all the software projects. COCOMO 81 Model is proposed by
Barry Boehm in 1981. Nowadays the COCOMO-II model is used in which effort estimation is based on Person-
Month (PM) in software projects.

COCOMO model uses the function point or line of code as the size metrics and composes of 5 scale factor
and 17 multipliers. The 5 scale factor are rated on a six-point scale from very low to extra high (5 to 0) [1]. After
assigning the rating values add them, divide them by 100 and add the result to 1.01 to get the exponent that
should be used [1].

This model uses the function point or line of code as the size metrics and composes of 5 scale factor and 17
multipliers. The 5 scale factors are rated on a six-point scale from very low to extra high (5 to 0) [1].After
assigning the rating values add them, divide them by 100 and add the result to 1.01 to get the exponent that
should be used [1].

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.8, No.9, 2017

11

Scale factor

Precedentendness

This Reflects the previous experience of the similar project. No previous
experience means very low, organization is familiar with this type of project means
very high.

Development Flexibility
Reflects the degree of flexibility in the development process. Rating very low
means prescribed process is used. and client sets the only general goals in case of
rating extra high.

Architecture /risk
resolution

Reflects the extent of risk analysis carried out. Little analysis means very low and a
complete and thorough risk analysis means extra-high

Team cohesion
Reflects how well known about team members & work together. Rating very low
as very difficult interactions and rating extra-high when effective team and no any
communication problems

Process Maturity Rated nominal for some process control in place.
• Precedentedness: Rated low for new project for organization.(Rating : 4)
• Development Flexibility: Rated very high when no client involvement. (Rating: 1)
• Architecture/risk Resolution: Rated very low while no risk analysis carried out (Rating: 1)
• Team Cohesion: New team so no information. Hence rated as nominal. (Rating: 3)
• Process Maturity: Rated nominal for some process control in place.(Rating:3)
• The sum of above rating value is 16. So calculate the exponent by adding 0.16 to 1.01, getting a value of 1.17
The basic COCOMO equations take the form
Effort Applied (E) = ab(KLOC)b

b [man-months]
Development Time (D) = cb(Effort Applied)db [months]
People required (P) = Effort Applied / Development Time [count]
The cost drivers that are used to adjust the initial estimates and create multiplier in the post-architecture
model fall into four categories like :
Product Attributes: these attributes are concerned with required features for developing software product.
Computer Attributes: these are the restriction enforced on the software by the hardware platform.Personal
Attributes: these are multipliers that take the experience and capabilities of the people working on the project
into account.
Project Attributes: these attributes are related to specific features of software development project
2.1.2 Putnam Model:
The Putnam model is an empirical software effort estimation model.. Putnam used his observations about
productivity levels to derive the software equation:
Technical constant C = Size * B1/3 * T4/3
Total Person Months B = 1/T4 *(size/C)3
T= Required Development Time in years Size is estimated in LOC
Where: C is a parameter dependent on the development environment and is determined on the basis of historical
data of the past projects.
Rating: C=2,000 (poor), C=8000 (good) C=12,000 (excellent).
The Putnam model is very sensitive to the development time: decreasing the development time can greatly
increase the person-months needed for development [2]. One significant problem with the Putnam model is that
it is based on knowing, or being able to estimate accurately, the size (in lines of code) of the software to be
developed. There is often great uncertainty in the software size. It may result in the inaccuracy of cost
estimation.
SLIM (Software Life Cycle Management) is a tool that acts according to the Putnam’s model.
2.1.3. Function-Point based Model:
Function point metrics, developed by Alan Albrecht of IBM, were first published in 1979 and In 1984, the
International Function Point Users Group (IFPUG) was set up to clarify the rules, set standards, and promote
their use and evolution.
In this models the estimation can be done by using the following five factors
User Inputs, User Outputs, Logic Files, Inquiries, Interfaces
Function point metrics provide a standardized method for measuring the various functions of a software
application it measure functionality from the users point of view, that is, on the basis of what the user requests
and receives in return
An Organization can apply function point analysis as [3]:
A tool to determine the size of a purchased application package by counting all the functions included in the
package.
A tool to help users determine the benefit of an application package to their organization by counting functions

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.8, No.9, 2017

12

that specifically match their requirements.
A tool to measure the units of a software product to support quality and productivity analysis.
A vehicle to estimate cost and resources required for software development and maintenance A normalization
factor for software comparison
On the whole:
FP = UFP * VAF
The constant values in the equation and the weighting factors are determined empirically.
2.1.4 Parkinson’s Law:
Parkinson’s Law states that work expands to fill the time allotted for its completion. Time management is all
psychological. We naturally pace ourselves to finish a project in the nick of time. The same task can take one
hour or one week depending on how much time we give ourselves to complete it. Ever pull off a big presentation
where your only prep was during your commute on the way over? The law is true!
Track your time:
Time tracking encourages you to be hyper-aware of a project’s progress. Using data from time tracking, allot
25% less project time to your next project to employ Parkinson’s Law for maximum efficiency.My personal
favorite! Parkinson’s Law tells us we can accomplish things in much less time than we think, which is excellent
news because our brains work best if we take a small break after 90 minutes of work.
2.1.5 Price–To-Win estimating:
The price-to-win technique has won a large number of software contracts for a large number of software
companies. Almost all of them are out of business today[13]. The inevitable result is that the money or schedule
runs out before the job is done, everybody gets mad at each other, a lot of compromises are made about the
software to be delivered, and a lot of programmers work long hours just trying to keep the Job from becoming a
complete disaster. The main reason that the price-to-win technique continues to be used is because the
technology of software cost estimation has not provided powerful enough techniques to enable software
customers or software developers to convincingly differentiate between a legitimate estimate and a price-to-win
estimate. One of the primary objectives of the COCOMO model is to begin to provide a way for people to make
the differentiations. It is possible to make the COCOMO model give you a lower cost estimate but only by
changing some objectively defined cost driver rating, whose validity can be checked by someone other than the
estimator.

2.2 Non-Algorithmic Model:
In non-algorithmic model, the estimation can be done by using the previous projects experience which is similar
to the under estimate project.
2.2.1 Expert Judgment (EJ):
EJ is used extensively during the generation of cost estimates. Cost estimators have to make numerous
assumptions and judgments about what they think a new product will cost. However, the use of EJ is often is not
well accepted or understood by non-cost estimators within a concurrent engineering environment. Computerized
cost models, in many ways, have reduced the need for EJ but by no means have they, or can they, replace it.
Very little research tackles the issues of capturing and integrating EJ and rationale into the cost process.
EJ is examined in terms of what thought processes are used when a judgment is made.
2.2.2 Estimation based Analogy costing:
Analogy costing method requires one or more completed projects that are similar to the new project and derives
the estimation through reasoning by analogy using the actual costs of previous projects. Estimation by analogy
can be done either at the total project level or at subsystem level. The total project level has the advantage that all
cost components of the system will be considered while the subsystem level has the advantage of providing a
more detailed assessment of the similarities and differences between the new project and the completed projects.
The strength of this method is that the estimate is based on actual project experience. However, it is not clear to
what extend the previous project is actually representative of the constraints, environment and functions to be
performed by the new system. Positive results and a definition of project similarity in term of features were
reported in.
Advantages:
• Depends on the values and data of previous projects.
• Estimators experience can be used which helps in arriving at a better cost estimate.
•We get to know the minute distinction between the previous completed projects and our current projects and
this in a way also helps in knowing their impacts.

Disadvantages:
Using this method requires estimators to find out the attributes through which a project can be described best
also we need to provide weightage to these to get a better analogy. We cannot use this technique for every
project.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.8, No.9, 2017

13

2.2.3 Top-down estimation:
In this technique we derive total cost from global properties using either of algorithmic or non-algorithmic
technique. Then this cost is spitted to various components of the system. Top-down Estimation is more
beneficial in the early stages of software development because detailed information is not available during this
stage [9],[10]. Putnam’s Model is an example of this technique.
2.2.4 Bottom-up estimation:
Bottom-up estimation is opposite of Top-down estimation method. In this method we derive cost of each
software component and then the result is combined to achieve the overall cost of the software. Goal is to derive
system estimate from the accumulated estimate of the small component.
2.2.5 Planning Poker:
Planning Poker is an agile estimating and planning technique that is consensus based. To start a poker planning
session, the product owner or customer reads an agile user story or describes a feature to the estimators. Each
estimator is holding a deck of Planning Poker cards with values like 0, 1, 2, 3, 5, 8, 13, 20, 40 and 100, which is
the sequence werecommend. The values represent the number of story points, ideal days, or other units in which
the team estimates [12].

The estimators discuss the feature, asking questions of the product owner as needed. When the feature has
been fully discussed, each estimator privately selects one card to represent his or her estimate. All cards are then
revealed at the same time. If all estimators selected the same value, that becomes the estimate [12]. If not, the
estimators discuss their estimates. The high and low estimators should especially share their reasons. After
further discussion, each estimator reselects an estimate card, and all cards are again revealed at the same time.
The poker planning process is repeated until consensus is achieved or until the estimators decide that agile
estimating and planning of a particular item needs to be deferred until additional information can be acquired.
2.2.6 Throwing fingers:
This is a simple variation on the poker theme. Instead of flipping cards or revealing Fibonacci numbers on a
phone app, each person just raises their hand with fingers raised, from one to five[13]. This won’t give you
Fibonacci numbers but that’s ok. If you really want to convert them, you can (e.g. you can make four fingers into
an estimate of 8 points, and five fingers an estimate of 13 points).

This isn’t too different from poker but it’s a slight change and is a bit faster because people don’t waste
time playing with or searching through their cards. (I find the damn cards always go missing as well, so it solves
that problem too!).If you want to take it a bit further, you can have half-points by people holding up half a finger.
2.2.7 T-shirt Sizing:
Instead of numbers (Fibonacci or otherwise), you can do T-shirt sizes. Small, medium, large, xtra-large[13]. This
gives you a smaller range of possible estimates, which means you will get fewer disagreements and less
variation. You might think that the estimates will be less accurate, but I don’t think they will be. I find rough t-
shirt sizes to be good enough. You will need some baselines for these sizes; just use previous stories or features.
(I actually like to do t-shirt size feature estimates and no story estimation, more on that later). You could also just
use a smaller set of numbers (1, 5, 8, 20) or something as proxies for t-shirt sizes. But I like the fact that numbers
aren’t used here. It makes it clearer that these are not measurements and are not accurate.
2.2.8 Affinity Mapping:
You might be familiar with Affinity Mapping from Sprint Retrospectives. It is a technique for grouping similar
items together. Start by creating a series of “tags” or “buckets” on the table: these could be Fibonacci numbers,
or t-shirt sizes, or categories, or anything [13]. Then you lay the stories down on the table as cards or something
similar. Next, the team collectively moves the cards into the buckets to represent that as an estimate.

Next, each person is randomly assigned a set of stories to estimate (maybe deal the stories out as if they
were a deck of cards)[13]. Then, taking turns, each person silently estimates by placing a card on one of the
buckets alternatively, a person can move a card from one bucket to another, if they strongly feel it is an incorrect
estimate. Keep doing this until all the cards are estimated. If a card is moved twice, take it off the table – it will
need a separate discussion after the meeting since there is wide disagreement on its estimate.

 The advantage of this technique is that a team can estimate a lot of stories in a very short amount of time. I
would use it if you are asked to estimate 100 stories or similar (though I think if you are, that is a sign of a bigger
problem – you should only estimate one or two sprints’ worth of stories in advance). The disadvantage of it is
you miss out on what is often the valuable part: the discussion around the stories.

3. CONCLUSION
An attempt is made in this paper to bring all the methods which are used for calculating effort and cost
estimation in agile methodology so as to anticipate the new methods in future. Different methods used by the
industry were examined and it was noted that the accuracy feature is not much to be seen in any of them. Though
agility give a chance for the team members to discuss and execute new methods.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.8, No.9, 2017

14

This study aims to go much further and bring up new methods in algorithmic and non-algorithmic category
to deduce how much more methods with good accuracy.

3.1 Scope for Future Study
The main aim of this research work was to develop Different types of methods for estimating effort and cost
using latest methods in the Agile Methodology. A number of areas of future research have arisen from the
experimental work and the most significant of them are o utlined below. Further studies can be extended to the
development of effort calculation and cost estimations of the projects. If a suitable method was found to
calculate the effort estimation the possibility for developing with High- end was used.

The efficiency of Throwing finger can be increased appreciably by raising their hands but Fibonacci series
cannot be identified instead an alternate way was we have make the four fingers into 8 divisions. Although there
are many methods based on throwing fingers in the literature, the author believes that they are very difficult to
develop. Hence developing different types of methodologies gives great importance for Agile Estimations.

References
[1]. Software Engineering 8th Edition – Lan Sommerville
[2]. R.S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, 2000
[3]. IFPUG: Function Point Counting Practices Manual, Release 4.1.1
[4]. G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.
[5]. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-

73.
[6] I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G.T.

Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
[7]. K. Elissa, “Title of paper if known,” unpublished.
[8]. R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in press.
[9] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media

and plastic substrate interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests
9th Annual Conf. Magnetics Japan, p. 301, 1982].

[10]. M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989
[11] https://www.mountaingoatsoftware.com/blog/why-i-dont-use-story-ints-for-sprint-planning
[12] https://www.extremeuncertainty.com/alternatives-planning-poker
[13]. http://sunset.usc.edu/classes/cs510_2012/EPs_2012/EP25_Chapter_22.pdf
[14]. International Journal of Electronics Communication and Computer Engineering Volume 6, Issue 6, ISSN

(Online): 2249–071X, ISSN (Print): 2278–4209

