
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

1

An Analysis of Various Methods to Identify Web Based

Applications Vulnerabilities

Amar Kumar1 Sumit Sharma2

1.PG scholar, CSE, VIST, Bhopal, INDIA

2.HOD, CSE department , VIST, Bhopal, INDIA

Abstract

Recently Web based applications takes a noteworthy palace in people’s daily routine furthermore as in progress of

nation’s different domains as well. Web based applications have undergone a reasonably express improvement

within the last few decades and their appreciation is moving faster than that was predictable few years ago.

Presently, huge volumes of transactions are prepared online using various Web based applications. Even though

these Webs based applications are utilized by a lot of people, in some cases the defense level is vulnerable, and

that compiles them prone to obtain negotiation. In most of the eventualities, a client has to be recognized previous

to any contact is set upped with the backend data. A precipitate client shouldn't be permitted entrée to the scheme

without legal credentials. However, a crafted injection query provides illegal entrée to illegal clients. This is

regularly accomplished via SQL Injection input. In spite of the occurrence of dissimilar procedures to discover

and avoid SQL injection, still there stays a shocking threat into Web based applications. While working on this

paper, we studied and did analysis on various manners of SQL Injection vulnerabilities, different types of assaults,

and their recognition and avoidance techniques. Flanking we present our assessment of this analysis. We also

clarified future research direction for probabilities and possible expansion of challenge proceedings against

different web application attacks.

Keywords: Vulnerability, SQL injection, XSS, Web based application, WWW, IDS

1. INTRODUCTION

Web based applications are an essential element of today’s culture. We utilize Web based applications in almost

each aspect of society. These Web based applications are constantly accessible from everywhere with an Internet

connection, and they allow us to communicate and work together at a speed that was ridiculous just a few decades

back. As more and more of our lives and information travel to Web based applications, hackers have transferred

their focus to Web based applications. Those similar properties that create Web based applications so striking to

clients also attract hackers. A Web based application never closes, so they are constantly accessible for hackers.

Web based applications also house a vast treasure-trove of information, which hackers can utilize for economic

increase. Finally, as we will discover in the next section, Web based applications are a composite mixture of various

technologies. This difficulty, collective with the intense time-to-market pressure of companies and people that

build Web based applications, is a breeding ground for bugs and vulnerabilities.

A Web based application is a scheme which typically is composed of a database (or the back-end) and

Web based pages (the front-end), with which clients interact over a network using a browser. A Web based

application can be of two types, static, in which the contents of the Web based page do not modify regardless of

the client input; and dynamic, in which the contents of the Web based page may modify depending on the client

interactions, client input, sequences of client interactions etc.

The profound transformative impact the Web based applications have brought about on our society has

long been acknowledged. For some extent surprisingly, however, there seems to be very limited research that has

been done in surveying the different recent advancements made in the field of Web based application testing over

the past 20 years. To our best knowledge, the only other surveys in this field consists of a nearly review [4] on

general approaches to Web based application testing, and a survey [5] Focused on the modeling aspects of Web

based application testing. Therefore, this survey paper provides a much needed source of detailed information on

the progress made in and the current state of Web based application testing. Compared to traditional desktop

applications, Web based applications are unique in a number of ways, and this uniqueness presents novel

challenges for their quality assurance and testing.

• Firstly, Web based applications are typically multilingual. A Web based application generally consists of

a server-side back end and a client-facing frontend, and these two components are usually implemented

in different programming languages. Moreover, the front end is also typically implemented with a mix of

presentation, markup and programming languages such as HTML, Cascading Style Sheets (CSS) and

JavaScript. The presence of multiple languages in a Web based application poses additional challenges

for fully automated continuous integration (CI) practices, as test drivers for different languages need to

be integrated into the CI process and managed coherently.

• Secondly, the operating environment of typical Web based applications is much more open than that of a

desktop application. Such a wide visibility makes such applications susceptible to various attacks, for

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234645168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

2

example the distributed denial-of-service (DDOS) attacks. Moreover, the open environment makes it

more difficult to predict and simulate realistic work load. Levels of standards compliance and differences

in implementation also add to the complexity of delivering coherent client experiences across browsers.

• Thirdly, a desktop application is usually utilized by a single client at a time, where as a Web based

application typically supports multiple clients. The effective management of resources (HTTP

connections, database connections, files, threads, etc.) is crucial to the safety, scalability, usability and

functionality of a Web based application. Multi-threaded nature of Web based applications also makes it

more difficult to identify and reproduce resource contention issues.

• Last but not least, a multitude of Web based application development technologies and frame works are

being proposed, fast evolving and actively maintained. Such constant evolution requires testing

techniques to stay current.

WEB BASED APPLICATIONS

We will concisely introduce the computing paradigm that underlies internet applications to produce the foundations

for a discussion of their vulnerabilities. This discussion can place a stronger emphasis on general principles than

on the idiosyncrasies of individual browsers. Diversity is ostensibly smart for safety, and there's so diversity

between browsers from completely different vendors and conjointly between different versions of a similar product.

Developers of the internet applications therefore cannot believe all purchasers to produce precisely the same

defence mechanisms.

The business logic of an internet application is enforced at an internet server and a backend server, and

publicised by a uniform resource locator (URL). The internet server is understood by its name. The mainly

infrastructure part on the consumer aspect is that the browser, that has no name apart from the client’s IP address.

Browser and server communicate via a transport protocol. A transport protocol defines data formats, additionally

conjointly algorithms for packaging and unpacking application payloads

Fig. 1 shows the fundamental architecture of client input process in a Web based application, how

information flows in a Web based application. The client calls AN application by clicking on its URL. The client’s

browser then sends a communications protocol request to the application server. A script at the net server extracts

input from the consumer knowledge and constructs a request to a backend application server, e.g. AN SQL query

to a database. The Web based server receives the result from the backend server and returns a hypertext mark-up

language (HTML) result page to the consumer. The client’s browser displays the result page. To show a page, the

browser creates an interior representation for it. This representation is that the supposed Domain Object Model

(DOM) [6]. Once the browser receives a hypertext mark-up language (HTML) page it parses the hypertext mark-

up language into the document. Body of the DOM. Objects like document, URL, document location, and document

referrer get their values consistent with the browser’s read of the present page.

Fig. 1: Architecture of client input process of a Web based application

This introduction follows: in Section 2, we explain types of the Web based vulnerabilities and attacks.

Section 3 presents various SQL Injection attacks. In Section 4 literature survey related to our work is presented,

Section 5 shows critical analysis of our study about the countermeasures to SQL Injection attacks and a

comparative study of attacks and schemes, section 6 states detailed future research scope and at last, Section 7

concludes the paper noting the contribution of this work aboard mentioning analysis objectives.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

3

2. VULNERABILITIES IN WEB BASED APPLICATION:

In general, there are three kinds of safety vulnerabilities among Web based applications at completely different

levels:

• Input validation vulnerability at the single request level,

• Session management vulnerability at the session level, and

• Application logic vulnerability at the extent of the whole application.

In this paper we describe the above three kinds of vulnerabilities and the common attacks that exploit these

vulnerabilities.

2.1 Input Validation Vulnerabilities

A common safety observes is input data validation, since client input data can't be trusty. Data validation is that

the method of guaranteeing that a program operates on clean, correct and helpful input data. Once inputs don't

seem to be sufficiently or properly valid, attackers are ready to craft distorted inputs, which might alter program

executions and gain unauthorized access to resources. Input validation vulnerability may be a durable drawback

in software scheme safety. Incorrect or depleted input validation may invite a range of attacks, like buffer overflow

attacks and code injection attacks. Web based applications might contain a large vary of input validation

vulnerabilities. Since the whole Web based request, as well as request headers and payload data, is beneath the

entire management of clients, a Web based application must make sure that client inputs are processed and utilized

in a very secure manner throughout the execution.

SQLI (SQL Injection):- SQL Injection is a code injection technique where attacker injects malicious code

in to strings that are later passed to SQL server for execution. A Web based application is at risk of SQL injection

attacks once malicious content will flow into SQL queries while not being absolutely sanitized, that permits the

offender to trigger malicious SQL operations by injecting SQL keywords or operators. For example, the offender

will append a separate SQL query to the present query, causing the application to drop the complete table or

manipulate the comeback result. Malicious SQL statements may be introduced into a vulnerable application

victimization many various input mechanisms [1] as well as client inputs, cookies and server variables

Cross-site Scripting (XSS): vulnerabilities arise from associate application’s failure to properly validate

client input before it's came to a client. Mistreatment this vulnerability, associate offender will force a consumer,

like a client application, to execute attacker-supplied code, like JavaScript, within the context of a trusty computing

machine [7]. As a result, the attacker’s code is granted access to safety-critical data that was issued by (or is

associated with) the trusty Web based site.

2.2 Session Management Vulnerabilities

Session management is essential for a Web based application to keep track of client inputs and maintain application

states. In the OWASP top-ten safety risks [3], three are related to session management vulnerabilities:

• Broken Authentication and Session Management,

• Cross-Site Request Forgery and

• Insufficient Transport Layer Protection.

In Web based application development, session management is accomplished through the collaboration

between the client and server. A general approach is that the server sends the client a unique identifier (i.e., a

session ID) upon successful client authentication, through which the server recognizes the client on subsequent

requests and indexes his session variables stored at the server side. Since session ID is the only proof of the client’s

identity, its confidentiality, integrity and authenticity need to be ensured to avoid session hijacking.

First, the session ID should be random for each client’s visit and expire after a short period of inactivity.

The weak session identifier generation allows attackers to hijack the victim’s Web based sessions by predicting his

session ID. Second is the transmission of the session ID should always be protected by a secure transport layer

protocol (i.e., over SSL). Otherwise, attackers are able to sniff the session ID and hijack the session. Third, the

client needs to make sure that his session ID is provided by the server and is unique. Adopting a session ID from

an external source opens up a vulnerability to session fixation, where attackers can set the session ID to a value

that is known to them.

Securing the session ID alone is not sufficient for secure session management. Session hijacking can also

be achieved through malicious Web based requests that are associated with a valid session ID. Cross-site request

forgery (CSRF) is a popular attack of this type, where attackers trick the victim into sending crafted Web based

requests on their behalf. The vulnerable Web based application cannot differentiate if the incoming Web based

requests is malicious, since they are associated with valid session information. For example, attackers may forge

a Web based request that instructs a vulnerable banking Web based site to transfer the victim’s money to his account.

Login CSRF [8], on the other hand, tricks the victim into logging in to a target Web based site using the attacker’s

credential through a forged request. This type of attack allows the attacker to harvest the information about the

victim’s activities under the attacker’s account.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

4

2.3 Application Logic Vulnerabilities

The decentralized structure of Web based applications poses significant challenges to the implementation of

business logic. At First, since Web based application modules can be accessed directly through their URLs, the

interface hiding mechanism has been commonly utilized as a measure for access control in Web based applications.

However, this mechanism alone follows the principle of “safety by obscurity”, isn’t sufficient to enforce the control

flow of a Web based application. Application logic vulnerabilities are highly dependent on the intended

functionality of a Web based application. As an example, a vulnerable e-commerce Web based site may have a

specific logic vulnerability that allows attackers to apply the same coupon multiple times to reduce prices. Despite

the heterogeneous application functionalities, there are several types of logic flaws that correspond to common

business logic patterns in many applications.

One common type is access control vulnerability, which allows attackers to access unauthorized sensitive

information or operations. Other type is workflow violation, which allows attackers to violate the intended steps

within business workflows. For example, a vulnerable e-commerce Web based site may allow attackers to bypass

the tax calculation step during the checkout procedure.

The class of attacks that target application logic vulnerabilities are generally referred to as logic attacks

or state violation attacks Depending on how attacks are launched, they can be given several other terms. Forceful

browsing [7] is one attack vector, where attackers directly point to hidden but predictable Web based links to access

sensitive information. Parameter tampering [9] is launched by manipulating certain values in Web based requests

to exploit application logic.

3. TYPES OF SQL INJECTION ATTACKS

Among numerous forms of SQLI attacks, some are often utilized by the attackers. It's imperative to understand the

normally utilized major attacks among all out there attacks. Hence, during this section, we explain an in-depth

investigate a number of the foremost common SQL Injection attacks.

3.1 Tautology

The SQL injection queries are inserted into one or more conditional statements with the intention that they can

always calculated to be correct.This type of attack injects SQL tokens to the conditional query statement to be

calculated always correct.

SELECT*FROM member WHERE member_clientname =’ ‘OR 1=1 – AND member_password =’‘

In the above query, 1=1 always true and if the application not validates the client input properly then all the records

from the database will be fetched to the application. In this technique, following types and scenarios of attacks are

there:

• String SQL Injection

• Comments Attack

• Numeric SQL Injection

3.2 Illegal/Logically Incorrect Queries

The purpose of this attack is to understand the database properties. When this type of query is executed on the

database it displays an error messages. By proper understanding and analyzing of this error the attacker will

identify the backend DBMS details. With error messages denied by the database to discover useful data facilitating

injection of the backend database

 SELECT name FROM account WHERE member_password=’1\’

3.3 Union Query

When Injected query is union with the safe query via keyword UNION sequentially to get information associated

to other tables from the Web based application.This type of attack utilizes the union operator which presents unions

between two or more queries.

SELECT * FROM members WHERE member_clientname=’client123’ UNION SELECT*FROM member

WHERE member_clientname=’admin’—AND member_password=’ ’

3.4 Piggy-Backed Queries

In this type of attacks, attacker appends an extra query to the original query.

3.5 Stored Procedures

Various databases have integrated stored procedures. The attacker performs these integrated functions using

malicious SQL Injection queries. A stored procedure is a group of Transact-SQL statements compiled into a single

execution plan. Depend on specific stored procedure on the database there are different kinds of attack. A stored

procedure example is given in the following.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

5

CREATE PROCEDURE

AuthenticateClient (IN clientname VARCHAR (16), IN password VARCHAR (32))

BEGIN

SELECT * FROM members WHERE member_clientname = clientname AND member_password = password;

END

Above stored procedure is also vulnerable to both the tautologies and piggybacked queries.

3.6 Inference

In this type of attack, the attacker observes the behaviour of Web based application based on a series of true/false

questions and timing delays. By careful observing the behaviour of application the attacker identifies the

vulnerable parameters in the application. These attacks are composed of two types: blind Injection and timing

attacks, in the former one the attacker issues true/false type of questions to the database and latter one attacker

collect information from a database by monitor in the timing-delays in the database reactions.

3.7 Alternate Encodings

It intends to stay away from being known by secure defensive coding and automatic prevention scheme. It’s

typically combined with alternative attack methods. In this method, attackers modify the injection query by using

the alternate encoding, such as hexadecimal, ASCII, and Unicode. Because in this manner they will throw off

developer's filter that scan input queries for special familiar "bad character"

4. LITERATURE SURVEY

Numerous schemes have been utilized or suggested to identify and avoid SQL Injection threats in Web based

applications. Here, we examine different important solutions and their working scheme briefly to let the other

researchers know about the core thoughts behind every work.

Web SSARI [10], is works on the principal that concern with static taint propagation analysis to find out safety

leaks in PHP Web based applications. Web SSARI aims specifically three types of vulnerabilities:

• cross-site scripting

• SQL injection

• general script injection

It utilizes flow-sensitive, intra-procedural investigation supported a lattice model and sort state. Above

all, the PHP language is extended with two qualifiers, exclusively tainted and unblemished, and therefore this tool

keeps follow-up of the type-state of variables. It utilizes three client-provided files, identified as prelude files: a

file with preconditions to any or all sensitive functions (i.e., the sinks), a file with post conditions for acknowledged

cleansing functions, and a file specifying all attainable sources of entrusted input. So as to undamaged the

contaminated information, the information needs to be processed by a cleansing routine or to be forged to a secure

kind. Once the tool determines that tainted information reaches sensitive functions, it mechanically inserts runtime

guards, that area unit cleansing routines.

Another approach together supported static taint propagation analysis, to the identifying of input

validation vulnerabilities in PHP applications is described in [9, 10]. A flow sensitive, inter-procedural and context-

sensitive info flow analysis is utilized to identify intra-module XSS and SQL injection vulnerabilities. The

approach is enforced during a very tool, referred to as Pixy that's that the foremost complete static PHP analyzer

in terms of the PHP choices shapely. To the only of our info, it is the sole publicly-available tool for the analysis

of PHP-based applications.

The work [11], discovered in 2006, describes a three-level approach to look out SQL injection

vulnerabilities in PHP applications. First, symbolic execution is used to model the impact of statements among the

basic blocks of intra-procedural management Flow Graphs (IFGs). Then, the following block define is used for

intra procedural analysis, where a typical reach ability analysis is used to induce perform define. In conjunction

with different information, each block define contains a bunch of locations that were undamaged among the given

block. The block summaries area unit composed to return up with perform define, that contains the pre- and post-

conditions of perform. The preconditions for perform contain a derived set of memory locations that ought to be

compelled to be alter before the perform invocation, whereas the post conditions contain the set of parameters and

international variables that area unit alter among perform. To model the results of cleansing routines, the approach

utilizes a programmer-provided set of possible cleansing routines, considers certain forms of casting as a cleansing

technique, and, in addition, it keeps info of sanitizing regular expressions, whose effects area unit specific by the

individual. Once perform summaries area unit computed, they are utilized in inter-procedural analysis to seem for

possible SQL injections.

The work [12] is another example of an approach that utilizes a model of “normality” to find injection

attacks, as XSS, XPath injection, and shell injection attacks. However, this implementation, known as SqlCheck

is meant to find SQL injection attacks solely. The approach works by trailing substrings from client input through

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

6

the program execution. The trailing is enforced by augmenting the string with special characters, which marks the

beginning and therefore the finish of every substring. Then, the dynamically-generated queries area unit

intercepted and checked by a modified SQL programmed. Mistreatment the meta-information provided by the

substring markers and the program is ready to work out if the question syntax is modified by the substring derived

from client input, and, therein case, it blocks the question.

Another example is the work by [13] that takes a look at a new and unexplored class of vulnerabilities in

the domain of Web based applications. In particular, the paper looks at race condition vulnerabilities that can arise

in Web based applications interacting with a back-end database. A race condition may occur in a multi-threaded

environment between two database queries if data accessed by one query can be modified by another one. In a

multi-threaded application, the shared data in the database might not be consistent between the two queries if code

that was designed to be executed sequentially is executed concurrently. The authors propose a dynamic approach

to identify this class of vulnerabilities, in which all the database queries generated by a running program are logged

and analyzed (offline) for data dependencies.

A good example of an approach based on a model of expected behavior is the work of [14], whose tool

is called AMNESIA [14]. AMNESIA is particularly concerned with identifying and preventing SQL injection

attacks for Java-based applications. Through the static analysis part, the tool builds a conservative model of

expected SQL queries. After that, at run-time, dynamically-generated queries are checked against the derived

model to identify instances that violate the intended structure of a query. AMNESIA uses Java String Analysis

(JSA) [15], a static analysis technique, to build an automata-based model of the set of legitimate strings that a

program can produce at given points in the code. AMNESIA also leverages the approach proposed by [16] to

statically check type correctness of dynamically-generated SQL queries.

SQL DOM [17] utilizes database queries encapsulation for genuine access to databases. They normally

use a type-checked API which cause query construction procedure is schematic. Therefore by API they implement

coding finest practices for the instance input filtering and type checking of strict client input. The disadvantage of

this method is that developer should be skilled new programming standard or query-development practice. Another

technique in this group is SQL-IDS [18] in which focus will be on writing specifications for the Web based

application that explain the intended construction of SQL statements that are created by the application, and in

usually monitoring the implementation of these SQL statements for infringements regarding these specifications.

SQLPrevent [19] is consists of Hyper Text Transfer Protocol [HTTP] request interceptor. The distinctive

data flow is modified once the SQLPrevent is deployed into the Web based server. SQLPrevent saved the hypertext

transfer protocol requests are into this thread-local storage. Then, SQL interceptor intercepts the SQL statements

that are created by Web based application and pass them to the SQLIA detector module. Consequently, hypertext

transfer protocol request from threads native storage is fetched and examined to see whether or not it contains an

SQLIA. Then the malicious SQL statement would be prevented to be sent to database, if it's suspicious to SQLIA.

Swaddler [20] is innovative theme to the anomaly-based identifying of attacks difficult Web based applications.

Swaddler inspects the within state of an online application and examines the interaction between the application’s

crucial execution points and therefore the application’s internal state. By doing this, Swaddler is capable to

acknowledge attacks that fetch an application in an inconsistent, abnormal state, like violations of the supposed

progress of a Web based application.

In [21] proposed the initial explanation of command injection attacks in the perception of Web based

applications, and dispenses absolute algorithm for preventing them founded on context-free grammars and

compiler parsing techniques. Our assessment is that, for an attack to be successful, the input that gets circulated

into the database query or the output document must modify the intended syntactic organization of the query or

document. This description and algorithm are common and concern to many forms of command injection attacks.

This scheme is authenticate with SQLCHECK, as implementation for the setting of SQL command injection

attacks. They assessed SQLCHECK on routine Web based applications with methodically compiled daily attack

data as input. The SQLCHECK produced no false positives or no false negatives, incurs low runtime overhead,

and is applied straightforwardly to Web based applications written in different languages.

An attacker who knows nothing about the key to the randomization algorithm will inject code that is not

valid for that randomized processor, reasoning a runtime exception [22] utilizes the similar method to the difficulty

of SQL injection attacks: they produce randomized instances of the SQL query language, by randomizing the

template query within the CGI script and the database parser. To permit for easy retrofitting of their method to

existing schemes, they initiate a de-randomizing proxy, which alters randomized queries to appropriate SQL

queries for the database.

5. CRITICAL ANALYSIS

Table 1 give details a digest of so far recognized countermeasures against SQL Injection. Now, let us see what

these schemes are actually about. It would be tough to provide a transparent finding of fact that scheme or approach

is that the best as each has some verified advantages for specific kinds of settings (i.e., schemes). Hence, we

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

7

compose however varied schemes work against the known SQL Injection attacks.

Table 2 demonstrates a chart of the schemes and their defense capabilities against varied SQLIAs. This

table shows the comparative analysis of the SQL Injections bar techniques and also the attack sorts. Although

several approaches are known as identifying or prevention techniques, solely few of them were enforced in utility.

Hence, this comparison isn't supported empirical expertise however rather it's an analytical analysis

Table 1: Countermeasures of SQL Injection

Methods Specification Detection Prevention

SQL-IDS [18] A pattern based method to identify malevolent intrusions yes Yes

AMNESIA

[14]

This scheme identifies unlawful queries before their finishing.

Dynamically-generated queries are evaluated with the statically-

built model utilizing a runtime monitoring method

yes Yes

SQLrand [22] A well-built random integer is included in the SQL keywords. yes Yes

SQL DOM

[17]

A set of classes that are strongly-typed to a database schema are

utilized to generate SQL statements as an alternative of string

manipulation

yes Yes

SQLGuard

[23]

The parse trees of the SQL statement before and after client input

are compared at a run time. The Web based script has to be

modified

yes No

CANDID [24]
Programmer-intended query structures are guessed based upon

evaluation runs over non-attacking candidate inputs
yes No

SQLIPA [25]
Using client name and password hash values, to improve the safety

of the authentication process
yes No

SQLCHECK

[21]

A key is inserted at both beginning and end of client’s input.

Invalid Syntactic forms are the attacks. The key strength is a major

issue

yes no

Table 2: Various methods of different SQL Injection Attacks

Methods Tautology

Logically

Incorrect

Queries

Union

Query

Stored

Procedure

Piggy

Backed

Queries

Inference
Alternate

Encodings

SQL-IDS [18] yes Yes yes yes yes yes Yes

AMNESIA [14] yes Yes yes no yes yes Yes

SQLrand [22] yes No yes no yes yes No

SQL DOM [17] yes Yes yes no yes yes Yes

SQLGuard [23] yes Yes yes no yes yes yes

CANDID [24] yes No no no no no no

SQLIPA [25] yes No no no no no no

SQL

CHECK [21]
yes Yes yes no yes yes yes

Web SSARI [10] yes Yes yes yes yes yes yes

6. RESEARCH SCOPE

Even for the development of recent secure internet based applications, it still needs consistent efforts from

developers to follow secure coding practices to create strong session management mechanisms. Securing internet

applications from logic flaws and attacks still remains an underexplored space. Solely a restricted variety of

techniques are projected. Most of them solely address a particular form of application logic vulnerabilities, like

authentication and access management vulnerabilities or inconsistencies between shopper and server validations.

The fundamental issue in Endeavour general logic flaws is the absence of application logic specification. The

absence of a general and automatic mechanism for characterizing the application logic is one among the inherent

reasons for the lack of most application scanners and firewalls to handle logic flaws and attacks.

Several recent works attempt to develop a general and schematic methodology for automatically inferring

the specifications for internet applications that in turn facilitates automatic and sound verification of application

logic. One among the key observations of those works is that the application’s meant behavior is typically disclosed

below its traditional execution, once clients follow the navigation ways. In similar assumption is formed for well-

behaved clients, wherever they're expected by the server to invoke the URLs during a specific sequence with

specific arguments. In order to infer the application logic, one category of strategies leverages the program source

code. As a result, the inferred specification extremely depends on however the application is structured and

enforced (e.g., the definition of a program operates or block). The accuracy of the inferred specification is

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

8

additionally littered with its capability of handling language details. Another category of strategies infers the

application specification by observant and characterizing the application’s external behavior. The noisy info

discovered from the external behaviors might result in an inaccurate specification through these strategies.

7. CONCLUSION

In last few years, internet grows tremendously, and recently they're consistently utilized in copious safety -decisive

atmospheres. As the utilization of internet based applications for indispensable utilities has accumulated, the

volume and class of assaults against these web applications have matured moreover. So far, the analysis researches

precisely concentrated on effort to identify vulnerabilities in web applications, which result from anxious data

stream in internet based applications, like the XSS (cross site scripting) and SQLIA (SQL injection attacks).

Whereas comparative achievement was reached in distinguishing suitable techniques and approaches for managing

these kinds of vulnerabilities, a few of them has been explored concerning vulnerabilities that effect from

blemished application reason.

Nevertheless quite a lot of methods and architectures are recognized and implemented in several

interactive internet based applications but defense still remains a serious concern. SQL Injection prevails in concert

of the top-10 vulnerabilities and threat to on-line businesses targeting the backend databases. During this paper,

we've got reviewed the foremost common existing SQL Injections related problems. We tend to believe that the

work would be helpful each for the overall readers of the subject as well as for the practitioners. As a future work,

we might wish to develop a step which will efficiently tackle the innovative SQL Injection attacks and fix the

maximum amount vulnerability as potential. Hackers are actually very innovative and because the time is passing

by, new attacks are being launched that will want new ways that of considering the solutions we presently have at

our hands.

REFERENCES

[1] Halfond, W. G., Jeremy Viegas, and Alessandro Orso. "A classification of SQL-injection attacks and

countermeasures" In Proceedings of the IEEE International Symposium on Secure Software Engineering,

Arlington, VA, USA, pp. 13-15. 2006.

[2] Tajpour, Atefeh, Maslin Masrom, Mohammad Zaman Heydari, and Suhaimi Ibrahim. "SQL injection detection

and prevention tools assessment" In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on, vol. 9, pp. 518-522. IEEE, 2010

[3] Top 10 2010-A1-Injection, available at: http://www.owasp.org/index.php/Top_10_2010-A1-Injection, last

accessed 11 June, 2013.

[4] Di Lucca, Giuseppe A., and Anna Rita Fasolino. "Testing Web based-based applications: The state of the art

and future trends." Information and Software Technology 48, no. 12 (2006): 1172-1186.

[5] Alalfi, Manar H., James R. Cordy, and Thomas R. Dean. "Modelling methods for Web based application

verification and testing: state of the art." Software Testing, Verification and Reliability 19, no. 4 (2009): 265-

296.

[6] Le He´garet P, Whitmer R, Wood L. Document object model (DOM). W3C Recommendation,

<http://www.w3.org/DOM/>; January 2005.

[7] A. Klein. “Cross Site Scripting Explained” Technical report, Sanctum Inc., June 2002.

[8] Gmail CSRF Security Flaw. 2007. http://ajaxian.com/archives/gmail-csrf-security-flaw.

[9] Prithvi Bisht, A. Prasad Sistla, and V. N. Venkatakrishnan. 2010b. Automatically Preparing Safe SQL Queries.

In FC’10: Proceedings of the 14th International Conference on Financial Cryptography and Data Security.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo. Securing Web based Application Code by

Static Analysis and Runtime Protection. In Proceedings of the 12th International World Wide Web based

Conference (WWW’04), pages 40–52, May 2004.

[11] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Scripting Languages. In Proceedings of

the 15th USENIX Security Symposium (USENIX’06), August 2006.

[12] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web based Applications. In

Proceedings of the 33rd Annual Symposium on Principles of Programming Languages (POPL’06), pages 372–

382, 2006.

[13] R. Paleari, D. Marrone, D. Bruschi, and M. Monga. On race vulnerabilities in Web based applications. In

Proceedings of the 5th Conference on Detection of

[14] Intru-sions and Malware & Vulnerability Assessmen t, DIMVA, Paris, France, Lecture Notes in Computer

Science. Springer, July 2008

[15] W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for NEutraliz-ing SQL-Injection Attacks. In

Proceedings of the International Conference on Automated Software Engineering (ASE’05), pages 174–183,

November 2005

[16] A. Christensen, A. Møller, and M. Schwartzbach. Precise Analysis of String Ex-pressions. In Proceedings of

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.7, No.7, 2016

9

the 10th International Static Analysis Symposium (SAS’03), pages 1–18, May 2003

[17] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically Generated Queries in Database Applications.

In Proceedings of the 26th International Conference of Software Engineering (ICSE’04), pages 645–654,

September 2004.

[18] R. A. McClure and I. H. Kr¨uger, “Sql dom: compile time checking of dynamic sql statements,” in Proceedings

of the 27th international conference on Software engineering, ser. ICSE ’05, 2005, pp. 88–96.

[19] K. Kemalis and T. Tzouramanis, “Sql-ids: a specification based approach for sql-injection detection,” in

Proceedings of the 2008 ACM symposium on Applied computing, ser. SAC ’08. ACM, 2008, pp. 2153–2158.

[20] P.Grazie, “Phd sqlprevent thesis,” Ph.D. dissertation, University of British Columbia (UBC) Vancouver,

Canada, 2008.

[21] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An approach for the anomaly-based detection

of state violations in Web based applications,” 2007.

[22] Z. Su and G. Wassermann, “The essence of command injection attacks in Web based applications,” SIGPLAN

Not., vol. 41, no. 1, pp. 372–382, Jan. 2006.

[23] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection attacks,” in In Proceedings of the 2nd

Applied Cryptography and Network Security (ACNS) Conference, 2004, pp. 292–302.

[24] Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., Using Parse Tree Validation to Prevent SQL Injection Attacks.

Proc. of 5th International Workshop on Software Engineering and Middleware, Lisbon, Portugal 2005, pp.

106–113.

[25] Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N., CANDID: Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks. ACM Transactions on Information and System Security,

Volume 13 Issue 2, 2010, DOI: 10.1145/1698750.1698754.

[26] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An Authentication Mechanism Against SQL

Injection.European Journal of Scientific Research, Vol. 38, No. 4, 2009, pp. 604-611.

