
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

43

Optimizing Software Clustering using Hybrid Bee Colony

Approach

Kawal Jeet (Corresponding author)
Assistant Professor, Department of Computer science, D.A.V. College Jalandhar, India

E-mail: kawaljeet80@yahoo.com

Abstract

Maintenance of software is the most expensive and complicated phase of the software development lifecycle. It
becomes more cumbersome if the architecture of the software system is not available. Search-based optimization
is found to be a technique very efficient in recovering the architecture of such a system. In this paper, we propose
a technique which is based on a combination of artificial honey bee swarm intelligent algorithm and genetic
algorithm to recover this architecture. In this way, it will be very helpful to software maintainers for efficient and
effective software maintenance. In order to evaluate the success of this approach, it has been applied to a few
real-world module clustering problems. The results we obtained support our claim that this approach produces
architecture significantly better than the existing approaches.
Keywords: Artificial bee colony algorithm, Genetic algorithm, Software clustering, Software Modularization.

1. Introduction

The maintenance and evolution of a software system is a most cumbersome, costly and time-consuming task
(Schneidewind 1987). This problem is further enhanced if the system is poorly documented or not documented at
all (Perry and Wolf 1992; Shaw and Garlan 1996). Sometimes a documented architecture becomes outdated due
to regular changes that are made to the system as a consequence of changing customer requirements (Eick et al.
2001). Apparently, the software maintainers need software architecture for efficient and effective maintenance of
the software. So, there must be a way to identify this architecture from the source code of the software system if
it is not available.

A software system is composed of modules which could be a class, or variables which are related to
each other due to procedure calls, inheritance relationships, variable references, etc. The syntactic structure of
these systems can be represented as a graph called a Module Dependency Graph (MDG) where the nodes are the
modules and edges are the relations between the modules. These MDGs could be retrieved by parsing the source
code to determine the modules of the software system and relationship between these modules. Large numbers of
source code analysis tools (http://depfind.sourceforge.net, http://source.valtech.com/display/dpm/Dependometer,
https://drewnoakes.com/code/dependency-analyser/) are available that could be used to retrieve these MDGs.

In order to identify the architecture of the system, the researchers in the reverse engineering
community have been developing clustering tools. Creating appropriate cluster partition of an MDG is NP hard
because the number of possible partitions is very large even for a small graph (Mancoridis, 1998). So, automated
assistance to partition MDGs is required that would help system maintainers to efficiently work in the absence of
original design documentation (Harman, 2007). According to Tzerpos and Holt (Tzerpos and Holt 1998), it is
beneficial for the software maintainers to use the clustering techniques that are available rather than re-engineer
the software from scratch.

In this paper, we use a technique which is a combination of Artificial Bee Colony (ABC) (Karaboga,
2007 ;Karaboga, 2012; Karaboga, 2011;Yan, 2012) and Genetic Algorithm (GA) (Goldberg, 2006) and is called
Genetic Bee Colony algorithm (GBC). It automatically finds a good partition of a system’s MDG. This approach
treats software partition as a search-based optimization problem in which the aim is to find the best possible
partition.

To the best of the authors’ knowledge, this is the first time that bee colony algorithm has been applied
for software clustering.

2.Related Work

Wiggerts (Wiggerts 1997) introduced clustering techniques quite well that have been successfully applied to
system modularization. Similar to the technique followed in this paper, various other clustering techniques like
Rigi (Müller et al. 1993) and Arch (Schwanke 1991) work in a bottom-up fashion and produce the architecture of
the software system by using its source code only. The main shortcoming of these tools is that they need key
involvement of the user.

Various other search-based optimization techniques have been successfully used for partitioning of
MDGs. One such remarkable one in this field is the BUNCH tool (Mancoridis, 1999). This tool is based on the
optimization of an objective function Modularization Quality (MQ) (Mitchell, 2002). The major goal of MQ is to
find a balance between cohesion and coupling. So, the larger the MQ, the better is the partition of the MDG and

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

44

the closer to the desired system architecture it is. In other words, it measures the quality of the modularization of
the system concerned.
MQ=∑���
Where k is the number of clusters,
MFk is the modularization factor of cluster k.

��� � ���	
	����/����	
	���� � �
��	��	����		�����
Here intra edges depict cohesion and inter edges depict coupling.

This tool is based on heuristic approaches such as hill climbing, GA and simulated annealing which are
used for software re-modularization (Doval, 1999; Mancoridis, 1999; Mancoridis, 1998; Mitchell, 2002;
Mitchell, 2002). Hill climbing algorithm is a local optimization technique and so it may get struck at local
minima. Evolutionary algorithms such as GA do not suffer as much from this effect. But by performing repeated
experiments, it is observed that the hill climbing algorithm performs better in terms of quality and execution time
than other algorithms in software clustering. Due to this reason, the proposed algorithm is compared to hill
climbing algorithm.

Authors of this paper are using a concatenation of two evolutionary algorithms: Artificial Bee Colony
algorithm (ABC) (Yan, 2012) and Genetic Algorithm (GA) (Goldberg, 2006), which are compensating for the
shortcomings of each other and hence results in efficient modularization. ABC has been applied to a wide variety
of applications (Huang, 2013;Karaboga, 2012;Öztürk, 2012)ext

3. Genetic Bee Colony Optimization Approach

GBC is a combination of ABC and GA. ABC is an algorithm that simulates the intelligent foraging behavior of
honey bee swarms. According to ABC algorithm, the colony of artificial bees contains three groups of bees:
employed bees, onlookers and scouts (Karaboga and Basturk 2007).
Employee bee: A bee that is going to the food source visited by it before it is an employed bee.
Onlooker bee: A bee waiting in the dance area for making a decision to choose a food source.
Scout bee: This bee goes on a random search to discover new sources.
So, ABC has three phases: employee phase, onlooker phase and scout phase.
The positions of food sources represent a possible modularization of the software system, and the nectar amount
of a food source corresponds to the quality or fitness of this associated solution. This quality could be evaluated
by using an objective function MQ. It is observed that this function works very well in evaluating the quality of
software clustering.
It is a very simple, robust and population-based optimization algorithm. In another approach, the authors have
used selection and crossover operators of genetic algorithms before the scout phase for adding the advantage of a
global search to this algorithm (Yan, 2012). We further enhanced this algorithm by adding a mutation operator
and observed an increase in quality in terms of better software system re-modularization. It is assured by the
increased value of MQ.
The main steps of the algorithm are given below:
Step 1: Initialization

Set the control parameter of ABC to values shown in Table 1.
Make the first half of the colony includes the employee bees and the second half include the onlooker bees.
Randomly generate a modularization as a candidate solution using equation (1).

��
� � ����

�
� 	
��0,1���� !

�
" ����

�
� (1)

Where i=1,2,,,,Ns (Number of food sources as shown in Table 1).
j=1,2,,,,,,N (Number of parameters or modules to be clustered as shown in Table 1).

����
�

� #�$�		%�&�	��		'��	(
	
)���		�#*� � 1	�as	shown	in	Table	1�			

�� !
�

� 6((�		%�&�	��		'��	(
	
)���		�6*� � 7&)%�		��	����	��	�89
�as	shown	in	Table	1�
��
�indicates jth parameter of ith food source which means cluster to which jth node (module) has been allocated in

ith modularization or candidate solution.
Evaluate fitness of each candidate in the population using objective function MQ.
Set the current scout number s = 0.
Set number of trials for each bee = 0.
Set cycle to 1
Step 2: Employee bee

For each employee bee produce a new neighboring solution by using equation (2).

:�
�
� ��

�
� ∅�

�
���

�
" ��

�
� (2)

Where ∅	is a random number between [-1,1].
i and k=1,2,,,,Ns (Number of food sources as shown in Table 1).

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

45

k is determined randomly and should be different from i.
Calculate the fitness of each newly created solution by using MQ and apply greedy selection process to keep the
employed bees with greater value of MQ (greater fitness) between newly created and already available employee
bee.
If the new solution is better than the existing solution, replace existing solution with new and reset trial
counter=1, else if the current solution can’t be improved further increase its trial counter.
Calculate probability of a modularization solution to be selected as shown in equation (3).
(
�<

=>?@ABB>

∑ =>?@ABBC
DB
CEF

 (3)

Where �������� is the fitness of solution i in the population (calculated by objective function MQ). So, Pi is the
ratio of fitness of ith solution and sum of fitness of all employee bee solutions.
Step 3: Onlookers phase

Similarly, each onlooker bee of the second half of the population produces new solutions from the current food
sources. Apply greedy selection process to keep the onlooker bees with greater value of MQ (greater fitness)
between newly created and already available onlooker bees.
In order to improve ABC, add genetic phase at this stage.

Step 4: Genetic phase

A genetic algorithm is applied for one generation. The current position of food sources acts as the population of
GA. Value for other parameters found appropriate for software clustering is given in Table 2.
It is observed that the convergence speed of the ABC algorithm will decrease as the dimension of the problem
increases. To overcome this, a genetic phase could be added which improves the optimization ability by
involving crossover and mutation operators of genetic algorithms. By applying genetic algorithm, the
information exchange of the algorithm is enhanced. The modularizations with higher fitness are fully utilized too.
Step 5: Scout phase

If a modularization can’t be improved further during a pre-specified number of cycles called limit (indicated in
Table 1), then that modularization (food source) is replaced by a new partition (food source) created by using
equation 1.
This newly created solution is compared to existing solutions and best solution achieved so far is memorized.
Next iteration is started (cycle = cycle + 1) until stopping criteria is met which is 1000 for software
modularization (as shown in Table 1). The main steps of this approach are summarized in the flowchart shown in
Figure 1.

4. Software Clustering Using Genetic Bee Colony Optimization Approach

Experiments have been conducted on hill climbing, GA, ABC and GBC. In order to compare our work fairly
with other remarkable works, we are using MDGs which are used in some other research (Doval,
1999;Mancoridis, 1999;Mancoridis, 1998;Mitchell, 2002;Mitchell, 2002). The details of these MDGs are
presented in Table 3. Each algorithm is executed on each MDG independently and is repeated 30 times.

The detail of mean and standard deviation of 30 independent runs for GBC and hill climbing algorithm
are shown in Table 4. It also shows the result of paired two tailed student’s t-test between these two approaches
at 58 degree of freedom. The values in bold show significant increase in quality due to this new approach.

Similarly, Tables 5 and 6 compare the result of 30 independent runs of GBC to that of GA and ABC
respectively. It is observed that we have obtained a remarkably greater optimization or quality of clustering by
using GBC.

In order to compare the performance of these algorithms, the number of times the objective function is
evaluated (Function Evaluation) is calculated. If we compare the number of times objective function MQ has
been evaluated, we observe that the proposed algorithm takes much more effort especially when compared to hill
climbing (shown in Table 7). So, we obtained superior results, but at the cost of additional efforts in evaluating
objective function. It could be justified, as re-modularization is an occasional task which is done only when
software engineers observe the requirement and so to get better results, they can wait.

5. Conclusion
Although efforts have been made to use various techniques for software modularization, to the best of the
authors’ knowledge, this is the first time a honey bee-based swarm intelligent system has been applied to this
field. In this paper, we presented an algorithm based on a combination of two evolutionary algorithms: artificial
bee colony optimization and genetic algorithm. It has been tested on various software systems and compared to
other remarkable works in the field. It has been observed that the combination of these evolutionary algorithms
resulted in better solutions with an additional drawback of a much higher number of function evaluations.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

46

Encoding of population has an impact on the quality of any evolutionary algorithm, so this work could
be further enhanced by modifying the encoding of the population. It is observed that in certain cases, in order to
increase MQ, modularization is a result where a single module is kept in a separate cluster. Some technique
could be added to avoid such modularization.

References
Chen, Y.-F., Gansner, E. R., & Koutsofios, E. (1998). A C++ data model supporting reachability analysis and

dead code detection. Software Engineering, IEEE Transactions on, 24(9), 682-694.
Doval, D., Mancoridis, S., & Mitchell, B. S. (1999). Automatic clustering of software systems using a genetic

algorithm. Paper presented at the Software Technology and Engineering Practice, 1999. STEP'99.
Proceedings.

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001). Does code decay? assessing the
evidence from change management data. Software Engineering, IEEE Transactions on, 27(1), 1-12.

Goldberg, D. E. (2006). Genetic algorithms: Pearson Education India.
Harman, M. (2007). The current state and future of search based software engineering. Paper presented at the

2007 Future of Software Engineering.
http://depfind.sourceforge.net/, accessed December 2013.
http://source.valtech.com/display/dpm/Dependometer, accessed December 2013.
https://drewnoakes.com/code/dependency-analyser/, accessed February 2013.
Huang, S.-J., & Liu, X.-Z. (2013). Application of artificial bee colony-based optimization for fault section

estimation in power systems. International Journal of Electrical Power & Energy Systems, 44(1), 210-
218.

Kang, F., Li, J., & Ma, Z. (2013). An artificial bee colony algorithm for locating the critical slip surface in slope
stability analysis. Engineering Optimization, 45(2), 207-223.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459-471.

Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee
colony algorithm. Wireless Networks, 18(7), 847-860.

Karaboga, D., & Ozturk, C. (2011). A novel clustering approach: Artificial Bee Colony (ABC) algorithm.
Applied Soft Computing, 11(1), 652-657.

Mancoridis, S., Mitchell, B. S., Chen, Y., & Gansner, E. R. (1999). Bunch: A clustering tool for the recovery and

maintenance of software system structures. Paper presented at the Software Maintenance,
1999.(ICSM'99) Proceedings. IEEE International Conference on.

Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., & Gansner, E. R. (1998). Using automatic clustering to

produce high-level system organizations of source code. Paper presented at the International
Conference on Program Comprehension.

Mitchell, B. S. (2002). A heuristic search approach to solving the software clustering problem. Drexel
University.

Mitchell, B. S., & Mancoridis, S. (2002). Using Heuristic Search Techniques To Extract Design Abstractions

From Source Code. Paper presented at the GECCO.
Müller, H. A., Orgun, M. A., Tilley, S. R., & Uhl, J. S. (1993). A reverse‐engineering approach to subsystem

structure identification. Journal of Software Maintenance: Research and Practice, 5(4), 181-204.
Öztürk, C., Karaboğa, D., & GÖRKEMLİ, B. (2012). Artificial bee colony algorithm for dynamic deployment of

wireless sensor networks. Turkish Journal of Electrical Engineering & Computer Sciences, 20(2), 255-
262.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM SIGSOFT Software

Engineering Notes, 17(4), 40-52.
Schneidewind, N. F. (1987). The state of software maintenance. IEEE Trans. Software Eng., 13(3), 303-310.
Schwanke, R. W. (1991). An intelligent tool for re-engineering software modularity. Paper presented at the

Software Engineering, 1991. Proceedings., 13th International Conference on.
Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging discipline (Vol. 1): Prentice

Hall Englewood Cliffs.
Tzerpos, V., & Holt, R. C. (1998). Software botryology. automatic clustering of software systems. Paper

presented at the Database and Expert Systems Applications, 1998. Proceedings. Ninth International
Workshop on.

Wiggerts, T. A. (1997). Using clustering algorithms in legacy systems remodularization. Paper presented at the
Reverse Engineering, 1997. Proceedings of the Fourth Working Conference on.

Yan, X., Zhu, Y., Zou, W., & Wang, L. (2012). A new approach for data clustering using hybrid artificial bee
colony algorithm. Neurocomputing, 97, 241-250.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

47

Biographical Notes. Kawal Jeet is an Assistant Professor in Post-Graduate Department of Computer Science,
D.A.V. College, Jalandhar, India. She received her Master’s of Technology in Computer Science from Dr. B.R.
Ambedkar National Institute of Technology, Jalandhar, India in 2012. Currently she is pursuing Ph.D from this
institute. Her current research interest focuses on nature inspired computation, software modularization,
Bayesian networks, software quality. She has published her research work in more than 15 international journals
and conference proceedings. She is member of the IRED, UACEE and ACM India.

Table 1.: Control parameters for ABC
Parameter Value Comment
Size of colony 10*Number of

parameters to be
optimized

Employed bees and Onlooker bees together

Number of food sources
(Ns)

Size of colony/2 Half of the colony size

Trials limit 100 Abandoned a food source which could not be improved
trial limit

Cycles for foraging 1000 a stopping criteria
Objective function Modularization

Quality (MQ)[23]
It is a cost function to be optimized.
The goal of MQ is to limit excessive coupling but not to
eliminate coupling altogether. The best thing is to find a
balance between coupling and cohesion by combining
them into a single measurement.

Number of variables to be
optimized (N)

Number of modules to
be clustered.

Number of nodes in MDG.

Lower bound of parameters 1 No Coupling. It means a single cluster with all the
nodes in it.

Upper bound of parameters Number of nodes in
MDG.

No Cohesion. It means every node is in a separate
cluster.

Table 2.: Control parameters for GA
Parameter Value Comment
Selection Algorithm Tournament Candidate modularisations Parent1 and Parent2 are

selected for crossover using this method
Crossover function Arithmetic Child=R1 XParent1+ R2 XParent2

Where R1,R2 are random numbers between 0 and 1 and
are independent

Mutation function Uniform Rate 0.02
Population size Number of food sources Ns of table 1
Population Food sources of ABC Modified by employee phase and onlooker phase of

ABC
Crossover fraction 0.6
Generations 1
Objective function MQ

Table 3: Description of the software systems to be used in case study
Software System Modules in MDG Edges in MDG System Description
Compiler 13 12 A Small compiler
Nos 16 52 C++ program that implements file system service
Mini-Tunis 20 57 A simple operating system
Ispell 24 103 An open source spell checker
Rcs 29 163 Open source version control tool.
Star 36 89 Source code analysis tool to produce the MDG
Bison 37 179 Parser Generator
Grappa 74 112 Graph Visualization and Drawing Tool
Incl 174 360 Subsystem from a Source Code Analysis system

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

48

Table 4: Comparison of proposed GBC and Hill Climbing
Software
System

GBC Hill Climbing Student’s t-test at 58
degree of freedom Mean Standard

Deviation
Mean Standard

Deviation
Compiler 1.6667 0 1.44953 0.049396 24.0809
Nos 1.66571 0.026246 1.63038 0.051536 0.7493
M-Tunis 2.72356 0.066064 2.255394 0.054769 20.6235
Ispell 2.34712 0.04091 2.340724 0.0255 0.7268
Rcs 2.24701 0.028897 2.21347 0.020 5.4291
Star 3.79903 0.0012 3.777057 0.057313 3.2820
Bison 2.68599 0.046547 2.639 0.041 1.2315
Grappa 17.7858 0.3231 12.676 0.017 86.4371
Incl 11.2669 0.276649 13.568 0.035 -44.8879
Boxer 3.1011 0 3.101 0 0
Modulizer 2.71699 0.062747 2.685987 0.064958 1.8803

Table 5: Comparison of proposed GBC and GA
Software
System

GBC GA Student’s t-test
at 58 degree of
freedom

Mean Standard
Deviation

Mean Standard
Deviation

Compiler 1.6667 0 1.6667 0 0
Nos 1.66571 0.026246 1.60072 0.054506 3.4018
M-Tunis 2.72356 0.066064 2.57605 0.119806 6.3108
Ispell 2.34712 0.04091 2.18869 0.095947 8.3193
Rcs 2.24701 0.028897 2.06682 0.103749 9.1641
Star 3.79903 0.0012 3.29476 0.21403 12.9047
Bison 2.68599 0.046547 2.33062 0.10614 16.7942
Grappa 17.7858 0.3231 12.0577 0.787977 36.8390
Incl 11.2669 0.276649 -5.96656 0.367613 63.1008
Boxer 3.1011 0 2.97925 0.114837 5.8117
Modulizer 2.71699 0.062747 2.34317 0.144475 12.9989

Table 6: Comparison of proposed GBC and ABC
Software
System

GBC ABC Student’s t-test
at 58 degree of
freedom

Mean Standard
Deviation

Mean Standard
Deviation

Compiler 1.6667 0 1.6667 0 0
Nos 1.66571 0.026246 1.63829 0.014005 5.0487
M-Tunis 2.72356 0.066064 2.731 0.05157 1.0982
Ispell 2.34712 0.04091 2.28618 0.026491 6.8486
Rcs 2.24701 0.028897 2.16131 0.037775 9.8701
Star 3.79903 0.0012 3.45343 0.06691 27.7645
Bison 2.68599 0.046547 2.39958 0.072407 18.2240
Grappa 17.7858 0.3231 9.71646 0.759839 53.5285
Incl 11.2669 0.276649 3.53938 0.459941 84.4936
Boxer 3.1011

0 3.08335 0.022512 4.3191

Modulizer 2.71699 0.062747 2.4396 0.077777 15.2034

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.6, No.2, 2015

49

Table 7: Comparison of number of function evaluations in proposed GBC, ABC, GA and Hill Climbing
algorithms
Software System Hill GBC ABC GA
Compiler 446.7333 200887s 100557 5200
Nos 860 200792.3 100280 5536.667
M-Tunis 1004.267 200791.8 100268.4 5566.667
Ispell 1887.7 200695.8 100196 6243.333
Rcs 3495 200629 100162.7 6693.333
Star 4917 200563.5 360543.9 7996.667
Bison 5957 200546.8 100139.6 7996.667
Grappa 79586.6 200311.8 100163.9 10100
Incl 155020.2 200134.8 100197.7 10090
Boxer 1144.167 360849.8 100269.1 5723.333
Modulizer 2227.067 200692.7 100205.7 6240

Figure 1. Flowchart of Genetic Bee Colony Algorithm

Start

Initialize the population using

equation 1. Make first half as

employees and second as

onlookers. Set parameters.

Evaluate fitness of each

candidate using fitness

function MQ

Employee bee phase

Onlookers bee phase

Genetic phase

Scout bee phase

Stopping criteria met

Stop

Memorize the best solution

Output the best solution

Yes

No

Evaluate fitness of each new employee

bee using fitness function MQ

For each employee bee find the

neighborhood using equation 2

MQ neighbor > MQ Employee bee

Keep neighbor

Trial=1

Discard neighbor

Trial=Trial+1

Yes No

Evaluate fitness of each new onlooker

bee using fitness function MQ

For each onlooker bee find the

neighborhood using equation 2

MQ neighbor > MQ onlooker bee

Keep neighbor

Trial=1

Discard neighbor

Trial=Trial+1

Yes No

For each bee in the population obtained

from employee and onlooker phase

evaluate fitness using MQ

Select mates using tournament selection

Find a child using arithmetic cossover

at the rate of 0.6

Perform uniform mutation at the

rate of 0.02

For each bee

Trial >Limit

Replace the bee with a new

candidate created using

equation 1

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

