
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

55

Static Analysis Based Behavioral API for Malware Detection

using Markov Chain

Proff. Abbas M. Al-Bakri
1
 Hussein L. Hussein

2

1.Kuffa university/Faculty collage of computer and mathematics

2.Baghdad university/Ibn Al-Haitham collage

* E-mail of the corresponding author: abbasmoh67@yahoo.com , husseinlefta@yahoo.com

The research is financed by Asian Development Bank. No. 2006-A171(Sponsoring information)

Abstract

Researchers employ behavior based malware detection models that depend on API tracking and analyzing

features to identify suspected PE applications. Those malware behavior models become more efficient than the

signature based malware detection systems for detecting unknown malwares. This is because a simple

polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number

of computer malwares and the detection of malware have been the concern for security researchers for a large

period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging

recent developments in malware research, which provides alternatives to classic virus detection methods. To

address the limitation of traditional AVs, we proposed a virus detection system based on extracting

Application Program Interface (API) calls from virus behaviors. The proposed research uses static analysis

of behavior-based detection mechanism without executing of software to detect viruses at user mod by using

Markov Chain.

Keywords: Malware Detection; Markov Chain; Virus Behavior; API C alls

1. Introduction
Since the appearance of the first computer virus in 1986, and the A significant number of new viruses have

appeared every year. The damage caused by malicious code has dramatically increased in the past few years.

Software security assurance and malware detection are important topics of information security [13].

Malware analysis can be categorized into two main categories [11]:

• Analysis of the infected file without executing it, which is known as static analysis. In this

approach, we extract low-level information such as Control Flow Graphs (CFGs), Data-Flow Graphs

(DFGs) and System call analysis. This information can be gathered by disassembling or decompiling

the infected file using tools like IDA Pro. Sometimes analyzing the infected file in a different

environment to avoid auto execution of the malware is better. Using static analysis we get fast, safe and

low false positives and we trace all paths, which helps in terms of getting a lot of information to analyze.

On the other hand static analysis may fail in analyzing unknown malware that uses code obfuscation

techniques [3].

• Analysis of the infected file during its execution, which is known as dynamic analysis.

Dynamic analysis executes the infected file on simulated environment (a debugger or a virtual machine

or an emulator) to analyze its malicious functions. The analysis environment must be invisible to the

malware because the malware writer use tools like anti-virtual machine and Anti-emulation to hide their

malware functions if they detect they are under analysis. Dynamic analysis fails to detect activities of

interest if the target changes its behavior depending on trigger conditions such as existence of a specific

file or specific day as only a single execution path may be examined for each attempt.

Techniques: There are mainly two techniques for malware detection:

• Signature-Based and Behavior-Based techniques as shown in (Table 1-2). In signature-based

 techniques a sequence of instructions unique to a malware is used to generate a malware

 signature, which is captured by researchers in a laboratory environment.

A signature should be able to identify any malware exhibiting the malicious behavior specified by the

signature. Most of antivirus scanners are signature based.

• Behavior-based detection techniques focus on analyzing the behavior of known and suspected malicious code.

Such behaviors include factors such as the source and destination addresses of the malware, the attachment

types in which they are embedded and statistical anomalies in malware infected systems. One example of a

behavior-based detection approach is the histogram-based malicious code detection technology patented by

Symantec.

To overcome the limitations of signature-based detection some malware researchers apply

graph ,Control Flow Graph,(CFG), Call Graph , Machine Learning techniques and Data Mining

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234644914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

56

techniques ,Objective-Oriented Association, (OOA) .Other researchers apply techniques like Finite Automaton,

HMM, Naïve Bayes, Support Vector Machine (SVM) and Decision tree and neural network to improve

Behavior-Based Detection[3].

2. Background.

It is very important to understand application program interfaces (APIs) and their features, in order to trace

the behavior of programs and to understand hidden features of malicious codes.
Therefore, an outline of API calls is provided here in order to enhance understanding of this important

system service [12].

Figure 1. The Trend of Economic Development

Description for the above figure.

2.1. Windows Application Program Interface (API) system calls.

In 1995, Microsoft released Windows 95 and at the same time introduced a set of system calls known as Win32

API, which represented a 32-bit application program interface. The new APIs had the advantage of higher

system speeds because they provided a set of optimized system operations. User applications in the Windows

operating system (OS) based on these API function calls are stored in Dynamic Link Libraries (DLLs) such as

User32.ddl, Kernel32.dll, Advqpi.dll, and Gui32.dll, in order to gain access to system resources involving

registry and network information, processes and files. Each Win32 API call has its own memory address place in

the Import Address Table (IAT) which every process in the system has and which each process will consult

when it makes an API call. A Win32 API call is normally called from a process running at the user level, and

then the called API will be handled by the system and converted to its equivalent function, known as a native

API call, which will be understood by the kernel of the OS. A service in the kernel will handle the requested

operation and its outcome will return to the original user application that made the call.

The majority of systems services run in the kernel and need privileges in order to access it. Native API

calls, which can be directly called by any process at the kernel level, are dealt with in the dynamic link library

(ntdll.dll) in order to have the kernel provide the requester service. The complete list of kernel mode functions is

stored by memory location addresses in the System Service Dispatch Table (SSDT), which is accessed each time

a native API routine is called. The parameters are then passed to the memory location and the function continues

with its execution.

Windows API calls play an important role in exploiting the power of Windows, allowing virus writers

to use API calls to gain more security privileges and perform malicious actions. Windows APIs issue calls to

perform several actions, such as user interfaces, system services and network connections, which can be utilized

for good or evil.

Because API calls will give a full and complete description of a particular program, the analysis of its

API calls will lead directly to the understanding of its behavior [12].

2.2. Polymorphic and Metamorphic malware

Software security assurance and malware (Trojans, worms, and viruses, etc.) detection are important topics of

information security. Software obfuscation, a general technique that is useful for protecting software from

reverse engineering, can also be used by hackers to circumvent the malware detection tools. Current static

malware detection techniques have serious limitations, and sandbox testing also fails to provide a complete

solution due to time constraint [1].

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

57

A classification of malware based on payload, enabling vulnerability, and propagation mechanism gives

three generations [1].

First generation

• Malware that shares the properties of a virus

• Requires human action to trigger replication and spreading

• Propagates via email and file sharing

• Examples: Melissa, LoveLetter.

Second generation

• Malware that shares the properties of a worm

• Does not require human intervention for replication and spreading.

• Automatic scanning of victims for vulnerabilities

• Hybrid in nature, blended with viruses and Trojans

• Propagates via Internet

• Examples: Slapper worm, SQL Slammer worm, and Blaster worm.

Third generation

• Pre-compiled vulnerable targets

• Exploits known and unknown vulnerabilities

• Employs multiple attack vectors

• Geographical region- or organization-specific Malware.

• Attacks security technologies and products.

Existing AntiVirus (AV) products provide detection techniques which are based on signatures that

have been collected from previous seen viruses and then added to an AV database. Prior to the arriving of a

virus to the system, its signature will be compared with those stored in the database and if there is a match,

the virus will be detected; otherwise, the system will run normally. Thus, zero day viruses will not be detected by

traditional detection systems unless this new virus is received by the antivirus database. Signature-based

detection systems need databases in order to store the signatures. As the number of viruses increases every day,

ever larger databases are needed to store all their signatures, so that more storage space will be needed in the

near future. The large database will also affect the speed of searching for signatures, and, thus, affect the

performance of the system. These disadvantages mean that the signature-based detection techniques will soon be

inadequate to protect computer systems [12].

There is a growing need for behavioral specification to be used in detecting attacks, providing a robust

and manageable detection technique. The present research proposes to build a detection technique using

temporal logic specifications that have been inferred from the analysis of Windows and native API calls

that represent virus behaviors [1].

3. Related work

Skormin et al [2] have designed an approach that intercepts API calls while a program is running. They detect

any attempt of a malware to self-replicate at run-time. Their methodology was to trace the behavior of normal

processes and analyses API calls along with their input, output arguments and the execution results. The

replication of a process was modelled by the Gene of Self Replication (GSR) based upon building blocks. Each

block in the GSR is considered as a portion of the self-replication process which includes seeking for files and

directories, writing to files, reading from files, and closing and opening a file. This approach has detected several

viruses from different classes but on the other hand, they used to hook native API calls only in the kernel. As said

by [9,7] native APIs are not fully documented that gives some viruses the ability to use some of these

undocumented API to attack the system.

Alazab et al [6] have used a static analysis to track API calls using existing tools. They analyze

malware to classify program executable as normal or malicious. They have used the IDA Pro [5] with their

own Python program to automatically extract API calls. They had examined six groups of virus steps such as

search, copy, delete, read and write. They have found that read and write files were the most API calls used by

malwares to infect the program. Lists of Win32 API calls have been extracted at the user level. However, there

are some viruses that might not be detected by [6] because they directly call the kernel by using native API

calls as mentioned by [4,9].

Veeramani and Rai [8] have used a statistical analysis for Windows API calls to describe the

behavior of programs. They used an automated framework for analyzing and categorizing executables rely on

their relevant API calls. They try to increase the detection rate by using Document Class wise Frequency feature

Selection (DCFS) measure by getting the information related to malware from the extracted API calls.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

58

4. Stochastic process in Markov Chain

A stochastic process is a mathematical model that evolves over time in a probabilistic manner .The special kind

of stochastic process, called Markov chain, where the outcome of an experiment depends only on the outcome of

the previous experiment. In other words, the next state of the system is depending only on the present state, not

on preceding state [10].

4.1. Transition Matrix

The entries in the first row of the matrix P in table (3) represent the probabilities for the various kinds of virus

steps behaviors probability. Similarly, the entries in the other rows represent the probabilities for the various

kinds of virus steps behaviors, respectively. Such a square array is called the matrix of transition probabilities,

or the transition matrix.We consider the question of determining the probability that, given the chain is in state i

behavior, it will be in state j from now. We denote this probability by pij [10].

5. Experimental results

The proposed malware detection system is evaluated using the Malware Detection System (MDS). Accuracy is

defined as the product of number of malicious process rightly classified as malicious transitions table (3).

P (malware) = P12*P23*P34*P45. If P (malware) > 0 Malware

 Else Benign

Where, P (malware) is the Probability of malware.

Windows executable files which are recognized as benign and malicious executables are collected from

vxheavens.com for malware and download.com for benign. The malicious executables mainly consists of

backdoors, worms, and Trojan horses and the benign executables are gathered from [10]. The proposed

algorithms are implemented using Mat lab.

5. Research Motivation

In this paper, we address the problem of static slicing on binary executables for the purposes of the malicious

code detection in user API. Static slicing is useful to extract those code fragments that are critical from the

security standpoint. The flowchart of research motivation steps shown in figure 1.

Once extracted API by using APIMonitor software, this software will extract API functions and store

them in Excel sheet. Then coded these APIs by using API Data Base to convert these APIs to codes, the code

ranged from 1 to 3044.

After that the research will extract APIs code that mapping the codes of virus behavior API that

matching the five steps of virus detection behaviors [4], as shown in table (4).This procedure one after coded the

APIs of the software want to be examined and the APIs in table (4) will be coded and converted to integer

values ranged from 0 to 5 as shown in table (5) .

5.1. Extracting API calls.

Viruses are just like normal programs and can be distinguished by tracking their API calls that lead to malicious

actions. Therefore, this research concentrates on tracing API calls in order to understand virus behavior.

More than one tool was utilized to trace API calls in static and runtime environments. Most researchers rely

on just one tool, which runs either statically or dynamically, but this research uses static analysis.

Such a system is able to examine API calls issued in the user mode and if a file is detected as a virus,

no further examination is needed. If, however, it is not considered to be a virus, the detection system will

examine it at the kernel level by observing its native API calls. In this research we extract API from the

application which we want to examine it by using API monitor which extract the API from the application

without need for execute.

5.2. Convert API to its code.

We create an Excel database sheet to collect all APIs windows Microsoft .This Excel database sheet contain all

API sorted in alphabetic order and each API has its own index, which it’s unique and not shared with any other

API windows Microsoft.

In this step we convert each API in the examined software by matching API with each API in the

database sheet and extract its index when found , this index number will be in the range from 1 to 3041

according to the database sheet indexes.

5.3. Extract API features.

In this step we use “Virus category” in table (3) which explains the five steps to generate virus.

In these steps we use the APIs codes generates by previous step and covert its APIs to APIs code , as

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

59

shown in API Function Calls code fie field , then covert these codes to another values from 0 to 5 as

explained ,Step Code, in table (3) as follows:

0 : For each API not found in virus behaviors.

1 : For each API found in First step (Find to infect) virus behaviors.

2 : For each API found in Second step (Get information) virus behaviors.

3 : For each API found in Third step (Read and/or copy) virus behaviors.

4 : For each API found in Fourth step (Write and/or delete) virus behaviors.

5 : For each API found in Fifth step (Set information) virus behaviors.

5.4. Markov chain

The Markov chain is used when we need to evaluate the probability of action occurs depending on the previous

action only. This idea is used in this research to evaluate of probability for malware occurs according to the

graph translating which we designed and constructed for the transition graph and table of probability of six steps

for transition graph and 6*6 matrix for probability transition table(3).For the experiment we use application

which has (942) API and after the coding and transformation we calculate the following transition probability

“Step Code “ in table (5),and transition graph figure 2.To find if the tested application is malware or benign, we

can use this system to extract the above transition matrix for each application, and by examining the items

P12,P23,P34,P45, explained the behavioral virus analysis including our API extraction mechanism. The transition

in reverse order is not important then it’s ignored in transition graph representation.

6. Conclusions

The problem of accurate discrimination between benign and malware (API) function calls have been explained

in this paper. This problem challenges the most malware behavior detection models that depend on (API) tracing

and analyzing. A Markov chain (i.e. 5-grams) or longer is used to model the API call. This composite feature set

is provided as an input to the malware detection system to raise the final alarm. Association mining based

classification is used because it yields higher detection accuracy than previous data mining based detection

systems.

The number of APIs is reduced, by removing the redundant APIs not used as virus behavior, to make

the malware analysis efficient.

The performance of the proposed detection system is evaluated for accuracy of the malware detection

system and compared with the existing data mining based detection systems. It is inferred that the proposed

malware detection system outperforms the existing malware detection systems.

Table 1. Summary of the advantages and disadvantage of static and dynamic analysis

Malware analysis Advantage Disadvantage

Static analysis -Fast and safe.

-Low level of false positives.

-Good in analyzing multipath malware.

Difficulty analyzing unknown

malware.

Dynamic analysis Good in detecting unknown malware. -Neither fast nor safe.

-Difficulty analyzing multipath

malware.

Table 2. Summary of the advantages and disadvantages of signature based and behavior-based techniques.

Malware

based

Advantage Disadvantage

Signature-

based

-Less scanning time.

-Few false positives.

-Unknown malware can easily evade detection.

-Cannot deal with simple obfuscation.

Behavior-

based

Best results in detecting of polymorphic

malware.

Not able to detect a lot of polymorphic viruses

present (Packers).

Table 3. Transition Matrix Probability

steps P0 P1 P2 P3 P4 P5

P0 0.9251 0.0081 0.0142 0.0445 0.0040 0.0040

P1 0 0.8750 0.1250 0 0 0

P2 0.2128 0 0.3830 0.3936 0.0106 0

P3 0.0769 0 0.4327 0.4231 0.0673 0

P4 0.0205 0 0 0.0051 0.9436 0.0308

P5 0.2273 0 0.0909 0 0.0455 0.6364

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

60

Table 4. Five steps of virus behavior

Step Virus category API Function Calls

First

Find to infect FindFirstStream,FindFirstFileTransacted,FindFirstStreamTransacted

W,FindFirstStreamW,FindClose,FindNextFile,FindFirstName,FindFi

rstFileEx,FindFirstFile,FindFirstNameW,FindNextFileName,FindNe

xtFileNameW,FindFirstNameTransactedW,FindNextStreamW,FindN

extStream

Second

Get information GetFileAttributesEx,GetFileAttributesTransacted,GetFileAttributes,G

etFileInformationByHandle,GetFileBandwidthReservation,GetComp

ressedFileSizeTransacted,GetFileInformationByHandleEx,GetCompr

essedFileSize,GetBinaryType,GetFileSizeEx,GetFileSize,GetFileTyp

e,GetTempFileName,GetTemppath,GetFinalPathNameByHanle,GetL

ongPathNameTransacted,GetFullPthNameTransacted,GetFullPthNa

me,GetLongPathName,GetShortPathName.

Third

Read and/or copy ReadFile,ReadFileW,OpenFile,OpenFileByld,ReopenFile,CreateHar

dLinkTransacted,CreateHardLink,CreateSymbolicLinkTransacted,Cr

eateSymbolicLink,CopyFileEx,CopyFile,CreateFileW,CreateFile,Co

pyFileTransacted , CreateFileTransacted.

Fourth Write and/or delete ReplaceFile,WriteFile,DeleteFileTransacted,DeleteFileW, DeleteFile,

CloseHandle

fifth Set information SetFileInformationByHandle,SetFileValidData,SetFileBandwidthRes

ervation,SetFileShortName,SetFileAttributesTransacted,SetFileApisT

oOEM,SetFileAttributes,SetFileApisToANSI.

Table 5. Five steps codes of virus behaviors

Step Code Virus category

1 For each API found in First step (Find to infect) virus behaviors.

2 For each API found in Second step (Get information) virus behaviors.

3 For each API found in Third step (Read and/or copy) virus behaviors.

4 For each API found in Fourth step (Write and/or delete) virus behaviors.

5 For each API found in Fifth step (Set information) virus behaviors

Table 6. Five steps of virus behavior codes

Step Step code Virus category API Function Calls code

other 0 None of the virus steps 0

First 1 Find to infect 732,738,740,745,747,748,749,751,752,753,761,

764,764,767,768

Second 2 Get information 847,898,900,1031,1033,1036,1039,1041,1042,1

043,1044,1046,1050,1057,1059,1104,1106,1273

,1324, 1327

Third 3 Read and/or copy 236,238,241,293,300,301,306,308,370,371,1931

,932, 2135,2138,2289

Fourth 4 Write and/or delete 181 , 452 ,454 , 455,2290 , 3005

fifth 5 Set information 2465,2466,2467,2469,2471,2473 , 2477 , 2479

Table 7 transition matrix probability

steps P0 P1 P2 P3 P4 P5

P0 0.9251 0.0081 0.0142 0.0445 0.0040 0.0040

P1 0 0.8750 0.1250 0 0 0

P2 0.2128 0 0.3830 0.3936 0.0106 0

P3 0.0769 0 0.4327 0.4231 0.0673 0

P4 0.0205 0 0 0.0051 0.9436 0.0308

P5 0.2273 0 0.0909 0 0.0455 0.6364

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

61

Select the tested application

Extract all APIs from tested application by using APImonitor software

Convert APIs to Codes using APIs Database sheet

API

DBase

sheet

Convert Codes to Behavior codes (0-5)

Calculate the probability transition matrix

Use Markov chain to evaluate the probability of virus behavior

Figure 1. Research motivation flowchart

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

62

References

A. H. Sung, J. Xu, *P. Chavez, *S. Mukkamala , 2004 ,“Static Analyzer of Vicious Executables

(SAVE)”,IEEE ,computer security applications conference,.

 A. Skormin, D. Volynkin, I. Summerville, and J. Moronski, 2007.,“Run-Time Detection of Malicious Self-

Replication in Binary Executables”,in Journal of Computer Security,vol.15, no.3, pp. 273-01.

Ammar Ahmed E. Elhadi, Mohd Aizaini Maarof and Ahmed Hamza Osman , 2012, “Malware DetectionBased

on Hybrid Signature Behavior Application Programming Interface Call Graph “, American Journal of Applied

Sciences 9 (3): 283-288.

G.Hoglund and J.Butler.Rootkits,2005,”subverting the Windows Kernel”. Addison Wesley Professional.

IDA Pro Dissasember .DataRescue, 2011 ,“An Advanced Interactive Multi-processor Disassembler,”

http://www.datarescue.com.

M. Alazab, S. Venkataraman, and P. Watters, 2010, “Towards understanding malware behavior by the extraction

of API calls,” IEEE 2nd Cybercrime and Trustworthy Computing Workshop , pp. 52-59.

M. Russinovich, , 2005, “Inside the Native API,” http://www.sysinternals.com/Information/NativeApi.html.

 R. Veeramani, and N. Rai, 2012 ,“Windows API based Malware Detection and Framework Analysis,” in

International Journal of Scientific & Engineering Research, vol. III, no. III.

R. Vieler. Professional Rootkits. Wrox Press, 2007.

Ronald E. Walpole , Raymond H. Myers,Sharon L. Myers ,Keying Ye,2007,“Probability & Statistics for

Engineers &; Scientists” , Pearson Education International.

P1

P2

P3

P4

P5

0.875

0.125

0.0308

0.9436

0.0673

0.4231

0.3936

0.6364

0.0106

0.383

Figure. 2. Transition graph

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.5, No.12, 2014

63

Saman Mirza Abdulla1, Assoc. Prof. Dr. Miss Laiha Mat Kiah, and Assoc. Prof. Dr. Omar Zakaria, 2012,”

Minimizing Errors in Identifying Malicious API to Detect PE Malwares Using Artificial Costimulation”,

International Conference on Emerging Trends in Computer and Electronics Engineering (ICETCEE'2012),

March 24-2.

Sulaiman Al amro (1,2), Antonio Cau , 2012, “Behavioural API based Virus Analysis and Detection” , (IJCSIS)

International Journal of Computer Science and Information Security,Vol. 10, No. 5

Zhang Yichi, Pang Jianmin, Bai Lili, Fu Wen , ,2009,”Static Analysis of Malware to Detect Exception Return”,

International Forum on Information Technology and Applications.

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

