
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

55

Parallel Query Processing on 2D Mesh and Linear Array

Architectures

Amal Elsayed Aboutabl

Computer Science Department, Faculty of Computers and Information,

Helwan University, Ain Helwan, Cairo, Egypt E-mail: aaboutabl@helwan.edu.eg

Abstract

As the size of the web grows, it is necessary to parallelize the process of retrieving information from the web.

Incorporating parallelism in search engines is one of the approaches towards achieving this aim. This paper presents

an algorithm for query processing on the 2D mesh architecture and two algorithms for linear array architectures. We

attempt to exploit the arrangement of processors and the communication pattern in both 2D mesh and linear array

architectures to attain high speedup and efficiency for queries-keywords comparisons. A cost model is presented for

each algorithm based on both processing and communication cost. Proposed algorithms are evaluated using speedup

and efficiency performance metrics. For the same number of processors, 2D Mesh_QP outperforms both linear array

algorithms (LA_QPAKP and LA_QPKE).

Keywords: 2D Mesh, Linear Arrays, Parallel computing, Query processing

1. Introduction

In addition to the increase in the size of the web and the number of available documents, there has also been an

increase in the number of internet users. This has, in turn, led to a dramatic increase in the number of queries to be

processed (Cho & Garcia-Molina 2002). Parallel query processing is needed to design web search engines to deal

with both query traffic and the huge amount of information available on the web (Marin et al. 2010). Every

document available on the web is associated with a number of keywords which may be words appearing in or topics

covered by the document (Baeza-Yales & Ribeiro-Neto 1999). For a search engine to process a query, it needs to

compare the keywords appearing in the query with the available indexed keywords in order to retrieve related

documents. This work focuses on this comparison step which we attempt to parallelize for a large number of queries

and keywords. In particular, algorithms are proposed here for query processing on the 2D mesh and linear array

parallel architectural models.

A two-dimensional mesh is a network that can be represented in a manner as shown in figure 1(a). It can be viewed

as an N×N array of processing elements (PEs). Every PE is indexed by a 2-tuple (i,j) where 0 ≤ i ≤ N is the row

index and 0 ≤ j ≤ N is the column index (Perhami 2002). Such a mesh has N
2
 PEs and typically adopts the local

memory model where each PE has a processor and a local memory connected to it. Data are transferred from one

processor to the other by routing messages through the mesh. The torus architecture is one variant of the 2D mesh

where PEs on the sides are connected to those on the other side. Every PE (i,j) is connected to (i, (j+1) mod N), (i,

(j-1) mod N), ((i-1) mod N, j) and ((i+1) mod N, j). Hypercubes and 3D meshes are also other variations on meshes.

In 2D meshes, propagation delay between adjacent processors is quite small which facilitates high speed

communication due to the short local connections between processors. Links between processors are bidirectional

and capable of carrying data in both directions concurrently. The mesh can be indexed in a row-major or

column-major order. A linear array can be considered as a 1D mesh as processing elements are connected in a

chain-like manner. Each processor communicates with its two neighbors directly as in figure 1 (b). In a bidirectional

linear array, input can be fed in from the two ends of the chain where the inputs are propagated in one direction

(El-Rewini & Abd-El-Barr 2005).

In this paper, we attempt to exploit the arrangement of processors and the communication pattern in both 2D mesh

and linear array architectures to attain high speedup and efficiency for queries-keywords comparisons.

2. Related Work

Some parallel algorithms are based on the idea of domain decomposition in which a certain domain of interest is

partitioned prior to computation. This is typically applied on numerical problems where the domain of interest is a

matrix, vector or geometries (Panitanaraka & Shontza 2011). The divide-and-conquer approach has been one of the

most common approaches in parallel algorithm design. It relies on splitting the original problem into a number of

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

56

sub-problems that can be solved in parallel. Sub-problem solutions are then merged to form the whole solution

(Blelloch & Maggs 1996). Classically, parallel architectures attracted the attention of researchers to design parallel

algorithms for different types of problems. Typical examples of such algorithms are sorting, searching and graph

problems (Grama et al. 2003). Moreover, many compute-intensive algorithms such as weather forecasting and

simulations require parallel processing. Data-intensive applications may also benefit from parallel processing if

data-partitioning schemes are adopted.

The 2D mesh has been used to solve a variety of problems. Some classic algorithms are available in the literature

to exploit parallelism on 2D meshes for searching, sorting and matrix operations such as transpose and multiplication.

A bitonic sorting algorithm has been designed for 2D meshes (Ceterchi et al. 2007). Mesh architecture was used to

solve the maze routing problem (Ercal & Lee 1997). Choi and Park (2012) parallelized a video compression

algorithm on a multicore system arranged as a 2D mesh topology using a wavefront scheme to break dependencies

among partitioned code blocks. An algorithm for complete exchange on 2D mesh multiprocessors is also presented

(Young-Joo & Yalamanchili 2000).

A number of parallel query processing approaches have been attempted. One of the first attempts was the study of

parallel query processing on shared-everything parallel systems (Hong & Stonebraker, 1991). Konstantopoulos,

Mamalis, Pantziou and GavalasHong (2009) proposed parallel algorithms for document retrieval on Bulk

Synchronous Processors and Coarse-Grained Multiprocessors. A study based on distributed indexing where the

document index is partitioned among distributed cluster servers was also presented (Marin et al. 2010). Another

approach (Büttcher et al. 2010) uses index servers to partition the document index. Our previous work (Aboutabl

2013) presents a model that exploits parallelism on both shared-memory and cluster-based parallel architectures

using term-based partitioning. We show that our shared-memory model outperforms the cluster-based model using

some performance metrics.

(a) 3 x 3 2D Mesh (b) Linear Array

Figure 1. Example 2D Mesh and Linear Array Architectures

3. Parallel Query Processing on a 2D Mesh

In the proposed algorithm (figure 2), queries are fed into the 2D mesh from the left and propagated in parallel to the

right until a query resides in every PE. All PEs in a column of the mesh receive input from and send output to

adjacent PEs synchronously. The SIMD control model is adopted where all PE’s perform the same operation

simultaneously but on different data. In this sense, every processing element Pi,j sends its current query to Pi,j+1.

propagate_queries

 Begin

 for j=0 to N-1 do

 for i=0 to N-1 do in parallel

 Pi,j send its current query to Pi,j+1

 End

propagate_keywords

P0,0

P1,0

P2,0

P0,1

P1,1

P2,1

P0,2

P1,2

P2,2

P0,0 P0,1 P0,2

P1,2

P0,0 P0,1 P0,2

P1,2

P0 P1 P2 P3

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

57

 begin

 repeat

 for all processors Pi,,j do in parallel

 begin

 Check current query against the current keyword in Pi,j

 Send the current keyword in Pi,,j

to Pi+1,j

 end

 Interchange keyword groups in mesh columns

 until all columns have been interchanged

 end

Mesh_QP

begin

for Q/N
2
 groups of queries do

 begin

 Propagate_Queries

 for K/N
2
 groups of keywords do

 Propagate_Keywords

 end

end

Figure 2. 2D Mesh query processing

In the same manner, keywords are propagated across the mesh rows in a top-down fashion. Keywords are fed into the

vertical inputs of the first row and are sent from every Pi,j to Pi+1,j until each PE holds a keyword. Upon receiving a

keyword, each PE checks its current query against its current keyword. If one of the keywords in the query matches

the keyword, document ID’s related to the keyword are appended to the list of document IDs of this query. Then, the

current keyword is sent to the PE in the south. It is to be noted here that a query resides in a specific PE while

keywords keep moving across the queries in columns. By the time N
2
 keywords fill the mesh, every N keywords in a

column would have been checked against all queries in the same column only. Therefore, keywords are propagated

in the N columns interchangeably such that all the N
2
 queries are checked against N

2
 keywords.

The total number of queries Q is divided into groups each consisting of N queries. For every N query groups, each

query group is propagated one query at a time through the N horizontal inputs as shown in figure 3. Hence, the mesh

will handle N
2
 queries at a time which are divided into N groups each consisting of N queries. Similarly, keywords

are divided into groups of N keywords each where each group is fed into a column. Therefore, the mesh will check

N
2
 queries against N

2
 keywords.

4. Parallel Query Processing on Linear Arrays

Two algorithms are proposed to perform parallel query processing on linear arrays. The first algorithm named

LA_QPAKP (Linear Arrays Query Processing with All Keywords Propagation) relies on partitioning queries into

groups. Each group of queries in the linear array is checked against all keywords which are propagated through the

linear array passing through all PEs. On the other hand, our second algorithm named LA_QPKE (Linear Arrays

Query Processing with Keywords Exchange) partitions both queries and keywords into groups where a group of

queries is checked against a group of keywords. Keywords in every group are exchanged in and odd-even manner to

ensure that all queries are checked with all keywords. Both algorithms are detailed in the following subsections. Here,

N refers to the total number of PEs in the linear array.

4.1 LA_QPAKP

Queries and keywords are propagated through the linear array, each is input from a different end (figure 4). Queries

are divided into Q/N groups of N queries each where each group is propagated separately through the linear array.

After each query in a group settles in a PE, keywords propagation is started (figure 5). Here, keywords are not

divided into groups but propagated in parallel as one stream till the last keyword kK-1 reaches P0. Every propagation

step involves sending the current keyword in each processor Pi to Pi-1; the next one in the direction of propagation.

After each propagation step, all PEs check their current queries against their current keywords, in parallel. When all

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

58

the keywords have been propagated to the other end of the linear array, all queries in the current group of queries will

have been checked against all keywords. Then, the next group of queries is fed in and all keywords are propagated

again. This process is repeated for all query groups.

Figure 3. The distribution of N
2
 queries and N

2
keywords among the inputs of an N×N mesh

LA_QPAKP

begin

repeat

 for i=0 to N-1 do in parallel

 Pi sends its current query to Pi+1

 repeat

 for i=N-1 to 1 do in parallel

 begin

 Pi sends its current query to Pi-1

 Check current query against the current keyword in Pi

 end

 until the last input keyword reaches P0

until all query groups are finished

end

Figure 4. Linear array query processing with all keywords propagation (LA_QPAKP)

P0,0 P0,1

P1,0 P1,1

P0,N-1

P1,N-1

PN-1,0 PN-1,1
PN-1,N-1

qN-1 . . q1 q0

q2N-1 . . qN+1 qN

qN2-1 . . qN2-N+1 qN2-N

kN-1

.

.

k1

k0

k2N-1

.

.

kN+1

kN

kN2-1

.

.

k N2-N+1

kN2-N

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

59

Figure 5. Sequence of propagation steps of queries and keywords in a linear array of N PEs using LA_QPAKP

4.2 LA_QPKE

Queries are divided into Q/N group of queries. Each group is propagated through the linear array till all N queries

reside in the N PEs. Then, each group of the K/N groups of keywords is propagated and each keyword settles in one

of the PEs. Hence, all keyword groups are propagated for every query group (figures 6 and 7). Once a group of N

queries and a group of N keywords have settled in the linear array, all query-keyword pairs in all PEs are checked in

parallel. To ensure that all keywords in the current keyword group are checked against all queries in the current query

group, keywords are exchanged among the PEs in an odd-even manner. Every even-numbered PE exchanges its

keyword with the next PE in a circular fashion; the first and last PEs may exchange keywords. This exchange is

performed in parallel. Then, every query-keyword check takes place in parallel. The same steps are repeated with

odd-numbered PEs. It takes N/2 steps of odd-even exchange with checking to finish comparing a query group to a

keyword group.

LA_QPKE

begin

repeat

 for i=0 to N-1 do in parallel

 Pi sends its current query to Pi+1

 repeat

 for i=N-1 to 1 do in parallel

 Pi sends its current query to Pi-1

 for i=1 to N/2 do

 begin

 for all processors Pj do in parallel

 Check current query against the current keyword in Pj

 for all even numbered processors Pj do in parallel

 Pj

exchanges keywords with P(j+1)mod N

 for all processors Pj do in parallel

 Check current query against the current keyword in Pj

 for all odd numbered processors Pj do in parallel

 Pj

exchanges keywords with P(j+1)mod N

 end

 until all K/N keyword groups are finished

until all Q/N query groups are finished

end

Figure 6. Linear array query processing with keywords exchange (LA_QPKE)

P0 P1 PN-1

qN-1..........q1 q0 k0 k1 kK-1

P0 P1 PN-1

q2N-1..........qN k0 k1 kK-1

P0 P1 PN-1

qQ-1..........qQ-N k0 k1 kK-1

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

60

Figure 7. Sequence of propagation steps of groups of queries and keywords in a linear array of N PEs using

LA_QPKE

5. Cost Model

The time cost of each of the proposed models is expressed in terms of the number of communication and

computation steps. The cost of inter-processor communication greatly affects the efficiency of parallel algorithms. In

this context, a communication step represents a transfer (send and receive) operation for a query or keyword from

one processor to one of its neighbors. A computation step represents a comparison of a query against a keyword. In

general, the total time cost, T, is computed as:

𝑇 = 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑝𝑟𝑜𝑐 (1)

where 𝑇𝑐𝑜𝑚𝑚 is the total time spent in transferring queries and keywords along the links of the 2D mesh or linear

array and 𝑇𝑝𝑟𝑜𝑐 is the total time spent in checking queries against keywords. Furthermore, 𝑇𝑐𝑜𝑚𝑚 and 𝑇𝑝𝑟𝑜𝑐 are

computed as:

𝑇𝑐𝑜𝑚𝑚 = 𝑡𝑐𝑜𝑚𝑚 × 𝑠𝑐𝑜𝑚𝑚 (2)

Tproc = tproc × sproc (3)

where 𝑡𝑐𝑜𝑚𝑚 is the time needed for each communication step, 𝑠𝑐𝑜𝑚𝑚 is the number of communication steps,

𝑡𝑝𝑟𝑜𝑐 is the time needed for each comparison (processing) step and 𝑠𝑝𝑟𝑜𝑐 is the number of processing (comparison)

steps. This general cost model is projected onto the query processing models proposed previously in this paper.

5.1 Two-dimensional Mesh Algorithm

In the proposed 2D mesh model for query processing, all PEs perform the comparison of a query against a keyword

in parallel. Therefore, assuming a square N × N mesh, every N2
comparisons consume one processing

(comparison) step. As the total number of needed comparisons is 𝐾𝑄, the total number of computation steps, 𝑠𝑝𝑟𝑜𝑐 ,

is computed as :

P0 P1 PN-1 qN-1..........q2 q0 k0 k1 kN-1

P0 P1 PN-1

qN-1..........q2 q0

kN k2N-1

P0 P1 PN-1

qN-1..........q2 q0

kK-N kK-1

P0 P1 PN-1

qQ-1.......... qQ-N k0 k1 kN-1

P0 P1 PN-1

qQ-1.......... qQ-N

kN k2N-1

P0 P1 PN-1

qQ-1.......... qQ-N

kK-N kK-1

fi
rs

t
q

u
er

y
 g

ro
u
p

la

st
 q

u
er

y
 g

ro
u
p

P0 P1 PN-1 qN-1..........q2 q0 k0 k1 kN-1

P0 P1 PN-1

qN-1..........q2 q0

kN k2N-1

P0 P1 PN-1

qN-1..........q2 q0

kK-N kK-1

P0 P1 PN-1

qQ-1.......... qQ-N k0 k1 kN-1

P0 P1 PN-1

qQ-1.......... qQ-N

kN k2N-1

P0 P1 PN-1

qQ-1.......... qQ-N

kK-N kK-1

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

61

𝑠𝑝𝑟𝑜𝑐 =
𝐾𝑄

𝑁2

 (4)

In terms of communication, every N2 queries require:

1. N communication steps to propagate through the mesh and settle in their final destination PEs.

2. 𝐾 communication steps for the 𝐾 keywords to propagate through the queries’ PE. The N-keyword groups

keep propagating through the columns interchangeably in the N columns thus consuming N2
communication steps

i.e. N2 keywords consume N2
communication steps hence 𝐾 keywords consume 𝐾 communication steps.

Hence, the number of communication steps for N2queries is 𝑁 + 𝐾 and the total number of communication steps

𝑠𝑐𝑜𝑚𝑚 is

𝑠𝑐𝑜𝑚𝑚 =
𝑄(𝑁 + 𝐾)

𝑁2

 (5)

Therefore, the total time can be modeled using equations (1) to (5) as :

𝑇 =
𝑡𝑝𝑟𝑜𝑐𝐾𝑄 + 𝑡𝑐𝑜𝑚𝑚𝑄(𝑁 + 𝐾)

𝑁2

 (6)

5.2 Linear Array Algorithms

5.2.1 LA_QPAKP

As 𝑁 queries propagate through the linear array in one direction, they require N communication steps. The 𝐾

keywords require K + N − 1 communication steps to propagate from one end of the linear array till the last

keyword reaches the other end. Therefore, for all queries Q divided into Q N⁄ groups:

𝑠𝑐𝑜𝑚𝑚 =
𝑄

𝑁
(2𝑁 + 𝐾 − 1)

 (7)

𝑠𝑝𝑟𝑜𝑐 =
𝑄

𝑁
(𝐾 + 𝑁 − 1)

 (8)

From equations (1-3),(7) and (8), the time for LA_QPAKP can be modeled as :

𝑇 =
𝑄

𝑁
 (𝑡𝑝𝑟𝑜𝑐(𝐾 + 𝑁 − 1) + 𝑡𝑐𝑜𝑚𝑚(2𝑁 + 𝐾 − 1))

 (9)

5.2.2 LA_QPKE

As queries are divided into Q N⁄ groups, a group of N queries propagates through the linear array consuming N

communication steps. For each query group, keywords are similarly divided into K N⁄ groups, each one propagated

through the linear array in N communication steps. Odd and even exchange of keywords among neighboring

processors is also performed in N communication steps. For each keyword group, N computation steps are needed.

Hence, the following equations are obtained:

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

62

𝑠𝑐𝑜𝑚𝑚 =
𝑄

𝑁
(𝑁 + 2𝐾)

 (10)

𝑠𝑝𝑟𝑜𝑐 =
𝐾𝑄

𝑁

 (11)

𝑇 = 𝑡𝑝𝑟𝑜𝑐

𝐾𝑄

𝑁
+ 𝑡𝑐𝑜𝑚𝑚

𝑄

𝑁
(𝑁 + 2𝐾)

 (12)

5. Performance Evaluation

The proposed algorithms are evaluated using the speedup and efficiency performance measures. Speedup
𝑆𝑁 measures the extent improvement in execution time and is computed as:

𝑆𝑁 =
𝑇1

𝑇𝑁

 (13)

where 𝑇1 and 𝑇𝑁are the sequential and parallel execution time respectively. Sequential execution requires

𝐾𝑄 computation steps. Efficiency 𝐸𝑁 is a measure of how much the processors are utilized.

𝐸𝑁 =
𝑆𝑁

𝑁

 (14)

Figures 8 and 9 show the speedup and efficiency results obtained from the three proposed algorithms. The 2D

Mesh_QP algorithm outperforms the two linear array algorithms in terms of speedup and efficiency especially as the

number of processors is increased. The 2D arrangement of processors in a 2D mesh as well as the 4-neighbour

connectivity among processors allows for better exploitation of parallelism and hence higher scalability. On the other

hand, both linear array algorithms, LA_QPKE and LA_QPAKP achieve less speedup and efficiency. LA_QPKE

scales better than LA_QPAKP. The process of propagating all keywords across all queries in the linear array PEs

using LA_QPAKP causes only slight improvement in speedup as the number of processors increases. Efficiency of

2D Mesh_QP is almost stable due to the scalability of the algorithm and is also higher than both LA_QPKE and

LA_QPAKP. For both linear array algorithms, efficiency degrades as the number of processors increases. The rate of

degradation is higher with LA_QPAKP as the keywords have to be propagated along a longer path for larger number

of processors. The outperformance of LA_QPKE over LA_QPAKP, even though both are to be executed on the same

type of architecture, is due to the way in which keywords are circulated among queries. LA_QPKE achieves this by

local communication between neighbor PEs using odd and even exchange of keywords on a group of keywords. This

communication pattern as well as keywords partitioning achieve better results when linear arrays are used.

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

63

Figure 8. Speedup on varying the number of processing elements for 2D mesh and linear array algorithms for the

same number of queries and keywords.

Figure 9. Efficiency on varying the number of processing elements for 2D mesh and linear array algorithms for the

same number of queries and keywords.

7. Conclusion

The use of parallelism in search engines for the purpose of query-keywords comparison has become indispensable

particularly with high query traffic and huge amount of documents on the web nowadays. This paper is an attempt to

utilize the 2D mesh and linear array architectures to perform parallel query-keywords comparison. Three algorithms

0

100

200

300

400

500

600

700

800

900

1000

Sp
e

e
d

u
p

Number of Processors

2D Mesh_QP

LA_QPKE

LA_QPAKP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fi

ci
e

n
cy

Number of Processors

2D Mesh_QP

LA_QPKE

LA_QPAKP

http://www.iiste.org/

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol.4, No.13, 2013

64

are presented; one for 2D mesh architecture (2D Mesh_QP) and two for linear array architectures (LA_QPAKP and

LA_QPKE). We attempt to exploit the arrangement of processors and the communication pattern in both types of

architectures to achieve high speedup and efficiency. A cost model is presented for the three algorithms based on

both processing and communication cost; equations (1) thru (14). Results show that in terms of speedup and

efficiency performance metrics, 2D Mesh_QP outperforms both linear array algorithms for the same number of

processors.

References

Aboutabl, A. E. 2013, “Exploiting Parallelism in Query Processing for Web Document Search Using

Shared-Memory and Cluster-Based Architectures”, Computer and Information Science 6(3), 125-137.

Baeza-Yales, R., & Ribeiro-Neto, B. (1999), Modern Information Retreival, 1st Ed., Addison Wesley,

Longman.

Büttcher, S., Clarke, C. L. A. & Cormack, G. V. (2010), Parallel Information Retrieval , In Information

Retreival:Implementing and Evaluating Search Engines, MIT Press, 492-510.

Blelloch, G. E. & Maggs, B. M. (1996), “Parallel Algorithms”, Communications of the ACM. 39, 85-97.

Ceterchi, R., Pérez-Jiménez, M. J. & Tomescu, A. I. (2007), “Simulating the Bitonic Sort Using P Systems”,

WMC 2007 Lecture Notes in Computer Science 4860, Springer, 172-192. doi: 10.1007/978-3-540-77312-2_11.

Cho, J. & Garcia-Molina, H. (2002), “Parallel crawlers”, Proceedings of the 11th international conference on
World Wide Web, 124-135. doi:10.1145/511446.511464.

Choi,Y. & Park, P. (2012), “Multicore and Mesh Network-based Parallel Performance Evaluation using Intra

Prediction Algorithms”, International Journal of Control and Automation 5 (4).

El-Rewini, H. & Abd-El-Barr, M. (2005), Advanced Parallel Architectures and Parallel Processing.Wiley

Interscience.

Ercal, F. & Lee, H. C. (1997), “Time-Efficient Maze Routing Algorithms on Reconfigurable Mesh

Architecture”, Journal of Parallel and distributed Computing 44(2), Elsevier, 133-140.

Grama, A., Gupta, A. & Kumar, G. V. (2003), Introduction to Parallel Computing. 2
nd

 Ed. Pearson.

Hong, W. & Stonebraker, M. (1991), “Optimization of Parallel Query Execution Plans in XPRS”. In

Proceedings of the First International Conference on Parallel and Distributed Information Systems, PDIS 1991,

218-225. http://dx.doi.org/10.1109/PDIS.1991.183106.

Konstantopoulos, C., Mamalis, B., Pantziou, G. & GavalasHong, D. (2009), “Efficient parallel Text Retrieval

techniques on Bulk Synchronous Parallel (BSP)/Coarse Grained Multicomputers (CGM)”, Journal of
Supercomputing 48(3), Springer, 286-318. http://dx.doi.org/10.1007/s11227-008-0225-x.

Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R. & Scherson, I. D (2010), “Sync/Async parallel search

for the efficient design and construction of web search engines”, Parallel Computing 36 (4), Elsevier, 153-168.

doi:10.1016/j.parco.2010.02.001

Perhami, B. (2002), Introduction to Parallel Processing: Algorithms and Architectures, Kluwer Academic

Publisher.

Panitanaraka, T. & Shontza, S. M. (2011), “MDEC: MeTiS-based Domain Decomposition for Parallel 2D Mesh

Generation”, Procedia Computer Science 4, 302–311. doi:10.1016/j.procs.2011.04.032.

Young-Joo, S. & Yalamanchili, S. (2000), “Configurable algorithms for complete exchange in 2D meshes”,

IEEE Transactions on Parallel and Distributed Systems 11(4), 337 – 356. doi: 10.1109/71.850832.

http://www.iiste.org/
http://www.informit.com/safari/author_bio.asp@ISBN=0201648652
http://www.informit.com/safari/author_bio.asp@ISBN=0201648652
http://www.informit.com/safari/author_bio.asp@ISBN=0201648652
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Stonebraker:Michael.html
http://dx.doi.org/10.1109/PDIS.1991.183106

