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Abstract 

As the size of the web grows, it is necessary to parallelize the process of retrieving information from the web. 

Incorporating parallelism in search engines is one of the approaches towards achieving this aim. This paper presents 

an algorithm for query processing on the 2D mesh architecture and two algorithms for linear array architectures. We 

attempt to exploit the arrangement of processors and the communication pattern in both 2D mesh and linear array 

architectures to attain high speedup and efficiency for queries-keywords comparisons. A cost model is presented for 

each algorithm based on both processing and communication cost. Proposed algorithms are evaluated using speedup 

and efficiency performance metrics. For the same number of processors, 2D Mesh_QP outperforms both linear array 

algorithms (LA_QPAKP and LA_QPKE). 
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1. Introduction 

In addition to the increase in the size of the web and the number of available documents, there has also been an 

increase in the number of internet users. This has, in turn, led to a dramatic increase in the number of queries to be 

processed (Cho & Garcia-Molina 2002). Parallel query processing is needed to design web search engines to deal 

with both query traffic and the huge amount of information available on the web (Marin et al. 2010). Every 

document available on the web is associated with a number of keywords which may be words appearing in or topics 

covered by the document (Baeza-Yales & Ribeiro-Neto 1999). For a search engine to process a query, it needs to 

compare the keywords appearing in the query with the available indexed keywords in order to retrieve related 

documents. This work focuses on this comparison step which we attempt to parallelize for a large number of queries 

and keywords. In particular, algorithms are proposed here for query processing on the 2D mesh and linear array 

parallel architectural models. 

A two-dimensional mesh is a network that can be represented in a manner as shown in figure 1(a). It can be viewed 

as an N×N array of processing elements (PEs). Every PE is indexed by a 2-tuple (i,j) where 0 ≤ i ≤ N is the row 

index and 0 ≤ j ≤ N is the column index (Perhami 2002). Such a mesh has N
2
 PEs and typically adopts the local 

memory model where each PE has a processor and a local memory connected to it. Data are transferred from one 

processor to the other by routing messages through the mesh. The torus architecture is one variant of the 2D mesh 

where PEs on the sides are connected to those on the other side. Every PE (i,j) is connected to (i, (j+1) mod N), (i, 

(j-1) mod N), ((i-1) mod N, j) and ((i+1) mod N, j). Hypercubes and 3D meshes are also other variations on meshes. 

In 2D meshes, propagation delay between adjacent processors is quite small which facilitates high speed 

communication due to the short local connections between processors. Links between processors are bidirectional 

and capable of carrying data in both directions concurrently. The mesh can be indexed in a row-major or 

column-major order. A linear array can be considered as a 1D mesh as processing elements are connected in a 

chain-like manner. Each processor communicates with its two neighbors directly as in figure 1 (b). In a bidirectional 

linear array, input can be fed in from the two ends of the chain where the inputs are propagated in one direction 

(El-Rewini & Abd-El-Barr 2005). 

In this paper, we attempt to exploit the arrangement of processors and the communication pattern in both 2D mesh 

and linear array architectures to attain high speedup and efficiency for queries-keywords comparisons.  

 

2. Related Work 

Some parallel algorithms are based on the idea of domain decomposition in which a certain domain of interest is 

partitioned prior to computation. This is typically applied on numerical problems where the domain of interest is a 

matrix, vector or geometries (Panitanaraka & Shontza 2011). The divide-and-conquer approach has been one of the 

most common approaches in parallel algorithm design. It relies on splitting the original problem into a number of 
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sub-problems that can be solved in parallel. Sub-problem solutions are then merged to form the whole solution 

(Blelloch & Maggs 1996). Classically, parallel architectures attracted the attention of researchers to design parallel 

algorithms for different types of problems. Typical examples of such algorithms are sorting, searching and graph 

problems (Grama et al. 2003). Moreover, many compute-intensive algorithms such as weather forecasting and 

simulations require parallel processing. Data-intensive applications may also benefit from parallel processing if 

data-partitioning schemes are adopted. 

The 2D mesh has been used to solve a variety of problems.  Some classic algorithms are available in the literature 

to exploit parallelism on 2D meshes for searching, sorting and matrix operations such as transpose and multiplication. 

A bitonic sorting algorithm has been designed for 2D meshes (Ceterchi et al. 2007). Mesh architecture was used to 

solve the maze routing problem (Ercal & Lee 1997). Choi and Park (2012) parallelized a video compression 

algorithm on a multicore system arranged as a 2D mesh topology using a wavefront scheme to break dependencies 

among partitioned code blocks. An algorithm for complete exchange on 2D mesh multiprocessors is also presented 

(Young-Joo & Yalamanchili 2000). 

A number of parallel query processing approaches have been attempted.  One of the first attempts was the study of 

parallel query processing on shared-everything parallel systems (Hong & Stonebraker, 1991).  Konstantopoulos, 

Mamalis, Pantziou and GavalasHong (2009) proposed parallel algorithms for document retrieval on Bulk 

Synchronous Processors and Coarse-Grained Multiprocessors. A study based on distributed indexing where the 

document index is partitioned among distributed cluster servers was also presented (Marin et al. 2010).  Another 

approach  (Büttcher et al. 2010) uses index servers to partition the document index. Our previous work (Aboutabl 

2013) presents a model that exploits parallelism on both shared-memory and cluster-based parallel architectures 

using term-based partitioning. We show that our shared-memory model outperforms the cluster-based model using 

some performance metrics. 

 

 

 

 

 

 

(a) 3 x 3 2D Mesh                           (b) Linear Array 

 

Figure 1. Example 2D Mesh and Linear Array Architectures  

 

 

 

3. Parallel Query Processing on a 2D Mesh  

In the proposed algorithm (figure 2), queries are fed into the 2D mesh from the left and propagated in parallel to the 

right until a query resides in every PE. All PEs in a column of the mesh receive input from and send output to 

adjacent PEs synchronously. The SIMD control model is adopted where all PE’s perform the same operation 

simultaneously but on different data. In this sense, every  processing element Pi,j sends its current query to Pi,j+1. 

 

propagate_queries 

 Begin 

 for j=0 to N-1 do 

  for i=0 to N-1 do in parallel 

     Pi,j send its current query to Pi,j+1 

  End 
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 begin 

 repeat 

  for all processors Pi,,j do in parallel 

      begin 

                 Check current query against the current keyword in Pi,j
 
 

                 Send the current keyword in Pi,,j
 
to Pi+1,j 

               end 

  Interchange keyword groups in mesh columns 

       until all columns have been interchanged 

  end 

 

Mesh_QP 

begin 

for Q/N
2
 groups of queries do 

  begin 

    Propagate_Queries 

    for K/N
2
 groups of keywords do 

       Propagate_Keywords 

  end 

end 

Figure 2.  2D Mesh query processing 

 

In the same manner, keywords are propagated across the mesh rows in a top-down fashion. Keywords are fed into the 

vertical inputs of the first row and are sent from every Pi,j to Pi+1,j until each PE holds a keyword. Upon receiving a 

keyword, each PE checks its current query against its current keyword. If one of the keywords in the query matches 

the keyword, document ID’s related to the keyword are appended to the list of document IDs of this query. Then, the 

current keyword is sent to the PE in the south. It is to be noted here that a query resides in a specific PE while 

keywords keep moving across the queries in columns. By the time N
2
 keywords fill the mesh, every N keywords in a 

column would have been checked against all queries in the same column only. Therefore, keywords are propagated 

in the N columns interchangeably such that all the N
2
 queries are checked against N

2
 keywords. 

The total number of queries Q is divided into groups each consisting of N queries. For every N query groups, each 

query group is propagated one query at a time through the N horizontal inputs as shown in figure 3. Hence, the mesh 

will handle N
2
 queries at a time which are divided into N groups each consisting of N queries. Similarly, keywords 

are divided into groups of N keywords each where each group is fed into a column. Therefore, the mesh will check 

N
2
 queries against N

2
 keywords.  

 

4. Parallel Query Processing on Linear Arrays  

Two algorithms are proposed to perform parallel query processing on linear arrays. The first algorithm named 

LA_QPAKP (Linear Arrays Query Processing with All Keywords Propagation) relies on partitioning queries into 

groups. Each group of queries in the linear array is checked against all keywords which are propagated through the 

linear array passing through all PEs. On the other hand, our second algorithm named LA_QPKE (Linear Arrays 

Query Processing with Keywords Exchange) partitions both queries and keywords into groups where a group of 

queries is checked against a group of keywords. Keywords in every group are exchanged in and odd-even manner to 

ensure that all queries are checked with all keywords. Both algorithms are detailed in the following subsections. Here, 

N refers to the total number of PEs in the linear array. 

4.1 LA_QPAKP 

Queries and keywords are propagated through the linear array, each is input from a different end (figure 4). Queries 

are divided into Q/N groups of N queries each where each group is propagated separately through the linear array. 

After each query in a group settles in a PE, keywords propagation is started (figure 5). Here, keywords are not 

divided into groups but propagated in parallel as one stream till the last keyword kK-1 reaches P0. Every propagation 

step involves sending the current keyword in each processor Pi to Pi-1; the next one in the direction of propagation. 

After each propagation step, all PEs check their current queries against their current keywords, in parallel. When all 
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the keywords have been propagated to the other end of the linear array, all queries in the current group of queries will 

have been checked against all keywords. Then, the next group of queries is fed in and all keywords are propagated 

again. This process is repeated for all query groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The distribution of N
2
 queries and N

2 
keywords among the inputs of an N×N mesh  

 

LA_QPAKP 

begin 

repeat   

  for i=0 to N-1 do in parallel  

  Pi sends its current query to Pi+1 

  repeat 

    for i=N-1 to 1 do in parallel 

      begin 

      Pi sends its current query to Pi-1 

         Check current query against the current keyword in Pi 

      end 

  until the last input keyword reaches P0 

until  all query groups are finished 

end 

 

Figure 4. Linear array query processing with all keywords propagation (LA_QPAKP) 
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Figure 5. Sequence of propagation steps of queries and keywords in a linear array of N PEs using LA_QPAKP  

 

4.2 LA_QPKE 

Queries are divided into Q/N group of queries. Each group is propagated through the linear array till all N queries 

reside in the N PEs. Then, each group of the K/N groups of keywords is propagated and each keyword settles in one 

of the PEs. Hence, all keyword groups are propagated for every query group (figures 6 and 7). Once a group of N 

queries and a group of N keywords have settled in the linear array, all query-keyword pairs in all PEs are checked in 

parallel. To ensure that all keywords in the current keyword group are checked against all queries in the current query 

group, keywords are exchanged among the PEs in an odd-even manner.  Every even-numbered PE exchanges its 

keyword with the next PE in a circular fashion; the first and last PEs may exchange keywords. This exchange is 

performed in parallel. Then, every query-keyword check takes place in parallel. The same steps are repeated with 

odd-numbered PEs. It takes N/2 steps of odd-even exchange with checking to finish comparing a query group to a 

keyword group.  

 

LA_QPKE 

begin 

repeat   

  for i=0 to N-1 do in parallel  

  Pi sends its current query to Pi+1 

  repeat 

    for i=N-1 to 1 do in parallel 

       Pi sends its current query to Pi-1 

    for i=1 to N/2 do 

       begin 

         for all processors Pj do in parallel 

            Check current query against the current keyword in Pj 

              for all even numbered processors Pj do in parallel 

            Pj
 
exchanges keywords with P(j+1)mod N 

              for all processors Pj do in parallel 

            Check current query against the current keyword in Pj 

      for all odd numbered processors Pj do in parallel 

            Pj
 
exchanges keywords with P(j+1)mod N 

       end 

   until all K/N keyword groups are finished 

until all Q/N query groups are finished 

end 

 

Figure 6. Linear array query processing with keywords exchange (LA_QPKE) 
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Figure 7. Sequence of propagation steps of groups of queries and keywords in a linear array of N PEs using 

LA_QPKE  

 

5. Cost Model 

The time cost of each of the proposed models is expressed in terms of the number of communication and 

computation steps. The cost of inter-processor communication greatly affects the efficiency of parallel algorithms. In 

this context, a communication step represents a transfer (send and receive) operation for a query or keyword from 

one processor to one of its neighbors. A computation step represents a comparison of a query against a keyword. In 

general, the total time cost, T, is computed as: 

𝑇 = 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑝𝑟𝑜𝑐                                      (1) 

where 𝑇𝑐𝑜𝑚𝑚  is the total time spent in transferring queries and keywords along the links of the 2D mesh or linear 

array and 𝑇𝑝𝑟𝑜𝑐   is the total time spent in checking queries against keywords. Furthermore, 𝑇𝑐𝑜𝑚𝑚   and 𝑇𝑝𝑟𝑜𝑐   are 

computed as: 

𝑇𝑐𝑜𝑚𝑚 = 𝑡𝑐𝑜𝑚𝑚 × 𝑠𝑐𝑜𝑚𝑚                                   (2) 

Tproc = tproc × sproc                                    (3) 

where 𝑡𝑐𝑜𝑚𝑚   is the time needed for each communication step,  𝑠𝑐𝑜𝑚𝑚   is the number of communication steps, 

𝑡𝑝𝑟𝑜𝑐 is the time needed for each comparison (processing) step and  𝑠𝑝𝑟𝑜𝑐   is the number of processing (comparison) 

steps. This general cost model is projected onto the query processing models proposed previously in this paper.  

5.1 Two-dimensional Mesh Algorithm 

In the proposed 2D mesh model for query processing, all PEs perform the comparison of a query against a keyword 

in parallel. Therefore, assuming a square N × N  mesh, every N2  
comparisons consume one processing 

(comparison) step. As the total number of needed comparisons is 𝐾𝑄, the total number of computation steps, 𝑠𝑝𝑟𝑜𝑐 , 

is computed as : 
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𝑠𝑝𝑟𝑜𝑐 =
𝐾𝑄

𝑁2
 

                                     (4) 

In terms of communication, every N2 queries require: 

1. N communication steps to propagate through the mesh and settle in their final destination PEs.  

2. 𝐾 communication steps for the 𝐾 keywords to propagate through the queries’ PE. The N-keyword groups 

keep propagating through the columns interchangeably in the N columns thus consuming N2 
communication steps 

i.e. N2 keywords consume N2 
communication steps hence 𝐾 keywords consume 𝐾 communication steps. 

Hence, the number of communication steps for N2queries is 𝑁 + 𝐾 and the total number of communication steps 

𝑠𝑐𝑜𝑚𝑚 is  

𝑠𝑐𝑜𝑚𝑚 =
𝑄(𝑁 + 𝐾)

𝑁2
 

                                     (5) 

Therefore, the total time can be modeled using equations (1) to (5) as : 

𝑇 =
𝑡𝑝𝑟𝑜𝑐𝐾𝑄 + 𝑡𝑐𝑜𝑚𝑚𝑄(𝑁 + 𝐾)

𝑁2
 

                              (6) 

5.2 Linear Array Algorithms 

5.2.1 LA_QPAKP 

As 𝑁 queries propagate through the linear array in one direction, they require N  communication steps. The 𝐾 

keywords require K + N − 1  communication steps to propagate from one end of the linear array till the last 

keyword reaches the other end. Therefore, for all queries Q divided into Q N⁄  groups:  

𝑠𝑐𝑜𝑚𝑚 =
𝑄

𝑁
(2𝑁 + 𝐾 − 1) 

                          (7) 

𝑠𝑝𝑟𝑜𝑐 =
𝑄

𝑁
(𝐾 + 𝑁 − 1) 

                                        (8) 

From equations (1-3),(7) and (8), the time for LA_QPAKP can be modeled as : 

𝑇 =
𝑄

𝑁
 (𝑡𝑝𝑟𝑜𝑐(𝐾 + 𝑁 − 1) + 𝑡𝑐𝑜𝑚𝑚(2𝑁 + 𝐾 − 1)) 

                  (9) 

5.2.2 LA_QPKE 

As queries are divided into Q N⁄  groups, a group of N queries propagates through the linear array consuming N 

communication steps. For each query group, keywords are similarly divided into K N⁄  groups, each one propagated 

through the linear array in N communication steps. Odd and even exchange of keywords among neighboring 

processors is also performed in N communication steps. For each keyword group, N computation steps are needed. 

Hence, the following equations are obtained: 
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𝑠𝑐𝑜𝑚𝑚 =
𝑄

𝑁
(𝑁 + 2𝐾) 

                           (10) 

𝑠𝑝𝑟𝑜𝑐 =
𝐾𝑄

𝑁
 

                                     (11) 

𝑇 = 𝑡𝑝𝑟𝑜𝑐

𝐾𝑄

𝑁
+ 𝑡𝑐𝑜𝑚𝑚

𝑄

𝑁
(𝑁 + 2𝐾) 

                         (12) 

 

5. Performance Evaluation 

The proposed algorithms are evaluated using the speedup and efficiency performance measures. Speedup  
𝑆𝑁 measures the extent improvement in execution time and is computed as: 

𝑆𝑁 =
𝑇1

𝑇𝑁
 

                                  (13) 

where 𝑇1 and 𝑇𝑁are the sequential and parallel execution time respectively. Sequential execution    requires 

𝐾𝑄 computation steps. Efficiency 𝐸𝑁 is a measure of how much the processors are utilized. 

𝐸𝑁 =
𝑆𝑁

𝑁
 

                                    (14) 

Figures 8 and 9 show the speedup and efficiency results obtained from the three proposed algorithms. The 2D 

Mesh_QP algorithm outperforms the two linear array algorithms in terms of speedup and efficiency especially as the 

number of processors is increased. The 2D arrangement of processors in a 2D mesh as well as the 4-neighbour 

connectivity among processors allows for better exploitation of parallelism and hence higher scalability. On the other 

hand, both linear array algorithms, LA_QPKE and LA_QPAKP achieve less speedup and efficiency. LA_QPKE 

scales better than LA_QPAKP. The process of propagating all keywords across all queries in the linear array PEs 

using LA_QPAKP causes only slight improvement in speedup as the number of processors increases. Efficiency of 

2D Mesh_QP is almost stable due to the scalability of the algorithm and is also higher than both LA_QPKE and 

LA_QPAKP. For both linear array algorithms, efficiency degrades as the number of processors increases. The rate of 

degradation is higher with LA_QPAKP as the keywords have to be propagated along a longer path for larger number 

of processors. The outperformance of LA_QPKE over LA_QPAKP, even though both are to be executed on the same 

type of architecture, is due to the way in which keywords are circulated among queries. LA_QPKE achieves this by 

local communication between neighbor PEs using odd and even exchange of keywords on a group of keywords. This 

communication pattern as well as keywords partitioning achieve better results when linear arrays are used. 
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Figure 8. Speedup on varying the number of processing elements for 2D mesh and linear array algorithms for the 

same number of queries and keywords.  

 

 

 

Figure 9. Efficiency on varying the number of processing elements for 2D mesh and linear array algorithms for the 

same number of queries and keywords.  

 

7. Conclusion 

The use of parallelism in search engines for the purpose of query-keywords comparison has become indispensable 

particularly with high query traffic and huge amount of documents on the web nowadays. This paper is an attempt to 

utilize the 2D mesh and linear array architectures to perform parallel query-keywords comparison. Three algorithms 
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are presented; one for 2D mesh architecture (2D Mesh_QP) and two for linear array architectures (LA_QPAKP and 

LA_QPKE). We attempt to exploit the arrangement of processors and the communication pattern in both types of 

architectures to achieve high speedup and efficiency. A cost model is presented for the three algorithms based on 

both processing and communication cost; equations (1) thru (14). Results show that in terms of speedup and 

efficiency performance metrics, 2D Mesh_QP outperforms both linear array algorithms for the same number of 

processors. 
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