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Abstract 

In the present paper we will find some fixed point theorems in random fuzzy metric space, random fuzzy 2-

metric space and random fuzzy 3-metric space through rational expression.Also we will find the results for 

integral type mappings. 

2.1 Introduction  
In 1965, the concept of fuzzy set was introduced by Zadeh [39]. After him many authors have developed the 

theory of fuzzy sets and applications. Especially, Deng [9], Erceg [11], Kaleva and Seikkala [26].  Kramosil and 

Michalek [28] have introduced the concept of fuzzy metric spaces by generalizing the definition of probabilistic 

metric space. Many authors have also studied the fixed point theory in these fuzzy metric spaces are [1], [7], 

[13], [19], [21], [24], [25], [32] and for fuzzy mappings [2], [3], [4], [5], [22], [31].   

In 1994, George and Veeramani [18] modified the definition of fuzzy metric spaces given by Kramosil and 

Michalek [28] in order to obtain Hausdroff topology in such spaces. Gregori and Sapena [20] in 2002 extended 

Banach fixed point theorem to fuzzy contraction mappings on complete fuzzy metric space in the sense of 

George and Veeramani [18]. It is remarkable that Sharma, Sharma and Iseki [34] studied for the first time 

contraction type mappings in 2-metric space. Wenzhi [38] and many others initiated the study of Probabilistic 2-

metric spaces. As we know that 2-metric space is a real valued function of a point triples on a set X, whose 

abstract properties were suggested by the area of function in Euclidean spaces. 

Now it is natural to expect 3-metric space which is suggested by the volume function. The method of introducing 

this is naturally different from 2-metric space theory from algebraic topology. 

The concept of Fuzzy-random-variable was introduced as an analogous notion to random variable in order to 

extend statistical analysis to situations when the outcomes of some random experiment are fuzzy sets. But in 

contrary to the classical statistical methods no unique definition has been established before the work of Volker 

[37]. He presented set theoretical concept of fuzzy-random-variables using the method of general topology and 

drawing on results from topological measure theory and the theory of analytic spaces. No results in fixed point 

are introduced in random fuzzy spaces. In [17] paper authors Gupta, Dhagat, Shrivastava introduced the fuzzy 

random spaces and proved common fixed point theorem. 

In the present paper we will find some fixed point theorems in random fuzzy metric space, random fuzzy 2-

metric space and random fuzzy 3-metric space through rational expression.Also we will find the results for 

integral type mappings. 

To start the main result we need some basic definitions. 

2.2 Preliminaries:  

2.2.1 Definitions 

Definition2.2.1.1: (Kramosil and Michalek 1975)  

 

A binary operation *: [0,1]´[0,1] ® [0,1] is a t-norm if it satisfies the following conditions :  

(i)        *(1,a) = a , *(0,0) = 0 

(i) *(a,b)  = *(b,a)   

(ii) *(c,d)  ³ *(a,b)  whenever c ³ a and d ³ b 

(iii) *(*(a,b) ,c)  = *(a, *(b,c) )  where  a,b, c,dÎ [0,1] 

 

 

Definition 2.2.1.2: (Kramosil and Michalek 1975)                                                             

The 3-tuple (X,M, *)  is said to be a fuzzy metric space if  X is an arbitrary set *  is a continuous t-norm and M is 

a fuzzy set on X
2
 ´ [0,¥) satisfying the following conditions:  

(i) M(x,y,0) = 0 
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(ii) M(x,y,t) = 1 for all t > 0 iff x = y, 

(iii) M(x,y,t) = M(y,x,t) , 

(iv) M(x,y,t) * M(y,z,s) £ M(x,z,t + s) , 

(v) M(x,y, .) : [0,¥[®[0,1] is left-continuous, 

Where x, y, z Î X and t, s > 0. 

In order to introduce a Hausdroff topology on the fuzzy metric space, in (Kramosil and Michalek 1975) the 

following definition was introduced. 

Definition 2.2.1.3: (George and Veermani 1994)  

The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is 

a fuzzy set on X
2
 ´]0,¥[ satisfying the following  conditions : 

(i) M(x,y,t) > 0 

(ii) M(x,y,t) = 1  iff x = y, 

(iii) M(x,y,t) = M(y,x,t) , 

(iv) M(x,y,t) * M(y,z,s) £ M(x,z,t + s) , 

(v) M(x,y, .) : ]0,¥[®[0,1] is continuous, 

Where x, y, z Î X and t, s > 0. 

Definition 2.2.1.4: (George and Veermani 1994)  

In a metric space (X, d) the 3-tuple (X, Md,*) where Md(x, y, t) = t / (t + d(x, y)) and a*b = ab is a fuzzy metric 

space. This Md is called the standard fuzzy metric space induced by d. 

Definition 2.2.1.5: (Gregori and Sepene 2002) 

Let (X, M,*) be a fuzzy metric space. A mapping   f: X→ X is fuzzy contractive if there exists 0 < k < 1 such 

that     

                     ≤ k  

 For each x,y ϵ X and t > 0 . 

Definition 2.2.1.6: (Gregori and Sepene 2002) 

Let (X, M, *) be a fuzzy metric space . We will say that the sequence {xn} in X is fuzzy contractive if there 

exists k ϵ (0, 1) such that  

         ≤ k       for all t > 0 , n ϵ N.            

We recall that a sequence {xn} in a metric space (X, d) is said to be contractive if there exist 0 < k < 1 such that d 

(xn+1, xn+2) ≤ kd (xn, xn+1) for all n ϵ N. 

Definition 2.2.1.7: (Kumar and Chugh 2001)   

Let (X, τ) be a topological space. Let f and g be mappings from a topological space (X, τ) into itself. The 

mappings f and g are said to be compatible if the following conditions are satisfied: 

(i) fx = gx , x Î X Implies fgx = gfx , 

(ii) The continuity of f at a point x in X implies lim gfxn=fx whenever {xn} is a sequence in X such 

that lim gxn=lim fxn=fx for some x in X. 

 

 

Definition 2.2.1.8 : A binary operation * : [0,1] x [0,1] x [0,1]®[0,1] is called a continuous t-norm if ([0,1], *) is 

an abelian topological monoid with unit 1 such that a1* b1* c1≤ a2* b2* c2 whenever a1≤ a2, b1≤ b2, c1≤ c2 for all 

a1, a2, b1, b2 and c1, c2 are in [0,1]. 

Definition 2.2.1.9 : The 3-tuple (X,M,*) is called a fuzzy 2-metric space if X is an arbitrary set, * is a continuous 

t-norm and M is a fuzzy set in X
3
 x [0,¥) satisfying the following conditions for all x, y, z, u Î X and t1, t2, t3 > 

0. 

(FM’-1)  M(x, y, z, 0) = 0, 

(FM’-2)  M(x, y, z, t) = 1, t > 0 and when at least two of the three points are equal, 

(FM’-3)  M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t), 

               (Symmetry about three variables) 

(FM’-4)  M(x, y, z, t1+t2+t3) ≥ M(x, y, u, t1)*M(x, u, z, t2)* M(u, y, z, t3) 

               (This corresponds to tetrahedron inequality in 2-metric space) 
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  The function value M(x, y, z, t) may be interpreted as the probability that the area of triangle is less than t. 

(FM’-5)  M(x, y, z, .): [0, 1)®[0,1] is left continuous. 

Definition 2.2.1.10: Let (X, M,*) is a fuzzy 2-metric space: 

(1) A sequence {xn} in fuzzy 2-metric space X is said to be convergent to a point x Î X, if      

                           , x, a, t) = 1 

for all aÎ X and t > 0. 

 

(2) A sequence {xn} in fuzzy 2-metric space X is called a Cauchy sequence, if 

                           , , a, t) = 1 

for all aÎ X and t > 0, p > 0. 

 

(3) A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete. 

 

Definition 2.2.1.11: A function M is continuous in fuzzy 2-metric space iff whenever xn®x,   yn® y, then  

                           , , a, t) = M(x, y, a,t) 

      for all aÎ X and t > 0. 

 Definition 2.2.1.12: Two mappings A and S on fuzzy 2-metric space X are weakly commuting iff 

                                           M (ASu, SAu, a, t) ≥ M (Au, Su, a, t) 

     for all u, a Î X and t > 0. 

Definition 2.2.1.13:  A binary operation * : [0,1]
4
 ®[0,1] is called a continuous t-norm if ([0,1], *)  is an abelian 

topological monoid with unit 1 such that a1* b1* c1* d1≤ a2* b2* c2 * d2 whenever  a1≤ a2, b1≤ b2, c1≤ c2 and d1≤ 

d2for all a1, a2, b1, b2 , c1, c2 and d1, d2 are in [0,1]. 

Definition 2.2.1.14 : The 3-tuple (X, M, *) is called a fuzzy 3-metric space if X is an arbitrary set, * is a  

continuous t-norm and M is a fuzzy set in X
4
 x [0,¥)  satisfying the following conditions : for all x, y, z, w, u ÎX 

and t1, t2, t3, t4 > 0.   

(FM’’-1)  M(x, y, z, w, 0) = 0, 

(FM’’-2)  M(x, y, z, w, t) = 1 for all t > 0, 

                   (only when the three simplex á x, y, z, w ñ degenerate) 

(FM’’-3)  M(x, y, z, w, t) =M(x, w, z, y, t) = M(y, z, w, x, t) = M (z, w, x, y, t) = …   

(FM’’-4)  M(x, y, z, w, t1 +t2 + t3 + t4) ≥ M(x, y, z, u, t1)*M(x, y, u, w, t2)        

                                                                   *M(x, u, z, w, t3)*M(u, y, z, w, t4)   

(FM’’-5)  M(x, y, z, w,  .) : [0,1)®[0,1] is left continuous. 

Definition 2.2.1.15:  Let (X, M, *) be a fuzzy 3-metric space: 

(1)  A sequence {xn} in fuzzy 3-metric space x is said to be convergent to a point x Î X, if  

                                          , x, a, b, t) = 1 

 for all a, b Î X and t > 0. 

(2)  A sequence {xn} in fuzzy 3-metric space X is called a Cauchy sequence, if  

                                        , , a, b, t) = 1 

 for all a, b Î X and t > 0, p > 0. 

(3) A fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.   

Definition 2.2.1.16: A function M is continuous in fuzzy 3-metric space iff whenever xn®x,  yn®y 

                             , , a, b, t) = M(x, y, a, b, t) 

      for all a, b Î X and t > 0. 

 Definition 2.2.1.17: Two mappings A and S on fuzzy 3-metric space X are weakly commuting iff 

                                 M (ASu, SAu, a, b, t) ≥ M (Au, Su, a, b, t)  

     for all u, a, b Î X and t > 0. 
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Definition2.2.1.18:  Throughout this chapter,  denotes a measurable space  is a measurable 

selector. X is any non empty set.  is continuous t-norm, M is a fuzzy set in   

A binary operation *:[0,1]x[0,1]®[0,1] is called a continuous t-norm if ([0,1],*) is an abelian 

Topological monodies with unit 1 such that a * b ≥ c * d whenever 

 a ≥  c and b ≥ d  ,   For all a, b, c, d,  Î [0, 1]  

 Example of t-norm are a * b = a b and a * b = min {a, b} 

Definition2.2.1.18 (a):  The 3-tuple (X, M, W  *) is called a Random fuzzy metric space, if X is an arbitrary 

set,* is a continuous t-norm and M is a fuzzy set in X
2 
x [0,¥) satisfying the following conditions: for all  

x x, x y, x z Î X and s, t > 0, 

( )

( )

( )

( )

[ ) [ ]

( 1) : , ,0 0

( 2) : , , 1, 0,

( 3) : , , ( , , )

( 4) : , , ( , , ) ( , , )

( 5) : ( , , ) : 0,1 0,1

RFM M x y

RFM M x y t t x y

RFM M x y t M y x t

RFM M x z t s M x y t M z y s

RFM M x y a is left continuous

x x

x x

x x x x

x x x x x x

x x x

- =

- = " Û =

- =

- + ³ *

- ®

0 x0, xx0,

 

In what follows, (X, M, W ,*) will denote a random fuzzy metric space. Note that M (x x, x y, t) can be thought 

of as the degree of nearness between x x and x y with respect to t. We identify x x = x y with M (x x, x  y, t) 

= 1 for all t > 0 and M (x x, x y, t) = 0 with ¥.In the following example, we know that every metric induces a 

fuzzy metric.  

Example Let (X, d) be a metric space. 

 Define a *b = a b, or ab =min {a, b}) and for all x, y, Î X and t > 0, 

( )
( )

, ,
,

t
M x y t

t d x y
x x

x x
=

+
             

Then (X, M, W , *) is a fuzzy metric space. We call this random fuzzy metric M induced by the metric d the 

standard fuzzy metric.  

Definition2.2.1.18 (b):  Let (X, M, W , *) is a random fuzzy metric space.  

(i)A sequence {x xn} in X is said to be convergent to a point x x Î X, 

      lim ( , , ) 1n
n

M x x tx x
®¥

=  

(ii) A sequence {x xn} in X is called a Cauchy sequence if  

        lim ( , , ) 1, 0 0n p n
n

M x x t t and px x+
®¥

= " 0and p00  

 (iii) A random fuzzy metric space in which every Cauchy sequence is convergent is said to be    

         Complete.   

      Let (X.M,*) is a fuzzy metric space with the following condition.  

    (RFM-6)     lim ( , , ) 1, ,
t

M x y t x y Xx x x x e
®¥

= "    
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. Definition2.2.1.18 (c):  A function M is continuous in fuzzy metric space iff whenever 

, lim ( , , ) ( , , )n n n n
n

x x y y M x y t M x y tx x x x x x x x
®¥

® ® Þ ®  

Definition2.2.1.18 (d):  Two mappings A and S on fuzzy metric space X are weakly commuting iff 

M ( ASx u, SAx u, t) ≥ M (Ax u, Sx u, t) 

Some Basic Results 2.2.1.18 (e):   

Lemma (i) [Motivated by 19] for all x x, x y, Î X, M(ξx, ξy) is non -decreasing. 

Lemma (ii) Let {ξyn} be a sequence in a random fuzzy metric space (X, M, Ω,*) with the condition  

(RFM -6) If there exists a number q Î (0,1) such that   

{ }
2 1 1( , , ) ( , , ) , 0 1,2,3......,

.

n n n n

n

M y y qt M y y t t and n

then y is a cauchy sequencein X

x x x x

x

+ + +³ " =and n0000
 

Lemma (iii) [Motivated by 32] If, for all ξx, ξy Î X, t > 0 and for a number q Î (0,1), 

( , , ) ( , , ),M x y qt M x y t then x yx x x x x x³ =  

  Lemmas 1, 2, 3 of 2.2.1.18 (e):  ) hold for random fuzzy 2-metric spaces and random fuzzy 3-metric spaces 

also. 

Definition2.2.1.18 (f):  A binary operation *: [0, 1] x [0,1] x [0,1] ® [0,1] is called a continuous t-norm if 

([0,1],*) is an abelian topological monodies with unit 1 such that a1 * b1 * c1 ≥ a2 * b2 * c2 whenever 

 a1 ≥ a2, b1 ≥ b2, c1≥ c2 for all a1, a2, b1, b2 and c1, c2 are in [0,1].  

Definition2.2.1.18 (g):  The 3-tuple (X, M, *) is called a random fuzzy 2-metric space if X is an arbitrary set, 

* is continuous t-norm and M is fuzzy set in X
3 

x [0,¥) satisfying the followings 

( )

( )

( )

( )

'

'

'

'

1, 2, 3, 1, 2,

( 1) : , , ,0 0

( 2) : , , , 1, 0,

( 3) : , , ( , , , ) ( , , , ), var

( 4) : , , , , ( , , , ) ( , , , ) ( , , ,

RFM M x y z

RFM M x y z t t x y

RFM M x y t M x z y t M y z x t symmetry about three riable

RFM M x y z t t t M x y u t M x u z t M u y z

x x x

x x x

x x x x x x x x

x x x x x x x x x x x x

- =

- = " Û =

- = =

- ³ * *

0 x0, xx0,

[ ) [ ]

3,

'

1 2 3

)

( 5) : ( , , ) : 0,1 0,1 , , , , , , , 0

t

RFM M x y z is left continuous x y z u X t t tx x x x x x x e- ® " 0

           .  

Definition2.2.1.18 (h):  Let (X, M, * ) be a random fuzzy 2-metric space. A sequence { x xn} in fuzzy 2-metric 

space X is said to be convergent to a point x x Î X,  

lim ( , , , ) 1, 0n
n

M x x a t for all a X and tx x x x e
®¥

= 0  

(2) A sequence { x xn} in random fuzzy 2-metric space X is called a Cauchy sequence, if  

lim ( , , , ) 1, , 0n p n
n

M x x a t for all a X and t px x x x e+
®¥

= 0  

 (3) A random fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete. 

Definition2.2.1.18 (i):  A function M is continuous in random fuzzy 2-metric space, iff whenever  



Computer Engineering and Intelligent Systems                                                                                                                                 www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol.4, No.9, 2013 

 

 

19 

 

For all x a Î X and t > 0. 

, , lim ( , , , ) ( , , , ), 0n n n n
n

x x y y then M x y a t M x y a t a X and tx x x x x x x x x x x e
®¥

® ® = " 0  

Definition2.2.1.18 (j):   Two mappings A and S on random fuzzy 2-metri space X are weakly commuting iff 

( , , , ) ( , , , ), , 0M AS u SA u a t M A u S u a t u a Xand tx x x x x x x x e³ " 0  

Definition2.2.1.18 (k):   A binary operation *: [0, 1]
4
 ® [0, 1] is called a continuous t-norm if 

([0, 1], *) is an abelian topological monoid with unit 1 such that  

22221111 dcbadcba ***³***  Whenever a1 ≥ a2, b1 ≥ b2  , c1 ≥ c2 and d1 ≥ d2 for all a1, a2, b1, b2, c1, c2 

and d1, d2 are in [0,1].  

Definition2.2.1.18 (l):   The 3-tuple (X, M, Ω, *) is called a fuzzy 3-metric space if X is an arbitrary set, * is a 

continuous t-norm monoid and M is a fuzzy set in X
4
 x [0, ¥] satisfying the following conductions:  

( )

( )

( )

( )

''

''

''

''

2 3

( 1) : , , , ,0 0

( 2) : , , , , 1, 0,

, , , deg

( 3) : , , , , ( , , , , ) ( , , , , )

( 4) : , , , , ( , ,

RFM M x y z w

RFM M x y z w t t

Only whenthethreesimplex x y z w enerate

RFM M x y z w t M x w z y t M z w x y t

RFM M x y z w t t t M x y

x x x x

x x x x

x x x x x x x x x x x x

x x x x x x

- =

- = "

- = = = - - - -

- + + ³

0,

[ ) [ ]

1,

2, 3, 4

''

1 2 3 4

, , )

( , , , , ) ( , , , , ) ( , , , , )

( 5) : ( , , , ) : 0,1 0,1 ,

, , , , , , , , 0

z u t

M x y u w t M x u z w t M u y z w t

RFM M x y z w is left continuous

x y z u w X t t t t

x x

x x x x x x x x x x x x

x x x x

x x x x x e

*

* *

- ®

" 0

 

Definition2.2.1.18 (m):   Let (X, M, Ω,*) be a Random fuzzy 3-metric space:  

(1)A sequence {ξXn} in fuzzy 3-metric space X is said to be convergent to a point ξx Î X, if 

   lim ( , , , , ) 1, , 0n
n

M x x a b t for all a b X and tx x x x x x e
®¥

= 0  

  (2)A sequence {x xn} in random fuzzy 3-metric space X is called a Cauchy sequence, if  

lim ( , , , , ) 1, , , 0n p n
n

M x x a b t for all a b X and t px x x x x x e+
®¥

= 0  

 (3)A random fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.  

Definition2.2.1.18 (n):   A function M is continuous in random fuzzy 3-metric space if  

, , lim ( , , , , ) ( , , , ), , 0n n n n
n

x x y y then M x y a b t M x y a t a b X and tx x x x x x x x x x x x x e
®¥

® ® = " 0  

Definition2.2.1.18 (o):   Two mappings A and S on random fuzzy 3-metric space X are weakly commuting iff,  

( , , , , ) ( , , , , ) , , 0M AS u SA u a b t M A u S u a b t u a b Xand tx x x x x x x x e³ " 0  

2.2.2 Prepositions. 

Preposition 2.2.2.1 (Gregori and Sepene 2002) 

 Let (X, d) be a metric space. The mapping f: X à X is a contractive (a contraction) on the metric space (X, d) 

with contractive constant k iff f is fuzzy contractive, with contractive constant k, on the standard fuzzy metric 

space (X, Md, * ), induced by d. 
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Preposition 2.2.2.2 (Gregori and Sepene 2002) 

 Let (X, M, *) be a complete fuzzy metric space in which fuzzy contractive sequences are Cauchy. Let   T: X à 

X be a fuzzy contractive mapping being k the contractive constant. Then T has a unique fixed point. 

Preposition 2.2.2.3 (Gregori and Sepene 2002) 

Let (X, Md, * ) be the standard fuzzy metric space induced by the metric d on X. The sequence {xn} in X is 

contractive in (X, d) iff {xn} is fuzzy contractive in         (X, Md,*). 

Preposition 2.2.2.1 and 2.2.2.3 imply that Preposition 2.2.2.2 is a generalization of Banach fixed point theorem 

to fuzzy metric spaces as defined by George and Veermani. 

It is to be noted that all the prepositions are true for (RFM) 

Now, we   state   and   prove   our   main   theorem   as   follows, 

2.3 Main Results 

Theorem 2.3.1:  Let  be a complete Random fuzzy metric space in which fuzzy contractive sequences 

are Cauchy and T , R and S be mappings from  into itself  is a measurable selector 

satisfying the following conditions : 

                     T(X) Í R(X) and T(X) Í  S(X)                                                          (2.3.1.1) 

                   - 1≤ k k                                                          (2.3.1.2) 

 

with 0 < k < 1 and 

                               Q(  x,  y, t) = min  

The pairs T, S and T, R are compatible. R, T and S are w-continuous.         (2.3.1.3) 

Then R, T and S have a unique common fixed point.                                        (2.3.1.4) 

Proof:  Let x0 Î X be an arbitrary point .Since T(X) Í R(X) and T(X) Í S(X),                     we can construct a 

sequence {xn} in X such that  

                                                        T  = RRRRRR  = S                                               (2.3.1.5) 

Now, 

Q ( ) = min      

 

                        = min  

                        = min                                         

We now claim that                                         

Otherwise we claim that                              

i.e    Q ( ) =                     (2.3.1.6) 

\                          ≤ k                          [by 2.3.1.2]                        

which is a contradiction. 

Hence,                  ≤ k                             (2.3.1.7) 

\       {T xn} is a fuzzy contractive sequence in  So {T xn} is a Cauchy sequence                                    

As X is a complete fuzzy metric space, {T xn-1} is convergent. So, {T xn-1} converges to some point z in X.  

\ {T xn-1}, {R xn}, {S xn} converges to z. By w-continuity of R, S and T, there exists a point u in X such that 

xn ® u as n®¥  and so = = = z implies 

                                             RRRRRRRRRRRRRRR u = S u = T u = z                                                             (2.3.1.8) 

Also by compatibility of pairs T, S and T, R and Tu = Ru = Su = z implies  

                         T z = TRTRTRTRTRTR u = RT u = RRRRRR z and T z = TS u = ST u = S z 
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Therefore,                             T z = RRRRRRRRRRRRRR z = S z                                                                  (2.3.1.9) 

We now claim that T z = z. 

If not           ≤ k  

 

                                          Q ( z, u, t) = min  

                                                            = min  

                                                           = min  

                                                           =  

       \          ≤ k  

which is a contradiction. 

Hence T z = z 

So z is a common fixed point of R, T and S. 

Now suppose v ≠ z be another fixed point of R, T and  

    \           ≤ k  

                                      Q ( v, u, t) = min  

                                                       = min  

                                                      = min  

                                                     =   

   \      ≤ k  

which is a contradiction. Hence v = z. 

Thus R, T and S have a unique fixed point.  

Theorem 2.3.2:  Let  be a complete Random fuzzy 2-metric space (RF-2M) in which fuzzy 

contractive sequences are Cauchy and T , R and S be mappings from  into itself  is a 

measurable selector and  a(  )=a > 0satisfying the following conditions : 

                                     T(X) Í R(X) and T(X) Í  S(X)                                                             (2.3.2.1)  

              - 1≤ k k k k k                                                        (2.3.2.2) 

with 0 < k < 1 and 

       Q(  x,  y,  a, t) = min  

The pairs T, S and T, R are compatible. R, T and S are w-continuous.      (2.3.2.3)                                                                                              

Then R, T and S have a unique common fixed point.                                      (2.3.2.4)                                     

Proof:  Let  x0 Î X be an arbitrary point of X. Since T(X) Í  R(X) and T(X) Í  S(X), we can construct a 

sequence {  xn} in X such that  

                                                  T  = RRRRRR  = S                                                   (2.3.2.5) 

Now, 

Q( =  
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                          =min  

 

                            = min  

 

We now claim that            

Otherwise we claim that   

i.e.                                             Q ( ) =             (2.3.2.6) 

\            ≤ k                            [by (2.3.2.2)] 

which is a contradiction. 

Hence,     ≤ k                                  (2.3.2.7) 

\ {T  xn} is a fuzzy contractive sequence in  (X, M,*). So {T  xn} is a Cauchy sequence in    

 

As X is a complete Random fuzzy2- metric space, {T xn-1} is convergent. So, {T  xn-1} converges to some point 

 z in X.  

\ {T  xn-1}, {R  xn}, {S  xn} converges to  z. By w-continuity of R, S and T, there exists a point  u in X such 

that  xn ®   u as n®¥  and so = = =  z implies 

                                          RR  u = S  u = T  u =  z                                                           (2.3.2.8) 

Also by compatibility of pairs T, S and T, R and T  u = RR  u = S  u =  z implies  

                         T  z = TRTR  u = RT  u = RR  z and T  z = TS  u = ST  u = S  z 

Therefore,                           T  z = RR  z = S  z                                                              (2.3.2.9) 

We now claim that T  z =  z. 

If not       ≤ k  

 

        Q (  z,  u,  a, t) = min  

                                   = min  

                                     = min  

                                     =  

   \         ≤ k  

which is a contradiction. 

Hence T  z =  z 

So  z is a common fixed point of R, T and S. 

Now suppose  v ≠  z be another fixed point of R, T and  

\      ≤ k  

      Q(  v,  u,  a, t) = min  

                                             = min  

                                             = min  

                                            =   
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 \       ≤ k  

This is a contradiction. Hence  v =  z. 

Thus R, T and S have unique common fixed point. This completes our proof. 

Theorem 2.3.3:  Let  be a complete Random fuzzy 3-metric space (RF-3M) in which fuzzy 

contractive sequences are Cauchy and T , R and S be mappings from  into itself  is a 

measurable selector and   ,  > 0satisfying the following conditions : 

                                     T(X) Í R(X) and T(X) Í  S(X)                                                             (2.33.1)  

              - 1≤ k k k k k                                                        (2.3.3.2) 

with 0 < k < 1 and 

  Q(  x,  y,  a, t) = min  

The pairs T, S and T, R are compatible. R, T and S are w-continuous.      (2.3.3.3)                                                                                              

Then R, T and S have a unique common fixed point.                                      (2.3.3.4)                                     

Proof:  Let  x0 Î X be an arbitrary point of X. Since T(X) Í  R(X) and T(X) Í  S(X), we can construct a 

sequence {  xn} in X such that  

                                                  T  = RRRRR  = S                                                   (2.3.3.5) 

Now, 

Q( =  

                            

                          =min  

 

                            = min  

 

We now claim that            

Otherwise we claim that   

i.e.                                             Q ( ) =             (2.3.3.6) 

\            ≤ k                            [by (2.3.32)] 

which is a contradiction. 

Hence,     ≤ k                                  (2.3.3.7) 

\ {T  xn} is a fuzzy contractive sequence in  (X, M,*). So {T  xn} is a Cauchy sequence in    

 

As X is a complete Random fuzzy3- metric space, {T xn-1} is convergent. So, {T  xn-1} converges to some point 

 z in X.  

\ {T  xn-1}, {R  xn}, {S  xn} converges to  z. By w-continuity of R, S and T, there exists a point  u in X such 

that  xn ®   u as n®¥  and so = = =  z implies 

                                          RR  u = S  u = T  u =  z                                                           (2.3.3.8) 

Also by compatibility of pairs T, S and T, R and T  u = RR  u = S  u =  z implies  

                         T  z = TRTR  u = RT  u = RR  z and T  z = TS  u = ST  u = S  z 

Therefore,                           T  z = RR  z = S  z                                                              (2.3.39) 

We now claim that T  z =  z. 

If not       ≤ k  

Q (  z,  u,  a,  t) =  
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min  

                                   = min  

                                     = min  

                                     =  

   \         ≤ k  

which is a contradiction. 

Hence T  z =  z 

So  z is a common fixed point of R, T and S. 

Now suppose  v ≠  z be another fixed point of R, T and  

\      ≤ k  

Q(  v,  u,  a, t) = min  

                                             = min  

                                             = min  

                                            =   

 \       ≤ k  

This is a contradiction. Hence  v =  z. 

Thus R, T and S have unique common fixed point. This completes our proof. 

2.4 Integral type mapping 

 Impact of fixed point theory in different branches of mathematics and its applications is immense. In 2002, A. 

Branciari [3] analyzed the existence of fixed point for mapping f defined on a complete metric space (X, d) 

satisfying a general contractive condition of integral type.  

THEOREM 2.4.1: (Branciari) 

Let (X, d) be a complete metric space, c Î(0, 1) and let f: X®X be a mapping such that for each x, y Î X, 

                        ≤ c                                     (2.4.1.1) 

where x : [0,+¥)®[0,+¥) is a lebesgue integrable mapping which is summable on each compact subset of 

[0,+¥), non-negative and such that for each e > 0,  , then f has a unique fixed point a Î X such that for 

each x Î X,  = a. 

                            After the paper of Branciari, a lot of research works have been carried out on generalizing 

contractive condition of integral type for a different contractive mapping satisfying various known properties. 

Theorem 2.4.2: Let (X, d) be a complete metric space and f : X®X such that  

+  

 For each x, yÎX with non-negative real’s a, b, g such that 2a + b + g < 1, where                   u :[0, +¥)®[0, +¥) 

is a Lebesgue integrable mapping which is summable , non-negative and such that for each e > 0, 

                                                                     > 0  

Then f has a unique fixed point in X. 

There is a gap in the proof of theorem (3.4.2.1)   . In fact, the authors [10] used the inequality  ≤ 

 +  for 0 ≤ a < b, which is not true in general .The aim of research paper of H. Aydi [23]  was 

to present in the presence of this inequality an extension of theorem 2.4.2 using altering distances .                                                                                                                                                           
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THEOREM 2.4.3: Let (X, M,  *) be a complete Random Fuzzy metric space in which fuzzy contractive 

sequences are Cauchy and T, R and S be mappings from (X, M,  *) into itselflflflflflflflf  denotes a measurable 

space  is a measurable selector satisfying the following conditions: 

 

                                          T( X ) Í R( X ) and T( X ) Í S( X )    

 

                                                           - 1≤ k k k  

 

with 0 < k < 1 and  

                                     =  

 

For   every   Where    is  a  legesgue  

integrable  mapping  which  is  summable  on  each  compact  subset  of   ,  non  negative,  and  such  

that,   

The pairs T, S and T, R are compatible, R, T, S are w-continuous. Then T, R and S have a unique common fixed 

point. 

 

Proof:  Let x0 Î X be an arbitrary point .Since T(X) Í R(X) and T(X) Í S(X),    we can construct a sequence 

{xn} in X such that  

                                                        T  = RRRRR  = S                                                

Now  

   

 

 

                                     =  

 

 

                                      =  

 

 

We now claim that                                         

Otherwise we claim that                              

 

 

   i.e. ,                          

 

 

 \                                 Hence,                  ≤ k  

 

 

\   \       {T xn} is a fuzzy contractive sequence in  So {T xn} is a Cauchy sequence                                    

As X is a complete fuzzy metric space, {T xn-1} is convergent. So, {T xn-1} converges to some point z in X.  

\ {T xn-1}, {R xn}, {S xn} converges to z. By w-continuity of R, S and T, there exists a point u in X such that 

xn ® u as n®¥  and so = = = z implies 
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                                             RRRRRRRRRRRR u = S u = T u = z                                                              

Also by compatibility of pairs T, S and T, R and Tu = Ru = Su = z implies  

                         T z = TRTRTRTRTRTR u = RT u = RRRRRR z and T z = TS u = ST u = S z 

Therefore,                             T z = RRRRRRRRRRRRRRR z = S z                                                                

We now claim that T z = z. 

 

If not           ≤ k  

 

 

                                  =  

 

 

                                                          =  

 

 

                                                       =  

 

 

                                                     =  

 

                                                      

 

         \          ≤ k  

  which is a contradiction. 

  

Hence T z = z 

 

So z is a common fixed point of R, T and S. 

 

Now suppose v ≠ z be another fixed point of R, T and  

 

    \              ≤ k  

 

 

                         =  

                                                    =  

                                                    =   

\              ≤ k  

                                

which is a contradiction. Hence v = z. 

Thus R, T and S have a unique fixed point.  

Theorem 2.4.2:  Let  be a complete Random fuzzy 2-metric space (RF-2M) in which fuzzy 

contractive sequences are Cauchy and T , R and S be mappings from  into itself  is a 

measurable selector and  a(  ) >0 satisfying the following conditions : 
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                                     T(X) Í R(X) and T(X) Í  S(X)                                                             (2.4.2.1)  

              - 1≤ k k k k                                                        (2.4.2.2) 

            with 0 < k < 1 and 

                            

                                      =  

 

For   every   Where    is  a  legesgue  

integrable  mapping  which  is  summable  on  each  compact  subset  of   ,  non  negative,  and  such  

that,   

The pairs T, S and T, R are compatible, R, T, S are w-continuous. Then T, R and S have a unique common fixed 

point. 

 

PROOF:  Let x0Î X be an arbitrary point of X. Since T(X)Í R(X) and T(X)Í S(X) , we can construct a 

sequence {xn}  in  X  such  that  

 

                                                               Txn-1 = Rxn = Sxn 

Now , 

   

 

                               =  

 

                           =  

 

We now claim that            

Otherwise we claim that   

 

   i.e. ,              ≤ k                            [by (2.4.2.2)] 

which is a contradiction 

 

 \                         -1 ≤ k  

 

This is a contradiction. 

 

Hence,                      Hence,     ≤ k  

 

 {T xn} is a fuzzy contractive sequence in (X, M,* ). So {Txn} is a Cauchy sequence in  

   (X, M,* ).  

 

  As X is a complete fuzzy metric space, {T xn-1} is convergent. So, {T xn-1} converges to some point z in X.  

 

 \ {T xn-1}, {RR xn}, {S xn} converges to  z. By w-continuity of R, S and T, there exists a point  u in X such 

that  xn ®   u as n®¥  and so = = =  z implies 

                                          RR  u = S  u = T  u =  z                                                           (2.4.2.8) 
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Also by compatibility of pairs T, S and T, R and T  u = RR  u = S  u =  z implies  

                         T  z = TRTR  u = RT  u = RR  z and T  z = TS  u = ST  u = S  z 

Therefore,                           T  z = RR  z = S  z                                                              (2.4.2.9) 

We now claim that T  z =  z. 

If not       ≤ k  

 

   =  

 

 

                                =  

 

                                 =  

 

                                 =  

  

                                  =    

 

 

           ≤ k  

which is a contradiction. 

Hence T  z =  z 

So  z is a common fixed point of R, T and S. 

Now suppose  v ≠  z be another fixed point of R, T and S 

Now suppose  v ≠  z be another fixed point of R, T and  

\      ≤ k  

 

 

   =  

 

                                     =  

 

                                =   

 

\            \       ≤ k  

which is a contradiction. Hence  v =  z. 

 

Theorem 2.4.3:  Let  be a complete Random fuzzy 3-metric space (RF-3M) in which fuzzy 

contractive sequences are Cauchy and T , R and S be mappings from  into itself  is a 

measurable selector and   ,  > 0satisfying the following conditions : 

                                     T(X) Í R(X) and T(X) Í  S(X)                                                             (2.43.1)  
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              - 1≤ k k k k k                                                        (2.4.3.2) 

with 0 < k < 1 and 

 

    =  

 

For   every   Where    is  a  legesgue  

integrable  mapping  which  is  summable  on  each  compact  subset  of   ,  non  negative,  and  such  

that,   

 

The pairs T, S and T, R are compatible, R, T, S are w-continuous. Then T, R and S have a unique common fixed 

point. 

 

Proof: Let  x0 Î X be an arbitrary point of X. Since T(X) Í  R(X) and T(X) Í  S(X), we can construct a 

sequence {  xn} in X such that  

                                                  T  = RRRRRR  = S                                                   (2.4.3.5) 

Now, 

 

  

 

 

                

 

                                          =  

 

N We now claim that            

Otherwise we claim that      

i.e. ,                              

 

 \             ≤ k                      [by (2.4.3.2)] 

This is a contradiction. 

Hence,     ≤ k                                  (2.4.3.7) 

\ {T  xn} is a fuzzy contractive sequence in  (X, M,*). So {T  xn} is a Cauchy sequence in    

 

As X is a complete Random fuzzy3- metric space, {T xn-1} is convergent. So, {T  xn-1} converges to some point 

 z in X.  

\ {T  xn-1}, {R  xn}, {S  xn} converges to  z. By w-continuity of R, S and T, there exists a point  u in X such 

that  xn ®   u as n®¥  and so = = =  z implies 

                                          RR  u = S  u = T  u =  z                                                           (2.4.3.8) 

Also by compatibility of pairs T, S and T, R and T  u = RR  u = S  u =  z implies  

                         T  z = TRTR  u = RT  u = RR  z and T  z = TS  u = ST  u = S  z 

Therefore,                           T  z = RR  z = S  z                                                               

We now claim that T  z =  z. 
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If not       ≤ k  

 

 

 

   =  

 

 

                                =  

 

 

                                 

                             =  

                          

                              =    

 

 

  \         ≤ k  

which is a contradiction. 

Hence T  z =  z 

So  z is a common fixed point of R, T and S. 

Now suppose  v ≠  z be another fixed point of R, T and  

\      ≤ k  

   =  

 

                                     =  

 

                                     =   

 

                                     =  

                                       

     ≤ k  

This is a contradiction. Hence  v =  z. 

Thus R, T and S have unique common fixed point. This completes our proof. 
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