Computer Engineering and Intelligent Systems ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol.4, No.1, 2013

Exploring Raw Safety Aspects in Aviation Industry

Indu Bala¹, Somesh Kr. Sharma^{1*}, Prof. Sunanad Kumar ^{*}Corresponding Author National Institute of Technology Hamirpur (India)

Abstract:

Aviation is the growing industry. Safety in the aviation industry is most important. Safety is affected by many factors such as environmental, economical, technical, and operational and many challenges are in the way of aviation safety to overcome from these hurdles .So this paper tried to explore the different safety aspects for the aviation industry. From the literature different research streams and research issues are discussed which affects the safety of the aviation industry.

Keywords: Aviation Safety, Challenges, Safety Aspects, Environmental, Economical, Technical 1. Introduction

Safety has always been the prime reflection in the conduct of all aviation activities. Safety is the state in which the risk of harm to persons or property damage is reduced and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Safety improvement measures introduced usually to address the identified safety concern. Due to the nature of the aviation industry, the total elimination of accidents or serious incidents is unachievable. No human effort or human-made system can be free from risk and error, and failures will be expected to occur in spite of the most proficient prevention efforts. Safety plays an important role in aviation industry. Safety in aviation industry becomes a major problem today. In the 1990s, safety thinking has evolved to the point of widespread acknowledgement that organizational factors play a significant role in the performance of human beings and therefore is an important issue in risk and error management. The literature also reflects that there is a general lack of proactive safety theory derived from longitudinal case studies of "safety management systems in companies being subject to reorganization in the wide open business environment", and is described as "a black hole in research and literature" (Hale et al., 1998: p. 11). Safety has always been a critical element to the business success of the passenger aviation industry. However, growth in the number of commercial aviation flights has resulted in aviation is increasing (Gellman Research Associates, 1997).

The transport sector has developed into a major industry during the 20th century. It has been helpful in overall increase in prosperity, development and the expansion of the world's trade that has taken place. However, there are many negative impacts on the safety of the aviation industry. The effect of atmospheric pollution, noise, accidents, congestion and delays, infrastructure has been particularly emphasized (Button, 1993; European Commission, 1996). According to Luxor and Coit (2006): "in the aviation industry, accidents occur very infrequently, yet it is still critical to further reduce their rate of occurrence. Existing methods and models are already useful, but because of the importance of these failures, new modelling perspectives can add additional insights to further enhance safety. a model devoted to this class of 'low probability-high consequence' events demonstrated with a model developed for a certain aircraft accident type known as Controlled Flight Into Terrain (CFIT)."

2. Challenges in Aviation Industry

Aviation safety has an enviable and well earned reputation for accident reduction and risk

Management.

Criminalisation

It is the one of the challenge in the aviation safety. We must also attempt to reduce the criminalization of safety – that is the tendency for legal authorities to bring legal action against aviation personnel for basic human error, often well before any safety investigation has been completed to determine the cause of the accident, and many times to the detriment of the investigation. Now we are talking about legal action for basic human error, or the unintentional result of someone's actions. However, in all cases, error by definition is unintentional. Punishment, which may be effective against intentional acts, will not reduce unintentional errors.

The motivation of the aviation terrorist has changed over time. As Jackson explains, 'in the early days, such actions tended to be the province of thieves, extortionists, blackmailers, murderers and the mentally

deranged' the nature of the threat has also changed over time. In the 1970s hijackings were the most common form of terrorist attack. In the 1980s such 'conclusive events' as bombings became the norm. Safety

Safety is an important but challenging issue in the aviation industry. The growth in the aviation sector and capacity expansion by carriers has posed challenges to aviation industry on several fronts. Air passenger transportation is growing, with annual increases exceeding 5% forecast for the next 20 years. From a safety perspective, this means that continuous improvement is necessary to maintain high safety levels.

There are many factors which explored the parameters that influence the safety of the aviation industry like environmental issues, economical issues, human errors, technical problems.

Environmental issue

It is the one of challenges in the safety of the aviation industry. Aviation industry has environmental impacts both at a regional and global level. Local atmospheric issues are related to airport contributions to local air quality and the potential for health impacts on residential populations in surrounding areas. Aviation emission has the potential to affect climate. Aviation emissions are known as a significant provider to global climate impacts through global warming (Penner et al., 1999). (Penner et al., 1999) studied at global warming related with aviation emissions that suggest about aviation contributes approximately 3.5% of the total anthropogenic forcing, and this may increase to between 7 and 12% by 2050 (Penner et al., 1999).

The impact of aviation emissions is important due to the factors that of aviation emissions occurring in high altitude, and the growth of air traffic. Aviation emission consists of 71% Carbon dioxide (CO₂) and 28% water vapour (H₂O). In the remaining 1%, NO_x is the most important emission (Penner et al., 1999,). (Janic, 1999) influencing aviation emissions influence the intensity and volume of aircraft movements, fuel consumption and energy efficiency and the rate of renewing of the aircraft fleet by introducing "Cleaner" aircraft.

Human Factor

Human factor is the main challenge in the safety of the aviation industry. Like most of the accidents occurs due to human errors, like due to communication gap, lack of proper trainings, health. Toxication of the liquors among pilots during their duty hours is also the main problem. The effects of alcohol on piloting performance is the another challenge in aviation safety. Crash investigation indicates that alcohol-impaired flying has been primarily a problem in aviation. In the early 1960s, over 30% of pilots who were injured in aviation crashes (Gibbons et al., 1966; Harper and Albers, 1964). This trend has decrease in the past four decades to about 8% in the 1990s (Canfield et al., 2001; Copeland, 1986;Kuhlman et al., 1991; Lakefield et al., 1975; Li et al., 1998). The effects of alcohol on pilot performance have been studied extensively (Cook, 1997; Koelega, 1995; Modell and Mountz, 1990). (Billings et al., 1973; Ross et al., 1992) studied that alcohol at the level as low as 20 mg/dL, can impair flight-relevant cognitive.

Passenger safety

Passenger's safety is another challenge for aviation industry. The primary purpose of aviation safety education is to provide cabin safety knowledge, passenger attitude, and passenger behaviour to the passenger when an emergency occurs. e.g. on 25 August 2000, a Hawaii BIA airline PA-31-350 had engine failure and ditched into Hilo Bay with one fatality and eight minor injuries. The passenger who died had over blame their life jacket too early to escape from the exit. On 13 July 2003, an Air Sun Shine Cessna 402 ditched into Treasure Cay, Bahamas, causing two deaths and five minor injuries. One passenger had put three life jackets on a child, while another had inflated their life jacket before exiting the aircraft. These cases reveal that one reason airline passengers act inappropriately in an emergency may be due to overstress or panic. However, Edwards (1990) pointed out that the purpose of passenger education is to reduce stress and panic caused by emergencies in order to allow passengers to prepare in advance to face danger. In addition, passengers may generally lack accurate cabin safety knowledge, and they may have a passive attitude about and be unprepared for emergencies, thereby contributing to their own deaths and to the endangerment of other passengers. Christensen (2005) developed new guidelines to educate passengers about evacuations with infants or young children, stating that passenger knowledge is a key factor that impacts passenger responses during an airplane accident. Also, Muir and Thomas (2004) studied about the increasing airline passenger safety education would increase the probability of passenger survival in an

emergency. Understanding of the nature of the aviation safety education is a powerful and improving airline passenger cabin safety knowledge, attitude, and behaviour. *Security*

This is another major challenge. The action of September 11, 2001 changes the aviation security policy and operations overall. Yu-Hern Chang, Chung Yeh (2004) developed a new airline safety index that helps the airlines to understand their relative safety strengths and weakness in terms of manage safety and identical functional areas for safety improvement. Glässer et al. propose a computational model to evaluate aviation security screening performance using probability models that checks the consistency, coherence, and completeness of security requirements as defined by the FAA guidelines. They combine probabilistic variants of abstract state machines and model checking for analyzing aviation security models. Their model provides a tool for analyzing the effectiveness of security checkpoint screening and to identify potential security deficiencies. Caulkins also suggests several ways that pre-screening could be used to increase the overall security even if terrorists are incorrectly classified as no selectees. Nikolaev et al. Propose a two-stage model for sequential, stochastic multilevel passenger screening problems. The first stage analyzes the purchase of security devices, while the second stage determines the screening assignments of sequentially arriving passengers.

3. Challenges in maintaining safety in aviation industry

To overcome from the above challenges different strategies are applied by different researchers. Shao Xueyan et.al established a multi-objective programming to analyze the safety risk in pilots. He used QAR device. Basing on QAR data, neural networks are established to analyze causes of exceedance and carry out advance warning of safety risks. McFadden (2003) used logistic regression model to predict pilot-error accident and incident rates on an airline-by-airline basis. Peter brooker et.al. Proposed a model Bayesian Belief Network of ATC operations spanning a number of defensive barriers from airspace design through tactical control. Security is the another major issue for the safety so by taking this in consideration many technologies are suggested like bomb proofing technology &The modelling approaches are analyse the different model for the aviation security like baggage screening models, passenger screening models, and risk models.

there are many challenges in maintaining the safety.

The problem in maintaining safety is diversifying which worth proper research and planning. It takes more effort to enact significant change in airport environments than many realize. This is true only if one desires to integrate safety among the airlines, air traffic control and airport segments. Safety being an integral part of all spheres of activities of the aviation industry. it is true that it is not possible to implement Safety by following a prescription or established procedure. The regulations only provide a guideline or the base line upon which the system has to be developed. It is the operator's choice to go further and establish SMS based on its organisational background, socio economic parameters and its interface with multiple agencies. What is most important is that every component of safety which includes safety policy and objective, safety risk management, safety assurance should be effective.

There is no universal solution for improving airport safety, but It is the organization's responsibility to customize its safety based on multiple factors and implement it taking into consideration the ground realities.

In a commercially competitive environment for some, being safe is perceived as an expensive, elusive and never-ending obligation with unclear returns on the investment. Accidents, incidents and even the smallest occurrences hurt customers and staff, not to mention damage to profit line, the reputation or the morale within the company. Safety Management is about finding the perfect balance between the production of services and products and the protection of human, financial and technical resources. While carrying out budgetary allocations and planning of resources for implementation of safety programmes, there are many questions arises about cost, time, regulations, policies etc. These issues are the major factors in implementing the safety programmes.

Single runway operations and delays due to the fog and diversions have cost implication to the airlines. The financial implications for this require proper assessment and proper decision from the management part. The operational environment is the major challenge by the airport operator, pilot community etc.

The study analysed the following factors:

- The stress in the cockpit of flying the aircraft for hours waiting for visibility conditions to improve.
- The repercussions of altering the flight schedule due to aerodrome closure versus absorbing few diversions and delays.
- The cost involved in providing the required facilities.
- The risk involved in operating on a partially closed runway.
- The cost of holding the aircraft for weather improvement.
- The pilot training required to operate at adverse conditions.
- The congestion at terminal due to delayed flights and the passenger inconvenience thereof.

The aviation industry is highly volatile in factors like the recent economic meltdown, natural calamities such as volcanic ash, 9/11 and other global events. It is a task for the industry to work towards recovering its cost of capital. To maintain the balance between investments with financial and nonfinancial returns is a challenge.

4. Literature Review

Much research has been undertaken to gain a better understanding of the aviation safety. from the law few decades much attention is given on the aviation safety. The safety improvement process continues through the years and is a key part of the work of operational and research throughout the world. There are Many factors which influence the safety of the aviation industry. (Argüello, 1997) et al.summerised an airline's schedule recovery problem in case aircraft become temporarily unavailable (are grounded) or are delayed. Their goal is to produce an interim aircraft routing and restore normal schedules by the following day. Crew availability is not considered and each aircraft fleet is separately dealt with, so that within each problem instance all craft are interchangeable. The cost to be minimized includes measures of passenger inconvenience and lost flight revenue. (Bertsimas and Patterson, 1998) et.al. dissuccused the Traffic Flow Management Problem (TFMP) caused by disturbances to flight schedules. This includes determination of aircraft release times at airports (ground holding) and the optimal aircraft speed while airborne.

As airline passenger traffic grows day by day, so does the pressure increases on the national airport network. According to (Arnold Barnett, 1999) et.al. Airport capacity could increase if, even during inclement weather, independent a landings could occur on parallel runways only about half a mile apart. Here, the method is discussed that can find out an attractive combination of high estimation accuracy and relatively low cost. Congestion leads to delays in departures and queues for landing, causing inconvenience to passengers and big losses to air companies. It can also potentially affect airspace safety. (Giovanni Andreatta, 2000) et.al. Discussed about the Congestion leads to delays in departures and queues for landing, causing inconvenience to passengers and big losses to air companies. It can also potentially affect airspace safety. (Giovanni Andreatta, 2000) et.al. Discussed about the Congestion leads to delays in departures and queues for landing, causing inconvenience to passengers and big losses to air companies. It can also potentially affect airspace safety. In the short term, the best that can be achieved by the system is to try to limit the size and the impact of the delays produced by congestion, or, in other words, to manage the air traffic flows to avoid that demand exceeds the available capacity. The fast exact approach is presented that will make it possible to solve large-scale instances of the problem to optimality, providing useful bench marks for assessing the quality of heuristics.

The discussion of radiation-related health issues for air- craft flight personnel began over 30 years ago. In 1990, aircraft flight personnel were given the status of "occupationally exposed to radiation" by the International Com- mission on Radiation Protection.

Aviation psychology is the field of study concerned with the development and operation of safe, effective aviation systems from the standpoint of the human operators who are responsible for 70 percent of aircraft accidents. Psychology applied to aviation is an integrative field involving knowledge of just about all areas in psychology, including perception and attention, cognition, physiological, experimental, industrial/organizational, clinical, and educational (Pereira Lima, 2000).

(G. de Angelis, 2001) concluded the studies considered were mortality and incidence cohort studies, including studies of male pilots and female flight attendants. Neither proportional mortality studies nor military aircrew studies were included in the analysis. The results of the individual studies were combined by study outcome (mortality or incidence) for cause of death and/or cancer incidence sites that had an

excess risk in at least one of the individual studies and for which there were at least five total cases among the eligible studies.

Pilots face many challenges due to many of the factors. so for the pilots and for other crew members training on psychological values, on situational awareness is very important. (Christopher D. Wickens,2002) described an interlinking set of cognitive phenomena relate in to awareness, aircraft control, attention, mental resources, and strategic task management. Much basic research in psychology has effectively addressed these issues in isolation. However, understanding and then modelling the complex interactions among these phenomena remains a critical challenge posed by aviation to psychological researchers.

Alcohol-impaired flying has been primarily a problem in general aviation. To investigate the role of alcohol in general aviation crashes, (Guohua Li,2005)developed a data system for fatally injured pilots in Maryland, New Mexico, and North Carolina by linking autopsy records from the state medical examiner offices and crash investigation reports from the National Transportation Safety Board (NTSB). The three states were chosen to serve as the study sites for this project because they were among the Few states that had a state-wide medical examiner information system with toxicological testing being performed routinely on fatally injured persons. Approximately, 5% of all general aviation crashes in the United States occur in Maryland, New Mexico, and North Carolina.

Most aviation operations problems are safety issues and focus primarily on how to reduce the number and severity of accidents by eliminating, as much as possible, contributory human factors. When an accident occurs, how passengers react to the danger determines, to some extent, their own safety. And even in small, non-life threatening accidents, minor injuries are also a critical issue. (Yu-Hern Chang,2008) et.al. Discuss that it is necessary to investigate public perceptions about cabin safety and to specifically focus on exit row seating limitations and obligations. It is important that, in an emergency, passengers has accurate perceptions and that they are prepared to assume a certain level of responsibility for their own safety, and for the safety of others. In an emergency, passengers assigned to exit row seats in particular should follow safety information and instructions from the cabin crew to correctly operate emergency exit doors and to help other passengers evacuate the airplane first.

A positive attitude toward cabin safety positively affected on airline passenger behaviour, which supported attitude-behaviour consistency. Aviation safety education is nesseccary for the airline passengers with accurate cabin safety knowledge cultivate positive passenger attitude, and appropriately affect passenger behaviour when an emergency occurs (Yu-Hern Chang, 2009) uses an empirical method to evaluate the effects of aviation safety education on passenger cabin safety awareness. It contributes to an understanding of the nature of aviation safety education, which is a powerful and practical means of

Affecting and improving airline passenger cabin safety knowledge, attitude, and behaviour and provides recommendations for airline safety management in cabin crew training programs and for cabin safety education programs for the general public.

The events of September 11, 2001 led to sweeping nationwide changes in aviation. Many of the changes implemented have been politically driven. For example, several billion dollars were invested in security devices following September 11, 2001 before any type of systematic analysis of aviation security systems was performed .(Laura A. McLay,2011) summarizes analytical approaches for managing risk in aviation security screening systems using operations research methodologies. This chapter focuses on passenger screening problems, an important and highly visible aspect of aviation security. In addition, it focuses on modelling approaches that seek to optimally use limited resources to manage the risks associated with terrorism.

Over the number of peoples travel through the air daily and reach at their designation safely, but due to this the accident rate could not be ignored. There is the number of aviation accident due to human errors and the human factor during in-flight aircraft icing should not be ignored. As aircrew error still remains an important contributor to icing incidents and fatal accidents, the need for human error prediction methods requires that this difficult problem can be addressed and solved as early as possible. (SHAN Kunlun,2011) summarised As the tools of safety analysis and assessment, HEIs have played an important role in nuclear, offshore, chemical and power system design and improvement processes . Unremitting efforts never stop in order to search for a suitable HEI method which can predict human errors in the air transport field appropriately. Aeronautical assessors studied this topic, mainly focussing on existing aircraft flight decks and Air Traffic Management systems due to the high frequency of interaction with flight crews.

Maintenance plays an important role in the aviation industry. In the absence of maintenance, most system parts deteriorate due to use or age, which results in wear and eventually failure of the part, which may compromise system safety. Accidents result from a combination of factors, such as design errors, mechanical failures, software errors, user errors, and organizational or regulatory factors.

(Karen B. Marais ,2012)analyzed several safety related metrics and develop an aviation maintenance risk scorecard that collects these metrics to synthesize a comprehensive track record of maintenance contribution to airline accidents and incidents. We perform an in-depth analysis of aviation accidents, incidents, analyzed several safety related metrics and develop an aviation maintenance risk scorecard that collects these metrics to synthesize a comprehensive track record of maintenance risk scorecard that collects these metrics to synthesize a comprehensive track record of maintenance contribution to airline accidents.

There are many studies to compare safety performance among airlines and to analyze changes in airline safety performance over time, the most commonly used and thoroughly studied measure of safety performance is accident and incident rates (Bureau of Transport and Communications Economics, 1992; Rose, 1992; Gellman Research Associates, 1997). Most of these studies use accident and incident data as a safety measure for examining the relationships between safety performance of airlines and related issues, such as carrier groups (Barnett and Higgins, 1999; Oster et al., 1992), cost and revenue (Suzuki, 1998), deregulation (Rose, 1992; Foreman, 1993).

Apart from these many are many studies contributed in the aviation safety. Some of these major studies related to the aviation safety are listed in the table 1.

5. Development of Raw Information Framework: Findings and Conclusions

Total 36 number of research papers were studied related to aviation safety and whose impact factor is greater than one. From these research papers seven major dimensions are find out and forty two resultants parameters are explored.

Environmental has been a hazard to aviation. In aviation weather there are many features that include: rain, wind, turbulence and lightning. Aviation safety is likely to face a challenge as a result of a growth in these intense phenomena. Human errors are considered as a major causal factor in most aviation accidents which are due to pilot's errors, communication gap, errors in repair and design. Pilot error and improper communication are often factors in the collision of aircraft. While, the ability of the flight crew to maintain situational awareness is a critical human factor in air safety. Despite rapid gains in technology, humans are ultimately responsible for ensuring the success and safety of the aviation industry globally.

Foreign object debris causes damage through direct contact with airplanes, such as by cutting airplane tires or being ingested into engines, or as a result of being thrown by jet blast and damaging airplanes or injuring people. Security is the challenge and is important for aviation safety, so that these attacks will reduce and to increase the safety of the passengers. However, they must continue to be knowledgeable, flexible, dedicated, and efficient while exercising good judgment to enable improves safety in air travel. Furthermore, the likelihood of future incidents is reduced and an organisations' efficiency, safety performance, safety culture and communication systems can be greatly improved. These parameters are listed in table 2.

References:

1. Giovanni Andreatta, Lorenzo Brunetta, "From Ground Holding To Free Flight: An Exact Approach" Transportation Science(2000), Vol. 34, Issue. 4, Pp. 394-401.

2. G. De Angelis, M. Caldora, "Health Risks From Radiation Exposure For Civilian Aviation Flight Personnel: A Study Ofitalian Airline Crew Members" Radiation Research (2001), Vol. 156, No. 5, Pp. 689-694.

3. Charles D. Lovell And Richard A. Dolbeer, "Validation Of The United States Air Force Bird Avoidance Model" (1999), Wildlife Society Bulletin, Vol. 27, No. 1, Pp. 167-171.

4. Christopher D. Wickens, "Awareness And Workload In Aviation" (2002), Current Directions In Psychological Science, Vol. 11, No. 4, Pp. 128-133.

5. Arnold Barnett, "A "Parallel Approach" Path To Estimating Collision Risk During Simultaneous Landings" (1999), Management Science, Vol. 45, No. 3, Pp. 382-394.

6. Daniel R. Polsby ," Airport Pricing Of Aircraft Takeoff And Landing Slots: An Economic Critique Of Federal Regulatory Policy" (2001), California Law Review, Vol. 89, No. 3, Pp. 779-816.

7. Navjot S. Sodhi." Competition In The Air: Birds Versus Aircraft "(2002), The Auk, Vol. 119, No. 3, Pp. 587-595.

8. Rachel N. Weber, "Manufacturing Gender In Commercial And Military Cockpit Design" (1997),

Science, Technology, & Human Values, Vol. 22, No. 2, Pp. 235-253.

9. Carla J. Dove, Nancy C. Rotzei, "Using DNA Barcodes To Identify Bird Species Involved In Birdstrikes" (2008), The Journal Of Wildlife Management, Vol. 72, No. 5, Pp. 1231-1236.

10. Karen B.Marais N, Matthewr.Robichaud, "Analysis Of Trends In Aviation Maintenance Risk: An Empirical Approach", (2012), Reliability Engineering And System Safety, Vol 106, P.P. 104–118.

11. Yu-Hern Chang, "The Effect Of Aviation Safety Education On Passenger Cabin Safety Awareness" (2009) Safety Science 47 1337–1345.

12 Ivonne A. Herreraa, Arve O. Nordskag, "Aviation Safety And Maintenance Under Major Organizational Changes, Investigating Non-Existing Accidents" (2009) Accident Analysis And Prevention 41 1155–1163.

13 Bronwyn Evans , A. Ian Glendon, "Development And Initial Validation Of An Aviation Safety Climate Scale" (2007) Journal Of Safety Research 38 675–682.

14. H.W. Allen, M.L. Abate, "Work Process Analysis: A Necessary Step In The Development Of Decision Support Systems. An Aviation Safety Case Study" (1999) Interacting With Computers 11 623–643.

15. Massoud Bazargan, Vitaly S. Guzhva, "Impact Of Gender, Age And Experience Of Pilots On General Aviation Accidents" (2011) ,Accident Analysis And Prevention 43 (962–970).

16. Mickaël Causse A,B,C, Frédéric Dehais, "The Effects Of Emotion On Pilot Decision-Making: A Neuroergonomic Approach To Aviation Safety" (2012) Transportation Research Part C Xxx Xxx–Xxx.

17. Guohua Lia, B., Susan P. Baker, "Characteristics Of Alcohol-Related Fatal General Aviation Crashes" (2005) ,Accident Analysis And Prevention 37 143–148.

18. Michael Hadjimichael , "A Fuzzy Expert System For Aviation Risk Assessment" (2009) ,Expert Systems With Applications 36 6512–6519.

19. Eric Arne Lofquist, "The Art Of Measuring Nothing: The Paradox Of Measuring Safety In A Changing Civil Aviation Industry Using Traditional Safety Metrics" (2010) Safety Science 48 1520–1529.

20John A. Caldwell, "Fatigue In Aviation" (2005), Travel Medicine And Infectious Disease 3, 85-96.

21Kathleen L. Mcfadden , "Operations Safety: An Assessment Of A Commercial Aviation Safety Program" (2001) ,Journal Of Operations Management 19 579–591

22 Dan Li, Wenjun Fang*, Yan Xing, Yongsheng Guo, Ruisen Lin, "Effects Of Dimethyl Or Diethyl Carbonate As AnAdditive On Volatility And Flash Point Of An Aviation Fuel" (2009) ,Journal Of Hazardous Materials 161 1193–1201.

23, Viet Van Pham*, Jiangjun Tang, Sameer Alam, "Aviation Emission Inventory Development And Analysis" (2010) Environmental Modelling & Software 25 1738e1753.

24 Milan Jani, "Aviation And Externalities: The Accomplishments And Problems" (1999), Transportation Research Part D 4 159±180.

25. David S. Lee A,*, David W. Fahey, "Aviation And Global Climate Change In The 21st Century" (2009) ,Atmospheric Environment 433520–3537.

26. Yu-Hern Changa, Hui-Hua Yang, "Cabin Safety And Emergency Evacuation: Passenger Experience Of Flight CI-120 Accident" (2011), Accident Analysis And Prevention 43 1049–1055.

27. Kathleen L. Mcfadden , "Operations Safety: An Assessment Of A Commercial Aviation Safety Program" (2001) Journal Of Operations Management 19 579–591.

28. Simon Blakey, Lucas Rye, "Aviation Gas Turbine Alternative Fuels: A Review" (2011) ,Proceedings Of The Combustion Institute 33 2863–2885.

29. Sameer Singh, "Explosives Detection Systems (EDS) ForAviation Security" (2003) Signal Processing 83,31-55.

30. Yu-Hern Chang, "Air Passenger Perceptions On Exit Row Seating And Flight Safety Education" (2008) , Safety Science 46 1459–1468.

31. Ian Dodd A,1, Ibrahimhabli ," Safety Certification Of Airborne Software: An Empirical Study" (2012) , Reliability Engineering And System Safety 98 7–23.

32Jan Bredereke*, Axel Lankenau, "Safety-Relevant Mode Confusions—Modelling And Reducing Them" (2005) ,Reliability Engineering And System Safety 88 229–245.

33. David Warnock-Smith, "An Exploratory Study Into Airport Choice Factors Foreuropean Low-Cost Airlines" (2005) ,Journal Of Air Transport Management 11, 388–392.

S.N o.	Title Of The Paper /Year	Journal Cited With Impact	Research Issues Addressed	Safety Aspects Explored
		Factor>= 1		
1.	From Ground	Journal Of	Congestion in air traffic networks is	1.Congestion
	Holding To Free	Transportation	a serious problem to avoid	2.Speed
	Flight: An Exact	Science, 1.023	congestion, or at least to reduce it,	3. Air Traffic
	Approach(2000)		the central authority has to schedule	4. Time
			the arrival times of all flights, with	
			possible delays for some of them. In	
			this paper, an exact algorithm, based	
			on the integration of a heuristic	
			algorithm with an integer linear	
			programming model is prepared to	
			reduce the congestion.	
2	The Effect Of	Safety	This paper examines the effect of	1.Aviation Safety
	Aviation safety	Science, 1.42	aviation safety education on	Education
	Education On		passenger cabin safety awareness in	2.Cabin Safety
	Passenger Cabin		Knowledge, attitude, and behaviour.	3.Knowledge
	Safety Awareness,		The educational value of these three	4.Attitude
	(2009)		has been addressed in various Fields	5.Behaviour
			such as aids prevention and campus	6.Situational awareness
			safety. Kab has been applied in	
			aviation safety especially in	
			training, such as crew resource	
			management training, pilot training,	
			and mechanic training.	
3.		Wildlife	Wildlife hazards associated with	1.Bird Strike
	Avian Perching	Society	airports and air- craft are an	2.Time
	Deterrents On	Bulletin,1.36	ever-increasing concern. These	3.Height
	Ultrasonic Sensors		concerns have prompted	4.Design
	At Airport		considerable research in recent	
	Wind-Shear Alert		years to develop and evaluate	
	Systems(2004)		methods for reducing the safety	

Table 1.

		1		
			hazards posed by wildlife at	
			airports. The paper discussed about	
			the birds disturbance in airports.	
4	Analysis Of Trends	Reliability	Maintenance plays an important role	1.Maintance 2.Mechanical
	In Aviation	Engineering	in the aviation industry. Papers	Factors
	Maintenance Risk:	And System	analyze several safety related	3.Wear
	An Empirical	Safety, 1.770	metrics and develop an aviation	4. Aviation Safety
	Approach (2012)		maintenance risk scorecard that	
			collects these metrics to synthesize a	
			comprehensive track record of	
			maintenance contribution to airline	
			accidents and incidents.	
5	A Quantitative	Computers	The main purpose of this study is to	1.Human Error
	Model For Aviation	And Industrial	develop a method that uses data on	2.Mislead information
	Safety Risk	Engg, 1.589	both accident and safety indicators	3.Communication
	Assessment(2008)		to Quantify the aviation risk which	
			are caused by human errors	
			applicability in aviation risk	
			Assessment. The use of the	
			proposed model allows investigation	
			of non-linear effects of aviation	
			safety factors and flexible	
			Assessment of aviation risk.	
6		Journal Of	This study extends the literature by	1.Security
	The Impact Of	Marketing	studying the relationships of various	2.Economy
	Perceived Fairness	Theory And	aspects of justice in the context of	3.Govterment Issues
	On Satisfaction:	Practice, 1.13	facilitating service under legally	4. Time
	Are Airport		imposed constraints. The findings	5. Behaviour
	Security Measures		provide evidence that consumers'	
	Fair?(2006)		fairness perceptions about a	
	``		facilitating service have a	
			significant and substantial effect on	
			satisfaction with the overall	
			experience.	
	Health Risks From	Journal For	The effects of exposures of civilian	1.Atmospheric Ionizing
7	Radiation Exposure	Radiation	aviation flight personnel to	Radiation
	For Civilian	Research(1.22	atmospheric ionizing radiation	2.RadiationEnvironment
	Aviation Flight	7)	(including high- energy neutrons)	3.Biological Response
	Personnel: A Study		are being studied. The various ways	4.AircraftRadiation
	Of Italian Airline		of determining the exposure and the	Environment
		1	o	

	Crew		health status of past and current	5.Radiation Protection
	Members(2001)		aircrew members are discussed, and	6.Flight Environment
			follow-up procedures are de-	7.Risk Analysis
			scribed.	8.Cosmic Radiation
8	Validation Of The	Wildlife	Aircraft collision occurs due to the	1.Bird Strike
	United States Air	Society	bird strikes and fatalities occurred.	2.Debris
	Force Bird	Bulletin(1.36)	So a bird avoidance model (bam) to	3.Cost
	Avoidance		evaluate low-level training routes	4.Design
	Model(1999)		for bird-strike hazards throughout.	5.Traning
9	A "Parallel	Wildlife	Airport capacity could increase if,	1.Airport Capacity
	Approach" Path To	Society	even during inclement weather,	2.Parallel Runways
	Estimating	Bulletin(1.36)	independent a landings could occur	3.Weather
	Collision Risk		on parallel runways only about half	4. Precision Runway
	During		a mile apart. In this the method is	Monitor
	Simultaneous		discussed that can find out an	5.Angle Of Deviation
	Landings(1999()		attractive combination of high	6.Bernoulli Process
			estimation accuracy and relatively	7.Poisson's Process
			low cost.	8.Labour
				9.Cost
10	Situation	Current	The concepts of situation awareness	1.Spatial Awareness
	Awareness And	Directions In	and workload are central to aviation	2.System Awareness
	Workload In	Psychological	psychology are discussed here.	3.Task Awareness
	Aviation(2002)	Science,(1.53)	Three components of situation	4. Aviation Psychology
			awareness are spatial awareness,	5.Altitude
			system awareness, and task	
			awareness for attention and task	
			management in aviation.	
11	Airline	Journal Of	The purpose of these studies has	1.Profitability
	Deregulation,	Transportation	been to analyze various effects of	2.Deregulation
	Safety, And	Science	the deregulation & analyze costs,	3. Standarad Deviation
	Profitability In The	(1.023)	profits, efficiency, price, and quality	4.Skewness
	U.S.(1997)		of airline service attributable to	5.Mean
			deregulation.	
12	Airport Pricing Of	California	Air travel delays, which cost the	1.Air Traffic Control
	Aircraft Takeoff	Law	economy countless amounts in lost	Systems,
	And Landing Slots:	Review(1.86)	productivity and frustration, are	2.Runway Space
	An Economic		accelerating at an alarming rate.	3.Aircraft Weight
	Critique Of Federal		This comment argues that one can	4.Cost
	regulatory		trace part of the congestion problem	5.Slot Pricing

	Policy(2001)		to a flawed system of airport slot	6.Congestion
	1 011cy(2001)		pricing. Approach of solving airport	7.Government Policies
			congestion by expanding airport	7.00vernment i oneies
12		D 1 1 1 1	resources.	1 4 141
13	Safety Certification	Reliability	Many safety-critical aircraft	1. Aviation Safety
	Of	Engineering	functions are software-enabled. The	2. Cockpit Systems
	Airborne Software :	And System	paper then proposes a statistical	3. Aircraft Capabilities
	An Empirical	Safety(1.770)	method for supporting software	4. Pilot Capabilities
	Study(2012)		safety audits by collecting and	5. Air Space Restrictions
			analysing data about the software	
			throughout its lifecycle. The results	
			of this case study show that our	
			proposed method can help the	
			certification authorities and the	
			software and safety engineers to	
			gain confidence in the certification	
			readiness of airborne software and	
			predict the likely outcome of the	
			audits.	
14	Competition In The	The	This paper discussed about the loss	1.Bird-Aircraft Collisions
	Air: Birds Versus	Auk(2.156)	due to the bird strike with the	2.Wind Shield
	Aircraft(2002)		aircraft. The loss may be human	3.Engine
			loss, aircraft loss, and economical	4. Aircraft Component
			loss.	5. Time
				6.Passenger Disruption
				7.Passenger Safety
				8. Aircraft Noise
				9. Aircraft Speed
				10.Design
				11.Radar
15	Using Dna	Wildlife	Bird-aircraft collisions (hereafter	1.Bird-Aircraft Collisions
	Barcodes To	Society	bird strikes) are a serious safety	2.Airframes,
	Identify Bird	Bulletin,(1.36)	hazard and a major expense for the	3.Windshields
	Species Involved In		aviation industry. That aims to	4.Birdstrike
	Bird strikes(2008)		adequately control this hazard by	
			knowing the species.	
16		Science,	The article demonstrates how and	1.Age
	Manufacturing	Technology,	why the interests of women pilots	2.Gender
	Gender In	& Human	could prevail in the traditionally	3.Flying Hours
	Commercial And	Values(2.33)	male preserve of the military. To	4.Time
L				

		[
	Military Cockpit		understand how women's bodies	5.Cockpit Design
	Design(1997)		become excluded by design and	
			how difference becomes	
			technologically embodied, it is	
			necessary to examine how current	
			military systems are designed with	
			regard to the physical differences of	
			their human operators	
17	Aviation Safety	Accident	The paper discusses the	1.Pilot Competence
	And Maintenance	Analysis And	development of safety related	2.Design
	Under Major	Prevention(1.8	indicators in the aviation industry. It	3.Maintenance
	Organizational	67)	is also discussed that how much	4.Flight Hours
	Changes,		aviation safety is affected due to the	5.Cycles
	Investigating		organisational changes,	6.Financial
	Non-Existing			7. Regulation
	Accidents(2008)			8.Liberation
				9.Privatization
				10.Cost Factors
18	Development And	Journal Of	This paper discuss about the	1.Safety Training
	Initial Validation	Safety	consistent set of safety climate	2.Equipment
	Of An Aviation	Research(1.75	factors. This study developed a tool	3.Maintenance
	Safety Climate	5)	to assess the level of perceived	4.Climate
	Scale(2007)		safety climate.	5. Aviation Safety
				6.Factor Analysis
19	WorkProcessAnaly	Interacting	This paper demonstrates the	1.Airworthiness
	sis: A Necessary	With	importance of work process	2.Regulations
	Step In The	Computers(1.2	modelling and supporting data	3.Government Policies
	Development Of	33)	analysis in system development.	4.Maintenance
	Decision Support		The impact of work processes on	
	Systems. An		data collection, recording, and	
	Aviation Safety		analysis capability is analysed.	
	Case Study(1999)			
20	The Effects Of	Transportation	The studies discuss that negative	1.Human Error
	Emotion On Pilot	Research Part	emotional consequences attached to	2.Communication
	Decision-Making:	C(1.957)	the go-around decision provoke a	3.Decision
	A		temporary impairment of the	4.Behaviour
	NeuroergonomicAp		decision-making process. By	
	proach To Aviation		investigating this hypothesis with a	
	Safety.(2012)		simplified landing tasking which	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		two possible contributors to those	
			two possible contributors to mose	



			emotions, namely the uncertainty of	
			a decision outcome and the	
			reward/punishment, associated to	
-			the outcome were manipulated.	
21	Impact Of Gender,	Accident	In this study statistical analysis is	1. Age
	Age And	Analysis And	done to investigate the significance	2. Flight Experience
	Experience Of	Prevention(1.8	of a pilot's gender, age and	3. Gender
	Pilots On General	67)	experience in influencing the risk	4. Pilot Error
	Aviation		for pilot errors and fatalities in	
	Accidents(2011)		aviation accidents. However, it is	
			found that male pilots, those older	
			than 60 years of age, and with more	
			experience, are more likely to be	
			Involved in a fatal accident.	
22	Characteristics Of	Accident	The effects of alcohol on piloting	1.Alcohol
	Alcohol-Related	Analysis And	performance have been studied	2.Pilot Performance
	Fatal General	Prevention(1.8	extensively. Information describing	3.Health
	Aviation	67)	alcohol-related aviation crashes are	4.Human Error
	Crashes(2005)		discussed in this paper and found	5.Crash Risk
			that alcohol appears to play a	
			particularly important role in	
			crashes involving flight under ver.	
			into imc.	
23	A Fuzzy Expert	Expert	In commercial aviation accidents	1.Air Safety
	System For	Systems With	occur at this phase include collisions	2.Stress
	Aviation Risk	Applications(2	with terrain, and runway	3.Human Failure
	Assessment(2009)		undershoot, overrun, or excursion.	4.Pilot Fatigue
		.203)		
24	The Art Of	Safety	In this the difficulties of	1.Organizational Change
	Measuring Nothing:	Science(1.402	measuring safety as an outcome	2.Safety Management
	The Paradox Of	Science(1.402	measure in high reliability	Systems
	Measuring Safety In	)	organizations are discussed a model	3.High Reliability
	A Changing Civil		is prepared to use in safety	Organizations
	Aviation Industry		management system in civil aviation	4.Social-Technical Systems
	Using Traditional		industry.	
	Safety			
	Metrics.(2010)			
25	Fatigue In	Travel	Pilot's fatigue is disscussed in this	1.Pilots
	Aviation(2005)		paper. Scientific understanding of	2.Aircrews
		Medicine And	human sleep, fatigue, and Circadian	3.Crew Rest
L	1		numun sieep, iungue, und cheddian	5.010 1000



			1 1 1 1 1 1 1 1 1 1	4 61
		Infectious	rhythms has expanded considerably.	4.Sleep
		Disease(1.5)	The thorough integration of this new	5. Fatigue
			Knowledge into modern	
			crew-resource management	
			practices will facilitate the	
			Establishment of optimal crew	
			scheduling routines and the	
			implementation of valid Aviation	
			fatigue countermeasures.	
26	Operations Safety:	Journal Of	The studies have focused on the	1.Operations Safety
	An Assessment Of	Operations	operational performance Of various	2. Quality Operations
	A Commercial	Management(	airlines and airports. The few have	Management.
	Aviation Safety		assessed the efficacy of government	3. Technological Changes
	Program(2001)	4.382)	airline safety programs. This study	4.Cost
			evaluates a commercial aviation	5.Regulatory Pressures
			safety program that sanctions pilots	6.Human Error
			with alcohol-related motor vehicle	
			convictions.	
27	Effects Of	Journal Of	An important consideration is the	1.Fuel Loading
	Dimethyl Or	Hazardous	additive's ability to improve thermal	2.Smoke Emission
	Diethyl Carbonate	Materials(4.17	stability, reduce pollutant emissions,	3. Thermal Stability
	As An Additive On		and enhance heat sink and fast	4. Vapour Pressure
	Volatility And	3)	ignition of a fuel. The aim of this	5.Density
	Flash Point Of An		work is to investigate the effects of	
	Aviation		dmc or dec as an additive on the	
	Fuel(2008)		volatility and flash point of an	
			aviation fuel.	
28	Aviation emission	Environmental	The availability of this real time	1.Runway Expansion
	inventory	Modelling &	aviation emission database,	2.Congestion
	development and	-	environmental Analysts and aviation	3.Environment
	analysis (2010)	Software(3.11	experts will have an indispensable	4. Aviation Emission
		4)	source of information for making	5.Speed Altitude
			timely decisions Regarding	6.Latitude
			expansion of runways, building new	7.Longitude
			airports, applying route charges	8.Altitude
			based on environmentally	9.Time
			Congested airways, and	10.Volume
			restructuring air traffic flow to	11.Acid Rain
			achieve sustainable air traffic	12.Chemical Reactions
			growth.	12. Chombar Rouchons
			5 ¹⁰ w m.	



			l .	
29	Aviation And Externalities: The Accomplishments And Problems (1999)	Transportation Research Part D(1.659)	This paper presents an overview of the impacts of civil aviation on the environment. In particular, it considers some of the important technological and institutional innovations, that have been implemented in the sector over time in order to simultaneously increase Its efficiency and decrease the negative impacts on the environment	<ol> <li>1.Environment</li> <li>2.Noise</li> <li>3.Technology</li> <li>4.Efficiency</li> </ol>
30	Aviation And Global Climate Change In The 21st Century(2009)	Atmospheric Environment( 3.465)	Studies examine the substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall co ₂ emissions reductions.	<ol> <li>Aerosols</li> <li>Aviation Emissions</li> <li>Aviation Trends</li> <li>Climate Change</li> <li>Radioactive Forcing</li> <li>Aviation Fuel</li> </ol>
31	Cabin Safety And Emergency Evacuation: Passenger Experience Of Flight Ci-120 Accident(2011)	Accident Analysis And Prevention(1.8 67)	Aircraft evacuation effectiveness is a critical but challenging issue in the civil aviation industry. This paper explores the cabin safety perceptions of passengers from their emergency evacuation experiences in an actual aviation accident. A questionnaire survey and in-depth interviews were conducted with china airlines flight CI-120 passengers.	<ol> <li>Cabin Safety</li> <li>Accident Analysis</li> <li>Passenger Safety</li> <li>Education</li> <li>Training</li> </ol>
32	Aviation Gas Turbine Alternative Fuels: A Review (2011)	Proceeding Of The Combustion Institute(3.16)	This paper discuss about to produce alternative aviation fuel.	<ol> <li>Aviation Fuel</li> <li>Technology</li> <li>Security</li> <li>Cost</li> </ol>
33	Explosives Detection Systems (Eds) For Aviation Security (2003)	Signal Processing(1.5 )	In this paper some technologies are discussed for the purpose of aviation security. The checks are Performed on passengers, their carryon luggage, checked baggage, and	<ol> <li>Security</li> <li>Safety</li> <li>Technology</li> <li>Screening</li> </ol>



			cargo containers.	
34	Air Passenger Perceptions On Exit Row Seating And Flight Safety Education(2008)	Journal Of Safety Research(1.75 )	This paper investigates passenger perceptions about exit row seating limitations and obligations and about the effects of Flight safety education given to the general public.	<ol> <li>1.Flight Safety Education</li> <li>2.Air Passenger</li> <li>3.Air Worthiness</li> </ol>
35	Safety-Relevant Mode Confusions—Mode Iling And Reducing Them(2005)	Reliability Engineering And System Safety(1.770)	A new classification of mode confusions by cause leads to a number of design recommendations for shared control systems. These help in avoiding mode confusion problems.	<ol> <li>Vertical Speed</li> <li>Flight Path Angle</li> <li>Psychology</li> <li>Community</li> </ol>
36	Measuring Safety Climate In Aviation: A Review And Recommendations For The Future(2011)	Safety Science (1.402)	This paper examine safety climate within commercial and military aviation. It is recognized from the studies that the accident rate in commercial aviation Is too low to provide a sufficiently sensitive measure of safety performance.	<ol> <li>Safety Climate Factors</li> <li>Lagging Indicators</li> <li>Leading Indicators</li> <li>Safety Culture</li> <li>Equipment And</li> <li>Maintenance</li> <li>Risk Management</li> </ol>

## **Table 2. Informational Framework**

S.No.	Major Dimensions	Variables
1.	Environmental factors	1. Weather
		2. Environmental radiations
		3. Wind conditions
		4. Climate change
2.	Human Factors	5. Pilot capabilities
		6. Staff training
		7. Intoxication of liquors
		8. Health



		9. Mislead information
		10. Situational awareness
		11. Communication
		12. Airworthiness
3.	Airspace & Airport Infrastructure	13. Airport capacity
		14. Icing
		15. Time
		16. Runway excursion
		17. Runway conditions
		18. Runway overrun
		19. Traffic conjunctions
		20. Fuel
		21. Flight altitude
		22. Airframe Hours
4.	Economical factors	23. Cost
		24. Inadequate Staff
		25. Fuel prices
		26. Market crisis
		27. Overtime
		28. Government Policies
5.	Technical and maintenance	29. Automation
		30. Aircraft design



		31. Aircraft noise
		32. Material and geometric parameters
		33. Altitude
		34. Mechanical failure
		35. Efficiency
6.	Foreign object damage	36. Bird strike
		37. Runway debris
		38. Volcanic Ash
7	Miscellaneous	39. Passenger's safety
		40. Mid-air collision
		41. Terrorism
		42. Chemical reactions