
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

155

Realization Of An 8-bit Pipelined Microprocessor in Verilog HDL
Jayant Chowdhary

*
(Corresponding Author) Vivek Garg Tushar Negi Shreya Jain

Delhi Technological University,Shahbad Daulatpur,Main Bawana Road,Delhi-42

*Email of the corresponding author: jayantc11@gmail.com

Abstract

Pipelining is a technique of decomposing a sequential process into sub-operations, with each sub process being

divided segment that operates concurrently with all other segments. A pipeline may be visualized as a collection of

processing segments through which binary information flows. Each segment performs partial processing segments

dictated by the way the task is partitioned. The result obtained in one segment is transferred to subsequent segments

in each step. The final result is obtained after the data has passed through all segments.This paper develops a code for

the implementation of an 8-Bit microprocessor which implements instruction pipelining. After synthesis, an FPGA

realization may be obtained . Simulation using Xilinx and ModelSim also produces favourable results which

showcase the speedup (in terms of time) to carry out a program as compared to a non-pipelined version of this

microprocessor.

Keywords:Pipelining, Segments,sysnthesis,realization,FPGA,microprocessor

1.Introduction

Instruction pipelining

An instruction pipeline reads consecutive instructions from memory while previous instructions are being executed

in other segments. This causes the instruction ‘fetch’ and ‘execute’ phases to overlap and perform simultaneous

operations.

An instruction can generally be decomposed into the following steps:

1. FI- Fetch instruction: In this segment an instruction is fetched from memory.

2. DA- Decode the instruction and calculate the effective address: This instruction gets its input from the

FI segment and the instruction is decoded. This step does not require a clock cycle. The operation which

requires a clock cycle is the calculation of effective address.

3. FO- Fetch operand: In this step the operand is fetched from the memory.

4. EX- Execute and store: In this step the instruction is executed and the result is also stored in an appropriate

memory location.

A Space time diagram for an instruction pipeline can be made as follows:

Instruction Step1 Step2 Step3 Step4 Step5 Step6 Step7

1 FI DA FO EX

2 FI DA FO EX

3 FI DA FO EX

4 FI DA FO EX

As we can see each segment is simultaneously busy processing some part of an instruction.

2. Processor Realization

CPU ORGANIZATION AND LAYOUT :

1) 8 bit cpu

2) Architecture: VON NEUMAN

3) Behavioural modelling only

4) Different Program Memory and Data Memory

5) 16 words of Program memory

6) 4096 words of data memory

Register Organization:

1)Program Counter: PC – 6 bits

2)Instruction register: IR - 16 bits

3)Address register: AR - 12 bits

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234644511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

156

4)Temporary address storage: ad - 6 bits (6 LSBs of AR)

5)Memory check register: memocheck -1 bit (for register reference and memory reference istructions)

6)Current state register: current_state – 2 bits (to check the present state- fetch/decode/execute/store)

7)Next state register: next_state- 1 bit (to hold the value of next operation to be carried out-

fetch/decode/execute/return)

8)OPcode register: opcode – 3 bits

9)Instruct register: instruct -4 bits (in case instruction type is arithmetic/logical then this specifies type of

arithmetic/logical op to be carried out)

10)Registers RA,RB,rstore - 4 bits (to hold the address of source and destination registers respectively)

11)Temporary register: W- 8 bits (to hold the value of the end result of any arithmetic/ logical operation and incase of

data MOV operation it holds the immediate value of the data to be transferred)

3.Instruction Format:

1 bit 3 bits 4 bits 4 bits 4 bits

I Opcode Instruct RA(index) RB(index)

I : 1- Memory reference

0-Register reference

Opcode: operational code which tells us what type of operation is to be carried out on the data present at source

registers ,given by the index in RA RB. Opcode list:

000 - HLT: The cpu goes into an infinite loop terminating the program

001 - MVI: Move immediate value to destination register register(indicated by rstore), {RA,RB} is the 8-bit

concatenated word used as immediate data, rstore: address of destination register

000 (I=1) - STA: store contents of R0 (virtual accumulator) in the memory address given by ad;

001 (I=1) - LDA: load the contents of memory specified by ad into the accumulator (R0)

010 (I=1) - JMP: jump to the location specified by 6 bits in ad

010 – operation: opcode for all arithmetic /logical instructions further classified by 4 bits instruct field

MOV=0000; Move Contents Of Register[RB] To Register[RA]

ADD=0001; Add Contents Of Register[RB] with Contents Of Register[RA] & save result in R[A]

ADC=0010; ADD With Carry, Add contents of register[RB] with contents Of Register[RA] & save result In R[A]

SBB=0011; Subtract With Borrow

SUB=0100; Subtract contents of Register[RB] with contents of Register[RA] & save result in R[A]

INC=0110;Increment contents of Register[RA] & save result in R[A]

DEC=0111; Decrement contents of Register[RA] & save result in R[A]

AND=1001;Logically AND contents of Register[RB] with contents of Register[RA] & save result in R[A]

OR=1010; Logically OR contents of Register[RB] with contents of Register[RA] & save result in R[A]

XOR=1011; Logically XOR contents of Register[RB] with contents of Register[RA] & save result in R[A]

CMP=1000; Complement contents of Register[RA]

SHR=1100; Shift right contents of Register[RA] by 1 bit

SHL=1101; Shift left contents of Register[RA] by 1 bit

4.Program Code

module micropipeline(clk,rst);

input clk;

input rst;

reg [0:3]PC;

reg [0:15] imem [0:15]; //instruction memory

reg [0:15] IR; // instruction register

reg [0:7] datareg; //data register

reg [0:15] IRW;

reg [0:7] mem [0:255];

reg memocheck;

reg [0:1] current_state; //stages

reg [0:1] next_state; //for keeping track

reg [0:11] AR; //Address register

reg [0:2] opcode;

reg [0:3] instruct;

reg [0:3] RA,RB,rstore;

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

157

reg [0:7] regfile [0:15]; //16 register(R0-R7)

reg [0:7] W; //temporary register

reg [0:2] count;

reg fetch,decode,execute,store;

reg [0:100]TR;

reg moveimm,movein,operation,sta,halt,halt1;

reg loadmemory,memorystore;

reg load;

wire carry;

wire [0:7] temp;

reg carry1;

reg [0:7] tink;

reg car;

initial

begin

PC=0;

TR=0;

fetch=1;

decode=0;

execute=0;

store=0;

moveimm=0;

movein=0;

operation=0;

halt=0;

sta=0;

loadmemory=1;

memorystore=1;

load=0;

next_state=4'b1000;

halt1=0;

IRW=0;

datareg[0]=0;

imem[0]={16'b0001000111001111};

imem[1]={16'b0001001011011000};

imem[2]={16'b0011000000010010};

imem[4]={16'b0000000000000000};

imem[3]={16'b0000000000000000};

imem[5]={16'b0000000000000000};

imem[6]={16'b0000000000000000};

imem[7]={16'b0000000000000000};

end

always@(clk or rst)

begin

TR<=TR+1;

if(rst)

begin

PC<=0;

TR<=0;

fetch<=1'b1;

decode<=1'b0;

execute<=1'b0;

store<=1'b0;

sta<=1'b0;

halt<=1'b0;

end

else

 begin

if(store)

 begin

if(loadmemory&memorystore)

 begin

regfile[rstore]<=W;

end

if(halt1)

 begin

fetch<=#1 1'b0;

 decode<=#1 1'b0;

 execute<=#1 1'b0;

store<=#1 1'b0;

end

end

if(execute)

 begin

if(halt)

 begin

halt1<=1'b1;

end

if(moveimm)

 begin

W<=IRW[8:15];

 rstore<=IRW[4:7];

 moveimm<=1'b0;

end

if(movein)

begin

W<=datareg[IRW[12:15]];

rstore<=IRW[8:11];

movein<=1'b0;

end

if(operation)

begin

case(IRW[4:7])

4'b0000: begin

W<=regfile[RA]+regfile[RB];

end

4'b0001: begin

W<=regfile[RA]+regfile[RB]+1;

end

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

158

4’b0010: begin

W<=regfile[RA]-regfile[RB]-1;

end

4'b0011:begin

W<=regfile[RA]-regfile[RB];

end

4'b0100: begin

W<=regfile[RA]+1;

end

4'b0101: begin

W<=regfile[RA]-1;

end

4'b0110: begin

W<=regfile[RB];

end

4'b1000: begin

W<=regfile[RA]®file[RB];

end

4'b1001: begin

W<=regfile[RA]|regfile[RB];end

4'b1010: begin

W<=regfile[RA]^regfile[RB];

end

4'b1011: begin

W<=regfile[RA]; // has to include ~

End

 endcase

// alu operation

rstore<=4'b0000;

if(count==2'b00)

operation<=1'b0;

end

if(sta)

begin

memorystore<=1'b0;

mem[IRW[8:15]]<=regfile[4'b0000];

sta<=1'b0;

end

if(load)

begin

loadmemory<=1'b0;

regfile[4'b0000]<=mem[IRW[8:15]];

load<=1'b0;

end

store<=1'b1;

end

if(decode)

begin

 IRW<=IR;

case(IR[0])

0:begin

case(IR[1:3])

3'b000: begin

halt<=1'b1;

end

3'b001:

begin

moveimm<=1'b1;

end //the instruction is mvi

3'b010: begin

movein<=1'b1;

end

3'b011:begin

operation<=1;

RA<=IR[8:11];

RB<=IR[12:15];

end

3'b100:begin

sta<=1'b1;

end

default:begin

end

endcase

end

1:begin

load<=1'b1;

end

endcase

execute<=1'b1;

end

if(fetch)

begin

IR<=imem[PC];

PC<=PC+1;

decode<=1'b1;

end

end

if((IRW[4:7]==IR[8:11]|IRW[4:7]==IR[12:15])&IR[1:

3]==3'b011)

begin

count<=2'b01;

fetch<=#2 1'b0;

decode<=#2 1'b0;

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

159

end

if(count==2'b01)

begin

count<=2'b10;

execute<=1'b0;

end

if(count==2'b10)

begin

count<=2'b00;

fetch<=1'b1;

decode<=1'b1;

end

end

endmodule

5.Results

The following was the result of synthesis of the code on Xilinx and on comparing the timing diagram with that of a

non-pipelined microprocessor running the same program we find that there is a considerable speedup of 125ps.The

synthesis and timing diagrams of pipelined and non pipelined microprocessors are shown below:

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

160

Given above is the timing diagram of a non pipelined microprocessor built on specs to the pipelined one. A 4

instruction program takes 201 ps as shown to get executed. Given below is the timing diagram of the same program

using the pipelined microprocessor presented in this paper. It can be seen the program execution time has reduced

considerably to 76ps.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.7, 2012

161

5.Conclusion

This paper presents a basic pipelined microprocessor which has been written in Verilog HDL. This is simulation is

unconventional in a way such that it showcases the beauty which goes into implementing pipelining of instructions in

a microprocessor without going into too many complexities of the same.Moreover,this paper may be very effectively

used as a tool in the field of education to introduce students to computer simulations of microprocessors. Students

will definitely benefit from building upon this. The purpose of implementing an efficient microprocessor who’s

working and intricacies are easy to understand has been successfully achieved.

6.Acknowledgments

We would like to thank Mr. Kunwar Singh (Associate Professor,Department of Electrical Engineering,Delhi

Technological University) and Dr.Suman Bhowmick(Associate Professor,Department of Electrical Engineering,Delhi

Technological University) who never ceased in providing their valuable guidance till this project was completed.

References

1. Verilog HDL (2nd Edition),Samir Palnitkar

2. Computer System Architecture (3rd Edition) M Morris Mano,Prentice Hall (1993)

3. Computer Systems Organization and Architecture ,John D. Carpinelli

4. Ronald, J. Tocci, Widmer, N. Moss, G. (1998), “Digital Systems Principles and Application”,

Prentice-Hall

5. International Inc., New Jersey, 182-341.

6. Digital Design and Verilog HDL Fundamentals ,Joseph Canavagh,CRC Press(1
st
 Edition 2008)

7. Verilog for Digital Design Frank Vahid , Roman Lysecky ,Wiley

Digital Design (4th Edition)M.Morris Mano, Prentice Hall; 4 edition (December 25, 2006)

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

