
Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

32

Test Sequences for Web Service Composition using CPN model

Poonkavithai Kalamegam
*
 and Dr. Zayaraz Godandapani

Dept of CSE, Pondicherry Engineering College, Pondicherry-605014, India

* E-mail of the corresponding author: poonks2012@gmail.com

Abstract

Web service composition is most mature and effective way to realize the rapidly changing requirements of business

in service-oriented solutions. Testing the compositions of web services is complex, due to their distributed nature and

asynchronous behaviour. Colored Petri Nets (CPNs) provide a framework for the design, specification, validation

and verification of systems. In this paper the CPN model used for composition design verification is reused for test

design purpose. We propose an on-the-fly algorithm that generates a test suite that covers all possible paths without

redundancy. The prioritization of test sequences, test suite size and redundancy reduction are also focused. The

proposed technique was applied to air line reservation system and the generated test sequences were evaluated

against three coverage criteria; Decision Coverage, Input Output Coverage and Transition Coverage.

Keywords— CPN, MBT, web service composition testing, test case generation

1. Introduction

Web Services is a set of distributed message oriented interacting components. It is the most active and widely

adopted implementation of SOA which is a design pattern composed of loosely coupled, discoverable, reusable,

inter-operable platform agnostic services that follow a well defined standard [1]. Success of any deployment in an

enterprise depends on the quality assurance process undertaken. Web Service composition testing is quite different

from traditional testing. It requires its own type of test architecture and tester skills. To test any composition, all the

web services needs to be tested in isolation along with the common use cases where the services are interdependent.

The services can be composed by following two complementary views; choreography and orchestration. In

Orchestration a central element controls the business logic and execution order of the interactions. In Choreography

interactions may involve multiple parties and multiple sources, but each element of the process is autonomous and

controls its own agenda. Hence service composition testing can be classified into choreography-based and

orchestration-based testing.

Software testing is one of the most crucial phases in any SDLC to assure the quality of software. Creation of test

cases consumes major effort allocated for testing. Model Based Testing (MBT) is a form of black-box testing

technique that uses behavioural models of the system to automate the test case design process. Colored Petri nets

(CPN) provide a framework for the construction and analysis of distributed and concurrent systems. A CPN model of

a system describes the states which the system may be in and the transitions between these states. CPN have been

applied in a wide range of application areas particularly in software system designs and business process

re-engineering. Extending the usage of Colored Petri Nets beyond the system design phase, particularly in test design

phase proves to be very effective in terms of greater test coverage and reduced test effort.

In this paper a novel idea of applying MBT technique on the CPN model used for verifying the web service

composition is presented. The paper is organized as follows. In next section, we discuss the motivation for our

approach. In section III, we introduce usage of CPN model in web service composition. In section IV, the approach

to automate test case generation for testing web service composition is described in detail. We present results and

discussions in section V followed by conclusions in the last section.

2. Motivation

MBT provides a solid foundation for automating the test design process by generating the test cases from the

business requirements that are formally represented by a model. UML (Unified Modeling Language), FSM (finite

state machines) and CPN are widely used modeling mechanisms to specify, analyze and simulate requirements of the

software, for test automation and for model-based software testing. CPN is a mathematical model and hence has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234644478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

33

better formal capabilities to specify and analyze even complicated behaviours of a system. Moreover CPN model

could be simulated dynamically, directed by the data-dependent control flow of system behaviours. It is better in

modeling, analysis and validation of the accuracy of the system functional models. There exist few approaches to

derive test cases from the CPN model. A simple approach to generate test cases using the state space is proposed

in[2].The advantage of this approach is that the correctness of the specification based on CPN can be validated by

simulation tools and the state space can be also generated by state space tools. An efficient approach for building

conformance test suite using the PN-ioco relation is proposed in [3]. U. Farooq, C. P. Lam and H. Lin [4]

proposed a method to convert the AD activities to a CPN model and apply the Random Walk Algorithm to create test

sequences. Harumi Watanabe and Tomohiro Kudoh [5] proposed two techniques that can be applied for concurrent

systems. One uses CPN-Tree and the other uses Colored Petri net Graph (CP-graph). CPN-Graph is considered as

FSM and existing test case generation methods based on FSM is applied. In CPN-Tree method the reachability trees

reduced by the equivalent marking technique are used to achieve the practical test suite length.

There are several methods for automatic test cases generation using the BPEL structure of the composite web service.

MBT [6] can be used along with Symbolic Execution, Model Checking and Petri Nets for testing and verification of

the web service composition. In this paper we will limit to testing case generation. Model Checking technique is

used in [7, 8]. The Timed Extended Finite State Machines (TEFSM) is used for widely due existing tool support

[9-13]. The BPEL specification is transformed into the TEFSM model and then used for test case generation. The

Control Flow Graph(s) (CFG) are used to represent the BPEL processes. In [14] the test cases are generated using

Graph Search Algorithm(s) and test data using Path Analysis (using constraint solving) (PA). In [15], an automated

test data generation framework that extends CFG to represent the BPEL activities as the edges is proposed. Another

extended CFG [16] called BPEL Flow Graph (BFG) that contains both control and data flow of a BPEL process is

used for test data generation and semantic information such as dead paths. Hou et al. [17] suggests that the BPEL

processes can be modelled as a Message Sequence Graph (MSG) from which test cases are generated. Guangquan et

al. [18] propose the use of UML 2.0 Activity Diagram to model the BPEL process and a depth first search method

combined with the test coverage criteria is used to generate test cases. Tarhini et al. [19, 20] proposed two abstract

models; the Task Precedence Graph (TPG) and the Timed Labelled Transition System (TLTS) to represent system

under test. The TPG models the interaction between services and the TLTS models the internal behaviour of the

participating web services.

Most of the existing approaches take into account the BPEL specifications alone for creating the test cases and the

rich information on data available in the WSDL schema is not utilized effectively. On one hand CPN models have

been used in test case generation but not in web service composition testing. On the other hand there are various

approaches to verify web composition using CPN model. We aim at bringing in CPN models into MBT techniques to

create cost effective and efficient test sequences for validating any composition. In this paper we propose an

algorithm to generate of test sequences from the CPN model used for verifying the design of web service

composition.

3. Need for Using CPN

The CPN model provides a formal description of the web composition a system. However it is still possible that

more than one implementation is derived from the same specification and is not compatible. This is mainly due to

incorrect implementation of the composition. Hence there is a need for testing every implementation for

conformance to the business requirements. Testing can be carried out using test sequences generated from the

business requirements. Control flow testing focuses on the transfer of control, while data flow testing focuses on the

definitions of data and their subsequent use. The execution of a service is driven by the received and manipulated

data; hence validation of data flow is very critical in composition. The data flow pertains to service messages namely

the request and response messages through which data is exchanged among the participating services to accomplish a

business goal. Moreover semantics of data structures in Web service composition is complex; for e.g. service

messages are XML documents and service functions are XPath expressions.. CPN is one model that combines data

and control flow with behavioural aspects of a given business requirement. Control flow coverage is defined in terms

of transitions fired while the data flow coverage is defined in terms of tokens used. The web service composition is

modelled and analysed for the accuracy of the functional design. Hence generating test sequences from such a model

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

34

is bound to produce completely feasible, effective and efficient test sequences for practical test executions. Also

gains the highest effectiveness by combining the two complementary flows.

CPN has been widely used for verification of BPEL composition. Many deals with converting the BPEL constructs

into CPN model. A data driven approach to compose the web services using CPNs is given in [21]. When a new

business requirement given with input/output details needs to be implemented, the existing service portfolio is

checked for reusability. The data relations in business and service domain are utilized to create a complete and

coherent data model. A service net is created with all the possible composition candidates from given service

portfolio. Then it is reduced with respect to the given business requirement. In [22] a method to create a mapping

between WS-BPEL process and CPN model is proposed. The web service composition is validated by analyzing its

reachability tree. CPN [23] provides an effective means to simulate, analyze and verify the correctness of web

service composition. In this paper the input to the test suite generation algorithm is the data driven model that

considers both business and implementation domains.

3.1 CPN Model

In this paper the CPN model for the composite web service (Service-Net) is defined as a tuple < Σ, I, P, T, A, C, O >,

where

• Σ is a non-empty color set and represents the data types of the participating web services;

• I is a set of input places derived from the business requirement and represents the initial input to the

composite web service;

• P is a limited set of place, P is inclusive of I and O, and represents the state of atomic web service;

• T is a limited set of transition, and represents the operation of atomic web service;

• A is a finite set of arcs.

• C is a color function defined from P into Σ. C is injective, i.e., C (p1) = C (p2) Σ p1 = p2.

• O is a set of output place derived from the business requirement and represents the final output of the

composite web service

3.2 Case Study

A composite service implements a business process which accomplishes a specific organizational goal by using a

coordinated set of tasks performed by humans or software. We take a simple case study; 'Plan for Travel' process

which consists of three web services: a Traveller, a Travel Agent and an Airline Reservation System. A person, who

wants to travel via air, first proposes an itinerary and orders for the trip. He can change or cancel the itinerary. He

reserves, books and then receives the ticket. Web service Traveller helps the person get the tickets for the proposed

itinerary. The Travel Agent web service receives order, checks availability of seats, reserves and books the seat, and

sends statement to the person. It also acts upon the timeout scenarios, change and cancellation requests. The Web

service ‘Airline Reservation System’ verifies the seat availability, books the tickets and sends to the person. It also

handles the cancellation requests. This case study has been used in both WSCI and BPEL4WS composition

languages [22]. The figure 1 gives the composition model of the three web services and this model is used for

creating test sequences.

4. Algorithm

The unique input output pairs (UIO-Pairs) and the CPN model is the input to the algorithm. The business

requirements are represented by business processes consisting abstract activities with input/output data. The input

and output data are mapped to form UIO-Pairs. The UIO-Pairs at the highest level for the ticket booking business

process would be, input: proposed itinerary and outputs: booking succeeded or failed. The unique pairs can be easily

derived from the pre conditions and post conditions specified in the business requirements. Moreover the pairs would

be a limited and finite set. Hence the time taken to create the UIO-Pairs would be minimal. Table 1 gives the

exhaustive set for the case study taken into consideration.

The CPN model is generated as a service net using the WSDL in the service portfolio and the business requirements.

The approach to build the service nets is presented in [21]. Well-designed test data helps identify critical flaws in the

functionality. The test data for each step in the sequence can be generated from the WSDL documents that are used to

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

35

create the CPN model. The valid input space of a web service is the subset of the input space satisfying the

precondition of the web service. The proposed algorithm takes the most influencing pair first and starts creating test

sequences. The table of unique input and output can also be used to roughly estimate the test suite size. The number

of test sequences is directly related to the UIO-Pairs. However if there are conditional branches based on

computation and not on user inputs, then the number test sequences depends on the number of branches too. The test

sequences can also be prioritised by prioritising the UIO-Pairs. The test suite size can be reduced by generating

sequences for the UIO-Pairs that are business critical. In table 1 the first row is the most critical scenario where the

end-user of the system is satisfied by receiving the tickets for the proposed itinerary. The fourth row is pertaining to

reservation cancellation due to over time. Such situations are very rare and hence the priority for this row is low.

Therefore the test sequence generated using that UIO-Pair is also low. Definition of a test sequence and the design

coverage evaluation relates to the generation technique used. Thus, it is important to define the coverage criteria and

concepts followed in this paper. The test data is a set of inputs that would be used in the test step during execution. A

test sequence is a set of test steps that trigger a sequence of tasks or operations to accomplish a logical flow of events

in the business process. The focus of the proposed technique is to validate the behavioral correctness of the system

using the generated test sequences. The test sequence will validate the functional correctness and dependencies of the

operations. A test suite is a collection of test sequences.

Figure 2 gives the test sequence generation process for the web service composition. The proposed algorithm will

result in high coverage with minimal effort. The algorithm is analysed using the following coverage criteria.

4.1 Complete Sequence Coverage (CSCov)

The meaningful sequences obtained by traversing the CPN model for all the UIO-Pairs and all the decision points. In

the CPN model the decision point is represented by a place with multiple out-going arcs.

CSCov = No. of UIO-Pairs and decision points used

 Total No. of UIO-Pairs and decision points --- (1)

4.2 Decision Coverage (DCov):

The test suite TS fulfils 100% decision coverage if there is at least one test sequence of every decision point in the

CPN model.

DCov = No. of decision points used in sequence

 Total No. of decision points --- (2)

4.3 Input Output Coverage (IOCov):

The test suite TS satisfies Input Output coverage if there is at least one test sequence of every unique input output

pair of the business requirement/process.

IOCov = No. of UIO-Pairs used in sequence

 Total No. of UIO-Pairs --- (3)

4.4 Transition Coverage (TCov):

The test suite TS satisfies this coverage if there test sequences such that every transition is traversed at once in any of

the sequences.

TCov = No. of transitions used in the test sequence

 Total No. of transitions in the CPN Model --- (4)

Algorithm CTS-G (CPN based Test Sequence Generation)

Begin

Initialize the CPN Model

For each UIO-Pairs

Let IP= input set of top UIO-Pair

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

36

Let OP= output set of top UIO-Pair

/*Reduce redundant traversal to decision point*/

For each DP

If (IP part of DP) Then

 Copy test steps till DP

 T = Transitions after DP

 Exit For

End If

Next For

Enable T that satisfy IP and pre-conditions

While (P Not OP) Do

/*Places will specify the inputs need for firing a transition*/

Choose an enabled transition (T) that influence OP

Fire (T)

/*Create test step for the test sequence relevant to UIO-Pair*/

Record the Places connected to T as input

Record traversal in the test sequence

Record resulting Places and Arc expressions as output

If (T is web service operation) Then

 /*Automatically update traceability matrix (TM) */

Update TM

End If

Analyse resulting place P

If (P has multiple arcs) Then

/*Decision points are Place with multiple arcs */

Save decision points; DP=DP+P

If (this is first decision point) Then

Path_Start = Initial Transition

Else

Path_Start = Previous DP

End If

Path_End = Current DP

Save test steps to Place along with pre-conditions

End If

End Do

Remove UIO-Pair

Calculate TCov, DCov

Update test sequence with post-conditions and coverage

Initialize CPN to decision point that is yet to be covered

Next For

End

In the CPN model for web service composition, a test sequence is any path from one of the initial state to one of the

final state. In the case study taken up the ‘Change Itinerary’ flow takes up input as Proposed Itinerary but the output

depends on the ‘Check Seat Availability’ operation. In this paper external input and output pairs are focused and the

sequences that are missed are merged when the transition coverage is calculated. In the algorithm each Place and

Transition considered is the data type of web service operation and web service operation respectively. Intermediate

transitions and places are not recorded as part of test sequences. The test sequences generated can be used for black

box testing of web service composition. Moreover the traceability is created to business requirements and the web

services. To best of our knowledge traceability has not be considered in existing approaches. Moreover the gap

between business domain and implementation domain is bridged in this approach.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

37

5. Results and discussions

In traditional MBT, the models are created using requirements or specifications only. However, the existing

model-based test case generation approaches generate models from executable code: the BPEL code. Hence the

model created reflects the behaviour of the executable code rather than the expected behaviour of the system.

Using such a model for test case generation will lead to validation of BPEL code and not business requirements

which specifies the actual system. In the proposed approach the CPN model used is a data driven model that bridges

the gap between the service and business domain. Such a CPN model is already validated for accuracy of the

system’s functional design. Generating test cases for such a model is bound to produce effective and efficient test

cases. The algorithm also inherits another default benefit by using CPN model for deriving test sequences. The

CPN tools have been exhaustively used in verification of web service compositions; be it choreography or

orchestration. BPEL code constructs and WSCI code constructs have been transformed to CPN models to check

reachability and soundness of the composition. Table 2 presents an analysis by comparing the approaches that exist

for automatic generation of test sequences from the CPN Model. Traceability refers to traceability of the test

sequences. Usage refers to the domain or the applications that uses test sequences generated. In future test suite

length and the algorithm complexity will also be analyzed. One of the other advantages of MBT is that the test

sequences generated also aims at providing maximum testing coverage of the system under test. Generally the

coverage based adequacy metric usually relates to the model. The data driven CPN model is created from the

business requirements and WSDLs, hence the requirement coverage and web service coverage are inherited by

default if the whole model is covered. Table 3 represents the test sequence for Reservation time out scenario. The

traveller enters the proposed itinerary and his personal details to order tickets for the trip. The airline reservation

system checks and verifies the seat availability for the itinerary received from the travel agent. The reserved seat

details will be sent to traveller or there might happen a time out situation where the system enters the failure state

after notifying that time is the reason for failure. Here the UIO-Pair is row 3 from Table 1.

6. Conclusion

Testing is the most critical and expensive phase of the software development life cycle. Generation of test sequences

or cases is most challenging part of testing phase as an efficient test design can detect greater number of faults.

Moreover around 40% of software testing cost is spent on test design. In this paper we have present an approach to

reduce that cost by means of automating the generation of test sequences for web service composition. We first

analysed the existing approaches to generate test cases from the CPN model. Then we analysed the usage of CPN in

web service composition. Then finally we consider the data driven CPN model used for verifying the design of

composition and UIO-Pairs created from the business process requirements as input to create test sequences. As

opportunities for future work, on-the-fly test sequence prioritization and automatic tracing back to business

requirements can be taken up. Moreover the decision points which are places that have multiple arcs can be used to

reduce redundancy in test sequences.

References

[1] Thomas Erl (2005), Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall

PTR

[2] Lizhi Cai, Juan Zhang, Zhenyu Liu, (2011), A CPN-based Software Testing Approach, JOURNAL OF

SOFTWARE, VOL. 6, NO. 3, pp.468-474

[3] Jing LIU, Xinming YE, Jun LI, (2011), Colored Petri Nets Model based Conformance Test Generation, IEEE

Xplorer, pp: 967-970.

[4] U. Farooq, C.P. Lam and H. Li, (2008), Towards Automated Test Sequence Generation. 19th Australian

Conference on Software Engineering, IEEE Computer Society.

[5] H. Watanabe and T. Kudoh. (1995), Test Suite Generation Methods for Concurrent Systems based on

Coloured Petri Nets.2nd Asia-Pacific Software Engineering Conference (APSEC 1995), Brisbane, Australia, pp.

242-251.

[6] Mustafa Bozkurt, Mark Harman and Youssef Hassoun, (2009), Testing & Verification In Service-Oriented

Architecture: A Survey, SOFTWARE TESTING, VERIFICATION AND RELIABILITY, Wiley InterScience,

pp.1-67.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

38

[7] Jose Garcia-Fanjul, Javier Tuya, Claudio de la Riva, (2006), Generating Test Cases Specifications for BPEL

Compositions of Web Services Using SPIN, International Workshop on Web Services Modeling and Testing, pp.

83-94.

[8] Y. Zheng, J. Zhou, P. Krause, (2007), A Model Checking based Test Case Generation Framework for Web

Services, (2007), International Conference on Information Technology.

[9] Y. Zheng, P. Krause, Automata Semantics and Analysis of BPEL, International Conference on Digital

Ecosystems and technologies.

[10] X. Fu T. Bultan J. Su,(2004), Analysis of Interacting BPEL Web Services, International Conference on

World Wide Web. May 17 - 22New York, USA.

[11] M. Lallali, F. Zaidi, A. Cavalli, (2008), Transforming BPEL into Intermediate Format Language for Web

Services Composition Testing, The 4th IEEE International Conference on Next Generation Web Services

Practices.

[12] M. Lallali, F. Zaidi, A. Cavalli, Iksoon Hwang, (2008), Automatic Timed Test Case Generation for Web

Services Composition, Sixth European Conference on Web Services. Dublin, Ireland, Nov 12 - 14.

[13] Tien-Dung Cao, Patrick Felix, Richard Castanet and Ismail Berrada, (2009), Testing Web Services

Composition using the TGSE Tool, 2009 Congress on Service-I, IEEE Computer Society, pp. 187-194

[14] A. T. Endo, A. S. Sim˜ao, S. R. S. Souza, and P. S. L. Souza, (2008), Web services composition testing: A

strategy based on structural testing of parallel programs, TAIC-PART ’08: Proceedings of the Testing: Academic

& Industrial Conference - Practice and Research Techniques. Windsor, UK: IEEE Computer Society, pp. 3–12.

[15] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang, (2006), BPEL4WS unit testing: Test case generation using a

concurrent path analysis approach, ISSRE ’06: Proceedings of the 17th International Symposium on Software

Reliability Engineering. Raleigh, NC, USA: IEEE Computer Society, pp. 75–84.

[16] Y. Yuan, Z. Li, and W. Sun, (2006), A graph-search based approach to BPEL4WS test generation,

ICSEA ’06: Proceedings of the International Conference on Software Engineering Advances. Tahiti, French

Polynesia: IEEE Computer Society, p. 14.

[17] S. S. Hou, L. Zhang, Q. Lan, H. Mei, and J. S. Sun, (2009), Generating e_ective test sequences for BPEL

testing, QSIC 2009: Proceedings of the 9th International Conference on Quality Software. Jeju, Korea: IEEE

Computer Society Press.

[18] Z. Guangquan, R. Mei, and Z. Jun, (2007), A business process of web services testing method based on

uml2.0 activity diagram, IITA’07: Proceedings of the Workshop on Intelligent Information Technology

Application. Nanchang, China: IEEE Computer Society, pp. 59–65.

[19] A. Tarhini, H. Fouchal, and N. Mansour, (2006), Regression testing web services-based applications,

Proceedings of the 4th ACS/IEEE International Conference on Computer Systems and Applications. Sharjah,

UAE: IEEE Computer Society, pp. 163–170.

[20] A. Tarhini, H. Fouchal, and N. Mansour, (2005), A simple approach for testing web service based

applications, Proceedings of the 5th International Workshop on Innovative Internet Community Systems (IICS

2005), ser. Lecture Notes in Computer Science, vol. 3908. Paris, France: Springer, pp. 134–146.

[21] Wei Tan, Yushun Fan, MengChu Zhou and Zhong Tian, (2010), Data-Driven Service Composition in

Enterprise SOA Solutions: A Petri Net Approach, IEEE TRANSACTIONS, pp. 686-695

[22] Xinguo Deng, Ziyu Lin, Weiqing Cheng, Ruliang Xiao,Ling Li,Lina Fang, (2007), Modeling and Verifying

Web Service Composition Using Colored Petri Nets Based On WSCI, IEEE, pp:1863-1867

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

39

Poonkavithai Kalamegam received B.Tech degree in Computer Science and Engineering

from Pondicherry University and M.E. degree in Computer Science from Anna University.

Her research interest includes Service Oriented Architecture, Model Based Testing, and Web

Service Composition Testing. She has around 10 years of industry experience in functional

testing of banking domain applications. She has been involved in all phases of testing,

starting from estimation for testing phase to closure with test summary report. She has

worked in Cognizant Technology Solutions for 6 years. JP Morgan Chase Bank, Dutsche

Bank and Boeing Financials are some of the clients she has worked for. She is currently pursuing PhD degree in

the area Web Service Composition Testing in Pondicherry Engineering College.

Dr. G. Zayaraz is currently working as Associate Professor in Computer Science & Engineering

at Pondicherry Engineering College, Puducherry, India. He received his Bachelor`s, Masters and

Doctorate degree in Computer Science & Engineering from Pondicherry University. He has

published more than Thirty five research papers in reputed International Journals and

Conferences. His areas of specialization include Software Architecture and Information Security.

He is a reviewer/editorial member for several reputed International Journals and Conferences

and Life Member of CSE, and ISTE.

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

40

Figure 1. CPN Model for web service composition

Figure 2. Test Suite generation process

WSDLs

Business
Requirements

Data Driven

CPN Model
Test Sequences

CTS

Generator

UIO-Pairs

Test Data

Evaluation

WSDLs

Business
Requirements

Data Driven

CPN Model
Test Sequences

CTS

Generator

UIO-Pairs

Test Data

Evaluation

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Vol 3, No.6, 2012

41

Table 1. UIO-Pairs

SNo Input Output

1
Traveller details Success

Proposed Itinerary (Tickets Booked)

2
Cancel Itinerary Failure notification

Reserved Seat Details (Cancel Itinerary)

3
Cancel Reservation Failure notification

Reserved Itinerary (Cancel Reservation)

4
AirLine Reservation Failure Failure notification

OverTime (Timeout nofication)

Table 2. The comparison between some existing approaches of CPN to Test Sequence generation

Reference Traceability Usage Redundancy Test Priority

Lizhi Cai,J Zhang, Zhenyu Liu[2] To model Generic Not Handled Not Handled

Jing LIU, Xinming YE, Jun LI[3] To model GUI Apps Not Handled Not Handled

U. Farooq, C.P. Lam and H. Li[4]
To AD and

model
SOA Limited Not Handled

H. Watanabe and T. Kudoh[5] To model Concurrency Not Handled Not Handled

Our Work
To Bus. Req and

Web Services
SOA Handled Handled

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

