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Abstract 

Web service composition is most mature and effective way to realize the rapidly changing requirements of business 

in service-oriented solutions. Testing the compositions of web services is complex, due to their distributed nature and 

asynchronous behaviour. Colored Petri Nets (CPNs) provide a framework for the design, specification, validation 

and verification of systems. In this paper the CPN model used for composition design verification is reused for test 

design purpose. We propose an on-the-fly algorithm that generates a test suite that covers all possible paths without 

redundancy.  The prioritization of test sequences, test suite size and redundancy reduction are also focused. The 

proposed technique was applied to air line reservation system and the generated test sequences were evaluated 

against three coverage criteria; Decision Coverage, Input Output Coverage and Transition Coverage. 

Keywords— CPN, MBT, web service composition testing, test case generation  

 

1. Introduction 

Web Services is a set of distributed message oriented interacting components. It is the most active and widely 

adopted implementation of SOA which is a design pattern composed of loosely coupled, discoverable, reusable, 

inter-operable platform agnostic services that follow a well defined standard [1]. Success of any deployment in an 

enterprise depends on the quality assurance process undertaken. Web Service composition testing is quite different 

from traditional testing. It requires its own type of test architecture and tester skills. To test any composition, all the 

web services needs to be tested in isolation along with the common use cases where the services are interdependent. 

The services can be composed by following two complementary views; choreography and orchestration. In 

Orchestration a central element controls the business logic and execution order of the interactions. In Choreography 

interactions may involve multiple parties and multiple sources, but each element of the process is autonomous and 

controls its own agenda. Hence service composition testing can be classified into choreography-based and 

orchestration-based testing.  

Software testing is one of the most crucial phases in any SDLC to assure the quality of software. Creation of test 

cases consumes major effort allocated for testing. Model Based Testing (MBT) is a form of black-box testing 

technique that uses behavioural models of the system to automate the test case design process. Colored Petri nets 

(CPN) provide a framework for the construction and analysis of distributed and concurrent systems. A CPN model of 

a system describes the states which the system may be in and the transitions between these states. CPN have been 

applied in a wide range of application areas particularly in software system designs and business process 

re-engineering. Extending the usage of Colored Petri Nets beyond the system design phase, particularly in test design 

phase proves to be very effective in terms of greater test coverage and reduced test effort.  

In this paper a novel idea of applying MBT technique on the CPN model used for verifying the web service 

composition is presented. The paper is organized as follows. In next section, we discuss the motivation for our 

approach. In section III, we introduce usage of CPN model in web service composition. In section IV, the approach 

to automate test case generation for testing web service composition is described in detail. We present results and 

discussions in section V followed by conclusions in the last section. 

2. Motivation 

MBT provides a solid foundation for automating the test design process by generating the test cases from the 

business requirements that are formally represented by a model. UML (Unified Modeling Language), FSM (finite 

state machines) and CPN are widely used modeling mechanisms to specify, analyze and simulate requirements of the 

software, for test automation and for model-based software testing. CPN is a mathematical model and hence has 
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better formal capabilities to specify and analyze even complicated behaviours of a system. Moreover CPN model 

could be simulated dynamically, directed by the data-dependent control flow of system behaviours. It is better in 

modeling, analysis and validation of the accuracy of the system functional models. There exist few approaches to 

derive test cases from the CPN model. A simple approach to generate test cases using the state space is proposed 

in[2].The advantage of this approach is that the correctness of the specification based on CPN can be validated by 

simulation tools and the state space can be also generated by state space tools. An efficient approach for building 

conformance test suite using the PN-ioco relation is proposed in [3].   U. Farooq, C. P. Lam and H. Lin [4] 

proposed a method to convert the AD activities to a CPN model and apply the Random Walk Algorithm to create test 

sequences. Harumi Watanabe and Tomohiro Kudoh [5] proposed two techniques that can be applied for concurrent 

systems. One uses CPN-Tree and the other uses Colored Petri net Graph (CP-graph). CPN-Graph is considered as 

FSM and existing test case generation methods based on FSM is applied. In CPN-Tree method the reachability trees 

reduced by the equivalent marking technique are used to achieve the practical test suite length.  

There are several methods for automatic test cases generation using the BPEL structure of the composite web service. 

MBT [6] can be used along with Symbolic Execution, Model Checking and Petri Nets for testing and verification of 

the web service composition. In this paper we will limit to testing case generation.  Model Checking technique is 

used in [7, 8]. The Timed Extended Finite State Machines (TEFSM) is used for widely due existing tool support 

[9-13]. The BPEL specification is transformed into the TEFSM model and then used for test case generation. The 

Control Flow Graph(s) (CFG) are used to represent the BPEL processes. In [14] the test cases are generated using 

Graph Search Algorithm(s) and test data using Path Analysis (using constraint solving) (PA). In [15], an automated 

test data generation framework that extends CFG to represent the BPEL activities as the edges is proposed. Another 

extended CFG [16] called BPEL Flow Graph (BFG) that contains both control and data flow of a BPEL process is 

used for test data generation and semantic information such as dead paths. Hou et al. [17] suggests that the BPEL 

processes can be modelled as a Message Sequence Graph (MSG) from which test cases are generated. Guangquan et 

al. [18] propose the use of UML 2.0 Activity Diagram to model the BPEL process and a depth first search method 

combined with the test coverage criteria is used to generate test cases. Tarhini et al. [19, 20] proposed two abstract 

models; the Task Precedence Graph (TPG) and the Timed Labelled Transition System (TLTS) to represent system 

under test. The TPG models the interaction between services and the TLTS models the internal behaviour of the 

participating web services. 

Most of the existing approaches take into account the BPEL specifications alone for creating the test cases and the 

rich information on data available in the WSDL schema is not utilized effectively. On one hand CPN models have 

been used in test case generation but not in web service composition testing. On the other hand there are various 

approaches to verify web composition using CPN model. We aim at bringing in CPN models into MBT techniques to 

create cost effective and efficient test sequences for validating any composition. In this paper we propose an 

algorithm to generate of test sequences from the CPN model used for verifying the design of web service 

composition.  

3. Need for Using CPN 

The CPN model provides a formal description of the web composition a system. However it is still possible that 

more than one implementation is derived from the same specification and is not compatible. This is mainly due to 

incorrect implementation of the composition. Hence there is a need for testing every implementation for 

conformance to the business requirements. Testing can be carried out using test sequences generated from the 

business requirements. Control flow testing focuses on the transfer of control, while data flow testing focuses on the 

definitions of data and their subsequent use. The execution of a service is driven by the received and manipulated 

data; hence validation of data flow is very critical in composition. The data flow pertains to service messages namely 

the request and response messages through which data is exchanged among the participating services to accomplish a 

business goal. Moreover semantics of data structures in Web service composition is complex; for e.g. service 

messages are XML documents and service functions are XPath expressions.. CPN is one model that combines data 

and control flow with behavioural aspects of a given business requirement. Control flow coverage is defined in terms 

of transitions fired while the data flow coverage is defined in terms of tokens used. The web service composition is 

modelled and analysed for the accuracy of the functional design. Hence generating test sequences from such a model 
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is bound to produce completely feasible, effective and efficient test sequences for practical test executions. Also 

gains the highest effectiveness by combining the two complementary flows. 

CPN has been widely used for verification of BPEL composition. Many deals with converting the BPEL constructs 

into CPN model. A data driven approach to compose the web services using CPNs is given in [21]. When a new 

business requirement given with input/output details needs to be implemented, the existing service portfolio is 

checked for reusability. The data relations in business and service domain are utilized to create a complete and 

coherent data model. A service net is created with all the possible composition candidates from given service 

portfolio. Then it is reduced with respect to the given business requirement.  In [22] a method to create a mapping 

between WS-BPEL process and CPN model is proposed. The web service composition is validated by analyzing its 

reachability tree. CPN [23] provides an effective means to simulate, analyze and verify the correctness of web 

service composition.  In this paper the input to the test suite generation algorithm is the data driven model that 

considers both business and implementation domains.  

3.1 CPN Model 

In this paper the CPN model for the composite web service (Service-Net) is defined as a tuple < Σ, I, P, T, A, C, O >, 

where 

• Σ is a non-empty color set and represents the data types of the participating web services; 

• I is a set of input places derived from the business requirement and represents the initial input to the 

composite web service; 

• P is a limited set of place, P is inclusive of I and O, and represents the state of atomic web service; 

• T is a limited set of transition, and represents the operation of atomic web service; 

• A is a finite set of arcs. 

• C is a color function defined from P into Σ. C is injective, i.e., C (p1) = C (p2) Σ p1 = p2. 

• O is a set of output place derived from the business requirement and represents the final output of the 

composite web service 

3.2 Case Study 

A composite service implements a business process which accomplishes a specific organizational goal by using a 

coordinated set of tasks performed by humans or software. We take a simple case study; 'Plan for Travel' process 

which consists of three web services: a Traveller, a Travel Agent and an Airline Reservation System. A person, who 

wants to travel via air, first proposes an itinerary and orders for the trip. He can change or cancel the itinerary. He 

reserves, books and then receives the ticket. Web service Traveller helps the person get the tickets for the proposed 

itinerary. The Travel Agent web service receives order, checks availability of seats, reserves and books the seat, and 

sends statement to the person.  It also acts upon the timeout scenarios, change and cancellation requests. The Web 

service ‘Airline Reservation System’ verifies the seat availability, books the tickets and sends to the person. It also 

handles the cancellation requests. This case study has been used in both WSCI and BPEL4WS composition 

languages [22].  The figure 1 gives the composition model of the three web services and this model is used for 

creating test sequences. 

 

4. Algorithm 

The unique input output pairs (UIO-Pairs) and the CPN model is the input to the algorithm. The business 

requirements are represented by business processes consisting abstract activities with input/output data. The input 

and output data are mapped to form UIO-Pairs. The UIO-Pairs at the highest level for the ticket booking business 

process would be, input: proposed itinerary and outputs: booking succeeded or failed. The unique pairs can be easily 

derived from the pre conditions and post conditions specified in the business requirements. Moreover the pairs would 

be a limited and finite set. Hence the time taken to create the UIO-Pairs would be minimal. Table 1 gives the 

exhaustive set for the case study taken into consideration.  

The CPN model is generated as a service net using the WSDL in the service portfolio and the business requirements. 

The approach to build the service nets is presented in [21]. Well-designed test data helps identify critical flaws in the 

functionality. The test data for each step in the sequence can be generated from the WSDL documents that are used to 
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create the CPN model. The valid input space of a web service is the subset of the input space satisfying the 

precondition of the web service. The proposed algorithm takes the most influencing pair first and starts creating test 

sequences. The table of unique input and output can also be used to roughly estimate the test suite size. The number 

of test sequences is directly related to the UIO-Pairs. However if there are conditional branches based on 

computation and not on user inputs, then the number test sequences depends on the number of branches too. The test 

sequences can also be prioritised by prioritising the UIO-Pairs. The test suite size can be reduced by generating 

sequences for the UIO-Pairs that are business critical. In table 1 the first row is the most critical scenario where the 

end-user of the system is satisfied by receiving the tickets for the proposed itinerary.  The fourth row is pertaining to 

reservation cancellation due to over time. Such situations are very rare and hence the priority for this row is low. 

Therefore the test sequence generated using that UIO-Pair is also low.  Definition of a test sequence and the design 

coverage evaluation relates to the generation technique used. Thus, it is important to define the coverage criteria and 

concepts followed in this paper. The test data is a set of inputs that would be used in the test step during execution. A 

test sequence is a set of test steps that trigger a sequence of tasks or operations to accomplish a logical flow of events 

in the business process. The focus of the proposed technique is to validate the behavioral correctness of the system 

using the generated test sequences. The test sequence will validate the functional correctness and dependencies of the 

operations. A test suite is a collection of test sequences. 

Figure 2 gives the test sequence generation process for the web service composition. The proposed algorithm will 

result in high coverage with minimal effort. The algorithm is analysed using the following coverage criteria.  

4.1 Complete Sequence Coverage (CSCov) 

The meaningful sequences obtained by traversing the CPN model for all the UIO-Pairs and all the decision points. In 

the CPN model the decision point is represented by a place with multiple out-going arcs.  

CSCov = No. of UIO-Pairs and decision points used 

        Total No. of UIO-Pairs and decision points                               --- (1) 

4.2 Decision Coverage (DCov): 

The test suite TS fulfils 100% decision coverage if there is at least one test sequence of every decision point in the 

CPN model.  

DCov =    No. of decision points used in sequence 

            Total No. of decision points                                       --- (2) 

 

4.3 Input Output Coverage (IOCov): 

The test suite TS satisfies Input Output coverage if there is at least one test sequence of every unique input output 

pair of the business requirement/process.  

IOCov =  No. of UIO-Pairs used in sequence 

               Total No. of UIO-Pairs                                       --- (3) 

4.4 Transition Coverage (TCov): 

The test suite TS satisfies this coverage if there test sequences such that every transition is traversed at once in any of 

the sequences. 

TCov = No. of transitions used in the test sequence 

      Total No. of transitions in the CPN Model                                 --- (4) 

 

Algorithm CTS-G (CPN based Test Sequence Generation) 

Begin 

Initialize the CPN Model 

For each UIO-Pairs 

Let IP= input set of top UIO-Pair 
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Let OP= output set of top UIO-Pair 

/*Reduce redundant traversal to decision point*/ 

For each DP 

If (IP part of DP) Then 

    Copy test steps till DP 

    T = Transitions after DP  

 Exit For  

End If 

Next For 

Enable T that satisfy IP and pre-conditions 

While (P Not OP) Do 

/*Places will specify the inputs need for firing a transition*/ 

Choose an enabled transition (T) that influence OP 

Fire (T) 

/*Create test step for the test sequence relevant to UIO-Pair*/ 

Record the Places connected to T as input 

Record traversal in the test sequence 

Record resulting Places and Arc expressions as output 

If (T is web service operation) Then 

    /*Automatically update traceability matrix (TM) */ 

Update TM 

End If 

Analyse resulting place P 

If (P has multiple arcs) Then 

/*Decision points are Place with multiple arcs */ 

Save decision points; DP=DP+P 

If (this is first decision point) Then 

Path_Start = Initial Transition 

Else 

Path_Start = Previous DP 

End If 

Path_End = Current DP 

Save test steps to Place along with pre-conditions 

End If 

End Do  

Remove UIO-Pair 

Calculate TCov, DCov  

Update test sequence with post-conditions and coverage 

Initialize CPN to decision point that is yet to be covered 

Next For 

End 

In the CPN model for web service composition, a test sequence is any path from one of the initial state to one of the 

final state. In the case study taken up the ‘Change Itinerary’ flow takes up input as Proposed Itinerary but the output 

depends on the ‘Check Seat Availability’ operation. In this paper external input and output pairs are focused and the 

sequences that are missed are merged when the transition coverage is calculated. In the algorithm each Place and 

Transition considered is the data type of web service operation and web service operation respectively. Intermediate 

transitions and places are not recorded as part of test sequences. The test sequences generated can be used for black 

box testing of web service composition. Moreover the traceability is created to business requirements and the web 

services. To best of our knowledge traceability has not be considered in existing approaches. Moreover the gap 

between business domain and implementation domain is bridged in this approach.   
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5. Results and discussions 

In traditional MBT, the models are created using requirements or specifications only.  However, the existing 

model-based test case generation approaches generate models from executable code: the BPEL code. Hence the 

model created reflects the behaviour of the executable code rather than the expected behaviour of the system.  

Using such a model for test case generation will lead to validation of BPEL code and not business requirements 

which specifies the actual system. In the proposed approach the CPN model used is a data driven model that bridges 

the gap between the service and business domain. Such a CPN model is already validated for accuracy of the 

system’s functional design.  Generating test cases for such a model is bound to produce effective and efficient test 

cases.  The algorithm also inherits another default benefit by using CPN model for deriving test sequences. The 

CPN tools have been exhaustively used in verification of web service compositions; be it choreography or 

orchestration. BPEL code constructs and WSCI code constructs have been transformed to CPN models to check 

reachability and soundness of the composition. Table 2 presents an analysis by comparing the approaches that exist 

for automatic generation of test sequences from the CPN Model. Traceability refers to traceability of the test 

sequences. Usage refers to the domain or the applications that uses test sequences generated. In future test suite 

length and the algorithm complexity will also be analyzed. One of the other advantages of MBT is that the test 

sequences generated also aims at providing maximum testing coverage of the system under test. Generally the 

coverage based adequacy metric usually relates to the model. The data driven CPN model is created from the 

business requirements and WSDLs, hence the requirement coverage and web service coverage are inherited by 

default if the whole model is covered. Table 3 represents the test sequence for Reservation time out scenario.  The 

traveller enters the proposed itinerary and his personal details to order tickets for the trip. The airline reservation 

system checks and verifies the seat availability for the itinerary received from the travel agent. The reserved seat 

details will be sent to traveller or there might happen a time out situation where the system enters the failure state 

after notifying that time is the reason for failure. Here the UIO-Pair is row 3 from Table 1. 

6. Conclusion 

Testing is the most critical and expensive phase of the software development life cycle. Generation of test sequences 

or cases is most challenging part of testing phase as an efficient test design can detect greater number of faults. 

Moreover around 40% of software testing cost is spent on test design. In this paper we have present an approach to 

reduce that cost by means of automating the generation of test sequences for web service composition. We first 

analysed the existing approaches to generate test cases from the CPN model. Then we analysed the usage of CPN in 

web service composition. Then finally we consider the data driven CPN model used for verifying the design of 

composition and UIO-Pairs created from the business process requirements as input to create test sequences. As 

opportunities for future work, on-the-fly test sequence prioritization and automatic tracing back to business 

requirements can be taken up. Moreover the decision points which are places that have multiple arcs can be used to 

reduce redundancy in test sequences. 
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Figure 1. CPN Model for web service composition 

 

 

 

 

 

 

 

 

Figure 2. Test Suite generation process  
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Table 1. UIO-Pairs 

SNo Input Output 

1 
Traveller details Success 

Proposed Itinerary (Tickets Booked) 

2 
Cancel Itinerary Failure notification 

Reserved Seat Details (Cancel Itinerary) 

3 
Cancel Reservation Failure notification 

Reserved Itinerary (Cancel Reservation) 

4 
AirLine Reservation Failure  Failure notification 

OverTime (Timeout nofication) 

 

 

Table 2. The comparison between some existing approaches of CPN to Test Sequence generation 

Reference Traceability Usage Redundancy Test Priority 

Lizhi Cai,J Zhang, Zhenyu Liu[2] To model Generic Not Handled Not Handled 

Jing LIU, Xinming YE, Jun LI[3] To model GUI Apps Not Handled Not Handled 

U. Farooq, C.P. Lam and H. Li[4] 
To AD and 

model 
SOA Limited Not Handled 

H. Watanabe and T. Kudoh[5] To model Concurrency Not Handled Not Handled 

Our Work 
To Bus. Req and 

Web Services 
SOA Handled Handled 
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