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Abstract 

The human computer interaction with respect to skin colour is an important area of research due to its ready 

applications in several areas like face recognition, surveillance, image retrievals, identification, gesture analysis, 

human tracking etc.  For efficient skin colour segmentation statistical modeling is a prime desiderata.  In 

general skin colour segment is done based on Gaussian mixture model.  Due to the limitations on GMM like 

symmetric and mesokurtic nature the accuracy of the skin colour segmentation is affected.  To improve the 

accuracy of the skin colour segmentation system, In this paper the skin colour is modeled by a finite bivariate 

Pearsonian type-IVa mixture distribution under HSI colour space of the image.  The model parameters are 

estimated by EM algorithm.  Using the Bayesian frame the segmentation algorithm is proposed.  Through 

experimentation it is observed that the proposed skin colour segmentation algorithm perform better with respect 

to the segmentation quality metrics like PRI, GCE and VOI.  The ROC curves plotted for the system also 

revealed that the developed algorithm segment pixels in the image more efficiently. 

Keywords: Skin colour segmentation, HSI colour space, Bivariate Pearson type IVa mixture model, Image 

segmentation metrics. 

 

1. Introduction 

Colour is an important factor that can be used to detect and classify the objects in an image.  For efficient 

utilization of the automatic detection systems of human it is required to study and analyze algorithms for skin 

colour segmentation in images [1, 2]. Skin detection is widely used in image processing applications like Face 

tracking, Gesture Analysis, Face detection, Content Based Image Retrievals, Medical Diagnostics and several 

other human computer interaction domains.  Much work has been reported in literature regarding skin colour 

modeling and detection. Kakumanu et al [3] have reviewed the literature on skin colour modeling and detection 

methods, they also mentioned that the choice of colour space is an important factor for skin colour classification.  

J. Yang et al [4] have observed that skin colour differ more in intensity rather than chrominance. 

Several colour spaces have been used for skin colour segmentation.  The basic color spaces like RGB, 

Normalized RGB, and CIE-XYZ are used by [5, 6, 7, 8, 9].  The perceptual colour space like HSI, HSV, HSL 

and TSL are used by [10, 11, 12, 13, 9, 14]. Orthogonal colour space namely YCbCr, YIQ, YUV, YES etc are 

used by [15, 16, 17, 18, 19, 20].  Other colour spaces like CIE – Lab, CIE – Luv are used by [21, 7, 22].  

Among all these colour spaces the HSI offers the advantage that separate channels outline certain colour 

properties and the visual conjunctive system of human being is close to the features of the colour pixels are 

characterized by intensity, hue and saturation[23]. Rafel C et al [24]  has stated the HSI is ideal for digital 

image processing since it is closely related to the way in which people describe the perception of colour. 

Therefore in this paper we consider the feature vector associated with the skin colour of the image pixel is 

characterized by a bivariate random vector consists of hue and saturation.  The HSI colour space hue and 

saturation are functions of intensity (I), we consider only the hue and saturation values to reduce complexity of 

computation and to avoid redundancy with out loosing information of the image. 

 The authors [4, 8, 25, 3, 26, 27] have developed skin colour segmentation methods based on probability 

distributions since model based segmentation is efficient than other methods of segmentation. In most of the 

colour segmentation it is customary to consider single Gaussian model or Gaussian mixture model for 

characterization the skin colours.  Recently to overcome the drawback associated with colour object tracking 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Science, Technology and Education (IISTE): E-Journals

https://core.ac.uk/display/234644456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.5, 2012

 

46 

using Gaussian mixture model, Ketchantang et al [28], have developed Pearson based mixture model for colour 

object tracking.  He used the results based on pixel intensity values under univariate consideration.  Very little 

work has been reported regarding skin colour segmentation utilizing bivariate Pearson type-1Va mixture model 

under HSI colour space.  The Pearson type-IVa mixture model includes a wide variety of bivariate distributions 

that have Gamma family of marginal distributions.   

It is empirically observed that the hue and saturation of a pixel in a colour image are skewed and having 

positive range.  Another advantage of the Pearson type-IVa distribution is having only two parameters.  It is 

well known that if the number of parameters is less then the model gives over efficient characterization of the 

physical phenomenon. Hence, in this paper a colour image segmentation algorithm is developed and analyzed 

assuming that the feature vector consisting of hue and saturation values of the image follows a two component 

mixture of bivariate Pearson type-IVa distribution. 

Rest of the paper is organized as follows.  Section 2 deals with two component bivariate Pearsonian 

type-IVa mixture model and its properties which are used for modeling the skin colour.  Section 3 deals with 

estimation of model parameters using EM Algorithm.  It is observed that the Expectation Maximization 

algorithm gives efficient estimators in mixture models. Section 4 is concerned with the initialization of model 

parameters using K-means algorithm.  The K-means algorithm is used to divide the colour image pixels in to 

two categories, initially for obtaining the initial estimators of the model parameters.  Section 5 presents the skin 

colour segmentation algorithm based on maximum likelihood under Bayesian frame.  The Experimental results 

along with the performance of the proposed algorithm are given in section.6. Section 7 deals with the 

conclusions. 

 

2. Bivariate Pearson TYPE-IVa Mixture Model  

In skin colour analysis the classification of the image is done into two categories namely, skin and non-skin 

colour regions.  The skin colour is different from the colour of most other natural objects in the world. To build 

the statistical model for the pixels in the image, the feature vector is extracted using colour spaces.  In skin 

colour segmentation one has to use the chrominance component in extracting the features.  Accordingly the hue 

and saturation under HSI colour space are used for skin colour detection.  The statistical observations of hue 

and saturation which form a bivariate feature vector match closely with the bivariate Pearson type-IVa 

distributions.  The bivariate Pearson type-IVa given by [29] is having non negative and asymmetric nature of 

the random variable.  It also includes a wide variety of bivariate probability distributions.  Here it is assumed 

that the feature vector of the pixel in skin or non-skin regions in the image follows a bivariate Pearson type-IVa  
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Its mean is  m  and variance is m  

The marginal probability density distribution of the saturation value is  
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Its mean is n m+  and variance is n m+                                        

The Covariance between hue and saturation values is m  

Since the entire image is a collection of skin and non-skin pixel regions which are characterized by a bivariate 

Pearson type-IVa distribution, The feature vector associated with the whole image is modeled as a two 

component bivariate Pearson type-IVa mixture model.  Its Joint probability density function is  
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3. ESTIMATION OF THE MODEL PARAMETERS USING EM-ALGORITHM 
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The model parameters are estimated by using the Expectation Maximization Algorithm (E.M Algorithm). 

The updated equation of the parameter kα is 

( 1) ( )

,

1

1
[ ( ; )]

N
l l

k k s s

s

t x y
N

α θ+

=

= ∑                  for K = 1, 2. 

                    = 

( )

,

2
( )1

,

1

( ; )1

( ; )

l lN
k k s s

l ls
i i s s

i

f x y

N
f x y

α θ

α θ=

=

 
 
 
 
  

∑
∑

                               (7) 

where, 
( )

,
( ; l

k s s
f x y θ ) is as given equation (1). 



Computer Engineering and Intelligent Systems                                                                www.iiste.org 

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 

Vol 3, No.5, 2012

 

48 

The updated equation of km at ( 1)thl + iteration is              
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 where Psi (m) = digamma (m)                      

The updated equation of kn  at ( 1)thl + iteration is 
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 where Psi (n) = digamma (n)                                                       

Solving the equations (7), (8) and (9) iteratively using MATLAB code we get the revised estimates of
, ,k k k
m nα  

for K = 1, 2. 

 

4. INITILIZATION OF MODEL PARAMETERS BY K-MEANS 

The efficiency of the EM algorithm in estimating the parameters is heavily dependent on the initial estimates of 

the parameters.  The number of mixture components taken for K-means algorithm is two (skin and non-skin), 

i.e., K = 2. Usually the mixing parameter and the region parameters (m, n) are unknown. A commonly used 

method in initialization is by drawing a random sample in the entire image data [30, 31]. This method  perform 

well  only when  the sample  size  is  large,  and  the computation  time  is  heavily  increased.  

When the sample size is small it is likely that some small regions may not be sampled. To overcome this 

problem, we use K-means algorithm [32] to divide the whole image into two homogeneous regions representing 

skin and non-skin regions. We obtain the initial estimates of the parameters m and n for each image region using 

the method of moment estimators for bivariate Pearson type-IVa distribution and for the parameters iα  as 1

2
iα = −  for i = 1, 2. 

Therefore the initial estimates of m and n are: 

km  = kx  is the 
thk  region sample mean of the Hue value 

kn  = ky  is the 
thk  region sample mean of the Saturation value. 

Substituting these values as the initial estimates, we obtain the refined estimates of the parameters by using the 

EM-Algorithm. 
 
5. Skin Colour Segmentation Algorithm 

After refining the parameters the prime step is skin colour segmentation, by allocating the pixels to the skin or 

non-skin segments.  This operation is performed by segmentation algorithm.  The skin colour segmentation 

algorithm consists of the following steps 

Step 1) Divide the whole image into two regions using K-means algorithm 

Step 2) Obtain the initial estimates of the model parameters using the moment estimators as discussed in section 

4 for each region 

Step 3) Obtain the refined estimates of the model parameters by using the EM-algorithm with the updated 

equations given in section 3.   

Step 4) Substitute the estimated parameter values in the image joint probability density function 
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Step 5) Segment the pixels as skin colour or non-skin colour pixel using a threshold (t) and the likelihood 

function such that ( / )L x tθ ≥  or ( / )L x tθ <  respectively for 0 < t < 1.  

      The optimal threshold value of t is determined by computing true positive and false positive over the 

segmented regions and plotting the ROC Curve.      

                                   

 

6. Experimental Results and Performance Evaluation 

In this section, the performance of the developed skin colour segmentation algorithm is evaluated. For this 

purpose the skin images are collected from JNTUK database and UCD colour face database. A random sample 

of 5 images is taken from both the databases and the feature vector consists of hue and saturation for each pixel 

of the each image is computed utilizing HSI colour space.  In HSI colour space the hue and saturation values 

are computed from the values of RGB for each pixel in the image using the formula 
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             where I = 
3

R G B+ +
 is the intensity of pixel. 

With the feature vector (H, S) each image is modeled by using the two component bivariate Pearson type-IVa 

mixture distribution.  The initial values of the model parameters   are obtained by dividing all the pixels in to 

two categories namely skin and non-skin region using K-means algorithm with K = 2 and taking    and 

moment estimates for (m, n), I =1, 2.  Using these initial estimates and the updated equations of the 

EM-algorithm discussed in section.3 with MATLAB code the refined estimates of model parameters are 

obtained.  Substituting the refined estimates in the bivariate Pearson type –IVa the joint probability distribution 

functions of the skin colour and non-skin colour models of each image are estimated. The segmentation 

algorithm with component maximum likelihood under Bayesian frame and a threshold value t as discussed in 

section 5 is used to segment the image. Figure 1 shows the original and segmented random images. 

 The developed algorithm performance is evaluated by comparing skin colour segmentation algorithm with 

the Gaussian mixture model. Table.1 presents the miss classification rate of the skin pixels of the sample image 

using proposed model and Gaussian mixture model.                                                                             

     From the Table.1, it is observed that the misclassification rate of the classifier with bivariate Pearson 

type-IVa mixture model (BPTIVaMM) is less compared to that of GMM. The accuracy of the classifier is also 

studied for the sample images by using confusion matrix for skin and non-skin regions.  Table .2, shows the 

values of TPR, FPR, Precision, Recall and F-measure for skin and non-skin segments of the sample images.                                                                    

     From Table.2, it is obtained that the F-measure value for the proposed classifier is more.  This indicates 

the proposed classifier perform better than that of Gaussian mixture model. Figure.2 shows the ROC curves 

associated with the proposed skin colour classifier and the classifier with GMM.                                    
     From the Figure.2 it is observed that the proposed classifier is having less false detection of the skin pixels 

compared to the classifier with GMM.  The figure also shows that can successfully identified the exposed skin 

region including face, hands and neck. 

     The performance of the segmentation algorithm is also studied by obtaining three segmentation 

performance measures namely, Probabilistic Rand Index (PRI) [33], Variation of Information (VOI) [34], Global  
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Consistency  Error (GCE) [35] with the sample images. The computed values of the performance measures for 

the developed algorithm with BPTIVaMM and GMM are presented in Table. 3.                   
     From the Table.3 it is observed the PRI value of the proposed algorithm for sample images considered for 

experimentation are more than that of the value from the segmented algorithm based on GMM and they are 

closed to 1. Similarly the GCE and VOI values of the proposed algorithm are less than that of finite Gaussian 

mixture model and closed to 0.  This reveals that the proposed segmentation algorithm performs better than the 

algorithm with GMM and the skin colour segmentation is closed to the ground truth. 

 

7. Conclusion 

In this paper we have proposed a skin colour segmentation by modeling the colour image pixels through two 

component bivariate Pearson type-IVa mixture model under HSI colour space. The bivariate Pearson type-IVa is 

a capable of characterizing the skin colour having only two parameters. The less number of parameters gives a 

good fit to the image data.  This mixture model also includes different styles of bivariate distributions.  The 

model parameters are estimated by EM algorithm. The initialization of parameters is done through K-means 

algorithm and moment method of estimation. The experimentation with five different types of images have 

revealed that the proposed segmentation algorithm perform better with respect to image segmentation metrics 

like PRI, VOI and GCE. The ROC curves plot for the images using the proposed method and the method based 

on Gaussian mixture model shows that the proposed algorithm can be further refined by considering 

unsupervised skin color segmentation with more number of classes for background, skin colour, non human 

objects, etc. It is also possible to utilize the Hidden Markov Model with bivaraiate Pearson type-IVa mixture 

model which will be taken elsewhere. 
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Figure 1. Original and Segmented images 
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  Table.1 Miss Classification rate of the classifier 

Model Miss Classification Rate 

BPTIVaMM 8% 

GMM 14% 

 

Table.2 Comparative study of GMM and BPTIVaMM 

Image Method TPR FPR Precision Recall F-measure 

Image1 

(Female1) 

BPTIVaMM 0.9421 0.1020 0.9545 0.9421 0.9280 

GMM 0.8972 0.1820 0.9090 0.8972 0.9030 

Image2 

(Male1) 

BPTIVaMM 0.8968 0.092 0.9096 0.8968 0.9031 

GMM 0.8648 0.1153 0.8771 0.8648 0.8709 

Image3 

(Female2) 

BPTIVaMM 0.9191 0.075 0.9220 0.9191 0.9205 

GMM 0.8240 0.158 0.8538 0.8240 0.8380 

Image4 

(Male2) 

BPTIVaMM 0.9042 0.1010 0.9082 0.9042 0.9061 

GMM 0.8419 0.1230 0.8729 0.8419 0.8571 

Image 5 

(Male3) 

BPTIVaMM 0.9210 0.0740 0.9284 0.9210 0.9246 

GMM 0.8873 0.1185 0.8972 0.8873 0.8922 
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                                 Figure. 2 ROC Curves 
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Table 3.Segmentation Performance Measures 

Image Method 

Performance Measures 

PRI GCE VOI 

Image 1 

(Female1) 

BPTIVaMM 0.5823 0.2824 0.1240 

GMM 0.4526 0.3268 0.1860 

Image 2 

(Male1) 

BPTIVaMM 0.7218 0.2215 0.0921 

GMM 0.4438 0.3820 0.1282 

Image 3 

(Female2) 

BPTIVaMM 0.5246 0.1864 0,1248 

GMM 0.3983 0.2962 0.1861 

Image 4 

(Female3) 

BPTIVaMM 0.7824 0.1986 0.1326 

GMM 0.6982 0.2859 0.2025 

          Image 5 

          (Male2) 

BPTIVaMM 0.6368 0.2504 0.0762 

GMM 0.5610 0.3294 0.2362 
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