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Abstract  

 Tomographic reconstruction using Radon projections taken at an angle θ[0,2π) introduce a redundancy of 
four. Hence the projection in one quadrant θ [0,π/2) are used for tomographic reconstruction to reduce 
computational overheads. In this paper, we present that the though the projections at an angle θ [0,π/2) do 
not introduce any redundancy, the achieved tomographic reconstruction is very poor. A qudrature Radon 
transform is further introduced as a combination of Radon transforms at projection angles θ and (θ+π/2). 
The individual back projections for θ and (θ+π/2) are computed in two parts separately; 1) considering 
them real and imaginary parts of a complex number 2) considering average of the individual back 
projections. It is observed that the quadrature Radon transform yields better results numerically and/or 
visually compared to conventional Radon transform θ[0,2π). 

Keywords: Single quadrant Radon transform, quadrature Radon transform, Magnitude of complex 
projection, average, reconstruction.  

1. Introduction  

Tomography refers to the cross section imaging of an object from either transmission or reflection data 
collected by illuminating the object from many different directions one by one. In other words, 
tomographic imaging deals with reconstructing an image from its projections as presented by S. Chandra 
Kutter, et. al (2010). The exact reconstruction of a signal requires an infinite number of projections, since 
an infinite number of slices are required to include all of Fourier spaces. If however the signal have 
mathematical form then exact reconstruction is possible from limited set of projections as given by  
Meseresu and Oppenheim (1974). The first practical solution of image reconstruction was given by 
Bracewell (1956) in the field of radio astronomy. He applied tomography to map the region of emitted 
microwave radiation from the sun’s disk. The most popular application is associated with medical imaging 
by use of computerized tomography (CT) in which the structure of a multidimensional object is 
reconstructed from set of its 2D or 3D projections (Grigoryan 2003). X-ray of human organs in which stack 
of several transverse projections are used to get the two dimension information which may be converted to 
three dimensions. 

The selection of the projection set has attracted the researchers in various applications. Svalbe and  
Kingston (2003)  presented selection of projection angles for discrete Radon transform from the known 
Farey fractions. It has been predicted in  that all the Farey sequence points cannot be represented on Radon 
projections. This leads to a fact that the pixels in the annular and corner regions of an image tile are poorly 
represented in the projection domain with single set of projections. They also presented a generalized finite 



Computer Engineering and Intelligent Systems  www.iiste.org 
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 
Vol 3, No.4, 2012 
 

24 

Radon transform computation algorithm for NxN images using prime number size square tiles (Svalbe and  
Kingston (2007). The radon transform and its derivatives are useful for many image processing  application 
such as denoising, locating linear features, detecting and isolating motion (Donoho 1997,Candes 1998, 
Candes and Donoho 1999) , Pattern recognition(Chen et. al (2005), image compression , and feature 
representation (Donoho and Vetterli 2003). Since all these applications of the Radon transform are in 
essence discrete, an accurate  discrete formalism of the Radon transform is required. It will minimize the 
need for interpolating the projections and reconstructions. Though conceptualized in polar domain Finite 
Radon transform (FRT) is almost orthogonal (Donoho and Vetterli 2003). The FRT applies to square image 
data pxp where p is a small prime and assume the image is periodic with p in both the x and y direction, by 
defining the pxp array as the finite group Zp

2  under addition. Both the Fourier slice theorem and 
convolution property hold for the FRT. Since p is prime there are only (p+1) distinct line directions (thus 
p+1 projections) corresponding to the p+1 unique subgroups. Every radial discrete line samples p points in 
the image and has p translates. It intersects any other distinct line only once. All these attributes match 
those of lines in continuous space as given by Kingston (2007).  

In this paper, we consider the possibility of smoother reconstruction from a finite number of projections of 
the proposed quadrature Radon transform using two approaches. In the first approach, the two set of 
projections are taken from angle θ and (θ+π/ 2 ) simultaneously and those two set of projections are 
considered as a real and imaginary part of a complex number. In another one, the individual back 
projections are averaged to yield smooth reconstruction. The proposed approaches yield better results 
compared to the single quadrant [0,π /2] Radon transform.   Section 1 presents literature survey and 
organization of the paper. Section 2 explains forward Radon transform and its inverse i.e. back projection 
theorem with the help of Fourier slice theorem and Filter back projection. The anticipated Quadrature 
Radon Transform (QRT), its property and algorithm is given in section 3. Experiments and results are 
given in section 4. Finally conclusion is presented in section 5. 

              

 

2. Radon Transform 

Let (x, y) be coordinates of points in the plane. Consider an  arbitrary integrable function f defined on 
domain D of real space R2. If L is any line in the plane, then set projections or finite line integrals of f along 
all possible lines L is defined as two dimensional Radon transform of f  (Matus and Flusser 1993, Herman 
and Davidi 2008, Herman 1980) . Thus, 

( , )f

L

f R f x y ds
∨

= = ∫   (1) 

Where ds is an increment of length along L. The domain D may include the entire plane or some region of 
the plane as shown in Fig. 1. If  f is continuous  and has compact support then Rf is uniquely determined by 
integrating along  all lines L. Obviously the discrete integral along line L, is the summation of the pixel 
intensities of D that fall on line L and is called a point projection. A set of point projections, for all lines 
parallel to L and with a fixed angle and  spanning over D, is called a projection. 

 



Computer Engineering and Intelligent Systems  www.iiste.org 
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) 
Vol 3, No.4, 2012 
 

25 

 

Fig. 1 Projection line L through domain D 

In Fig.2 the projection line is considered perpendicular to a dotted line that passes through origin and 
intersects x axis at angle θ. The perpendicular distance between the line and the origin is p. A set of 
projections obtained due to integrals along all parallel projection lines perpendicular to the dotted line is 
called projection of D at an angle θ.  Thus by changing the angle of the dotted line θ with x axis over the 
range [0 π/2), parallel projections for each value of θ can be obtained. This set of projections is called 
projections of D over the first quadrant. Similarly one can have projections of D over the remaining three 
quadrants. 

 

Fig. 2 Coordinates to describe the line in Fig. 1 

The line integral depends on the values of p and Ф.  

∫==
∨

L

f dsyxfRpf ),(),( φ                  (2) 
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Thus, if ),( φpf
∨

is finite for all p and Ф, then ),( φpf
∨

 is the two dimensional Radon transform of f(x, y).  

Now suppose a new coordinate system is introduced with axes rotated by an angle Ф, . If the new axes are 
labeled  p and s as in Fig. 3,  x and y can be re presented in terms of  p and s using the shifting of reference 
mathematics as in (3).  

cos sin

sin cos

x p s

y p s

φ φ
φ φ

= −
= +

                                                                                                                                 (3)                                                                                

A somewhat clearer form of Radon transform can now be presented as in (4).   

 ( , ) ( cos sin , sin cos )f p f p s p s dsϕ φ φ ϕ φ
∞∨

−∞

= − +∫  

 ()()w

 

 

 

 

 

 

Fig. 3 The line in Fig. 2 relative to original and rotated coordinates. 

 

Thus using (3) p may written as (5), if ξ is a unit vector in the direction of p. 

φφξ sincos. yxxp +==
 

(5) 

The parallel lines can be visualized as translated version of L using a translated dirac delta function δ (p- 
ξx) along axis p as its multiplication with L. Then the transform may be written as an line integral over R2 
by allowing the dirac delta function to select the line (5) from R2. Thus by modifying the above (4) we 
obtain (6) 

∫ ⋅−=
∨

dxxpxfpf )()(),( ξδξ                                                                                                        (6) 
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Where ξ  defines direction in terms of the angleφ . The (x, y) space for a fixed angle φ  and the variable p 
changes along the direction defined byξ .  

2.1 Fourier slice theorem 

Fourier slice theorem (FST) explains the reconstruction of the object from the projection data.  Fourier slice 
theorem is derived by taking the one dimension Fourier transform of the parallel projections and noting that 
it is equal to the slices of the two dimensions Fourier transform of the object. The projection data should 
estimate the object using two dimensional inverse Fourier transform(Matus 1993, Portilla 2003, Hsung et. 
al 1996). 

The simplest form of the Fourier slice theorem which is independent of the orientation between the object 
and the coordinate system is diagrammatically presented in Fig.4 

 Fig. 4 Fourier Slice Theorem 

In Fig (4) the (x,y) coordinate system is rotated by an angle θ. The FFT of the projection is equal to the 2-D 
FFT of the object slice along a line rotated by θ. Thus the FST states that, the Fourier transform of parallel 
projection of an image f(x, y) taken at an angle θ gives a slice of the 2-D transform, subtending an angle θ 
with the u-axis. In other words one dimensional FT of set of projections gives the value of two dimensional 
FT along lines BB in Fig. 4.  

2.2. Filtered Back Projection 

Filter back projection has two steps; the filtering part, which can be visualized as a simple weighting of 
each projection in the frequency domain, and the back projection part which is equivalent to finding the 
wedge shaped elemental reconstructions as presented by  Hsung et. al (1996). Original image can be 
reconstructed exactly using the projections by applying filter and then taking the back projections (Kak and 
Slaney (2001). The process of filtered back projection can be explained as below 

1) Apply a weighted filter, to the set of projections to obtained filtered projections. 
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2) Take back projections to obtain the exact reconstruction of the original image i.e. inverse radon 
transform algorithm 

In the process of back projection, the filtered projection at a point t makes the same contribution to all 
pixels along the line L in the x-y plane. The resulting projections for different angles θ are added to form 
estimate of f(x, y). To every point(x, y) in the image plane there corresponds a value t (= x cosθ + y sinθ) . 
This is shown from Fig. 5. It is easily seen that for the indicated angle θ, the value of t is the same for all 
(x,y) on the line L. Therefore, the filtered projection, Qθ  , will contribute equally to the reconstruction 
process. Thus each filtered projection Qθ, is smeared back, or backprojected , over the image plane. 

 

Fig.5 Reconstruction using back projection. 

In Fig. 5a filtered projection is shown smeared back over the reconstruction plane along a line of constant t.  

 

3. Quadrature Radon Transform 

In most of the orthogonal image processing algorithms we consider image f(x, y) as a separable function i.e. 
f(x, y) = f(x) * f(y) . Thus we first process the image along rows and then along columns i.e only in x and y 
direction and anticipate that the processing in x and y directions enough to approximate the processing all 
over the image in all possible directions. Obviously processing of a 2D variable will not fetch desired 
results with processing only in one direction. Radon transform of a 2D variable for angles [0,π/2) is 
processing of the variable along line projections only in the first quadrant. Here we propose the Quadrature 
Radon transform, that takes projections on a line at an angle θ and also along a line perpendicular to it i.e. 
at (θ+π/2). Thus  two sets of projections at right angles to each other are obtained. Let the continuous object 
f be approximated digitally within a four quadrant lattice and every quadrant is a digital array of lines, then 
the lines in the first quadrant and the third quadrant are parallel to each other. Similarly the projecton lines 
in the first and the third quadrant are parallel to each other. Obviously two sets of parallel projection lines 
on a discrete space is going to yield the same projection results. Thus two of the four quadrant projection 
sets may be the third and fourth quadrant are redundant and can be eliminated. Thus the projections in the 
first and the second quadrant have been considered for reconstruction using back projection algorithm. Eq. 
(7) and (8) present the sets of projections in the first and the second quadrant.   The pixel array of an input 
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image results in two sets of projections; the first one for the first quadrant [0,π/2) and the second one for the 
second quadrant [π/2,π). Both the sets of projections are of equal size as that of the input pixel array. Thus,  
redundancy of only scale two is introduced as against four in case of Radon transform in four quadrants 
[0,2π). 

[ ) ∫ ⋅−=






 ∈

∨∨
dxxpxfff )()(2/,0: 111 ξδπθ  (7) 

[ ) ∫ ⋅−=






 ∈

∨∨
dxxpxfff )()(,2/: 222 ξδππθ   (8) 

 

In the first approach, the individual set of projections in each quadrant are considered  real and imaginary 
parts of a complex entity. Thus  (9) represents the proposed Complex Radon transform.  

21

∨∨∨
+= fjff    (9) 

If FBP represents filtered back projections of f, (10) and (11) represent the individual reconstructed 
versions of  f using the filtered back projections.  

)( 21

∨
= fFBPf   (10) 

)( 22

∨
= fFBPf   (11) 

Let  f  be the reconstructed signal using projections in  both the quadrants. Using the first approach, it will 
be represented by (12). The reconstruction using the second approach is presented by (13). 

2
1

2
1

2

1
fff +=    (12) 

In the second approach, the individual set of projections is considered independent. The first quadrant set of 
projections is considered in phase and the second quadrant set of projections is considered a quadrature 
component. Thus (7) and (8) jointly represent the proposed quadrature Radon transform.      

While computing the inverse Radon transform, the back projection algorithm is applied on the two 
components resulting from (7) and (8) individually. (10) and (11) represent the sets of back projections i.e. 
the respective  inverse Radon transforms.  
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2
21 ff

f
+=   (13) 

Theoretically, both should result in perfect reconstruction (Chen et. al. 2007) individually. But it is obvious 
that, a single set of projections in only one quadrant preserves the inter pixel relations only in one direction; 
either along rows or columns. Also, it poorly represents the corner pixels(Svalbe and Kingston 2003) . As a 
result the reconstruction using projections only in one quadrant is not accurate and smooth.  The projections 
in more than one quadrant, rather at right angles to the first one will represent and preserve the inter pixel 
relations more accurately. The corner pixels’ representation will also be improved as a result of averaging 
in spatial domain. Thus better tomographic reconstruction of the input image is obtained.    

In the first approach, the resultant back projection is computed as magnitude of the complex number as 
presented in(12). In this approach, a normalization by a factor of (2-1/2) is required to display the 
reconstructed image using 8 bit graphics. In the second approach, the resultant back projection is computed 
as average of the two individual back projections as presented in (13 ). In case of both the  approaches the 
reconstructed images are better than  the reconstruction from single quadrant projections. 

4. Experiments 

Initially, Radon transform of the gray and color test images have been computed using projections in the 
first quadrant i.e. from 0 to 89 degrees.  Further, inverse Radon transform of the projection results has been 
taken using back projection theorem with different filters like ‘bilinear’, ‘bicubic’ etc to reconstruct original 
images. MSE and PSNR of the reconstruction have been computed. The reconstructed images are also 
observed visually. Further, radon transform of the same images were computed in the second quadrant 
using projections from 90 degrees to 179degrees. Original images are reconstructed using the projections in 
the second quadrant using different filtered back projections. MSE and PSNR of the reconstructed images 
using projections in the second quadrant are also computed. Using the first approach, the reconstructed 
image using the first quadrant and the second quadrant projections are then considered real and imaginary 
part of the reconstructed images respectively. The resultant magnitudes of the reconstructed images are 
computed using (12). MSE and PSNR of thus reconstructed images have been computed. In the second 
approach, average of the two reconstructed images using the first and second quadrant projections has been 
taken as final reconstructed image. MSE and PSNR of the reconstructed average image has been computed. 
These experiments have been repeated for several images but a few representative results and images 
reconstructed using the discussed and proposed algorithms have been presented in the next section.  

5. Results  
Results of the proposed forward and inverse Radon transform have been benchmarked with that of the 
Radon transform in the first quadrant i.e. [0, π /2). Table I presents MSE and PSNR of reconstructions with 
single quadrant and both quadrant projections on different color images using various filters before back 
projection. 
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Table 1 : Comparative performance of Single quadrant Radon reconstruction and the proposed Quadrature 
Radon Trans.  

Image Filter 

Single 
Quadrant 

Quadrature 
Radon 

(Complex) 

Quadrature 
Radon  

(Average) 

MSE 
PSNR 
(db) 

MSE 
PSNR 
(db) 

MSE 
PSNR  
(db) 

Peppers 

Nearest 110.95 27.67 24.43 34.25 58.09 30.48 

Linear 110.96 27.67 23.36 34.44 54.19 30.79 

Spline 110.84 27.68 22.06 34.69 52.54 30.92 

Cubic 110.95 27.67 24.43 34.25 58.09 30.48 

Pears 

Nearest 114.75 27.53 38.46 32.28 75.29 29.36 

Linear 114.54 27.54 38.33 32.41 73.84 29.44 

Spline 114.30 27.55 38.68 32.60 71.54 29.58 

Cubic 114.36 27.54 38.40 32.51 72.53 29.52 

Football 

Nearest 112.46 27.62 23.36 34.44 57.13 30.56 

Linear 112.17 27.63 23.90 34.53 54.92 30.73 

Spline 112.04 27.64 23.87 34.73 53.80 30.82 

Cubic 112.09 27.63 23.30 34.64 54.31 30.78 

Winters 

Nearest 92.43 28.47 47.84 31.33 79.33 29.13 

Linear 92.99 28.49 47.24 31.38 77.33 29.24 

Spline 92.15 28.48 46.10 31.49 76.72 29.28 

Cubic 92.01 28.49 47.80 31.42 77.28 29.24 

Baboon 

Nearest 122.81 27.23 64.71 30.02 101.4 28.06 

Linear 122.16 27.26 62.49 30.17 98.02 28.21 

Spline 122.02 27.27 60.57 30.30 96.75 28.27 

Cubic 122.15 27.26 61.72 30.22 97.68 28.23 

It is quiet obvious from Table I, that MSE for reconstruction using single quadrant is highest  and 
accordingly PSNR is lowest as presented in column 3 and 4. In case of reconstructions using projections in 
the two quadrants and considering the individual back projected reconstructions as real and imaginary 
parts, the MSE is quiet low and PSNR is comparatively high as presented in column 5 and 6. Using average 
of the back projections in the two quadrants, the MSE and PSNR are moderate for all the reconstructed 
images. Thus numerically the reconstruction using single quadrant is poorest while using the first approach 
is the best. 
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Fig, 6 Comparative Performance as in Table I, of the discussed techniques in bar chart form 

 

                         

 

 

             

 

 

 

 

 

 

 

 

Fig.7. (a) Peppers (b) Reconstructed using single Quadrant Radon projections (c) Reconstructed using 

Radon Complex number magnitude (d) Reconstructed using average of Quadrature Radon back projections  

  

Fig.7.(a)  Fig.7.(b)   

Fig.7.(c)  Fig.7.(d ) 
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 Fig.8. (a) Football (b) Reconstructed using single Quadrant Radon projections (c) Reconstructed using 

Radon Complex number magnitude (d) Reconstructed using average of Quadrature Radon back projections 

  

Fig.8.(a) Fig.8.(b)  

Fig.8.(c)  Fig.8.(d)  
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Fig.9.(a)Baboon (b)Reconstructed using single Quadrant Radon projections (c) Reconstructed using 

Radon-Complex magnitude (d) Reconstructed using average of Quadrature Radon  back projections   

  

Fig.9.c Fig.9.d 

Fig.9.a Fig.9.b 
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Fig.6. (a) Peppers (b) Reconstructed using single Quadrant  Radon projecttions (c) Reconstructed using 

Radon Complex number magnitude (d) Reconstructed using average of  Quadrature Radon back 

projections    

Fig. 6 presents the comparison of performance of the different techniques presented in Table 1 in the form 
of a bar chart. Fig. 7(a), Fig. 8(a), Fig. 9(a) and Fig 10.(a) present original color images Peppers, Football, 
Baboon and Winters. The images were transformed using single quadrant Radon projections and 
reconstructed using the same filtered back projections. Fig. 7(b), 8(b), 9(b) and 10 (b) present the results of 
reconstruction using the single quadrant projections. It is obvious that all these images are quiet distorted 
and hence unacceptable. Further projections were computed for the second quadrant. Reconstruction was 
done using (12) after taking back projections. The presented visual results in fig 7(c), 8(c), 9(c) and 10(c) 
indicate that the reconstructions using this approach are also unacceptable though numerically the MSE and 
PSNR are the best as presented in table 1. In the second approach, average of the two back projections was 
computed as in (13). It is observed that, though the MSE and PSNR are moderate, these results presented in 
Fig. 7(d), 8(d), 9(d) and 10(d) are the best visually. 

6. Conclusion 

Thus reconstruction using single quadrant Radon projections [0,π/2) are not enough for accurate 
reconstruction. Both the proposed approaches yield numerically and visually better results compared to 

Fig.10.(a)  Fig.10.(b)  

Fig.10.(c)  Fig.10. (d)  
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reconstruction from only the projections in the first quadrant. The first approach of taking the magnitude of 
the two individual back projections considering them real and imaginary part of a complex number yields 
numerically better but visually poor results. However the second approach of taking average of the two 
individual back projections yields numerically moderate but  visually the best results.  
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