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Abstract 

In the current study, I will be presenting a literature review regarding the importance of students building a 

problem’s representation and the role modeling a real-world problem plays in students’ progressive 

mathematization. I shall introduce five types of geometrical problems applying the meaning of Linking Visual 

Active Representations (LVARs). Concrete examples will be presented in the next sections (i.e., Euclid’s proof 

of the Pythagorean Theorem, Vecten’s theorem, Gamow’s problem). I shall also introduce the meanings of 

hybrid object and diagram, as well as the meaning of dynamic section in a dynamic geometry environment, 

through examples. To summarize, I created an empirical classification model of sequential instructional 

problems in geometry. Its contribution to our knowledge in the area of the didactics of mathematics lies in the 

fact that this sequence of problems is regarded as a process whereby students develop a sequentially deeper 

understanding and increasingly more coherent reasoning that raises their van Hiele level.  
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1. Introduction: Defining problem and problem solving in mathematics education 

The word “problem” is derived from the Greek word “provlema” with etymology from the verb “provalein”, 

whose meaning covers “projecting, showing, revealing, displaying, presenting”: i.e. ‘provalein’ refers to a goal 

presented in a question. (See also, https://etymonline.com).  

The word “problem” is defined as:  

• “[…] An inquiry starting from given conditions to investigate or demonstrate a fact, result, or law”. 

(https://en.oxforddictionaries.com)  

• “[…] Something that causes difficulty […and especially a mathematics problem] is a question to be 

answered or solved by reasoning or calculations”. (https:// dictionary. cambridge.org).  

• “[…] A question raised for inquiry, consideration or solution”. (https://www.merriam-webster.com). 

Charles & Lester (1982) define a problem as a task for which “the person confronting it wants or needs to 

find a solution, has no readily available procedure for finding the solution and must make an attempt to find a 

solution.” (Charles & Lester, 1982, p. 5, in Nunokawa & Fukuzawa, 2002). The definition of the word problem 

especially in mathematics or physics has to do with a proposition or an inquiry stating something to be proved. 

In order to answer this inquiry we must combine data and information, and then we can derive a solution 

following logical inferences and deductive reasoning. In my opinion, mathematical problem solving is a process 

with the following prerequisites: (a) ‘input’ in the form of the verbal description of a mathematical problem 

which includes general information, (b) ‘input’ in the form of mathematical statements that constitute the 

problems’ hypotheses, (c) ‘a goal’ expressed in a statement (d) concrete preexisting knowledge (i.e. axioms, 

theorems, proofs, concepts, definitions, formulas and methods) and appropriate heuristic skills (e) appropriate 

logical inferences and reasoning (e.g., deductive, inductive, abductive, transformational). According to Mayer 

(1983) a problem consists of givens, goals and obstacles, as described in the following figure 1. The problem 

solving process derives abstractions and infers consequences and other findings from input data and information 

to produce a solution that addresses the task and leads to a sumperasma (another Greek word whose meaning 

encompasses both “a logical conclusion” and “a summary in a few words”).  
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Fig. 1. Defining problem (Mayer, 1983, p.4 in Stoyanova, 1997, p.2): an adaptation for the current study 

Aamodt (1991) also states that “A mathematical problem may be structured [or divided] in sub-problems, in 

which case the problem solving process may be correspondingly split into sub-processes” (Aamodt, 1991, p.31). 

As a teacher of mathematics, I have often asked myself the following questions:  

• Are students able to build a reasonable and meaningful representation of a problem by means of a 

conscious and intentional process? 

• Do students connect the process of representing the problem with preexisting knowledge that can be 

brought to bear on the problem? 

• During the problem-solving process, do students demonstrate significant, meaningful and appropriately 

organized connections between pieces of information in their statement of the problem? 

• Do students construct a logical correspondence between the structure of the verbal expression of the 

problem and the structure of its solution? 

• Can we identify different levels of investigation in problem-solving in order to enhance the abstract 

thinking of our students?  

• What conceptual considerations need to be taken into account when designing problems in a dynamic 

geometry environment? How do these conceptual considerations impact on our students’ learning and 

understanding of mathematics? 

In the sections that follow, I will be presenting a literature review regarding the importance of students 

building a problem’s representation, the role modeling a real-world problem plays in students’ gradual 

investigation of a problem, and the classification of sequential instructional problems. Concretely:  

• Building on earlier works (e.g., Patsiomitou, 2008a, b) I shall review the building of sequential dynamic 

diagrams of the problem in “The Geometer’s Sketchpad” (henceforth Sketchpad) (Jackiw, 1988) 

dynamic geometry software, applying the meaning of Linking Visual Active Representations (LVARs) 

(e.g., Patsiomitou, 2008 a, b, c, d, 2009 a, b, 2010, 2011, 2012a, b, 2013, 2014, 2018a, b), to 

‘dynamically’ scaffold students thinking. I shall present two examples: (a) Euclid’s proof of the 

Pythagorean Theorem, known as Proposition 47, in Euclid “Elements”, Book I (i.e., Euclid's proof of 

I.47) using LVARs, mode 3; Proposition 4 in Book I of Euclid “Elements” regarding the congruence of 

triangles will also be instrumentally decoded in Sketchpad, as it is a valuable element in the proving 

process for many problems. (b) a few sub-problems of ‘The Vecten’s theorem’ (reported in “Jesuit 

Geometry”, a translation in Greek, p.774, published in Annales De Gergonne, 1816, vol.VII, p.322).  

• I shall explain what I mean by the phrase “a hybrid-parametrical version” of Vecten’s theorem and how 

I created this parametrical version (Patsiomitou, 2006, p.1270-1273, in Greek) using algebraic 

parameters for geometry in Sketchpad.  

• I shall investigate the importance of the modeling process for students’ understanding and for the 

development of their progressive mathematization abilities; modeling is especially important for 

students who struggle with real-world geometric problem. I will be focusing on a non-routine real–

world open problem [Gamow’s problem (1948/1988)] which combines investigation, discovery, 

knowledge and deductive argumentation. The problem will be addressed in Sketchpad environment. 

Moreover, I shall explain how a problem can be made more interesting by including a visual 

demonstration with LVARs and the importance of LVARs, as scaffolding for the students as they 

develop their proving abilities. For this, I shall illustrate how I designed LVAR modes, (e.g., 

Patsiomitou, 2008a, b), creating a bridge between a formal theorem and an open problem and thus 

transforming a formal theorem into a DGS ‘game’ with a view to reducing the complexity of the 

problem and increasing the students ability to formulate deductive argumentation.  
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My work with students at the secondary and tertiary levels leads me to identify five types of geometrical 

problems:  

• Dynamic geometrical problems with non-given answers (abbreviated as DGNA) which the students 

investigate in a DGS environment using linking visual active representations (LVARs) (e.g., 

Patsiomitou, 2008a, b, 2012a, b). Such problems improve motivation and creativity through the use of 

“why” challenges and “what if” strategies; provoke students’ reflecting visual reaction (RVR) (e.g., 

Patsiomitou, 2008a, b, 2012a, b), by requiring them to employ preexisting theoretical knowledge, 

perceptual skills, and deductive argumentation.  

• Dynamic geometrical problems with given answers (abbreviated as DGGA) which the students 

investigate and prove in a DGS environment. Such problems motivate students to create theoretical 

relationship between information and data which is explicitly provided; to translate this information and 

data from one form of representation to another and to employ their preexisting theoretical knowledge 

and deductive reasoning skills.  

• Dynamic geometrical problems modeled in a DGS with hybrid–dynamic geometrical representations 

(Patsiomitou, 2018b, p.42) with non-given answers (abbreviated as HGNA) which the students 

investigate in a DGS environment. Such problems require the students to interact with a sophisticated 

level of information and data which is explicitly provided in the DGS environment and to employ 

advanced theoretical knowledge and abstract thinking.  

• Real world geometrical problems with non-given answers (abbreviated as RGNA) which students 

investigate in a dynamic or static environment. Such problems relate to ‘dynamic’ methods in geometry 

and require students to ‘think in motion’ in the environment, employing higher order thinking and 

organizing phenomena by means of progressive mathematization. The benefit of working with real 

problems in a DGS incorporates the combination of transformations using LVARs.  

• Static geometrical problems with given answers (abbreviated as SGGA) which students solve in a 

paper-pencil environment. Such problems contain certain information and questions which require 

students to apply their theoretical knowledge and perceive the structure of the problem and the 

principles and concepts that could be used to solve it. 

Summarizing, I would like to present five investigational levels of a problem solving process, synthesizing, 

elaborating on and addressing conceptual and procedural understanding through feedback provided at every 

intermediate step in the problem’s solution which is designed in the light of the cognitive processes elicited at 

each level. My aim is to construct a didactic sequence in which the next problem will become the next level in 

the development of the students’ reasoning. The emerging theoretical construct provides both a methodology for 

building up the problem-solving process and an approach to addressing difficulties students face in learning 

geometrical concepts, which uses anticipatory thought experiments in which we envision how we can construct 

an organizational structure and a learning trajectory through problem solving as the students engage with the 

process. 

 

2. Geometry between the abstract and the visual   

Freudenthal (1971) in his article “Geometry between the devil and the deep sea” responding to his own questions, 

writes: 

“[…] the first piece of education in history we know about, is a lesson of geometry, the Socratic lesson 

Menon's slave was taught on doubling the square. Socrates taught the slave not the solution of the 

problem nor solving the problem, but finding the solution by trial and error. He did not teach a readymade 

solution but the way of reinventing the solution. Two millenia later Comenius said: ‘The best way to 

teach an activity is to show it.’[…]”(p. 414). 

This piece of knowledge made me consider a mixed method which my students could use to solve a 

problem; such a method would require me to design a way for the students to reinvent the solution or discover it 

using a trial and error method. From a lack of competence my students (13-14 years-old) to composing 

geometric shapes the “guided” reinvention of doubling the square mentioned in the Socratic lesson, stimulated 

the use of materials -digital or not- in my class, with which my students could support their reasoning by 

transforming the shapes, using a trial and error method. The following discussion is one I have with my high 

school students almost every year in class (Fig.2): 

Researcher: How can you double the area of the square? 

Students: We can double the sides of the square! 

Researcher: Use this dot paper and construct the new square. 

Students: Oh! It is not correct! The square is quadrupled. We have constructed 4 equal squares with the 

small square. 

Researcher: Now, can you find a solution to the problem? 

……………………………… 
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Students: If we construct the diagonals of the quadrupled square, the new figure inside is also a 

square …..and it is the double square of the initial square. 

Researcher: Can you answer why that happens? 

Students: Its sides are congruent and perpendicular to each other. 

Researcher: Can you prove that the new square has double area of the initial square? 

Only a few students had the competence to answer the last question. This was difficult for them, as they did 

not have the competence to transform the right and isosceles triangle in their mind; in other words, they could 

not generate mental transformations. Many students do not have the ability to dynamically visualize and 

mentally manipulate geometric objects, which is an important skill for solving problems in geometry. Without it, 

they cannot reflect on or anticipate a possible solution to the problem. Moreover, according to the van Hiele 

theory (Fuys et al., 1984) students are not able to formulate deductive argumentations as this kind of 

argumentation occurs when the students have developed their thinking. Freudenthal (1971) supports that  

“In which order, if not in a deductive one, should mathematics be taught? The answer is simple: in that 

one in which it can be learned, which means, the order in which it could be invented by the student. This 

is not at all a revolutionary idea. It is the Socratic lesson. In a thought experiment the teacher has been 

reinventing the subject matter as though he himself was the student, and this is what he teaches. […] This 

is a modern reinforcement of the socratic idea” (p.416). 

 
Fig. 2. Transforming the shapes using a mixed ‘trial and error’ and ‘guided reinvention” method in my class. 

The teachers’ task is to design a course “of action that fits anticipated student reactions. More precisely, the 

idea is that teaching matter is re-invented by students in such interaction” (Gravemeijer & Terwel, 2000, p.786). 

Dina van Hiele’s (Fuys et al, 1984, p. 207) thesis was an “inquiry into the didactic possibilities of geometrical 

instruction in a class where the child is given concrete material in a systematic way so as to unfold visual 

thinking and to transform it in the abstract way of thought which the logical system of geometry demands”. Dina 

van Hiele argues that “the teacher of mathematics should help his/her pupils to transform the structures, 

produced in their visual field of observation, into geometrical structure” (p. 245). With regard to the problem 

mentioned above, firstly, I usually ask my students to experiment using transformations (e,g,. a dot.gsp file or a 

squared paper) this will help them understand that if they double the side of the square, the area of the square this 

creates is quadrupled. (Fig. 2). Freudenthal (1971) supports that  

 “[…] transformations in geometry were long ago advocated by F. Klein as a consequence of his so-called 

Erlanger Programm. The breakthrough of transformations in geometry is of a rather recent date. How to 

explain this delay, […], where Klein had been the venerated master of a generation of teachers ?”. 

[Moreover], “there is not any textbook based on the transformation idea” (p. 433).  

Generally speaking, geometric figures or diagrams constitute a unique framework for communicating 

mathematical ideas, very important for students’ development of thinking, especially when technology is 

incorporated to their construction. The use of material figures helped my students gain competence in composing 

geometric shapes, initially through trial and error and then purposefully find that four congruent isosceles and 

right triangles can be composed into a square and, ultimately, to intentionally synthesize combinations of shapes 

into new shapes with a view to reinventing a rule or a theorem. This concrete experimentation on the part of my 

students is also an excellent mean of incorporating worthwhile ideas and introducing theorems and definitions 

into my lessons (for example, the Pythagorean Theorem and irrational numbers).  

“Pythagoras noticed that, if a = 1 and b = 1, then c2 = 2. He wondered whether there was a rational 

number c that satisfied this last identity. His stunning conclusion was this theorem: There is no rational 

number c such that c2 =2” (Krantz, 2007, p.11) 

Learning through problem solving can be addressed by both open-ended complex geometric problems and 

non-open strict geometric problems.  In order to distinguish open from non-open problems, I will quote the 

following example from my introduction to the Pythagorean Theorem: 
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Non-open problem  Open problem  

Given a right triangle 

prove that (a) a2=b2+c2 

(a is the hypotenuse of the 

right triangle) and (b) the 

concrete relation 

(Pythagorean theorem) 

characterizes only right-

angled triangles.  

a) If the area of the square TBAB is equal to 1cm2, can you calculate the 

areas of the squares constructed outside the triangle ABC (Fig. 2). What do you 

observe? Repeat your experiments doubling the side of the square TBAB in your 

dot paper and write down the new results. Continue and formulate a rule for this 

situation.  

b) Consider the squares constructed externally on the sides a, b, c of a right 

triangle. If a=5cm, b=3cm, c=4cm can you calculate the areas of the squares? 

Calculate a2, then b2+c2. What do you observe? Does this occur to every right 

triangle? Can you formulate a rule for this phenomenon? Does this rule holds true 

for all right triangle regardless of the lengths of their sides? Does this Pythagorean 

relation characterize only right-angled triangles? 

Students must be encouraged to solve their own problems that mirror real life situations. The open problem 

can be solved using different approaches and in multiple ways, encourages and stimulates discovery, prompts 

students to generate conjunctures and most students can get involved as Arsac et al. (1988) mention: “The 

statement of the problem […] fosters discovery […]. creates a situation stimulating the production of 

conjectures.[…]” (Arsac, Germain & Mante, 1988 in Furinghetti & Paola, 2003, p.398).  

 
Fig. 3. The four problem-solving phases (Polya, 1957): an excerpt from the manuscript (see website [1]) 

The solution to an open problem cannot be reduced to a routine problem that requires a technique the 

student has probably memorized; instead it provides the student with the freedom to generate conjectures. 

Conjectures are the first step for the students to formulate logical inferences and then deductive argumentation, 

depended on their level of understanding. In his book “How to Solve It”, Polya (1957/1966) based on his 

experience as a teacher of mathematics suggested four problem-solving phases, pointing out the cognitive 

actions linked to the process of problem-solving (Fig. 3). George Pólya’s (1966) addressed also the difference 

between “tasks” and “mathematical problems”. He also distinguished routine from non-routine problems, from a 

teacher’s point of view. As he supports:   

“[…] The nonroutine problem demands some degree of creativity and originality from the student, the 

routine problem does not. […] I shall not explain what is a nonroutine mathematical problem: If you have 

never solved one, if you have never experienced the tension and triumph of discovery, and if, after some 

years of teaching, you have not yet observed such tension and triumph in one of your students, look for 

another job and stop teaching mathematics”. (Pólya, 1966, pp. 126–127, reported in Szabo, 2017, p.40) 

 

3. Building a representation during problem solving process  

A word-problem (or an oral mathematical problem) can be illustrated in various types as an image in textbooks 

or on the board in class (e.g., a picture, a diagram, a table, etc). In this way, a teacher, educator or student can 

translate a problem’s verbal representation into a visual mathematical representation in an effort to convey 

information and translate from one form of representation to another. In this way, a bridge can be created 

between the real world environment, the symbolic representations and the abstract world of a student’s thinking, 

just as Goldin & Janvier (1998) describe/interpret or define the term “representation” and “system of 

representation”, in connection with mathematics teaching and learning (Goldin & Janvier, 1998, p.1):  

• “An external, structured physical situation, or structured set of situations in the physical environment, 

that can be described mathematically or seen as embodying mathematical ideas;  

• A linguistic embodiment, or a system of language, where a problem is posed or mathematics is 
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discussed, with emphasis on syntactic and semantic structural characteristics; 

• A formal mathematical construct, or a system of constructs, that can represent situations through 

symbols or through a system of symbols, usually obeying certain axioms or conforming to precise 

definitions--including mathematical constructs that may represent aspects of other mathematical 

constructs; 

• An internal, individual cognitive configuration, or a complex system of such configurations, inferred 

from behavior or introspection, describing some aspects of the processes of mathematical thinking and 

problem solving”. 

When a student understands the problem s/he can creates meaningful representations. Children have 

difficulty to perceive the signs of the meanings in the images of the real world. They perceive them as a whole 

image especially at the lower van Hiele levels. For most researchers, representations can help students to 

reorganize and translate their ideas using symbols. They are also useful as communication tools (Kaput, 1991) 

and can function as tools for understanding of concepts, since they help with the communication of ideas and 

provide a social environment for the development of mathematical discussion. The knowledge of supporting 

instruments, which are external representational systems for planning activities, allows us to choose between 

technological tools. The [external] representations facilitate the provision of information about the problem, 

capture the structure of the problem, and support visual reasoning. On the other hand, the external 

representations (e.g., formulations or figures) that students construct serve as an indicator of their internal 

representations, constituting their level of understanding and the developmental level of their geometric thinking. 

Chinnappan (2006) describes the process of the construction of a representation as a cyclic event:  

• “The construction of representations is a cyclic event where students continue to refine one 

representation or change to a different one until the correct match is found between schemas that have 

been accessed and the goal. The goal could be unknown value that has to be determined or a 

mathematical result that has to be proved via a chain of reasoning. The above model suggests that 

instructional methods that would help students decompose problems into sub-problems would benefit 

them in three ways. Firstly, students might be expected to access previously acquired schemas from their 

memory by examining what is given in the problem. Secondly, the accessed schemas could be deployed 

in solution of sub-problems. Thirdly, students could relate the subproblems in ways that would help them 

reach the problem goal. (p.100) 

How does it occur? Information-processing models have been developed to explain inter alia the problem-

solving process (e.g., Newell and Simon, 1972; Bower, 1975):“[…] since external stimuli cannot get inside an 

organism, the representation of them […] and their interaction is what we call “information” […].’ (Bower, 1975, 

p.33). Massaro & Cowan (1993) report that “information refers to representations derived by a person from 

environmental stimulation […]” (p. 384). Wertheimer (1985) also supports that “a students’ representation is 

appropriate and satisfactory when  

• the representation corresponds to the actual structure of the problem […];  

• the representation is well-integrated in the sense that all of its components are appropriately 

interconnected […];  

• the representation is well integrated with the problem solver's other knowledge […]” (p. 22, cited in 

Simon, 1986, p.249).  

Moreover, cognitive researchers are investigating how these activities are processed from a psychological 

point of view and concretely in terms of how the students perceive the information on the computer screen, what 

parts of their brain are stimulated as they explore using different interaction techniques, and how they integrate 

and embody this information to their pre-existing knowledge. The questions posed here relate to the external 

stimulation delivered by new representational infrastructures. When a student reads a mathematical problem, 

information relating to the problem transits through the sensory register into their working memory. Sensory 

register is the unit where a stimulus is registered (Atkinson & Shiffrin, 1968). Working memory is the unit of the 

brain-memory “where the information is temporarily stored and processed” (Karadag, 2009, p.31). The use of a 

computing environment as dynamic geometry (DGS) facilitates the teaching and learning of Euclidean geometry 

and helps students overcome the difficulties in translation between representations through automatic translation 

or "dyna-linking"(Ainsworth, 1999, p. 133). Moreover, mental representations are stimulated in response to the 

problem and retrieved from their long-term memory, along with components of interrelated information from 

student’s pre-existing knowledge. The next step is the incorporation of new information into the pre-existing 

structural units in the student’s mind. In the words of Lester & Kehle (2003):  

“Successful problem solving in mathematics involves coordinating previous experiences, knowledge, 

familiar representations and patterns of inference, and intuition in an effort to generate new 

representations and related patterns of inference that resolve the tension or ambiguity (i.e. lack of 

meaningful representations and supporting inferential moves) that prompted the original problem-solving 

activity. (p. 510) 
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The problem-solving process, including diagram construction, can be experienced using a “brainstorming 

technique” session, which is regarded as the most effective tools we know about creative problem-solving (e.g., 

Osborn, 1953). In a “brainstorming technique” session, students express/formulate what they know with the 

teacher helping them by introducing the concepts through essential questions, writing their ideas on the board 

and organizing them into a “concept map” (e.g., Novak, 1990), using also an approach inspired by history or a 

historical contextualization of the meanings included in the problem. Brainstorming technique depends on the 

students’ thinking to create connections among meanings (e.g. when a student hears the meaning of the 

Pythagorean theorem, his/her brain automatically associates it with the meaning of square as well as with a 

formula connecting the sides of the right triangle). Researchers (e.g., Iraksen, 1998) have found that 

brainstorming is an effective technique for students to develop their cognitive skills by generating and organizing 

their ideas. The whole process can enhance cooperative learning as well as encourage student engagement in the 

learning process by dealing effectively with students’ cognitive conflicts and improving their critical thinking 

skills. Many students are not able to translate the verbal representation of a geometrical problem into an iconic 

representation during the problem-solving process. And even if the students overcome this obstacle with the help 

of the teacher, many do not know how to continue the process, especially in the case of geometrical problems.  

Cognitive conflicts and cognitive obstacles, “aha” phenomena and enthusiasm occur many times over 

during the problem-solving process as a student works individually or in cooperation/interaction with other 

students and the teacher. In other words, the problem-solving process combines characteristics from the 

theoretical background of constructivist learning, of discovery learning, and of learning through social 

interaction. Mathematical problem solving process concepts can also be introduced informally and subsequently 

connected formally to the theory.  

 

4. Modeling a real-world problem in a DGS environment  

If the students are engaged in solving a real world problem this process is underlied by the characteristics of the 

philosophy of Realistic Mathematics Education (abbreviated as RME), developed at the Freudenthal Institute 

and restricted here to the aspect that mathematics should be learned as an activity of progressive 

mathematization, distinguished to horizontal mathematization and vertical mathematization (e.g., Treffers,1987; 

Gravemeijer, 1994; Van den Heuvel-Panhuizen, 1996; Drijvers, 1999).  

Horizontal mathematization in real world situations refers to the process of modeling from the real world to 

the model world using mathematical representations. In other words, horizontal mathematization is a process 

through which a real problem is transformed to a model. Vertical mathematization concerns the mathematical 

abstract process in a higher level of abstraction, connecting concepts and strategies.  

   
Fig. 4. Modeling as a cyclic process (Doerr & Pratt , 2008, p. 262): an adaptation for the current study 

Doerr & Pratt (2008) in their article “The Learning of Mathematics and Mathematical Modeling” state that:  

 “A model is a system of objects, relationships, and rules whose behavior resembles that of some other 

system. Modeling is the activity of mapping from one system to another. This activity is driven by the 

need to describe, predict, or explain some particular phenomena of interest to the modeler. Elements from 

the real world of the experienced phenomena are selected, organized, and structured in such a way that 

they can be mapped onto a model world. This model world necessarily simplifies and distorts some 

aspects of the real world while maintaining other features and allowing for manipulations of these 

features (or objects) in accordance with the rules of the model world”. (p.261)  

Corte, Verschaffel & Greer (2000) support also that “the […]process of modeling constitutes the bridge 

between mathematics as a set of tools for describing aspects of the real world, on the one hand, and mathematics 

as the analysis of abstract structures, on the other” (p.71). If the teaching and learning is based on real –world 

problem solving modeled in a DGS environment the teacher  

“[…]apart from the aspect of anticipating the mental activities of the students, [...] has to investigate 

whether the thinking of the students actually evolves as conjectured, and he or she has to revise or adjust 

the learning trajectory on the basis of his or her findings. In relation to this, Simon (1995) speaks of a 
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mathematical teaching cycle. In a similar manner, Freudenthal (1973) speaks of thought experiments that 

are followed by instructional experiments in a cyclic process of trial and adjustment.” (Gravemejer, 2004, 

p.9). 

In previous studies I have supported the effect that the Linking Visual Active Representation modes 

(Patsiomitou, 2008 a, b, 2010, 2012 a, b) have on the student’s gradual competence towards rigorous proof 

construction, during a problem solving process. “Linking Visual Active Representations” (LVARs) during a 

dynamic geometry problem solving session are defined as follows (e.g, Patsiomitou, 2008a, b, 2010, 2012a, b), 

incorporating the meaning of instrumental decoding (Patsiomitou, 2011, 12 a, b):  

Linking Visual Active Representations are the successive/consequential building steps in the dynamic 

representation of a problem or between problems, which repeat the same procedural steps or steps 

reversing a procedure in the same phase or between different phases of a hypothetical learning trajectory. 

LVARs reveal an increasing structural complexity by conceptually and structurally linking the 

transformational steps taken by the user (conducting anticipatory thought experiments) through the 

interaction techniques provided by the software as a result of his/her development of thinking and 

understanding of geometrical concepts, which are instrumentally decoded by the way s/he has visualized 

mentally what exist in his/her mind or a revision of it.  

Reflective Visual Reaction is the reaction based on a reflective mode of thought, derived from 

interaction with LVARs in the software.  

A DGS environment like Sketchpad or Web Sketchpad is a perfect means to support the LVAR process. I 

very often try to make a mental shift from an observer’s point of view to an actor’s point of view (Cobb, Yackel 

& Wood, 1992 in Gravemeijer, 2004) when designing activities, interchanging the predetermined student and 

teacher roles in my mind. By this, I mean that I place myself (as an observer) in the position of my students (as 

actors), trying to think as a student and responding to my own questions: How can a student perceive a 

mathematical meaning through a concrete learning path? Are the procedures sequential and the diagrams 

complementary? Do the activities help my students to recall preexisting structures? Clements & Sarama (2014) 

point out:  

“[…] When [the teachers] interact with the student, teachers also consider their own actions from the 

student's point of view. […]. Thus, the benefit for the teacher is to have a well-formed and specific set of 

expectations about students' ways of learning-a likely path that incorporates the big, worthwhile ideas” (p. 

23).  

To produce a mathematical model from a word problem in Sketchpad, you can combine a picture of reality 

with a diagram with concrete conceptual properties, to drawing the students’ attention through interaction 

techniques to important properties which are essential for an investigation of the problem. This serves to reveal 

the theoretical object. Burger & Shaughnessy (1986) support that instruction in a successive sequence of 

increasing complexity has positive effects on students’ development of thinking. The different LVAR modes can 

be built using a combination of different transformational processes and interaction techniques supported by the 

Sketchpad environment. The LVAR modes are described as follows (e.g., Patsiomitou, 2008b, pp. 169-174):  

Mode A-the inquiry/information mode: In this phase of the problem, the students familiarize 

themselves with the field under investigation using the instantiated parts of the diagrams which lead them 

to discover a certain structure.  

Mode B-the directed orientation mode: In concrete terms, the sequential linked constructional steps of 

the solution to the problem emerge step-by-step.  

Mode C–the explicitation mode: Transformations in increasingly complex linked dynamic 

representations of the same phase of the problem modify the on-screen configurations simultaneously.  

Mode D–the free orientation mode: Every phase in the solution can be displayed side by side on the 

same page of the software in an overview.  

Mode E–the integration mode: Successive configurations on different pages that are linked cognitively 

and not necessarily constructionally, compose the solution to the problem in global terms as a series of 

steps.  

To create a dynamic diagram during the Linking Visual Active Representations (LVARs) design process in 

the Geometer’s Sketchpad environment, I used a diverse set of interaction techniques including “animating” a 

point on its path, ‘tracing” a segment, “hiding and showing” action buttons, and “linking” or “presenting” action 

buttons, or a combination of interaction techniques (Patsiomitou, 2008a, b; 2010; 2012a, b), to achieve students’ 

interaction. I linked sequential actions over multiple pages of the software or linked the steps in the 

representation of the problem in order to lead students to a cognitive linking of the used representations, based 

on the work of Kaput which supports that linking representations “creates a whole that is more than the sum of 

its parts […] (Kaput, 1989) and creates a “temporal sequence of the constructions’ steps representing the 

counterpart of the logic hierarchy between the geometric properties of a figure” (Mariotti, 2002, p. 686). The 

design and redesign of activities for the teaching and learning processes, with real problems through LVAR in 
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the dynamic geometry software, and the results obtained from the research data (e.g., Patsiomitou, 2012 a, b), 

suggest that a student develops his/her abstract thinking when his/her cognitive structures are linked through 

conceptual representations that the student develops during the learning process.  

 

5. Triangles’ congruence in Euclid “Elements”: the visual impact in a DGS 

Many researchers, mathematicians and mathematics educators (e.g., Bell, 1976; Hanna, 1983; de Villiers, 1990, 

1999; Hanna & Jahnke, 1996; Marrades & Gutierrez, 2000; Varghese, 2017) have recognized different functions 

of proof and proving as: verification, justification, explanation, discovery, systemization etc. because the proving 

process can provide insight and discovery, justify or verify why a statement is true. Complementary to this, a 

deductive system of axioms, theorems and propositions as well as concepts and definitions can help the student 

to organize the proving process.  

“There is no other scientific or analytical discipline that uses proof as readily and routinely as does 

mathematics. This is the device that makes theoretical mathematics special: the tightly knit chain of 

reasoning, following strict logical rules, that leads inexorably to a particular conclusion. It is proof that is 

our device for establishing the absolute and irrevocable truth of statements in our subject. This is the 

reason that we can depend on mathematics that was done by Euclid 2300 years ago as readily as we 

believe in the mathematics that is done today. No other discipline can make such an assertion” (Krantz, 

2007, p.1) 

The postulates determined by Euclid in his “Elements” regulate geometrical deductive reasoning, 

formulating the "rules” by which a person can synthesize a proposition in a meaningful and logical manner. 

According to historians and scholars Euclid’s “Elements”, was considered to be the most influential textbook. It 

has been posited that the “Elements” is the second most printed book after the Bible. In the words of Dionysius 

Lardner (1855) in the preface of his book “The first six books of the Elements of Euclid”: 

“Two thousand years have now rolled away since Euclid's Elements were first used in the school of 

Alexandria, and to this day they continue to be esteemed the best introduction to mathematical science. 

They have been adopted as the basis of geometrical instruction […and] has been adopted as a universal 

standard”.  

Evaggelos Stamatis (1957) concretely reports:  

“The first Book of “Elements” includes 23 definitions, 5 postulates, 9 Common Notions and 48 

Propositions and problems […]. The first 26 Propositions concern triangles in general […]. The proving 

methods in “Elements” are four: synthetic, analytic, proof by contradiction, and proof by induction […]. 

Using the synthesis method, when we try to prove a geometric proposition, we proceed from well-known 

proposals based on definitions and axioms and arrive at the truth of the proposed proposal through a 

series of appropriate reasoning.” (p.17) (my translation of Evaggelos Stamatis’ Greek-language 

manuscript). 

The synthetic method synthesizes basic objects of Euclidean Geometry (e.g. points, lines) in a formal way 

using definitions, axioms and propositions. Speaking of logical inferences and deductive argumentation, for me 

the propositions regarding triangle congruence in Euclid “Elements” are crucial for students to understand and 

implement in the problem-solving process. Can these fundamental propositions of plane geometry in which 

triangles are congruent, (included in Book 1 of Euclid’s Elements) be transformed in a DGS software? I shall 

explain their instrumental decoding in Sketchpad in the light of having in mind the following excerpt written by 

Dina van Hiele (Fuys et al, 1984) 

“[…] the deductive system of Euclid from which a few things have been omitted cannot produce an 

elementary geometry. In order to be elementary, one will have to start from the world as perceived and as 

already partially globally known by the children. The objective should be to analyze these phenomena 

and to establish a logical relationship. Only through an approach modified in that way can geometry 

evolve that may be called elementary according to psychological principles” (p.24) 

This is in accordance with what Furinghetti & Paola (2003) support:  

[…] When [Greek geometers] made proofs they were not inside a theory in which axioms were explicitly 

declared. Initially antique geometry developed in an empirical way, through a naïve phase of trials and 

errors: it started from a body of conjectures, after there were mental experiments of control and proving 

experiments (mainly analysis) without any sure axiomatic system. According to Szabo, this is the original 

concept of proof held by Greeks, called deiknimi. The deiknimi may be developed in two ways, which 

correspond to analysis and synthesis” (p.398) 

“Deiknymi” or “apodeiknio” in Greek (translated as “proving” in English) can be represented visually in a 

dynamic geometry system (DGS) using LVARs (e.g., Patsiomitou, 2008c, 2009). In other words, “deiknimi” can 

be visualized using Sketchpad’ interaction techniques (for example, custom tools, “animating” tools, ‘tracing” 

tools, “hiding and showing” action buttons, and “linking” or “presenting” action buttons, or a combination of 

interaction techniques in Sketchpad) (e.g., Patsiomitou, 2008a, b; 2010; 2012a, b). The interaction with LVARs 
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has two aspects similar to what Sedig, Rowhani, & Liang (2005, p.422) support regarding VMRs: “the action 

upon a representation by the user through the intermediary of a human-computer interface, and the 

representation communicating back through some form of reaction or response.” Lopez-Real and Leung (2006) 

state that DGS including dragging “[…] as a fundamental geometrical object (like that of point, circle),” 

determines “new ‘rules of the game,’ or even a new game for geometry’’ (p. 676).  

The three cases in which triangles are congruent are illustrated in the figures 5, 6 and 7.  

 
 

 
Fig. 5. A diagram for Euclid’s 

Proposition I.4 in Sketchpad. 

Fig. 6. A diagram for Euclid’s 

Proposition I.8 in Sketchpad. 

Fig. 7. A diagram for Euclid’s 

Proposition I.26 in Sketchpad. 

 
Fig. 8. Screenshot of an excerpt included in Fitzpatrick (2007, p.10) 

Proposition I.4 (known with the abbreviation SAS): If two triangles have two corresponding sides congruent and 

the angles enclosed by the equal sides congruent the two triangles are congruent (SAS)  

We can take it as given that two segments are congruent if they have the same “length” and, similarly, that 

two angles are congruent if they have the same “angle measure”. The method used by Euclid to prove 

proposition I.4, regarding triangle congruence is a combination of: the method of superposition and the method 

of proof by contradiction. Initially, the first part of the proposition is proved by moving one of the two triangles 

so that one of its sides coincides with the other triangle's equal side; it is then proved that the other sides coincide 

as well. (See Website [2]) 

 
Fig. 9. Screenshot of an excerpt of the proof used by Euclid to prove proposition I.4, mentioned in Euclid 

“Elements” (See Website [3]) 

The paragraph mentioned above in Ancient Greek is translated as follows (Fitzpatrick, 2007, p.10): 

“[…] Let the triangle ABC be applied to the triangle A΄B΄C΄, the point A being placed on the point Α΄, 

and the straight-line AB on A΄B΄. The point B will also coincide with B΄, on account of AB being equal 

to Α΄B΄ […]. For, if B coincides with B΄, and C with C΄ and the base BC does not coincide with B΄C΄, 

then two straight lines will encompass an area. The very thing is impossible. Thus, the base BC will 

coincide with B΄C΄[…]”.  

According to Krantz (2007)  

“One of the most important proof techniques in mathematics is “proof by contradiction”. With this 

methodology, one assumes in advance that the desired result is false and shows that that leads to an 

untenable position. But in fact proof by contradiction is nothing other than a reformulation of modus 

ponendo ponens” (p.6)  

Moreover, in the words of Lardner (1855)  

“Superposition is the process by which one magnitude may be conceived to be placed upon another, so as 

exactly to cover it, or so that every part of each shall exactly coincide with every part of the other” (p.5). 

[…] In the superposition of the triangles in this proposition, three things are to be attended to: (a) The 

vertices of the equal angles are to be placed one on the other. (b) Two equal sides to be placed one on the 
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other. (c) The other two equal sides are to be placed on the same side of those which are laid one upon the 

other. From this arrangement the coincidence of the triangles is inferred (p. 18).  

In the Sketchpad software, this method could be instrumentally decoded (Patsiomitou, 2011) by a user using 

translation transformation, a digital method of “superposition”, in which a figure is transferred to another point 

in space, using a dynamic vector. Concretely, the triangle on the right (A΄B΄C΄) can be produced using the 

translation transformation, on the triangle ABC. A combination of transformations (translation & dragging) also 

indicates the triangles’ congruency by a superposition method. The students can also apply the triangle ABC on 

the triangle A΄B΄C΄ and justify why this is the case. We can also use predesigned movement action buttons to 

move the triangle ABC onto the triangle A΄B΄C΄ so the two can be superposed confirming the triangles’ 

congruency. We can use Sketchpad’s customized ‘appearance tools’ to indicate the congruent angles, and we can 

also highlight or color the triangles’ corresponding congruent sides in order to point out the congruency. These 

are the signs that can be visualized by a student during the investigation of the concrete theorem and which 

indicate congruency. The students can also measure the angles and the sides, and investigate the congruency of 

the triangles through experimental dragging (e.g., Patsiomitou, 2011; 2012a, b) the congruency of the triangles 

and the power of the theorem. In other words, the experimental dragging leads to a theoretical observation.  

 

6. From Pythagoras’ theorem to Vecten’s theorem  

6.1. Pythagoras theorem (in Euclid’s elements): a DGNA problem using an LVAR version (3rd mode)    

I have created the three consequential visual representations using the translation transformation (Fig. 10). Every 

object of the first construction on the left has been translated by the vector j to an image object on the right and 

the outline figure can be superposed on it. Every representation on the right is more complex and supports the 

next consequential step on the problem’s solution. Nunokawa & Fukuzawa (2002), report Sohma (1997) who 

stated that “he wanted his students to experience a feeling of ‘why?’ so that they would be motivated to solve 

[geometry] problems” (p.31). As they support “the students’ feeling of ‘why?’ was influenced by their 

understanding of a problem situation” (p. 41). In the current situation the students ask themselves “why is this 

happening?” at every sequential step. For example, they might ask: why does triangle EFL has an area congruent 

to the area of the triangle E΄L΄M΄? (: they have the same base EL and the heights of the triangles to the base EL 

are equal magnitudes). Thiele (2003) explains the meaning of magnitude as follows: 

“There is no definition of the concept of magnitude (Greek  megathos) because there is no superior 

concept for this fundamental concept. Nevertheless, Euclid is dealing with magnitudes throughout the 

Elements; […] Magnitudes are generally characterized by the property of being able to increase and 

decrease.” (Thiele, 2003, p. 6) 

 
Fig. 10. Proposition I.47 using LVARs (Mode 3): A visual proof in three linking diagrams. 

The following questions could also support the structure of the Euclidean proof:  

• Why does triangle E΄L΄M΄ has an area congruent to the area of the triangle K΄L΄J? (: they are congruent 

triangles, so they have congruent areas). 

• Why triangle K΄L΄J has an area congruent to the area of the triangle L΄΄J΄΄N΄΄(: the base and the height 

of the triangles are equal magnitudes).  

If we drag any point of the LVARepresentation, the image-points follow the movement also, turning the 

whole dynamic diagram to an active one in which we can view sequential transformations that indicate a path for 

the rigorous proof of the Pythagorean Theorem. The triangle EFL is visually transformed to the triangle E΄L΄M΄, 

then to the triangle K΄L΄J, and finally to the triangle L΄΄J΄΄N΄΄. Similarly, the triangle ZHM is visually 

transformed to the triangle L΄M΄H΄, then to the triangle K΄M΄I and finally to the triangle M΄΄N΄΄I΄΄ (Fig. 11). 

Consequently, the area of the square FKLE plus the area of the square ZHMK is transformed into the area of the 

square LMIJ. We can also create an LVARepresentation using more sequential steps, every object on the right 
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side occurs as a translation image of the object on the left side (Fig. 11). The whole process scaffolds students 

thinking, given that they cannot visualize / hold all the intermediate steps in their heads for the solution.   

 
Fig. 11. Proposition I.47 using LVARs (Mode 3): A visual proof in four linking diagrams 

If the vector’s length is tending to zero, then the vectors’ endpoints coincide. This result to the following 

representation illustrated in Fig.12 in which we can view the initial triangle EFL transformed to the final triangle 

LJN, as well as the auxiliary triangles for the visual proof in blue and yellow (i.e., the sequential diagrams have 

been superposed to the first diagram on the left).  

 
Fig. 12. Proposition I.47 using LVARs (Mode 3):  

 

6.2. Vecten’s theorem: a DGGA problem  

I have considered Vecten’s theorem to be particularly interesting since 1985, when I investigated all the sub-

problems reported in “Jesuit Geometry” (translated in Greek) with great interest. In the current work I shall 

describe a few sub-problems of the Vecten’s theorem and their solution. I introduced a pseudo-Toulmin’s model 

(Patsiomitou, 2011, 2012a, b, 2018b) --based on Toulmin’s model (1958) -- in which: (1) the data could be the 

dynamic diagram, or an object and (2) a warrant could be a tool or a command that guarantees the result which is 

the claim (or the resulted formulation). Also, I have extended the pseudo-Toulmin’s model in order to express a 

relationship between the figures. The solutions of sub-problems in Vecten’s theorem are presented here, pointing 

out the propositions regarding triangles’ congruence.  

Vecten’s Theorem:  Construct a triangle ABC. Construct two squares ABDE, ACIT, externally on the sides AB, 

AC of the triangle ABC respectively. Prove that  

I. If M is the midpoint of the side BC then AM= ET/2 (Fig. 13) 

II. AM is perpendicular to ET. (Fig. 13) 

III. If O is the midpoint of ET then AO=BC/2.(Fig. 14) 

IV. AO is perpendicular to BC. (Fig. 14) 

V. If S is the fourth vertex of the parallelogram EATS then the sides CD and BI are congruent and 

perpendicular to BS and CS respectively. (Fig. 15) 

VI. If G is the midpoint of the segment DI, then the BGC triangle is a right and isosceles triangle. (Fig. 16) 



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online) DOI: 10.7176/JEP 

Vol.10, No.5, 2019 

 

13 

  
Fig. 13. Sub-problem I, II Fig. 14.Sub-problem III, IV. 

  
Fig. 15. Sub-problem V. Fig. 16. Sub-problem VI. 
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Fig.  17. Successive sequential diagrams of Vecten’s sub-problems mentioned above, when the ABC is 

a right triangle. 

If we drag the lines AB, AC until they become perpendicular then a student has to prove that the lines AE, 

AC belong to the same line, something that is omitted /or dismissed by the students. This part of the proof is 

highlighted in Euclid “Elements” (e.g., Proposition I.47) (see for example Fitzpatrick, 2007, p. 46). 

 
Fig. 18. Screenshot from the Proposition I.47 (Fitzpatrick, 2007, p. 46) 

 

7. Construction of a parametrical Vecten’s hybrid diagram: a HGNA problem  

In 2005, I was experimenting with parameters and parametrical constructions in Sketchpad. For this, I decoded 

Vecten’s theorem (Fig. 19) instrumentally using parameters (Patsiomitou, 2006, in Greek, pp. 1270-1273) (i.e., 

the sides AB=a, AC=b as well as the angle <BAC=f has been constructed by using parameters) in order to 

investigate more deeply the properties of Vecten’s theorem. Firstly, speaking of a DGS environment, it is 

important to identify the meanings of geometrical objects in such an environment.  

• I will use the meaning of dynamic geometrical object, to denote every object that has been constructed 

in a dynamic geometry software interface. This object could be a “drawing” or a “figure” which 

intrinsically has dynamic properties. Gonzalez and Herbst (2009) have defined the dynamic diagram as 

“a diagram made with DGS and that has the potential to be changed in some way by dragging one or 

more of its parts” (p.154).  

• I will use the meaning of dynamic diagram, to denote an external representation composed out of a set 

of rationally related dynamic objects in a DGS environment. A dynamic diagram can be a simulation of 

a problem modeled in the DGS environment, which includes many geometric objects and combinations 

of interaction techniques implemented in these objects.  
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Fig. 19: Screenshot of Vecten’ theorem in Sketchpad using dynamic parameters (Patsiomitou, 2006, pp. 1270-

1273, in Greek) 

• I will also introduce the meaning of dynamic section to denote a set of dynamic diagrams that are linked 

to each other procedurally and conceptually, even if they differ structurally. A dynamic section contains 

meanings belonging to the same class that are united or joined into a whole, which in the concrete 

situation symbolically means they exist in one [alive book] section or they are dynamically linked. As I 

have written in a previous work (Patsiomitou, 2018b, p.40):  

“A first and very important effect on students’ thinking stems from the Sketchpad software allowing the user to 

create sequential linking pages so that the whole Sketchpad file becomes an “alive book” (Patsiomitou, 2005, p. 

63, in Greek; Patsiomitou, 2014). The “alive digital representations” (Patsiomitou, 2005, p. 67) function, which 

makes the whole figural diagram “alive”, giving the students the potential to focus their attention on 

simultaneous modifications (and transformations) of objects on the screen (Patsiomitou, 2005, p. 68), also 

yielded important results during my investigations”. In the Geometer’s Sketchpad environment (or the Web 

Sketchpad) anyone can create a dynamic section by linking pages in the same file. In this way, a solution to a 

problem can be separated into sequential componential steps that help a student to create linking mental 

representations in his/her mind (Patsiomitou, 2012, 2013, 2014, 2018a, b).  

• I will introduce the meaning of hybrid object to denote an on-screen geometric object that is 

intrinsically dynamic but remains untransformed /unaltered on screen, even though dynamic dragging is 

applied or implemented on it. This situation comes about because of the hybrid object’s dependence 

from its parent objects.  

Many researchers use the word “hybrid” to denote something that does not obviously belong in a given 

class of objects, or a mixed entity composed of different elements. Verillon & Andreucci (2006) for example in 

their study “Artefacts and cognitive development: how do psychogenetic theories of intelligence help in 

understanding the influence of technical environments on the development of thought?” report Rabardel (1995) 

who argued that during instrumental genesis “the resulted instruments are actually hybrid entities, on the one part 

are psychological and on the other part artefactual” (p.12). Morgan et al. also mention the representational hybrid 

nature of the Turtleworlds environment, because it behaves like a hybrid between Logo and Dynamic 

Manipulation systems due to the ‘variation tool’ (Morgan et al. 

https://www.itd.cnr.it/telma/docs/Rep_Del_Draft3.pdf, p.7). Cerulli (2004) also mention “a hybrid language to 

be used to bridge the natural language with the mathematical one” (p.36) […] As Cerulli states “the evolution of 

meanings is based on the idea of deriving, from a used instrument, hybrid signs which refer both to the practice 

with the instrument and to the sphere of theory of mathematical knowledge” (p. 142). We could also introduce 

the meaning of hybrid diagram in the DGS environment to denote the untransformed on-screen diagram, which 

has been created to stay hybrid and become dynamic if we implement a transformation on its parents. The 

diagram is intrinsically dynamic, but a user could use it as an image or a static diagram, if s/he does not know 

how to make it dynamic. It is important to point out at this point that: the transformation of objects in a DGS 

environment is dependent on whether these objects have been defined, as hybrid objects or not. In the current 

case (Fig. 19, 20, 21, 22) the whole representation is a hybrid diagram, meaning it is completely determined by 

its parameters and cannot be moved if we drag any point on it. The diagram has intrinsically dynamic properties, 

but is different from a dynamic diagram created using the ‘Construct’ or ‘Transform’ menu in that. It can only be 

altered if we animate its parameters, supporting a visualization of infinite occasions of dynamic objects which 

maintain the same structure but they are modified in a mereologic, optic and place way in the words of Duval 

(1999). 
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Fig. 20, 21, 22: Screenshots of the sequential diagrams of Vecten’s theorem in Sketchpad produced by 

animation of angle’s parameter.  

If we animate only the parameter of angle f (the angle between segments AB, AC) we can transform the 

parametrical hybrid object as it is viewed in the screenshots (Fig. 20, 21, 22). The animation of all parameters is 

a direct object manipulation which transforms every part of the object. This leads to a kind of algebraic 

geometry, which takes the parametric sides and angles as input and provides a continuous transformation of the 

diagram as output (Patsiomitou, 2006, pp.1270-1273, in Greek). According to Leron & Paz (2006) in their work 

“The slippery road from actions on objects to functions and variables”  

“to be specific, the metaphorical mapping would map action to function, object (or the state of the object) 

to variable, and the initial and final state of the transformed object to the function’s input and output.” (p. 

128)  

A student’s action on parameters leads to a transformation of objects perceived as basically external. The 

students can also investigate a concrete situation of the hybrid-dynamic representations, choosing to assign 

concrete magnitudes to the parameters (Fig.22). Moreover, the user can directly perceive infinite alterations of 

the same figure on screen (Patsiomitou, 2006, p. 1273, in Greek) and conceive of an abstract mathematical 

object. This mode of construction is completely different from the simple construction mode which uses 

dynamic tools, because the student consciously perceives the modification of the dynamic objects on screen. We 

can thus speak about functional geometry and through the conservation of figures’ properties about the concept 

of geometrical function.   

 

8. From Vecten’s theorem to Gamow’s problem: a RGNA problem 

In year 2007, I turned my investigations of Vecten’s theorem to its known version as a real- world problem, 

created by Gamow (1948, reprinted 1988) through modeling it in Sketchpad DGS environment (e.g., Patsiomitou, 

2008a, b) inspired by a work of Daniel Scherr (2003), regarding the concrete problem. Daniel Scher (2003) 

designed the activity in multiple linked pages using Sketchpad v4. Previously, I also discussed the concrete 

problem with Professor Paris Pamfilos and Professor Constantinos Christou, when I was experimenting, using 

the Euclidraw Dynamic Geometry program (Website [4]). Gamow’s (1948, reprinted 1988) problem involving 

pirates and buried treasure seemed ideal for my students. I enhanced the problem with historical evidence from 

Homer, seeking thus to motivate my students to develop their interest in ancient history through geometry. 

Gamow’s problem hinges on a treasure map found in an old man’s attic. Here is the revision (Patsiomitou, 2008a, 

p. 357): 

“In the Odyssey, Homer (c74-77) mentions that the pirates also raided Greek islands. The pirate in our 

story has buried his treasure on the Greek island of Thasos and noted its location on an old parchment. 

“You walk directly from the flag (point F) to the palm tree (point P), counting your paces as you walk. 

Then turn a quarter of a circle to the right and go to the same number of paces. When you reach the end, 

put a stick in the ground (point K). Return to the flag and walk directly to the oak tree (point O), again 

counting your paces and turning a quarter of a circle to the left and going the same number of paces. Put 

another stick in the ground (point L). The treasure is buried in the middle of the distance of the two sticks 

(point T).”(Figure 23, 24, 25) After some years the flag was destroyed and the treasure could not be found 

through the location of the flag. Can you find the treasure now or is it impossible?” 

Many researchers have been attracted to the problem (e.g., De Villiers, 1999). I considered the problem as 

particularly interesting because it allows three quite different approaches (Patsiomitou, 2008a, p. 366): (i) the so-

called ‘static’ approach; (ii) a software-supported: ‘dynamic’ approach; and (iii) a paper and pencil ‘dynamic’ 

approach concerning dynamic methods in geometry, consisting of ‘thinking in motion’ in a paper pencil 

environment. In the current paper I shall describe how I designed mode A and mode C, trying to concentrate on 

two of its aspects: 1) linking actions with constructional steps in the software, and 2) linking the various visual 

steps in the proving process.  
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Fig. 23, 24. Screenshots of sequential diagrams of Vecten’s 

theorem in Sketchpad  

Fig. 25. Screenshot of Gamow’s 

problem in Sketchpad 

Mode A: The synthesis of the dynamic representation incorporates an image that is a permanently annotated 

pictorial representation, a two-dimensional hybrid object representing the closed and curved polygonal island, 

annotated in green and two dynamic fractal trees placed on the island. The background (font) of the screen has 

been selected to be light-blue using the complex preferences pop-up menu, to give the impression of the sea 

around the island. The positions of the trees P, O are two points with zero degrees of freedom (Fig. 25). 

According to the Geometer’s Sketchpad reference manual (2001) “points are the fundamental building blocks of 

classical geometry, and geometric figures such as lines and circles are defined in terms of points” (p.11). 

Hollebrands, Straeser and Laborde (2008, p.165) described the distinction between the three different kinds of 

points in a DGS environment: (a) a free point “can be directly dragged anywhere in the plane (degree of freedom 

2)”, (b) a point on an object “can be dragged only on this object (degree of freedom 1)” and (c) a constructed 

point “cannot be grasped and dragged (degree of freedom 0) but moves only if an element of which it is 

dependent is dragged”. Point F, which represents the position of a moveable flag, can move with one degree of 

freedom and be dragged on screen. The rotation of the segments PF, FO to 90 degrees reorganizes the visual 

mathematical representations. Two new objects the segments PK, OL have been added on screen, the images of 

the PF, FO respectively. Point T (the treasure point), is the midpoint of the segment KL. It has constructed with 

zero degrees of freedom due to its dependence on the points K, L.  

When students interact with the hybrid-dynamic diagram to create the rotations they interact with the 

intermediate representation of the pop-up menu for the selection of the rotation angle. The students can construct 

during instrumental genesis an instrumented action scheme of the perpendicularity and the congruence of the 

segments (PF and PK, OF and OL).The synthesis of the diagram leads to the following complex transformations 

(Patsiomitou, 2008a, 2012a):  

• Rotation of the segments PF, FO to construct the points K, L (Fig. 26, 27, 28). This portrays a 

rearrangement of the visual representation giving the students the opportunity to perceive the internal 

relations between the mathematical objects on screen. Point F can be dragged. This results in the 

transformation of the rotated segments, a complex transformation of the dragging and rotation of a 

geometric object.  

• The hide–show action button for the points K, L, T also creates also a decomposition of the diagram. 

Concretely, an action button hides the point where the flag is located. The dependent objects have also 

been hidden (Fig. 27).  

• The dragging of KL on the screen creates traces of the segment, meaning a set of points through which 

the segment passes. In this case (Fig. 28,29) the result is a complex transformation of the dragging and 

tracing of a geometric object (for example a point, a segment, or a line etc). 

   

 

Fig. 26, 27, 28. Screenshots from LVAR experimentation mode A 

(before or after hiding the flag) in Sketchpad 

Fig. 29. Screenshot of the 

combination of tracing & dragging 

the segment KL in Sketchpad 
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Subsequently, the images of KL (Fig. 29) demonstrate the temporal positions of the segment as a 

correspondence of a point with its image. Every point of the initial constructed image has its correspondent 

image. Subsequently, we have a function f which corresponds to every point A on the segment KL to a point f(A) 

the image of point A, where the point A corresponds to point A1 to point A2, and then to point An with the n-

dragging. We can thus see that the transformation of Point A is a 1–1 function to every dragging depended of the 

previous point–image. The set of ‘A’ images on screen created by the trace command is the set of points through 

which Point A passes. A point’s dragging on screen results to the transformation of its position and 

simultaneously the appearance of tracing tracks on screen, which show the path that the point follows or the 

tracks that a line passes due to dragging transformations. This action results to the determination of a basic 

property of the diagram (or a property of the diagram that remain stable and unaltered) which cannot be directly 

perceived from the diagram. “Trace” according to Jahn (2002) “emphasizes a dynamic interpretation of the 

representation of a trajectory of a point … representing, at least implicitly, the image of a set of points for a 

certain application.” (p. 79). 

Mode C started with a second problem, investigated by the students in a paper-pencil environment (using a 

reformulated RGNA problem) reported in Patsiomitou (2008a, p. 372): 

 “An archaeologist has an old map which explains the position of a clay pot: You walk directly from point 

P to point F (F, Ε are constant points) counting your paces as you go. Then turn right 90 degrees and walk 

the same number of paces from point F. When you reach the end, put a stick in the ground. Return to 

point P and walk directly to point E, again counting your paces and turning left 90 degrees and walking 

the same number of paces. Put another stick in the ground. The vessel (point V) is buried in the middle of 

the distance of the two sticks. Rejecting the procedure described above, the archaeologist did the 

following: starting from the midpoint of the segment FE, he followed the directions given on the map 

until he finally found the pot. a) Can you plot the shape according to the steps that archaeologist followed? 

And b) can you explain (using formal logic) why he was right?” (Fig. 30).  

This is a complex phase. The dynamic diagrams are linked, using a translation transformation and every 

diagram on the right is a sequential successive and gradual procedure conducted on the previous one which is on 

the left. The translation gives to the dynamic representation the property to a simultaneous alteration of every 

dynamic object on them if we drag any point. The synthesis of the dynamic LVARepresentation has the 

following design: Point F has two degrees of freedom and point O has 0 degrees of freedom. The screen 

background has been changed using Sketchpad’s complex preferences dialogue in order to link it to the previous 

page. The experimental dragging of point V does not transform the rectangle’s figure, which remains a hybrid 

object on screen. In order to solve the problem we have to follow the following analysis: we have to prove that V 

is the midpoint of KL, meaning we have to prove that KL and AB are dichotomized, or KA//=BL (Patsiomitou, 

2008a, p.373). 

 
Fig. 30. Screenshot of Gamow’s problem -Mode C (Patsiomitou, 2008a, p. 373) 

The transformations of the triangles are intrinsically dynamic, but we can visualize only the result of the 

transformations on screen.  

 

9. Discussion: suggested investigational levels for students problem solving 

Stoyanova (1997) identified (a) free situations, (b) semi-structured situations and (c) structured situations to 

improve students’ problem posing and problem solving in a range of classroom contexts. Christou, Mousoulides, 

Pittalis, Pitta-Pantazi, & Sriraman (2005) in their work “An Empirical Taxonomy of  Problem Posing Processes” 
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also identified a theoretical model of problem posing as follows: “editing quantitative information, their 

meanings or relationships, selecting quantitative information, comprehending and organizing quantitative 

information by giving it meaning or creating relations between provided information, and  translating 

quantitative information from one form to another” (p. 149).  

I would argue that investigational activity of problem solving in a DGS, prompts the students to develop 

more reflective ways of thinking and the teacher to describe the problem in a way, which might be more 

interesting than in traditional approaches. Moreover, a teacher’s intention for his/her students to learn through 

problem solving investigational process is associated in the words of Tony Brown, (1994) with the 

“presupposition about that to be learnt and learning is in a sense revisiting that already presupposed” (p.148). 

Tall (2004) used a metaphor of a “traveler” to explain how “different individuals may develop substantially 

different paths on their own cognitive journey of personal mathematical growth”. As he argues: 

“As an individual travels […], various obstacles occur on the way that require earlier ideas to be 

reconsidered and reconstructed, so that the journey is not the same for each traveler. On the contrary, 

different individuals handle the various obstacles in different ways that lead to a variety of personal 

developments, some of which allow the individual to progress through increasing sophistication in a 

meaningful way while others lead to alternative conceptions, or even failure” (Tall, 2004, p. 286). 

Battista (2011) also in his work “Conceptualizations and Issues related to Learning Progressions, Learning 

Trajectories, and Levels of Sophistication” defines the theoretical construct of “level of sophistication” in the 

following paragraph, through which he characterized students’ development of conceptualizations and reasoning:  

“Clements and Battista (1992) described the difference between researchers' use of the terms stage and 

level as follows.  A stage is a substantive period of time in which a particular type of cognition occurs 

across a variety of domains (as with Piagetian stages of cognitive development).  In contrast, a level is a 

period of time in which a distinct type of cognition occurs for a specific domain (but the size of the 

domain may be an issue). Battista defines a third construct—a level of sophistication in student reasoning 

as a qualitatively distinct type of cognition that occurs within a hierarchy of cognition levels for a specific 

domain” (Battista, 2011, p.517). 

In my opinion, the teacher’s investigational activity in relation to the problem posed has to be implemented 

at several levels of sophistication, if a teacher is to help his/her students to develop deeper understanding and 

coherent reasoning.  

• The first level is that of open problems using materials (e.g., squared papers, dot papers, or several 

means, including DGS). This phase can be extended by means of DGNA problems using sequential 

dynamic LVAR representations. When a student is engaged with the activity of solving a problem 

modeled by dynamic LVARepresentations s/he connects that activity with both the product and the 

thought process during investigational process. LVARs scaffold students’ mental processes such as 

perception, information recall and reasoning. Students can also discover the solution through active 

experimentation.  

• The second level comes after the introduction of “big ideas” or “core ideas” (Battista, 2011). During this 

phase, the teacher can use DGGA problems posed for investigation and proof in a DGS environment. The 

students can mentally combine structural properties of conceived cognitive processes. 

• The third level is that of real world HGNA problems which are modeled in a DGS environment using 

dynamic or hybrid-dynamic representations. A teacher can support students’ reasoning by giving them 

other immediate problems which will scaffold the theoretical background required by the problem as they 

investigate all the possible or multiple solutions to the problem. They can also investigate a concrete 

situation of the hybrid-dynamic representations, choosing to give to the parameters concrete magnitudes.  

• The forth level will be that of RGNA problems, accepting a challenge and trying to reinvent the solution. 

The students at this level must have the conceptual and procedural competence to investigate the problem. 

At this level, the problem cannot be solved by some routine procedures.  

• The fifth level will be that of the problem in a SGGA problem in a static environment. This is the level 

with the higher degree of difficulty. This is why students are not able to solve static geometry problems, 

when they belong at the lower van Hiele levels.  

According to Battista (2011) “Selecting/creating instructional tasks, adapting instruction to students' needs, 

[…] require detailed, cognition-based knowledge of how students construct meanings for the specific 

mathematical topics targeted by instruction” (p.527). 

This article contributes to the didactics of mathematics in the sphere of geometrical problem-solving. It was 

my aim to construct a model in which every subsequent problem in the specific didactic sequence proposed in 

the article would constitute the next level in the development of the students’ reasoning. 

For the student, solving a problem like Gramow’s is like embarking on a journey into the unknown. They 

will meet conceptual obstacles along the way, and hence all manner of difficulties, but the benefits gained make 

the journey more than worthwhile, as the students emerges stronger from the experience. This is why 
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mathematics educators need to take it on board that the journey is more important than the destination; that it is 

the process by which students arrive at an answer and the added sophistication they gain in their problem-solving, 

that raises their van Hiele level.  
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