НАНОМАТЕРИАЛЫ И НАНОТЕХНОЛОГИЯ

УДК 621.318.1

СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ПОРОШКА ГЕКСАФЕРРИТА СТРОНЦИЯ ПОСЛЕ ИЗМЕЛЬЧЕНИЯ В ВОДЕ И ТОЛУОЛЕ С ПОСЛЕДУЮЩИМ ОТЖИГОМ

© 2013 г. Т. А. Булатов, С. В. Кетов, В. П. Менушенков, Ю. Д. Ягодкин Национальный исследовательский технологический университет «МИСиС»

Методами рентгеноструктурного анализа, растровой электронной микроскопии и лазерной дифракции исследованы структурные изменения в порошке гексаферрита стронция при измельчении в воде и толуоле, а также при последующем отжиге. Кроме того, изучено изменение магнитных свойств порошка. Установлено, что измельчение крупнозернистого порошка гексаферрита стронция приводит к значительному уменьшению размера частиц порошка, снижению размера областей когерентного рассеяния и увеличению микродеформации решетки фазы SrFe₁₂O₁₉. Обнаружено, что остаточная намагниченность и намагниченность насыщения при измельчении в обеих средах уменьшаются, а коэрцитивная сила меняется мало с увеличением продолжительности измельчения. В результате последующего отжига магнитные свойства порошка гексаферрита стронция резко увеличиваются, что обусловлено формированием нанокристаллической структуры. Для отожженных порошков характерны следующие свойства: µ₀H_{ci} = = 0,42÷0,49 Тл, $\mu_0 I_r$ = 0,23÷0,24 Тл, (*BH*)_{max} = 8,0÷9,6 МДж/м³. Показано, что магнитные свойства отожженных порошков зависят от среды и длительности процесса измельчения.

Ключевые слова: гексаферрит стронция, магнитные материалы, наноматериалы, механическое измельчение, порошковая металлургия, рентгеноструктурный анализ, растровая электронная микроскопия.

Введение

Благодаря своим высоким магнитным свойствам, химической устойчивости и низкой стоимости гексаферрит стронция SrFe₁₂O₁₉ нашел широкое применение в производстве постоянных магнитов. Однако коэрцитивная сила таких магнитов $\mu_0 H_{ci}$ обычно не превосходит 0,3 Тл [1]. Увеличения магнитных свойств этого материала, в частности коэрцитивной силы, можно добиться путем получения стронциевого феррита в нанокристаллическом состоянии, например, с помощью механической активации и последующей термической обработки [2, 3]. В этом случае удается повысить коэрцитивную силу до значений более 0,4 Тл.

Цель работы — изучение влияния кинетики измельчения в различных средах и последующей термообработки на магнитные свойства и структуру порошков гексаферрита стронция.

Образцы и методы исследования

В качестве исходного материала использовали крупнозернистый (с диаметром частиц $d \sim 10$ мкм) порошок стронциевого феррита. Измельчение порошка проводили в мельнице САНД1 со скоростью вращения водила 230 об/мин в толуоле и воде.

Фазовый состав, размер областей когерентного рассеяния и микродеформацию решетки фаз

определяли с помощью рентгеноструктурного анализа путем съемок дифрактограмм на дифрактометре ДРОН 3М с использованием СоК_а-излучения. Фазовый состав, а также средний размер областей когерентного рассеяния <D> и среднюю микродеформацию решетки SrFe₁₂O₁₉ <*e*> определяли методом Ритвельда [4]. Распределение частиц порошка по размерам измеряли на лазерном анализатоpe Fritsch Analysette-22 Nanotech. Кроме того, морфологию частиц и их размеры определяли с помощью сканирующего электронного микроскопа JEOL JSM-6700F.

Магнитные свойства измеряли на вибромагнетометре LDJ VSM — 9600 при комнатной температуре. Погрешность определения коэрцитивной силы, остаточной намагниченности и энергетического произведения не превышала 3 %.

Результаты и их обсуждение

Измельчение порошка гексаферрита стронция в обеих средах в течение 12 ч приводит к значительному уменьшению размера частиц порошка, резкому снижению размера областей когерентного рассеяния (до $\langle D \rangle = 30 \pm 5$ нм) и увеличению микродеформации кристаллической решетки фазы SrFe₁₂O₁₉ ($\langle e \rangle = 0, 4 \pm 0, 1$ %). Причем обнаружено, что в отличие от величин $\langle D \rangle$ и $\langle e \rangle$ распределение частиц по размерам зависело от среды измельчения (рис. 1). Также отметим, что на дифференциаль-

Рис. 1. Распределение частиц порошка гексаферрита стронция по размерам:

а — исходный порошок; б, в — порошок после 12 ч измельчения в воде и толуоле соответственно (1 — интегральная кривая распределения; 2 — дифференциальная кривая распределения)

ных кривых распределения частиц по размерам в измельченных порошках выявлена явная «двугорбость» (см. рис. 1, б и в).

Результаты электронно-микроскопического исследования не противоречили сказанному выше. В качестве примера на рис. 2 приведена микрофотография порошка после измельчения в воде, на которой видны частицы различного размера: как дисперсные (с размером менее 100 нм), так и значительно более крупные.

Как видно из рис. 3, различия свойств порошков, измельченных в разных средах, малы и обусловлены в основном не особенностями их микроструктуры, а различием в фазовом составе. По данным рентгено-

МАТЕРИАЛЫ ЭЛЕКТРОННОЙ ТЕХНИКИ. № 2. 2013

структурного анализа, измельчение в воде, в отличие от измельчения в толуоле, приводит к появлению небольшого количества оксида железа со структурой шпинели: до 20 % (об.) при измельчении в течении 12 ч. Такую структуру имеют магнетит Fe₃O₄ или маггемит у-Fe₂O₃, причем образующийся в порошке оксид по периоду решетки более близок к маггемиту. Поскольку значение намагниченности насыщения $\mu_0 I_s$ у упомянутых оксидов железа выше, чем у гексаферрита стронция (~6 и 5 кГс соответственно [1, 6]), то и значение остаточной намагниченности $\mu_0 I_r$ порошка после измельчения в воде оказалось несколько выше, чем после измельчения в толуоле (см. рис. 3, б). Коэрцитивная сила порошка при измельчении в толуоле практически не меняется, а при измельчении в воде немного возрастает с увеличением продолжительности измельчения (см. рис. 3, а). По-видимому, такое поведение может быть вызвано одновременным действием двух факторов: измельчением частиц и ростом дефектности их решетки.

Далее был проведен отжиг порошков гексаферрита стронци при 1000 °С в течение 1 ч в лабораторной печи на воздухе. Режимы отжига описаны в работах [2, 3].

Рис. 2. Микрофотография порошка гексаферрита стронция, измельченного в воде

Отжиг позволил получить гексаферрит стронция в нанокристаллическом состоянии. Размер кристаллитов фазы SrFe₁₂O₁₉ после отжига составлял величину порядка 100 нм (рис. 4). Следует отметить, что критический размер для однодоменной частицы SrFe₁₂O₁₉ приблизительно равен $< D_{\rm Kp} > \approx 500$ нм [5]. Отметим, что, согласно данными работ [2, 3], формирование наноструктурного состояния в порошке вызвано протеканием в дефектных частицах процесса рекристаллизации вследствие измельчения.

Отжиг порошка приводил также к уменьшению микродеформаций решетки гексаферрита стронция: значение <e> снижалось приблизительно до 0,10 \pm 0,05 %. Причем отжиг измельченного в толуоле порошка не вызывал изменения его фазового состава. В то же время в отожженном порошке, предварительно измельченном в воде, формировался гематит Fe₂O₃ (тип D5.1) Причем его количество зависело от времени предварительного измельчения и достигало 5 \pm 2 % (об.) в отожженных порошках, подвергнутых измельчению в течение 12 ч.

Измерение магнитных свойств отожженных порошков показало, что измельчение в обеих средах и последующий отжиг приводят к увеличению

Рис. 4. Микрофотографии порошков гексаферрита стронция, отожженных при 1000 °С в течение 1 ч после измельчения в течение 12 ч в воде (а) и толуоле (б)

Рис. 5. Зависимости коэрцитивной силы (а) и остаточной намагниченности (б) отожженных порошков от времени измельчения в воде (1) и толуоле (2)

коэрцитивной силы и остаточной намагниченности по сравнению с исходным состоянием (рис. 5).

Как видно из рис. 5, а, наилучшей коэрцитивной силой обладали порошки, измельченные в воде (0,49 Тл при измельчении в течение 12 ч). Однако при этом остаточная намагниченность уменьшалась с увеличением времени измельчения, так как при отжиге выделялся оксид железа. Наибольшим энергетическим произведением обладал порошок, измельченный в толуоле в течение 12 ч и отожженный при 1000 °С в течение 1 ч: (*BH*)_{max} \approx 9,6 МДж/м³ (1,2 МГсЭ). При этом его коэрцитивная сила составляла $\mu_0 H_{\rm ci} \approx$ \approx 0,43 Тл (4,4 кЭ), а остаточная намагниченность $\mu_0 I_{\rm r} \approx 0,24$ Тл (2,4 кГс).

Заключение

Показано, что измельчение крупнозернистого порошка гексаферрита стронция (в толуоле или воде) приводит к уменьшению размера частиц порошка, снижению размера областей когерентного рассеяния и увеличению микродеформации кристаллической решетки фазы $SrFe_{12}O_{19}$. Причем на дифференциальной кривой распределения частиц по размерам в измельченных порошках возникает «двугорбость». В отличие от измельчения в толуоле, измельчение порошка в воде приводит к появлению оксида железа со структурой типа H1.1 (вероятно, γ –Fe₂O₃). Остаточная намагниченность и намагниченность насыщения при измельчении в обеих средах уменьшаются, а коэрцитивная сила практически не меняется с увеличением продолжительности измельчения.

Установлено, что отжиг измельченного порошка приводит к формированию нанокристаллической структуры. В результате отжига магнитные свойства порошка гексаферрита стронция резко увеличиваются. Причем их значение зависит от среды и длительности процесса измельчения. Толуол можно считать наиболее благоприятной средой для измельчения, поскольку порошок, измельченный в толуоле в течение 12 ч и отожженный при 1000 °C в течение 1 ч, обладал наибольшим энергетическим произведением $(BH)_{\rm max} \approx 9,6~{\rm MД}{\rm ж}/{\rm m}^3$. При этом его коэрцитивная сила составляла $\mu_0 H_{\rm ci} \approx 0,43~{\rm Tr}$, а остаточная намагниченность $\mu_0 I_{\rm r} \approx 0,24~{\rm Tr}$.

Библиографический список

1. **Летюк, Л. М.** Технология ферритовых материалов магнитоэлектроники / Л. М. Летюк, В. Г. Костишин, А. В. Гончар. – М. : МИСиС, 2005. – 353 с.

2. Ketov, S. V. Structure and magnetic properties of nanocrystalline $SrFe_{12}O_{19}$ alloy produced by high–energy ball milling and

МАТЕРИАЛЫ ЭЛЕКТРОННОЙ ТЕХНИКИ. № 2. 2013

annealing / S. V. Ketov, Yu. D. Yagodkin, A. L. Lebed, Yu. V. Chernopyatova, K. Khlopkov // J. Magn. Magn. Mater. – 2006. – V. 300, Iss. 1. – P. e479—e481.

3. Ketov, S. V. Structure and magnetic properties of strontium ferrite anisotropic powder with nanocrystalline structure / S. V. Ketov, Yu. D. Yagodkin, V. P. Menushenkov //J. Alloys and Compd. – 2011. – V. 510. – P. 1065—1068.

4. Шелехов, Е. В. Программы для рентгеновского анализа поликристаллов / Е. В. Шелехов, Т. А. Свиридова //Металловедение и термическая обработка металлов. – 2000. – № 8. – С. 16—19.

5. **Rezlescu**, L. Magnetic glass-ceramic containing fine ferrite crystals / L. Rezlescu, E. Rezlescu, M. L. Craus, N. J. Rezlescu // J. Magn. and Magn. Materials. - 1999. - V. 196-197. - P. 463-464.

 Тикадзуме, С. Физика ферромагнетизма. Магнитные свойства вещества. / С. Тикадзуме – М.: Мир, 1988. – 304 с.

Работа выполнена при финансовой поддержке Министерства образования и науки (ГК № 14.513.11.0026 от 18 марта 2013 г.).

УДК 621.315.592

О ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ФОТОЛЮМИНЕСЦЕНЦИИ КВАНТОВЫХ ТОЧЕК КРЕМНИЯ

© 2012 г. С. Н. Нагорных, В. И. Павленков, А. Н. Михайлов, А. И. Белов, В. А. Бурдов, Л. В. Красильникова^{*}, Д. И. Крыжков^{*}, Д. И. Тетельбаум Научно-исследовательский физико-технический институт Нижегородского государственного университета имени Н. И. Лобачевского, *Институт физики микроструктур РАН

Представлена модель излучательных и безызлучательных переходов в квантовых точках кремния, которая описывает температурную зависимость фотолюминесценции ионносинтезированных массивов нанокристаллов Si в SiO2. Рассмотрена четырехуровневая схема переходов, учитывающая термоактивированные процессы и обменное расщепление основного энергетического состояния экситона в нанокристалле кремния на триплетный и синглетный уровни, переходы с которых в основное состояние ответственны за люминесценцию. На основе стационарного решения системы кинетических уравнений, описывающих заселенность уровней, получено выражение для температурной зависимости монохроматических составляющих фотолюминесценции, которое удовлетворительно описывает экспериментальные результаты. Найдены и сравнены с литературными данными величины расщепления энергетического состояния экситона в зависимости от энергии излучаемых фотонов.

Ключевые слова: кремний, диоксид кремния, нанокристалл, квантовая точка, ионная имплантация, фотолюминесценция, температурная зависимость, четырехуровневая схема электронных переходов.

Введение

Нанокристаллический кремний (nc-Si), обладая лучшими люминесцентными свойствами по сравнению с массивным кремнием, является перспективным материалом для применения в опто-и наноэлектронных устройствах [1]. Несмотря на то, что исследования механизмов люминесценции nc-Si интенсивно ведутся более 20 лет, до сих пор со времени открытия интенсивной фотолюминесценции (ФЛ) пористого кремния [2] механизмы ФЛ служат предметом дискуссий. Одним из способов изучения природы ФЛ является анализ ее температурной зависимости в интервале температур от гелиевых до комнатной [3].

В работе [4] анализ температурной зависимости выполнен с использованием механизма ФЛ, основанного на модели [5], в которой предполагают, что экситоны в возбужденных нанокристаллах (НК) кремния локализованы на димерах Si-Si, расположенных на поверхности НК. Однако эта модель была просчитана в работе [5] для НК малых размеров (менее 2 нм), и ее применение для систем типа SiO₂: nc-Si, в которых средний размер НК существенно выше, проблематично. В соответствии с моделью, предложенной в работе [6], температурная зависимость интенсивности ФЛ кремния обусловлена обменным расщеплением энергетического состояния экситона, пространственно ограниченного в объеме квантовой точки (КТ), на триплетный и синглетный уровни. При этом, вообще говоря, как синглетное, так и триплетное состояния являются оптически активными. Однако имеющий бо́льшую энергию синглет обладает на 2—3 порядка меньшим излучательным временем жизни, чем нижележащий триплет. (По-