УДК 535.665.7

НОВЫЕ ГИБРИДНЫЕ МАТЕРИАЛЫ ДЛЯ ОРГАНИЧЕСКИХ СВЕТОИЗЛУЧАЮЩИХ ДИОДНЫХ УСТРОЙСТВ

© 2013 г. Р. И. Аветисов, О. Б. Петрова, А. А. Аккузина, А. В. Хомяков, Р. Р. Сайфутяров, А. Г. Чередниченко, Т. Б. Сагалова^{*}, Н. А. Макаров, И. Х. Аветисов Российский химико-технологический университет имени Д. И. Менделеева, *Национальный исследовательский технологический университет «МИСиС»

Изучены закономерности полиморфизма в высокочистых кристаллических три–(8–оксихинолятах) алюминия, галлия и индия (Meq_3) в интервале температур от 300 до 712 К. По результатам анализа спектров фотолюминесценции, спектров комбинационного рассеяния света и рентгенофазового анализа построена обобщенная картина, согласно которой последовательность полиморфных переходов для всех изученных соединений одинакова: $\beta \to \alpha \to \delta \to \gamma \to \epsilon$.

На основе высокочистых однофазных препаратов изученных металлокомплексов и оксида бора синтезированы новые гибридные материалы: объемные образцы (методом сплавления). тонкие пленки (вакуумным термическим испарением). Изучены фотои электролюминесцентные свойства гибридных материалов при комнатной температуре. Установлено, что для объемных гибридных материалов увеличение времени синтеза с 5 до 60 мин приводит к смещению максимума спектра фотолюминесценции от значения, характерного для чистого $\delta(\gamma)$ –*Меq*₃ в коротковолновую область спектра на 40 нм для Alq₃, 15 нм для Gaq₃ и 10 нм для Inq₃.

Ключевые слова: металлокомплексы, органические люминофоры, полиморфизм, гибридные материалы, электролюминесценция.

Введение

Органические полупроводниковые материалы к настоящему времени стремительно вытесняют классические полупроводники во многих технологиях оптоэлектронных приборов. В первую очередь это относится к наноразмерным пленочным люминофорам в связи с бурным развитием технологий органических светоизлучающих диодов (ОСИД—OLED) [1, 2]. Вместе с тем перспектива развития нового поколения энергосберегающих осветительных устройств связана с разработкой стабильных и дешевых материалов и технологий на их основе. К таким материалам относятся и гибридные органонеорганические материалы, интерес к которым постоянно растет [3]. Ниже рассмотрена возможность создания гибридных материалов на основе боратной неорганической матрицы и металлорганических люминофоров для электролюминесцентных устройств. При этом особое внимание уделено примесной и фазовой чистоте препаратов, так как именно эти параметры играют существенную роль в полупроводниковых устройствах.

Экспериментальная часть

Методика исследования полиморфных переходов в три-(8-оксихинолятах) алюминия, галлия, индия. Известно, что молекулы три-(8-оксихинолятов) алюминия, галлия и индия (Alq₃, Gaq₃, Inq₃) могут существовать в виде двух изомеров: меридионального (*mer*-) и фронтального (*fac*-) [4], которые в твердой фазе образуют от четырех до пяти полиморфных модификаций. При этом данные об условиях получения и трансформации одной модификации в другую противоречивы [5—13].

 Meq_3 (Me = Al, Ga, In) подвержены окислению на воздухе и в парах воды. Поэтому для изучения полиморфизма в структурах *Meq*₃ была разработана методика измерений, исключающая взаимодействие порошковых препаратов с атмосферой (рис. 1). Особо чистый порошковый препарат (>99,995 % (масс.) для всех препаратов) в количестве 20 мг загружали в ампулы из кварцевого стекла с плоским дном из кварцевой мембраны толщиной 0,3 мм. Кварцевая мембрана позволяла без искажений снимать спектры фотолюминесценции (ФЛ) и комбинированного рассеяния света (КРС) в режиме обратного отражения. Ампулы откачивали до давления остаточных газов ~10⁻⁵ торр и отпаивали или сразу после вакуумирования, или после напуска аргона ос.ч. (250 торр, 1 торр = = 133,322 Па). Ампулы с препаратом отжигали в однозонной печи в интервале температур 300-720 К при точности поддержания температуры ±1 К. После выдежки при заданной температуре (0,5 или 1 ч) проводили закалку ампулы с препаратом в воде со льдом.

Рис. 1. Схема методики изучения полиморфных переходов в три-(8-оксихинолятах) алюминия, галлия, индия

Спектральные измерения проводили, помещая ампулы с препаратом в специально изготовленную осесимметричную измерительную ячейку. Ампулу в ячейке фиксировали и центрировали специальными уплотняющими кольцами.

Регистрацию спектров ФЛ и КРС органических препаратов проводили при комнатной температуре на спектрометре Ocean Optics (QE65000). Спектры ФЛ измеряли в диапазоне длин волн от 400 до 800 нм с шагом 0,79 нм при возбужении диодным лазером (370 нм). Спектры КРС регистрировали при возбуждении полупроводниковым лазером (с длиной волны $\lambda = 785$ нм) в диапазоне частот 20—2000 см⁻¹ с шагом 2,5 см⁻¹. Излучение регистрировали детектором на основе двухмерной ПЗС-матрицы размером 1044 × 64 пикселов с покадровым переносом (FFT-CCD) Нататаtsu S7031–1006. Отношение сигнал/шум составляло >1000 : 1. Время интегрирования — 30 с.

Воспроизводимость результатов спектральных измерений на одной и той же ампуле с одним препаратом была не хуже 5 % (отн.). Длительность экспозиции и атмосфера ампулы не оказывали влияния в пределах 5 % (отн.) на результаты измерений.

Рентгенофазовый анализ (РФА) порошковых препаратов проводили на дифрактометре Bruker Advance, изучение CuK_{α} ($\lambda = 0,154184$ нм), с шагом $0,05^{\circ}$ в режиме накопления импульсов по 2,5 с на точку. В качестве подложки использовали пластину Si (100), которая не давала гало и отражения на малых углах. Съемку проводили в вакууме (10⁻² торр).

Синтез гибридных материалов. Гибридные материалы (ГМ) на основе стеклянной боратной матрицы (B₂O₃) и комплексов Meq₃ были синтезированы в виде объемных образцов и тонких пленок. Содержание Meq₃ в

гибридных материалах составляло ~1 %. Объемные образцы ГМ получали сплавлением обезвоженного B_2O_3 с высокочистым Meq_3 с последующим вытягиванием «стеклянных» гибридных материалов (СГМ) пластин и нитей. Пленочные образцы гибридных материалов (ПГМ) получали вакуумным термическим напылением B_2O_3 и Alq_3 из независимых испарителей на стеклянные подложки с прозрачным проводящим слоем ITO, выполняющим функцию анода. Толщину осаждаемых пленок варьировали от 100 до 300 нм. Для анализа электролюминесцентных свойств в качестве катода на ПГМ наносили слой Al толщиной 50 нм.

Результаты и их обсуждение

Анализ спектров Φ Л порошковых препаратов *Меq*₃ показал, что при повышении температуры максимум фотолюминесценции $\lambda_{\rm PL}^{\rm max}$ сначала смещается в коротковолновую область, а затем возвращается в

Рис. 2. Спектры ФЛ высокочистых порошковых препаратов Alq₃ (*a*), Gaq₃ (*б*) и lnq₃ (*в*), закаленных после отжига в вакууме при различных температурах (λ_{возб} = 370 нм)

Рис. 3. Зависимость относительной интенсивности максимума ФЛ от относительной температуры для различных полиморфных модификаций *Meq*₃ (*Me* = Al, Ga, In)

Характеристические температуры полиморфных переходов в *Meq*₃ (*Me* = Al, Ga, In)

Переход	Химическое соединение			
	Alq_3	Gaq_3	$\mathrm{In}q_3$	Meq_3
$\beta \rightarrow \alpha$:				
Т ₁ , К	520	500	490	
$T_1/T_{\pi\pi}$	0,730	0,726	0,723	0,726
$\alpha \rightarrow \delta$:				
Т2, К	619	588	570	
$\overline{T_2}/T_{\pi\pi}$	0,869	0,853	0,841	0,855
$\delta \rightarrow \gamma$:				
T ₃ , K	649	639	629	
$T_3/T_{\pi\pi}$	0,912	0,927	0,928	0,922
$\gamma \rightarrow \epsilon$:				
T_4, K	699	680	669	
$T_4/T_{{ m n}{ m n}}$	0,982	0,987	0,987	0,985
<i>Т</i> _{пл} , К	712	689	678	_

область длинных волн с одновременным заметным снижением интенсивности $\Phi Л$ (рис. 2). Обработка полученных данных в приведенных координатах показала, что для всех Meq_3 изменение $\Phi Л$ -характеристик подчиняется единой закономерности (рис. 3).

Сопоставление данных по ФЛ с данными КРС и РФА показало, что в интервале от комнатной температуры $T_{\text{комн}}$ до температуры плавления $T_{\text{пл}}$ препараты Meq_3 последовательно формируют пять структурных модификаций ($\beta \rightarrow \alpha \rightarrow \delta \rightarrow \gamma \rightarrow \epsilon$) на базе меридиональных (β , α , ϵ) и фронтальных (δ , γ) изомеров (см. рис. 4).

Экспериментально определенные температуры полиморфных переходов были нормированы отно-

сительно измеренных температур плавления индивидуальных препаратов. При этом было получено удовлетворительное согласие приведенных температур переходов для всех изученных соединений (таблица).

Изготовленные гибридные материалы обладали прозрачностью в интервале длин волн 250—2700 нм. СГМ не содержали в объеме видимых включений и пузырей. Анализ ФЛ СГМ показал, что для всех изученных материалов наблюдали один асимметричный максимум $\lambda_{\rm PL}^{\rm max}$ в интервале длин волн 350—700 нм (рис. 5). Положение $\lambda_{\rm PL}^{\rm max}$ смещалось в сторону коротких длин волн при увеличении времени синтеза СГМ. Фиксировали смещение на 10—40 нм в коротковолновую область относительно полиморфных модификаций Meq_3 с наиболее высокоэнергетичной люминесценцией.

Анализ ФЛ ПГМ показал, что даже при концентрации Alq_3 в пленке на уровне 1 % все образцы обладали ФЛ с максимумом 508 нм, что соответствовало образцам СГМ с наименьшим временем синтеза.

Электролюминесценция ПГМ была получена без дополнительной оптимизации структуры транспортными и блокирующими слоями, как это принято в традиционных OLED-структурах [13]. Увеличение толщины слоев со 150 до 300 мкм приводило к возрастанию электролюминесценции до значения 100 кД/м² при токе 0,01 А.

Заключение

Показано, что в интервале температур от $T_{\text{комн}}$ до $T_{\text{пл}}$ металлокомлексы Alq₃, Gaq₃, Inq₃ последовательно формируют по пять структурных модификаций ($\beta \rightarrow \alpha \rightarrow \delta \rightarrow \gamma \rightarrow \varepsilon$) на базе меридиональных (β , α , ε) и фронтальных (δ , γ) изомеров.

Установлено, что для всех СГМ увеличение длительности синтеза приводит к линейному изменению координат цветности в системе МКО согласно следующим уравнениям:

> Al q_3 /B $_2$ O $_3$: Y = 2,4715X - 0,1883; Ga q_3 /B $_2$ O $_3$: Y = 1,2451X + 0,1096; In q_3 /B $_2$ O $_3$: Y = 1,4022X + 0,0484.

Наибольшее изменение наблюдали для СГМ на основе Alq_3 . Конечные точки уравнения для ГСМ с участием Alq_3 формируют ребро *GB* на треугольнике цветности *RGB*. Таким образом, используя только СГМ на основе Alq_3 , синтезированные при различных условиях, можно формировать ребро *GB* полноцветного устройства.

Рис. 4. Схема полиморфных переходов с указанием длины волны максимума люминесценции для высокочистых порошковых препаратов *Meq*₃ (*Me* = Al, Ga, In). Температуры соответствующих полиморфных переходов приведены в таблице

Рис. 5. Спектры ФЛ СГМ (*a*—*b*) и диаграмма цветности (*r*) (МКО) с координатами цветности СГМ, синтезированных при различных температурах в течении 1 ч:

а — 400 °C, Al q_3 ; б, в — 390 °C, Ga q_3 и In q_3 соответственно

Библиографический список

1. Physics of Organic Semiconductors / Ed. by W. Britting. – Weinheim: WILEY–VCH Verlag GmbH & Co. KGaA, 2005.

2. **Troshin, P. A.** Funkcional'nye proizvodnye fullerenov: metody sinteza i perspektivy ispol'zovaniya v organicheskoi elektronike i biomedicine / P. A. Troshin, O. A. Troshina, R. N. Lyubovskaya, V. F. Razumov — Ivanovo : Ivan. gos. un-t, 2010. – 340 s.

3. **Sanz**, **N.** Organic nanocrystals embedded in sol-gel glasses for optical applications/ N. Sanz, P. L. Baldeck, A. Ibanez // Synth. Met. – 2000. – V. 115, Iss. 1–3. – P. 229—234.

4. **Hironori, Kaji**. Relationships between light–emitting properties and different isomers in polymorphsof tris(8–hydroxyquinoline) aluminum(III) (Alq3) analyzed by solid–state 27Al NMR and density functional theory (DFT) calculations / Hironori Kaji, Yasunari Kusaka, Goro Onoyama, Fumitaka Horii // Jap. J. Appl. Phys. – 2005. – V. 44 – P. 3706–3711.

5. **Rajeswaran, M.** Structural, thermal and spectral characterization of the different crystalline forms of Alq3, tris(quinolin–8–olato) aluminum(III), an electroluminescent material in OLED technology / M. Rajeswaran, T. N. Blanton, C. W. Tang, W. C. Lenhart, S. C. Switalski, D. J. Giesen, B. J. Antalek, T. D. Pawlik, D. Y. Kondakov, N. Zumbulyadis, R. H. Young // Polyhedron. – 2009. – V. 28. – P. 835–843.

Tsuboi, **T**. Selective synthesis of facial and meridianal isomers of Alq₃ / T. Tsuboi, Y. Torii // Mol. Cryst. Lig. Cryst. - 2010.
 - V. 529. - P. 42-52.

7. Sakurai, Y. Study of the interaction of tris–(8-hydroxy-quinoline) aluminum (Alq₃) with potassium using vibrational spectroscopy: Examination of possible isomerization upon K doping /

Y. Sakurai, Y. Hosoi, H. Ishii, Y. Ouch // J. Appl. Phys. – 2004. – V. 96. – P. 534—554.

8. Xua, B. Preparation and performance of a new type of blue light–emitting material δ –Alq₃ / Bingshe Xua, Hua Wang, Yuying Hao, Zhixiang Gao, Hefeng Zhou //J. Luminescence. – 2007. – V. 122–123. – P. 663–666.

9. **Fukushima, T.** Green– and blue–emitting tris(8–hydroxyquinoline) aluminum(III) (Alq₃) crystalline polymorphs: Preparation and application to organic light–emitting diodes / T. Fukushima, H. Kaji // Organic Electronics. – 2012. – V. 13. – P. 2985–2990.

10. **Brinkmann, M.** Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer–tris(8–hydroxyquinoline)aluminum(III) / M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi // J. Amer. Chem. Soc. – 2000. – V. 122. – P. 5147–5157.

 Brinkmann, M. Structure and spectroscopic properties of the crystalline structures containing meridional and facial isomers of tris(8-hydroxyquinoline)gallium(III) / M. Brinkmann, B. Fite, S. Pratontep, C. Chaumont // Chem. Mater. - 2004. - V. 16. - P. 4627-4633.

12. **Sapochak, L. S.** Structure and three-dimensional crystal packing preferences for mer-tris(8-quinolinolato)indium(III) vapor-phase-grown crystals / L. S. Sapochak, A. Ranasinghe, H. Kohlmann, K. F. Ferris, P. E. Burrows // Chem. Mater. – 2004. – V. 16 – P. 401—406.

13. Organic electronics: materials, processing, devices and applications / Ed. by S. Franky. – Boca Raton ; London ; N–Y. : Taylor and Francis Group, 2010. – 582 p.

Работа выполнена при поддержке Министерства образования и науки РФ ГК № 14.513.11.0092.

РФА измерения проводили на оборудовании Центра коллективного пользования «Материаловедение и металлургия» НИТУ «МИСиС».