МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ. ПОЛУПРОВОДНИКИ

УДК 621.315.592

4

ВЛИЯНИЕ УСЛОВИЙ ВЫРАЩИВАНИЯ И ЛЕГИРОВАНИЯ ДОНОРНЫМИ ПРИМЕСЯМИ НА МЕХАНИЗМ ПРОВОДИМОСТИ И СПЕКТРЫ ГЛУБОКИХ УРОВНЕЙ В КРИСТАЛЛАХ ТІВr

Исследованы электрические характеристики, спектры глубоких ловушек, спектры микрокатодолюминесценции (МКЛ) нелегированных и легированных донорами (Pb, Ca) кристаллов TIBr и изучено влияние на эти характеристики условий выращивания (противодавление брома, противодавление аргона, выращивание на воздухе). Показано, что в исследованном интервале температур (85-320 К) проводимость кристаллов определяется концентрацией электронов и дырок в разрешенных зонах, а не ионной проводимостью. В процессах рекомбинации неравновесных носителей основную роль играют центры с энергией активации 1,0—1,2 эВ, на которых закреплен уровень Ферми в легированных донорами кристаллах. В нелегированных кристаллах уровень Ферми закреплен на центрах с уровнем около E_v +0,8 эВ, которые также участвуют в рекомбинации и ответственны за полосу МКЛ с энергией 1,85 эВ. В температурных зависимостях фототока нелегированных кристаллов большую роль играет прилипание электронов на мелких электронных ловушках с энергией 0,1—0,2 ЭВ и на более глубоких электронных ловушках. В спектрах глубоких центров обнаружены ловушки с энергиями 0,36, 0,45 и 0,6 эВ, концентрация которых растет при легировании донорами. Легирование Pb или Са позволяет на порядок повысить удельное сопротивление материала, но легирование Pb приводит к большей концентрации глубоких ловушек, что неблагоприятно для использования материала в радиационных детекторах.

Ключевые слова: таллия бромид, глубокие уровни, фотоэлектронная релаксационная спектроскопия глубоких уровней, микрокатодолюминесценция, радиационные детекторы, ионная проводимость, электронная проводимость. © 2013 г. Н. Б. Смирнов, А. В. Говорков, Е. А. Кожухова, И. С. Лисицкий, М. С. Кузнецов, К. С. Зараменских, А. Я. Поляков ОАО «Гиредмет»

Введение

В последние годы наблюдается серьезный рост интереса к исследованиям свойств бромида таллия (TlBr). Этот интерес подогревается широкими перспективами использования TlBr в радиационных детекторах, работающих при комнатной температуре. Большой атомный вес компонентов соединения (для таллия 81 ат. ед., для брома 35 ат. ед.) при плотности 7,56 г/см³ обуславливает эффективное взаимодействие с гамма-квантами и заряженными частицами. Запрещенная зона 2,68 эВ и возможность сравнительно легко получать достаточно чистые и совершенные кристаллы с удельным электрическим сопротивлением выше 10¹⁰ Ом · см очень благоприятны для работы приборов при комнатной и более высоких температурах. Значение произведения подвижности на время жизни μτ, достигающее 10⁻³ см²/В, способствует эффективному собиранию заряда, созданного в рабочей области детектора высокоэнергетическими частицами, и хорошему спектральному разрешению детекторов из TlBr (см., например [1—3]. В то же время ряд факторов все еще серьезно ограничивают широкое применение TlBr в практических устройствах.

Первый и главный из этих факторов — деградация параметров детекторов при длительной эксплуатации под рабочим напряжением, в особенности при температурах выше комнатной. Большинство исследователей считают эту деградацию параметров проявлением ионной проводимости в TlBr. Бромид таллия — это соединение с ярко выраженным ионным характером связи. Теоретические расчеты (см., например, работы [4-6]) и результаты экспериментальных исследований [7, 8] указывают на преобладание среди собственных точечных дефектов в TlBr положительно заряженных вакансий брома $V_{
m Br}^+$ и отрицательно заряженных вакансий таллия V⁻_{Tl}, образующихся по реакции Шотки с очень низкой энтальпией образования 0,91 эВ [4-8]. Поскольку энергии миграции V_{Br}⁺ и V_{TI} тоже невелики (0,2—0,3 эВ для первых, 0,5—0,6 эВ для вторых [4—8]), ионная проводимость при комнатной и более высоких температурах может играть заметную роль и приводить к измеримому переносу вещества, в результате которого происходит экранизация внешнего электрического поля, ведущая к потере эффективности собирания заряда (так называемая поляризация), а при повышенных температурах — и к серьезным структурным изменениям в приконтактных областях [9, 10]. В то же время среди различных исследователей отсутствует единодушие в вопросах о том, начиная с каких температур ионная проводимость становится определяющей в полной проводимости, как влияет на ионную проводимость легирование донорными и акцепторными примесями, каковы возможные пути снижения влияния ионной проводимости. Так, в работе [9] утверждается, что влияние ионной проводимости становится незначительным при температурах ниже ~250 К. Данные же авторов работы [8] указывают на то, что ионная проводимость в нелегированных кристаллах, скорее всего, доминирует лишь при температурах выше ~350 К, а при более низких температурах преобладает только для кристаллов с сильным легированием донорами или акцепторами. Влияние легирования оценивается также неоднозначно. Одни авторы предполагают, что при легировании происходит эффективное связывание доноров с V_{TI}, а акцепторов с V_{Br}. Это связывание даже предлагается в качестве средства снижения влияния ионной проводимости [5-8]. В других работах отмечается, что из-за большого значения диэлектрической проницаемости TlBr энергия связи разноименно заряженных дефектов очень невелика (~0,1 эВ) и эффективное комплексообразование не происходит [4]. Влияние же легирования проявляется лишь через изменение энтальпии образования вакансий, хотя и может в определенном интервале концентраций способствовать уменьшению влияния ионной проводимости [4]. Дополнительным осложнением в TlBr является малость энергии миграции всех дефектов, что позволяет устанавливаться термодинамически равновесной концентрации дефектов при всех температурах выше комнатной [4—6], в результате чего связывание вакансий в комплексы с легирующей примесью в любом случае не имеет значения, поскольку нарушенное равновесие всегда может быть восстановлено. Поэтому в качестве меры, способствующей снижению влияния ионной проводимости, предлагалось также использование двойного легирования донорами и акцепторами [5, 6]. Однако, поскольку и энергия миграции примесей также невелика, при понижении температуры можно ожидать выпадения доноров и акцепторов в преципитаты, так что различие между легированными и нелегированными кристаллами будет невелико [5—8]. Таким образом, по-видимому, при повышенных температурах ионная проводимость преобладает над электронной, при температуре ниже 250 К

роль ионной проводимости невелика (об этом свидетельствует и успех в достижении стабильной работы детекторов из TlBr при их умеренном охлаждении до 250 К [2]), но для промежуточных температур 250—350 К, наиболее важных с точки зрения работы неохлаждаемых детекторов, вопрос о вкладе ионной проводимости и способах влияния на нее требует еще серьезного изучения.

Второй проблемой для детекторов из TlBr является очень слабое понимание структуры электронных состояний в запрещенной зоне материала и влияния на нее условий выращивания. Теоретические расчеты, проведенные в работах [5, 6, 11], показали, что собственные точечные дефекты в бромиде таллия, по-видимому, не создают глубоких состояний в запрещенной зоне, за исключением междоузельного брома Br_i, который является глубоким акцептором с уровнем около E_v +1,2 эВ, но при этом имеет высокую энтальпию образования и не должен наблюдаться при равновесных условиях [11]. (в работе [11], правда, отмечается, что V_{Tl} может быть глубоким центром с сильным поляронным взаимодействием, а авторы работы [12] приписывают таким вакансиям уровень около E_v+1,1 эВ, наблюдаемый в фотолюминесценции.). Из этих расчетов даже делается вывод, что высокие значения μτ, наблюдаемые в TlBr, можно объяснить отсутствием захвата неравновесных носителей заряда глубокими центрами. Эта точка зрения, однако, совершенно не подтверждается экспериментом, который показывает, что и время жизни, и μτ в TlBr сильно растут с повышением чистоты материала. Например, в работе [13] с ростом степени очистки материала время жизни возрастало с 1-2 до 70-100 мкс. По поводу природы глубоких ловушек, ответственных за эффект, никакой ясности нет. Теоретические расчеты, проведенные в работе [14] для различных актуальных примесей замещения, показали, следующее: Mg, Ca, Sr, Ba, Pb создают в TlBr мелкие донорные уровни; S, Se — мелкие акцепторные уровни, Ѕ — глубокие акцепторы с уровнем около E_v+0,8 эВ; Си — глубокий донорный уровень вблизи E_v+0,49 эВ; Fe — глубокий донор с уровнем около E_v+0,36 эВ, Si — глубокие доноры с уровнями окол
о $E_{\rm c}{-}1{,}29$
э В и $E_{\rm c}{-}1{,}49$ э В; Al — глубокий донор с уровнем вблизи *E*_c-0,13 эВ.

Экспериментально спектр глубоких ловушек в бромиде таллия авторы изучали в работах [15—17]. Полученные данные удовлетворительно согласуются друг с другом, при этом преимущественно наблюдаемые ловушки имели энергии ~0,45 эВ (предположительно, дырочная ловушка), 0,1—0,2 эВ (вероятно, электронные ловушки) и 0,75 эВ (по-видимому, дырочная ловушка). Происхождение этих ловушек и их связь с чувствительностью детекторов пока практически не изучены.

Ниже сделана попытка выяснить, каков механизм проводимости (электронный или ионный) в нелегированных и легированных мелкими донорами кристаллах TlBr для наиболее актуального с точки зрения работы радиационных детекторов интервала температур 250—320 К. Изучен также вопрос о влиянии стехиометрии и легирования на спектр глубоких ловушек в бромиде таллия, что позволит идентифицировать класс точечных дефектов, ответственных за ловушки, и сопоставить эти данные с предсказаниями теории.

Методика эксперимента

Для выращивания кристаллов TlBr использовали соли TlBr, полученные прямым синтезом из элементов и подвергнутые глубокой очистке, включающей 7 чередующихся процессов вакуумной дистилляции и направленной кристаллизации. В результате был получен материал с суммарным содержанием 70 примесных элементов (<1 · 10⁻⁴ % (масс.) по данным искрового масс-спектрального анализа) и сопутствующих галогенов (Cl, I, F, < 5 × × 10⁻⁴ % (масс.)). Материал усреднили, разделили на 5 партий по 220 г и загрузили в ампулы диаметром 22 мм. В ампулах после вакуумирования создавали одну из исследуемых атмосфер.

Кристаллы выращивали методом Бриджмена, при одинаковых оптимальных температурных условиях, обеспечивающих получение кристаллов с минимальной дефектностью. Исследованные образцы были крупноблочными, с характерным размером блоков более 1 см и разориентацией блоков 1—2°.

Влияние атмосферы на электрофизические характеристики кристаллов TlBr исследовали на образцах размером $5 \times 5 \times 1$ мм³, вырезанных из различных частей слитка и подвергнутых механической илифовке и полировке с последующей химической полировкой в HBr—H₂O₂. Влияние атмосферы выращивания изучали для случаев выращивания в вакууме, в парах брома, под давлением аргона, под давлением водорода, а также на воздухе при атмосферном давлении. Легирование кристаллов свинцом проводили с помощью добавки в расплав PbBr₂ (концентрации 1, 5, 10, 100 ppm) или CaBr₂ (в сходных концентрациях).

Электрические характеристики кристаллов изучали с помощью измерения температурных зависимостей темнового тока между омическими контактами при напряжении 20—100 В в диапазоне температур 85—330 К и с помощью измерения спектров глубоких ловушек методом фотоэлектрической релаксационной спектроскопии (**ФЭРС**, в английской аббревиатуре PICTS [15, 18, 19]). В ходе этих измерений определяли и температурные зависимости стационарного фототока. Тип темновой проводимости образцов находили из знака напряжения холостого хода вольт–амперных характеристик (**ВАХ**) диодов Шотки при комнатной температуре. Концентрацию, подвижность и тип фотоносителей при комнатной температуре вычисляли из измерений сопротивления и эффекта Холла при освещении. Омические контакты для измерений спектров ФЭРС, фото-Холла и температурной зависимости проводимости готовили напылением индия или золота. Как правило, использовали одни и те же контакты для всех этих измерений. Диоды Шотки получали напылением золота в вакууме после предварительной выдержки поверхности образца на воздухе в течение 24 ч (омические контакты получали напылением на свежетравленые образцы). В измерениях ФЭРС и фото-Холла использовали для возбуждения синий светодиод GaN/InGaN с пиком в энергии излучения ~2,7 эВ.

В дополнение к этому измеряли при комнатной температуре и при температуре 95 К спектры микрокатодолюминесценции (МКЛ) в диапазоне энергий фотонов 1,6—3,2 эВ. При этом ускоряющее напряжение для электронного зонда составляло 25 кВ, а пучок был сильно расфокусирован (диаметр ~100 мкм) для уменьшения влияния подзарядки образца. Подробнее методика выращивания образцов и методики измерения были описаны ранее [15, 18, 20].

Результаты и их обсуждение

Рассмотрим прежде всего некоторые основные электрические характеристики исследованных кристаллов. В табл. 1 представлены данные о темновом удельном электрическом сопротивлении $\rho_{\rm T}$, энергии активации Е_а в температурной зависимости сопротивления, типе проводимости в темноте и при освещении синим светодиодом, концентрации фотоэлектронов или фотодырок n(p) и подвижности фотоносителей µ для группы номинально нелегированных образцов, выращенных в разных атмосферах, а также для образцов, легированных Pb (доноры) с различной концентрацией. Результаты приведены для температуры 291 К. Тип проводимости в темноте определен из знака напряжения холостого хода для диодов Шотки при освещении собственным светом. Тип, концентрация и подвижность фотоносителей найдены из измерений удельного сопротивления и эффекта Холла образцов при освещении светом 2,7 эВ. Из табл. 1 видно, что все нелегированные кристаллы имели проводимость дырочного типа с удельным сопротивлением (1—3) · 10¹⁰ Ом · см и энергией активации проводимости 0,79—0,86 эВ. Рост в атмосфере, препятствующей испарению брома и образованию вакансий брома, приводил к увеличению удельного сопротивления и некоторому росту энергии активации проводимости (см. табл. 1 для случая выращивания с противодавлением брома, роста на воздухе, а также роста с противодавлением аргона). Важно понять, связана ли измеренная энергия активации проводимости в изученном температурном диапазоне (85-330 К) с ионной или электронной проводимостью. Для ионной проводимости в случае примерного равенства концентраций вакансий таллия и

Таблица 1

Образец	Атмосфера роста	Легирова- ние Pb, ppm	ρ _т , 10 ¹⁰ Ом∙см	$E_{\mathrm{a}},$ əB	Тип проводимости		<i>n(p)</i> (фото),	μ,
					в темноте	на свету	$10^9\mathrm{cm}^{-3}$	$c M^2/(B \cdot c)$
Lis1	Вакуум		1,3	0,79	p	p	75	4,7
Lis3	Br, 0,02 атм.		2,3	0,86	p	p	7,8	5,8
Lis8	Br, 0,06 атм.	_	1.4	0,83	p	p	30	8,2
Lis13	Ar, 1,3 атм.	_	1,7	0,86	p	p	31	11
Lis5	Воздух	_	1,4	0,81	p	p	8	17
Lis10		1	7,4	1,1		n	23	26,5
Lis11		5	10	1,2		n	15	23,6
Lis9	_	10	35	1,2		n	23	47
Lis7	_	100	7,3	0,6	n	n	8,6	25

Электрические характеристики исследованных образцов TlBr

брома энергия активации проводимости будет равна сумме половины энтальпии образования дефекта Шотки и энергии миграции вакансий брома (0,45 эВ + 0,3 эВ) [4, 5]. Полученное значение 0,75 эВ достаточно близко к энергии активации проводимости, найденной в эксперименте. Но тенденция изменения последней при уменьшении концентрации вакансий брома совершенно не соответствует ожидаемой. Действительно, с понижением концентрации вакансий брома должен становиться преобладающим вклад в проводимость вакансий таллия с барьером миграции 0,6 эВ, и суммарная энергия активации должна составить 1,05 эВ. Полученные данные гораздо лучше описываются дырочной проводимостью с участием глубоких центров около E_v +0,8 эВ, степень компенсации которых растет при понижении концентрации вакансий брома. Аналогичные изменения наблюдали во многих широкозонных полупроводниках. Например, в работе [21] описано влияние степени компенсации на энергию активации проводимости в полуизолирующих кристаллах GaAs(Cr).

Измерение спектров МКЛ нелегированных кристаллов (рис. 1) показало, что в них неизменно присутствует интенсивная примесная полоса с пиком ~1,85—1,9 эВ. Энергия этой полосы хорошо соответствует переходам с уровня около $E_v + 0.8$ эВ в зону проводимости. Природа такого центра пока не выяснена. В работе [16] сделано предположение, что за центр могла бы быть ответственной вакансия таллия, но концентрация таких вакансий должна расти с уменьшением концентрации вакансий брома. Можно предположить, что мы имеем дело с предсказанным в работе [14] глубоким акцептором, связанным с серой, замещающей вакансии брома. Их концентрация, как ожидается, будет уменьшаться с уменьшением концентрации вакансий брома, но здесь, конечно, требуется более серьезная проверка гипотезы.

В нелегированных образцах концентрация фотодырок самая высокая для образца, выращенного в вакууме, что отчасти объясняется при анализе

Рис. 1. Спектры МКЛ, измеренные при 95 К для нелегированных кристаллов TIBr, выращенных в вакууме (1), аргоне (2), на воздухе (3), при давлении брома 0,02 (4) и 0,06 (5) атм: 1 — образец Lis1; 2 — Lis13; 3 — Lis5; 4 — Lis3; 5 — Lis8

температурных зависимостей фототока образцов на рис. 2. Нетрудно заметить, что во всех образцах при низких температурах наблюдается сильное гашение фототока, которое в работе [15] авторы связали с захватом неосновных носителей заряда (электронов) на мелкие ловушки с уровнями ~0,1-0,2 эВ от края зоны проводимости. При этом для всех образцов с достаточно высокой концентрацией фотодырок при комнатной температуре наблюдаются и дополнительные одна или две ступени гашения фототока, связанные с прилипанием электронов на более глубокие электронные ловушки. Отметим также, что подвижность фотодырок в целом заметно ниже для образца, выращенного в вакууме. Теоретический анализ [5, 6] указывает на преобладание в бромиде таллия при комнатной температуре рассеяния электронов и дырок на фононах. Поэтому наблюдаемые в табл. 1 изменения подвижности дырок в разных образцах связаны, по-видимому, с присутствием в них крупномасштабных флуктуаций электростатического потенциала, вызванных локальными вариациями плотности заряженных глубоких центров, а также возможным присутствием барьеров для протекания тока на границах блоков.

С помощью измерений спектров ФЭРС нелегированных образцов (рис. 3) выявило присутствие в образцах глубоких ловушек типа А, В, С и D, энергии активации и сечения захвата о которых приведены в табл. 2, и широких полос состояний, связанных с наложением большого числа уровней или же присутствием дефектов с непрерывным спектром состояний. Такими дефектами предположительно могли бы быть преципитаты таллия, образующиеся из-за сильного пересыщения вакансиями брома вблизи фронта кристаллизации [18, 20]. Ловушки В с энергией активации 0,36 эВ похожи на электронные ловушки E_c-0,35 эВ, а ловушки С с энергией активации 0,5 эВ — на дырочные ловушки E_v+0,45 эВ, описанные в работе [17]. Последние могут быть связаны с глубокими донорными состояниями меди или железа на основании сходства полученных экспериментально энергий перехода с вычисленными в работе [14], но здесь нужны дополнительные исследования. Отметим, что сдвиг стехиометрии в сторону преобладания брома приводит в целом к снижению суммарной амплитуды сигнала в спектрах ФЭРС (см. рис. 3).

Анализ механизма протекания тока в образцах, легированных свинцом, также требует многостороннего анализа. Предположительно такое легирование должно уменьшать концентрацию вакансий брома вследствие увеличения энтальпии их образования [4]. Тогда в ионной проводимости будут преобладать вакансии таллия с энергией миграции ~0,6 эВ, и полная энергия активации будет составлять 0,45 эВ + + 0,6 эВ = 1,05 эВ, т. е. будет достаточно близка к экспериментально измеренной энергии активации проводимости в образцах с умеренным легированием Рb. При сильном же легировании, следуя аргументам работ [7, 8], концентрация вакансий таллия при низких температурах стабилизируется образованием комплексов с донорами. Миграция в этом случае происходит за счет разрыва связи в комплексе и перескока вакансий таллия, концентрация которых в некотором температурном интервале постоянна и близка к концентрации доноров. В этом случае энергия активации ионной проводимости близка к энергии миграции вакансий таллия (~0,6 эВ, поскольку энергия связи комплекса не должна превышать ~0,1 эВ [4]). Такая энергия активации действительно наблюдается для самого сильнолегированного образца Lis7 (см. табл. 1). Однако более систематический анализ показал, что, как и в случае с нелегированными образцами, сходство энергий активации полной проводимости с ожидаемыми энергиями активации ионной проводимости чисто внешнее. На рис. 4 показаны экспериментально измеренные температурные зависимости темнового тока (пропорционального проводимости) для образцов, легированных Pb с концентрацией в расплаве 5 ppm и выращенных в вакууме при двух значениях противодавления брома в ампуле, различающихся в три раза. Из рис. 4 видно, что и энергии активации, и значения

Рис. 2. Температурные зависимости фототока при возбуждении синим светодиодом нелегированных кристаллов, выращенных в вакууме (1), при давлении брома 0,02 (2) и 0,06 (3) атм., в аргоне (4) и на воздухе (5): 1 — образец Lis1; 2 — Lis3; 3 — Lis8; 4 — Lis13; 5 — Lis5

Рис. 3. Спектры ФЭРС, измеренные для нелегированных кристаллов, выращенных в различной атмосфере, при напряжении 20 В и возбуждении импульсом света синего светодиода (20 мВт, длительность 5 с) приведены для временных окон 150 мс/1500 мс: 1 — вакуум; 2 — Br, 0,02 атм.; 3 — Br, 0,06 атм.; 4 —аргон; 5 — на воздухе

Таблица 2

Энергии активации и сечения захвата носителей ловушек, обнаруженных в спектрах ФЭРС исследованных образцов TlBr

Ло- вушка	$E_{\rm a},$ эВ	б , см ²	Примечания
А	0,2	$2\cdot 10^{-17}$	—
В	0,36	$2\cdot 10^{-14}$	Электронная ловушка [17]
С	0,45—0,5	$(1-3) \cdot 10^{-14}$	Дырочная ловушка [17]
D	0,6	$(3-10) \cdot 10^{-16}$	

темнового тока при комнатной температуре близки. Но этого не должно было быть в случае ионной проводимости. Действительно, противодавление брома повышает концентрацию вакансий таллия и, следовательно, должно уменьшать удельное сопротивление для ионной проводимости, чего не происходит. Таким образом, увеличение энергии активации проводимости в образцах с умеренным легированием свинцом обусловлено электронной проводимостью с уровнем Ферми, закрепленным выше в запрещенной зоне, чем в случае нелегированных образцов. К сожалению, определить тип проводимости для слабо и умеренно легированных свинцом кристаллов из знака напряжения холостого хода оказалось очень трудно из-за чрезвычайно высокого сопротивления образцов. Однако для сильнолегированного образца Lis7 (см. табл. 1) проводимость, определенная таким образом, была электронной.

Измерения эффекта Холла и проводимости при освещении также указывают на очень серьезное отличие образцов, легированных Pb, от нелегиро-

Рис. 4. Температурные зависимости темнового тока, измеренные при напряжении на образце 20 В на кристаллах, легированных свинцом (5 ppm) и выращенных в вакууме (1) и при давлении брома 0,03 атм. (2)

Рис. 5. Температурная зависимость фототока, измеренного при возбуждении синим светодиодом и напряжении на образце 20 В, для образцов, легированных свинцом с концентрацией 100 (1), 10 (2), 5 (3) и 1 (4) ppm: 1 — образец Lis7; 2 — Lis19; 3 — Lis11; 4 — Lis10

ванных. Во-первых, основными фотоносителями являются электроны (см. табл. 1). По-видимому, это связано с сильным изменением зарядового состояния центров, через которые идет рекомбинация, при перемещении уровня Ферми вверх по сравнению с нелегированными образцами. Детальная модель рекомбинации в настоящее время отсутствует, но наблюдаемые явления хорошо объясняются, если предположить, что основным рекомбинационным уровнем во всех случаях является центр, на котором закреплен уровень Ферми в слабо и умеренно легированных свинцом образцах. К сожалению, нельзя с уверенностью поместить его около E_c-1 эВ или *E*_v+1 эВ на основании полученных авторами данных. Важно, однако, что в нелегированном материале на этом центре отсутствуют электроны (уровень Ферми вблизи *E*_v+0,8 эВ). Поэтому рекомбинация через него идет посредством захвата электрона из зоны проводимости с последующей рекомбинацией с дыркой в валентной зоне. Если электроны эффективно захватываются электронными ловушками в верхней половине запрещенной зоны, темп рекомбинации будет невысоким. В случае, когда уровень Ферми находится вблизи рассматриваемого рекомбинационного уровня (примерно 1 эВ от края зоны проводимости или края валентной зоны), электроны присутствуют на центре рекомбинации и в равновесном состоянии. Если заполнение электронами лишь частичное (уровень Ферми проходит вблизи рекомбинационного уровня), рекомбинационный уровень конкурирует с электронными ловушками в верхней половине запрещенной зоны за захват электрона. В результате эффект гашения фототока при низких температурах становится для образцов, легированных Pb, значительно менее выраженным, чем для нелегированных образцов (рис. 5). В сильно легированном Pb образце Lis7 уровень Ферми закреплен, по-видимому, вблизи *E*_c-0,6 эВ, т. е. значительно выше рекомбинационного уровня, который, следовательно, целиком заполнен электронами. В этом случае электроны, «залипшие» на уровнях прилипания в верхней половине запрещенной зоны, не приводят к увеличению времени жизни дырок, но снижают время жизни электронов и, следовательно, фотопроводимость. Вместо температурного гашения фотопроводимости мы наблюдаем температурное разгорание фотопроводимости, связанное с уменьшением эффективного времени пребывания электронов на электронных ловушках (см. рис. 5).

В спектрах ФЭРС образцов, легированных свинцом, наблюдали примерно те же ловушки, что и в спектрах нелегированных кристаллов. На рис. 6 представлены спектры ловушек, обнаруженных в кристалле Lis10 (см. табл. 1), для трех образцов, вырезанных из начала, середины и конца слитка. Из рис. 6 хорошо видно присутствие ловушек В, С и D (см. табл. 2). Амплитуда сигнала пиков В и С уменьшается к концу слитка вместе с возрастанием

Рис. 6. Спектры ФЭРС, измеренные на кристалле TIBr(Pb) (1 ppm Pb) для образцов, вырезанных из начала (1), середины (2) и конца (3) слитка (концентрация свинца растет от начала к концу слитка) при 20 В и возбуждении синим светодиодом (мощность 20 мВт, длительность импульса 5 с).

Спектры показаны для временных окон 150 мс/1500 мс

Рис. 7. Измеренные при 95 К спектры МКЛ для кристаллов TIBr(Pb) с концентрацией 1 (1), 10 (2) и 100 (3) ppm

концентрации Pb в твердой фазе. В то же время к концу слитка растет амплитуда пика D и широкой ступеньки 100—200 К, что, по-видимому, связано с образованием более сложных преципитатов дефектов в области с более высокой концентрацией Pb. Результаты измерения спектров ФЭРС для образцов с разным уровнем легирования свинцом в целом подтверждают это наблюдение.

Важным, разумеется, является вопрос о том, присутствуют ли в кристаллах, легированных свинцом, глубокие ловушки E_v +0,8 эВ, на которых закреплен уровень Ферми в нелегированном TlBr. Измерение спектров МКЛ (рис. 7) легированных образцов показало, что эти глубокие акцепторы по-прежнему присутствуют в TlBr(Pb). В спектрах люминесценции слабо- и умереннолегированных кристаллов Lis10 (1 ppm Pb) и Lis9 (10 ppm Pb) преобладает полоса люминесценции 2,25 эВ, по-видимому, связанная с переходами из зоны проводимости на уровень С (E_v +0,45 эВ) [17]. Помимо нее, наблюдается широкое

«плечо», связанное с переходами с участием центров E_v +0,8 эВ, а также полосы люминесценции ~2,7 и 3 эВ (непрямой и прямой межзонный переход соответственно). Интенсивность полосы, связанной с переходом на уровень С, с ростом концентрации Рb в расплаве падает, как это следует и из измерения спектров ФЭРС. Для сильнолегированного образца Lis7 (100 ppm Pb) в спектре МКЛ полоса 1,85 эВ, связанная с переходом на центр E_v +0,8 эВ, абсолютно преобладает. Наряду с ней наблюдается интенсивная полоса ~2, 1 эВ, энергия которой хорошо соответствует энергии перехода на ловушки D. Помимо этого, наблюдается в виде плеча переход 2,25 эВ на уровни С, широкая околокраевая полоса 2,5-2,7 эВ, определяемая переходами с мелких ловушек около краев запрещенной зоны, и прямозонный переход ~3 эВ.

Приведенные данные показывают, что легирование TlBr донорными атомами Pb способно заметно сдвинуть уровень Ферми ближе к середине запрещенной зоны и повысить удельное сопротивление материала, что, конечно, благоприятно для работы радиационного детектора при комнатной температуре. В то же время уровень Ферми оказывается закреплен на основном рекомбинационном уровне в материале, что серьезно снижает время жизни как электронов, так и дырок. К тому же возрастает и рекомбинационная активность центров $E_v + 0.8$ эВ. В дополнение к этому с сильным ростом концентрации Pb повышается и концентрация центров D, которые также являются рекомбинационно-активными (см. выше обсуждение спектров МКЛ). Таким образом, легирование Pb вряд ли позволит получить хорошие значения µт и высокое спектральное разрешение детекторов на основе TlBr.

В заключение остановимся кратко на предварительных результатах влияния легирования кальцием на электрические свойства TlBr. В принципе, влияние этих доноров на удельное сопротивление должно быть сходно с влиянием легирования свинцом. Действительно, измеренная энергия активации в температурной зависимости проводимости составляет 1-1,2 эВ, а удельное сопротивление при комнатной температуре возрастает с (1-2)× $imes 10^{10}$ Ом \cdot см для нелегированных образцов до (1— 1,5) · 10¹¹ Ом · см для образцов, легированных кальцием. При этом положительным моментом по сравнению со случаем легирования свинцом, является уменьшение сигнала ФЭРС (рис. 8). Таким образом, есть надежда, что наряду с повышением удельного сопротивления легирование кальцием позволит обеспечить и достаточно высокое время жизни. В настоящее время ведутся соответствующие исследования.

Вопросы, которые остаются пока без ответа, — это природа центров с энергией активации 0,8 и 1,2 эВ, на которых закреплен уровень Ферми в нелегированных и легированных донорами кристаллах TlBr соответственно. Центры 0,8 эВ в литературе ассоциировались с глубокими акцепторами замещения S или с вакансиями таллия. Для центров 1,2 эВ высказывалось предположение, что они могли бы быть связаны с вакансиями таллия [12]. Если уровень, о котором идет речь, находится в верхней половине запрещенной зоны, то теория [14] позволяет приписать его переходу Si 3+/+ [14]. Что касается природы более мелких центров, то электронные ловушки вблизи $E_{\rm c}$ -0,11 эВ можно отнести к переходу Al 2+/0 [14], а дырочные ловушки *E*_v+0,45 эВ — переходам Cu +/0 [14]. В то же время есть данные, что концентрация электронных ловушек E_c-0,35 эВ возрастает при легировании акцепторной примесью (селеном). Как видно, некоторые альтернативные идентификации могут быть подтверждены или опровергнуты с помощью детальных измерений примесного состава легированных и нелегированных кристаллов и сопоставления результатов этих измерений с данными измерений электрической проводимости, спектров ФЭРС и времени жизни неравновесных носителей тока. Такие комплексные исследования сейчас проводятся авторами. Исходя из предыдущего опыта, можно ожидать, что именно примесный состав кристаллов будет определять концентрацию основных рекомбинационных центров и центров прилипания электронов и дырок [13, 17], но вопрос о том, за какими именно примесями нужно следить, требует дальнейшего изучения. Кроме того, необходимо принимать во внимание, что практически для всех примесей и дефектов в TlBr энергии миграции невелики и необходимо обращать внимание на условия охлаждения выращенных кристаллов. Отметим также, что для температур выше 350 К преобладание ионной проводимости в TlBr, по-видимому, не вызывает сомнений. Поэтому диапазон рабочих температур детекторов из бромида таллия должен по необходимости быть ограничен температурами, не превышающими комнатную больше, чем на 50 К.

Заключение

Показано, что при температурах, не слишком превышающих комнатную (до ~320 К), проводимость в кристаллах TlBr определяется переносом электронов и дырок, генерированных с глубоких уровней в запрещенной зоне, а не ионной проводимостью. В нелегированных кристаллах уровень Ферми закреплен вблизи дефектов с уровнем E_v +0,8 эВ, степень компенсации которых заметно растет при росте в условиях, способствующих обогащению по брому (противодавление брома, противодавление аргона, выращивание на воздухе). Эти условия также обуславливают уменьшение концентрации всех глубоких ловушек, среди которых наиболее важными являются электронные ловушки с энергиями активации 0,1-0,2 эВ (центры прилипания для электронов) и 0,36 эВ, а также дырочные ловушки с энергией активации 0,45 и 0,6 эВ. Легирование донорной при-

Рис. 8. Спектры ФЭРС для образцов TIBr(Pb) (1) и TIBr(Ca): 1 — концентрация Pb 1 ppm; 2 — Ca 100 ppm

месью Pb позволяет заметно сместить уровень Ферми в кристаллах к E_v +(1—1,2) эВ или E_c -(1—1,2) эВ (полученные авторами данные не позволяют различить эти состояния), а при высокой концентрации Рb — и к *E*_c-0,6 эВ. Уровни с энергией активации 1,2 эВ являются, по-видимому, основными рекомбинационными центрами как в нелегированных, так и в легированных свинцом кристаллах. Легирование донорной примесью способствует увеличению темнового сопротивления кристаллов примерно на порядок величины, но также приводит к росту концентрации глубоких ловушек, который становится все более выраженным с повышением концентрации доноров. Поэтому такие легированные свинцом кристаллы не слишком интересны для изготовления радиационных детекторов. Согласно предварительным данным, в случае легирования другими донорами (кальцием) уровень Ферми в TlBr(Ca) закреплен там же, где и в TlBr(Pb), а темновое сопротивление также достигает (1—2) · 10¹¹ Ом · см при комнатной температуре. В то же время концентрация глубоких ловушек в исследованных кристаллах TlBr(Ca) заметно ниже, чем в TlBr(Pb), и этот материал может оказаться перспективным для использования в детекторах.

Библиографический список

1. **Kim, H.** Continued development of thallium bromide and related compounds for gamma-ray detectors / H. Kim, A. Churilov, G. Ciampi, L. Cirignano, W. Higgins, S. Kim, P. O'Dougherty, F. Olsner, K. Shah // Nucl. Instr. and Meth. in Phys. Res. – 2011. – V. 629. P. 192—196.

2. **Donmez, B.** The stability of TlBr detectors at low temperature / B. Donmez, Z. He, H. Kim, L. J. Cirignano, K. Shah // Ibid. - 2010. - V. 623. - P. 1024—1029.

 Shorohov, M. Recent results in TlBr detector crystals performance / M. Shorohov, M. Kouznetsov, I. Lisitskiy, V. Ivanov, V. Gostilo, A. Owens. IEEE Trans. Nucl. Sci. – 2009 – V. 56, N 4. – P. 1855–1858.

4. **Du**, **M.–H.** Effects of impurity doping on ionic conductivity and polarization phenomena in TlBr / M.–H. Du // Appl. Phys. Lett. – 2013. – V. 102. – P. 082102.

5. **Leao**, **C. R.** Simultaneous control of ionic and electronic conductivity in materials: thallium bromide case study / C. R. Leao, V. Lordi // Phys. Rev. Lett. – 2012 – V. 108, N 24. – P. 246604.

6. Lordi, V. Point defects in Cd(Zn)Te and TlBr: Theory / V. Lordi // J. Cryst. Growth. – 2013. – V. 379. – P. 84––92.

МАТЕРИАЛЫ ЭЛЕКТРОННОЙ ТЕХНИКИ. № 3. 2013

7. **Bishop, S. R.** The defect and transport properties of donor doped single crystal TlBr / S. R. Bishop, W. Higgins, G. Ciampi, A. Churilov, K. S. Shah, H. L. Tuller // J. Electrochem. Soc. – 2011. – V. 158. – P. J47—J51.

8. **Bishop, S. R.** The defect and transport properties of acceptor doped TlBr: role of dopant exsolution and association / **S**. R. Bishop, H. L. Tuller, G. Ciampi, W. Higgins, J. Engel, A. Churilov, K.S. Shah // Phys. Chem. Chem. Phys. – 2012. – V. 14. – P. 10160–10167.

9. Vaitkus, J. Influence of electronic and ionic processes on electrical properties of TlBr crystals / J. Vaitkus, J. Banys, V. Gostilo, S. Zatoloka, A. Mekys, J. Storasta, A. Zindulis // Nucl. Instr. and Meth. in Phys. Res. A. – 2005. – V. 546. – P. 188—191.

Kozlov, V. Degradation effects in TlBr single crystals under prolonged bias voltage / V. Kozlov, M. Kemell, M. Vehkamaki, M. Leskela // Ibid. – 2007. – V. 576. – P. 10—14.

11. **Du**, **M.–H.** First principles study of native defects in TlBr: carrier trapping, compensation and polarization phenomenon / M.–H. Du // J. Appl. Phys. – 2010 - V. 108. - P. 053506.

12. **Grigorjeva, L.** The model of recombination process in TlBr / L. Grigorjeva, D. Millers // Nucl. Instr. and Meth. Phys. Res. – 2002. – V. 191. – P. 131–134.

 Kim, H. Developing larger TlBr detectors-detector performance / H. Kim, L. J. Cirignano, A. V. Churilov, G. Ciampi, W. M. Higgins, F. Olshner, K. S. Shah // IEEE Trans. Nucl. Sci. – 2009. – V. 56. – P. 185.

14. **Du**, **M.–H.** First principles study of impurities in TlBr / M.–H. Du // J. Appl. Phys. – 2012. – V. 111. – P. 073519.

15. **Smirnov, N. B.** Electrophysisical characteristics of TlBr crystals grown in various ambients / N. B. Smirnov, I. S. Lisitsky, M. S. Kuznetsov, A. V. Govorkov, E. A. Kozhukhova // IEEE Nucl. Sci. Symp. Conf. Record. – 2006. – V. 6. – P. 3700.

 Gazizov, I. M. Kinetika otklika toka detektorov TlBr v pole gamma-izlucheniya vysokoi moshnosti dozy / I. M. Gazizov,
 V. M. Zaletin, V. M. Kukushkin, M. S. Kuznecov, I. S. Lisickii // FTP. – 2012. – V. 46, N 3. – P. 405.

17. Smith, H. M. Electronic effects of Se and Pb dopants in TlBr / H. M. Smith, D. J. Phillips, I. D. Sharp, J. W. Beeman, D. C. Chrzan, N. M. Haegel, E. E. Haller, G. Ciampi, H. Kim, K. S. Shah // Appl. Phys. Lett. – 2012. – V. 100. – P. 202102.

18. **Smirnov, N. B.** Vliyanie atmosfery vyrashivaniya na harakteristiki kristallov TlBr / N. B. Smirnov, A. V. Govorkov, K. S. Zaramenskih, I. S. Lisickii // Cvetnye metally. – 2011. – N 6. – P. 51–55.

19. **Tapiero, M.** Photoinduced current transient spectroscopy in high–resistivity bulk materials: instrumentation and methodology / M. Tapiero, N. Benjelloun, J. P. Zelinger, **S**. El Hamdi, C. Noguet // J. Appl. Phys. – 1988 – V. 64. – P. 4006.

20. Lisickii, I. S. Elektricheskie svoistva i detektornye harakteristiki kristallov TlBr, poluchennyh v razlichnyh usloviyah / I. S. Lisickii, N. B. Smirnov, M. S. Kuznecov, A. V. Govorkov, E. A. Kozhuhova, V. M. Zaletin. // V sb. «Trudy «Giredmet». – M. : ZAO «Print», 2007. – P. 130—139.

21. Martin, G. M. Detailed electrical characterization of the deep Cr acceptor in GaAs / G. M. Martin, A. Mitonneau, D. Pons, A. Mircea, D. W. Woodward // J. Phys. C: Solid State Phys. – 1980. – N 13. – P. 3855.

Работа выполнена при поддержке Министерства образования и науки РФ (государственный контракт № 14.513.12.0007).

УДК 621.315.592:548.4

К ВОЗМОЖНОСТИ ВЫРАЩИВАНИЯ ОБЪЕМНЫХ КРИСТАЛЛОВ Si—Ge МЕТОДОМ ОСЕВОГО ТЕПЛОВОГО ПОТОКА ВБЛИЗИ ФРОНТА КРИСТАЛЛИЗАЦИИ

© 2012 г. М. А. Гоник^{1,2}, А. Cröll³ ¹ Центр теплофизических исследований «Термо», ² Центр материаловедения «Фотон», ³ Institute of Geosciences of Albert–Ludwigs–Universität, Freiburg, Germany

Разработан метод бестигельного выращивания монокристаллов кремния и его соединений с германием — метод осевого теплового потока вблизи фронта кристаллизации (ОТФ). Для его реализации использована установка получения кристаллов методом плавающей зоны, в которой дополнительно используется так называемый ОТФ-нагреватель. Нагреватель формирует вокруг себя зону расплава, который удерживается силами поверхностного натяжения между растущим кристаллом, питающим стержнем и нижней и верхней поверхностями ОТФ-нагревателя соответственно. Для защиты графитового корпуса нагревателя от агрессивного действия расплавленного кремния его поверхность покрыта слоем SiC. имеющим специальную нанокристаллическую структуру. Описана система автоматического управления процессом ОТФ-кристаллизации. обеспечивающая поддержание температурного поля вблизи растушего кристалла с точностью 0,05—0,1 К. Проведено численное моделирование тепломассопереноса при росте соединения Si_xGe_{1-x}, содержащего 2 % Si, а также моделирование формообразования свободной поверхности расплава Si—Ge при вытягивании кристалла. Показана возможность получения однородных по сечению и длине объемных монокристаллов, найден диапазон максимально достижимой высоты слоя расплава, составляющий 10-20 мм, при котором еще сохраняется устойчивость процесса капиллярного формообразования. Выращены легированные сурьмой монокристаллы кремния, характеризующиеся сильным двойникованием, которое непосредственно связано с обнаруженными включениями частиц SiC в кристаллическом кремнии. Подтверждена возможность формирования с помощью ОТФ-нагревателя выпуклой и близкой к плоской формы фронта кристаллизации. Установлено, что при выращивании на затравку в направлении [111] реализуется послойный механизм роста кремния, причем область гранного роста при определенных условиях занимает почти все сечение кристалла.

Ключевые слова: установка и метод плавающей зоны, погруженный в расплав нагреватель, кремний, гранный рост, линейные и точечные дефекты.