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Abstract 

In this paper, an optimal control model for cholera disease described by a system of first order ordinary 

differential equations was formulated and examined. The necessary conditions for the attainment of 

optimum level of control in the dynamical system were derived by employing the Pontryagin’s Maximum 

principle. Numerical studies of the analytical results were conducted to investigate the behaviour of the 

optimality system and the results were tabulated. The tabular results showed that the combination of 

the interventions up to 80% was capable of bringing cholera epidemic under control. As the rate of 

control was directly related to the cost of control, the result of the analysis revealed the control outlay 

that maintained the optimum balance of interventions with the lowest cost.   

Keywords: Optimal control Model, Cholera disease, Pontryagin’s Maximum principle 

 

Introduction 

 

While intensive sanitation and availability of potable water have eliminated cholera in advanced 

countries of the world, the disease still remains a major threat to Africa and the entire less 

developed countries. The emergence and re-emergence of cholera in the developing countries 

have resulted in not only the mortality and morbidity of human but also increase in the 

economic predicaments. Despite the implementation of various intervention strategies towards 

the eradication of the disease, the disease continues to occur.  

On that ground, there is a need to investigate the optimal level of controls required to 

stem the disease. The standard method for obtaining the solutions of a dynamical optimization 

problem when the problem is a continuous function of time is termed optimal control. The 

optimal control theory provides a necessary framework in developing optimal strategies to 

control various types of diseases with a view to examining the optimal balance in terms of the 

costs of providing controls in disease management (Laarabi et al. 2013).  

Investigating the necessary and sufficient conditions required by the interventions to 

actually prevent or eliminate diseases is not new in modelling. Nana-Kyere et al. (2017) 
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presented an optimal control model of malaria disease with standard incidence rate. They 

incorporated three control measures and discovered that the optimum interventions 

considered have total and incompatible results on the limitation of the exposed and infectious 

humans. 

In their work, Laarabi et al. (2013) did not examine a particular disease but designed 

an optimal control problem with respect to epidemic model taking into consideration the 

saturated incidence rate and the saturated treatment function. The optimal control and no 

control models were compared and it was discovered that the optimal vaccination was more 

effective for limiting the population of infectious and susceptible individuals and increasing the 

population of recovered individuals. 

Oke et al. (2018) presented a deterministic model of breast cancer defined by a system 

of first order ordinary differential equations in the presence of chemotherapy treatment and the 

ketogenic diet. They applied optimal control theory to investigate the optimal drug balance as 

an essential input control of the system therapy in order to reduce the number of cancerous 

cells by examining various controlled combinations of administering ketogenic diet and the 

chemotherapy agents. They discovered that an individual has the tendency of developing 

breast cancer depending on the number of immune systems, the rate by which ketogenic diet 

(d) is being consumed to resist tumour cells and the potency of the anticancer drug (k). 

Besides, they discovered that the rate of tumour formation can be accelerated if an additional 

quantity of estrogen is injected into the body already saturated with estrogen quantity either 

through birth control or hormone replacement therapy (HRT). 

Wang and Modnak (2011) developed a cholera model with permanent immunity and 

incorporated three different control measures into the model. The result obtained showed that 

the interventions interplayed with one another and concluded that multiple control measures 

achieve a better result than a single intervention in fighting against the propagation of cholera 

disease which is in agreement with the outcome of the study conducted by (Sule & Lawal, 

2018). 

Contrary to the claim by Wang and Modnak (2011), cholera is one of the infectious 

diseases that do not confer permanent immunity upon recovery.  Therefore, it is necessary to 

examine the effect of providing controls on the population of susceptible and infectious 

individuals in the SIR-B transmission model where recovered individuals can go back to the 

susceptible class upon the expiration of the immunity acquired through vaccination.  

The implementation of appropriate control strategies could reduce or eliminate disease 

in a population. Consequently, an optimal control model which takes the form of vaccination, 

treatment and sanitation is implemented to investigate the extent to which these controls could 

limit the population of susceptible and infectious individuals and increase the population 

recovered individuals in a population that is assumed to be fixed. 

 

Materials and Methods 

SIR-B cholera model was developed where S(t), I(t), R(t) and B(t) are compartments for each 

state variable and they represent the number of susceptible individuals at time t, the number 

of infected individuals at time t, the number of recovered individuals at time t and the population 

of bacteria in the aquatic environment at time t respectively. S(t) is the population of individuals 

who have not been infected at time t but are capable of being infected, I(t) is the population of 

individuals who have been infected at time t and are capable of spreading the infection to those 

in the susceptible category. R(t) is the population of individuals who are temporarily immune 

to the disease either by the immunity acquired through vaccination or successful treatment 

after infection. 
1 2

, , , , , , ,
c

and        are parameters representing recruitment rate 

into susceptibility, human death rate unrelated to the disease, human death rate due to the 

disease, contact rate between susceptible individuals and contaminated water, contact rate 
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between susceptible and infectious individuals, pathogen concentration that yields 50% 

chance of catching cholera, rate at which infectious individuals contributes to the growth of  

pathogen, natural death rate of the pathogen and human recovery rate unrelated to the 

treatment respectively 

Three intervention strategies which are functions of time with appropriate upper and 

lower bounds are investigated. The first intervention ( )t is in the form of treatment which 

increases recovery rate and reduces cholera induced death rate. Vaccination, ( )v t is also 

considered as a control strategy and the immunity acquired through it moves susceptible 

individuals to the recovered class at a rate ( )v t . Since the best way to limit pathogen 

concentration and avert bacteria ingestion rates is sanitation then ( )t is introduced as a 

control measure to water supply. Introducing these controls, the following model was 
developed: 

 

 

1

2

1

2

( )

( )

( ) ( ) ( )

( ( ))

c

BSdS
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dt

dB
I t B
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  

  





 


     

 

     

 


    



   

                     (1) 

The definition of the model parameters and the sources for their values in the literature are 

presented in Table 1. 

 

Table 1. Definitions and sources of the model parameters 

Parameter Symbol  Value Unit Source 

Human recruitment rate 𝜋 10 day -1 Kadaleka, (2011) 

Rate of human contribution to the 

population of V.cholerae 

𝜀 10 cells/ml/day Isere et al.,  (2014) 

Rate of human exposure to 

contaminated water 

𝛽1 0.075 day -1 Wang &  Modnak, (2011) 

Pathogen concentration that yields 50% 

chance of catching cholera 

ℵ 105 cells/ml Edward & Nyerere, (2015) 

Natural death rate for V.cholerae 𝛿 0.4 day -1 Isere et al.,  (2014) 

Death rate unrelated to cholera 𝜇 0.02 day -1 Kadaleka, (2011) 

Human Death rate due to cholera 𝜇𝑐 0.015 day -1 Kadaleka, (2011) 

Rate of contact between susceptible 

and infectious individuals 

𝛽2 0.00011 day -1 Wang &  Modnak, (2011) 

Rate of losing immunity 𝜎 0.01 day -1 Al-Arydah et al.,   (2013) 
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The control set is given as 

  max maxmax
( ), ( ), ( ) / 0 ( ) ,0 ( ) ,0 ( )v t t t v t t tv                                      (2) 

max max
,v  and 

max represent the maximum limits for the impact of vaccination, treatment and 

sanitation in limiting cholera infection and increasing recovery. Then, the total number of 

infections and the costs of intervention strategies in a given period of time is minimized subject 

to objective functional 

 

 
2

min

21 22 31

2 20

32 41 42

( ) ( ) ( ) ( ) I(t)

( )

( )
, ,

( ) ( )

T
I t v t S t t

dt

t

p p V t p
v

p t p p t




 

 

    
 
 

   

                               (3) 

 

The coefficient  
,

1,2,3,4; 1,2
i j

i jp   in monetary terms gives the cost implications of the 

intervention strategies while the quadratic terms involved in the objective functional indicate 

the nonlinear nature of the costs particularly at the high level of intervention which is in 

agreement with the nonlinear nature of the model. The minimization procedure is based on the 

models (1) whose equations are regarded as the state equations in the optimal control context 

and the variables , ,S I R  and B are regarded as the state variables. Our main concern is 

to establish the optimal solutions, 
**

( ), ( )t tv  and 
*
( )t that minimizes the objective 

functional (3). 

By applying the Pontryaging’s Maximum Principle as in (Akande & Ibrahim, 2017; Neilan et al., 

2010; Agusto et al. 2012; Isere, 2014; Lashari et al., 2013), the necessary conditions for the 

optimality of the controls are derived. The Pontryaging’s Maximum Principle which is based on 

the introduction of adjoint functions shall be applied to obtain the solutions of the optimal control 

problem. The Principle uses the state and adjoint functions to represent the optimal control 

problem. The method transforms the problem of minimizing the objective functional (under the 

constraint of state equations) into minimizing the Hamiltonian with respect to the intervention 

strategies. 

The Hamiltonian Adjoint Equations 

Suppose the adjoint functions introduced are 
1 2 3
, ,   and 

4 . Since there are four state 

variables, S, I, R and B then, 
1 2 3
, ,   and 

4 correspond to S, I, R and B respectively. 

The Hamiltonian, H can then be derived by finding the product of each adjoint function with its 

corresponding state equation and adding each of these products to the integrand of the 

objective functional. Hence,  
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 The adjoint function (4) is characterized as: 

 
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Subject to the following conditions of transversality (i.e, when time becomes zero): 

1 2 3 4
(T) 0, (T) 0, (T) 0, (T) 0      

                                                        
 

The Optimality Equation/ Optimality Condition 

We may wish to minimize or maximize in optimal control theory depending on our intention. 

Controls was used to minimize infections and susceptibility or to maximize efforts directed to 

limit infections and susceptibility. Controls can also be used to maximize recovery. The optimal 

control is minimal if the second derivative of the Hamiltonian equation with respect to a control 

variable is negative otherwise it is maxima. i.e 

2

2

2

2

0 max (7)

0 minimum (8)

imum

u

u

 


 





  

In respect to the present study, the optimality equations are derived by determining the 

differential coefficients of the Hamiltonian equation (4) with respect to the control variables. 

(5) 

(6) 

(4) 
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The resulting equations are equated to zero and the control variables are solved for from which 

the optimal solutions, 
**

( ), ( )t tv  and 
*
( )t are obtained subject to the lower and upper 

constraints max maxmax
0 , 0 , 0 .v v        

 So when 
0, 0

H H
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 
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0
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


   in (4) then, 
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                                           (9) 

From which the optimal values for

**
( ), ( )t tv  and 

*
( )t are obtained as  
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                                                                                        (10)           

To distinguish between the minima and maxima, we find the second derivative of (9) and each 

of 

2 2

2 2
,

H H

v  

 
 and 

2

2

H




 is greater than zero. Hence, the optimality is minimum. That is our 

objective is achieved under minimum cost.                 

Numerical Simulation of the Optimal Control Analysis and Discussion 

The solutions for the systems (1),  (4), and (5) can be obtained numerically when there are 

initial conditions for (1) and transversality conditions for (4) and (5) at the point where 

0
H H H

v  

  
  

     

The forward-backwards method as in Wang and Modnak (2011) is applied to solve the 

optimality system (1), (4) and (5) in an iterative manner. Equations (1) are solved forward in 

time by the classical fourth-order Runge-Kutta method using initial guess for the intervention 

variables. Equations (4) and (5) are solved backwards in time by the solutions of equations 

(1). The values of the controls are varied with the new solutions of equations (1), (4) and (5) 

and the process is repeated until the solutions converge. 
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To achieve the numerical simulation, the values assigned to the model parameters in Table 1 
are adopted. The cost parameters values in Wang and Modnak (2011) are also adopted so 

that    𝑝21 =2, 𝑝22 =10, 𝑝31 =10, 𝑝32 =10, 𝑝41 =10 and 𝑝42 =20. The initial values assumed for 

the state variables are:       0 70, 0 5, 0 25, (0) 3S I R B     while the overall period 

of infection time is assumed to be 70T  days. The initial values assumed for the adjoint 

functions are given in eqn. (6) as : 𝜆1(𝑇)= 0, 𝜆2(𝑇) = 0, 𝜆3(𝑇 )= 0, 𝜆4(𝑇)= 0. We use 
mathematical software (Maple 18) to determine the numerical values of the variables S(t), 

I(t), R(t) and B(t) when the values of the controls 𝑣(𝑡), 𝜌(𝑡) and 𝜔(𝑡) are varied from 0 to 
1and the results are depicted in Tables 2 - 8.     

Table 2. Solutions for 𝑣 = 𝜌 = 𝜔 = 0   Table 3. Solutions for  𝑣 = 𝜌 = 𝜔 = 0.2 

 

 

 

 

 

                                                                             

 

 

Table 4. Solutions for 𝑣 = 𝜌 = 𝜔 = 0.5  Table 5. Solutions for 𝑣 = 𝜌 = 𝜔 = 0.7

   

 

 

 

 

 

 

 

 

Table 6: Solutions for 𝑣 = 𝜌 = 𝜔 = 0.8                 Table 7: Solutions for  𝑣 = 𝜌 = 𝜔 = 0.9 

 

 

 

                                   

 

 

 

Variables Solutions 

S(t) 111.837579 

I(t) 4.376176 

R(t) 21.517670 

B(t) 99.452444 

Variables Solutions 

S(t) 55.327145 

I(t) 1.658802 

R(t) 80.866229 

B(t) 37.083681 

Variables Solutions 

S(t) 24.616507 

I(t) 0.412408 

R(t) 112.910952 

B(t) 8.636379 

Variables Solutions 

S(t) 16.821730 

I(t) 0.178463 

R(t) 120.969778 

B(t) 3.374444 

Variables Solutions 

S(t) 14.339035 

I(t) 0.122864 

R(t) 114.470338 

B(t) 2.145826 

Variables Solutions 

S(t) 12.663374 

I(t) 0.879498 

R(t) 125.237576 

B(t) 1.387464 
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Table 8: Solutions for 𝑣 = 𝜌 = 𝜔 =1.0 

 

 

 

 

 

 

Tables 2-8 are provided in order to give numerical and quantitative pictures of our analysis. 

Considering table 2 – table 8, it is observed that increase in the values of the controls from 0 

to 1 results in increase in the population of the recovered individuals but decrease in the 

population of other state variables which is the aim of disease control in epidemiology. With 

controls, we expect the population of the recovered individuals to increase but that of the 

susceptible, infectious and pathogen to decrease. In fact, the population of the infectious 

individuals and pathogen need to be reduced to zero for the disease to be completely 

eradicated. 

However, as disease control is cost-oriented, rates of controls which give the best result in 

terms of cost management need to be determined, either 0.5, 0.7, 0.8, 0.9 or 1.0 from Tables 

2 - 8. Even though, the populations of the infectious individuals and the pathogen are reduced 

to zero when the rate of control is maintained at 1.0 in table 8 yet, the population of infectious 

individuals is about to take off in table 8 compared to table 6 where the population of the 

infectious individuals is the least. As the rate of controls is directly related to the cost of control 

therefore, optimum balance with the lowest cost is achieved when the rate of controls is 80% 

(i.e. 0.8) in table 6. The combination of controls at this level is capable of driving cholera 

outbreak into extinction. We only need to raise the control 𝜔(𝑡)  that has impact on B(t) in order 

to reduce the pathogen population to zero but keep both the treatment rate 𝜌(𝑡) and 

vaccination rate 𝑣(𝑡) at 0.8. Graphical profiles of the above numerical results (Tables 2 - 8) are 

presented in Figure 2 - 8. 

Variables Solutions 

S(t) 11.283978 

I(t) 0.657491 

R(t) 126.646675 

B(t) 0.916652 
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         Figure 2. Effect of controls at zero   Figure 3. Effect of controls at 0.2 

  

 

      Figure 4. Effect of controls at 0.5                                    Figure 5. Effect of controls at 0.7 
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Figure 6. Effect of controls at 0.8         Figure 7. Effect of controls at 0.9 

 

 

 

 

 

 

 

 

 

 

             

Figure 8. Effect of controls at 1.0 
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Conclusion 

In this work, an optimal control model for cholera disease described by a system of first-order 

nonlinear ordinary differential equations was developed. The necessary and sufficient 

conditions for the attainment of the optimum level of control in the dynamical system are 

derived by employing the popular Pontryagin’s Maximum Principle. Based on the outcome of 

the study, society is bound to exist cholera outbreak and maintain cholera-free atmosphere if 

it can keep the cholera vaccination and cholera treatment rates at 80% and at the same time, 

raise the rate of sanitation above 80%. This has been working for developed countries like the 

US, Great Britain, France, etc. where cholera outbreak has become history. 
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