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Abstract 

 
This study compared partial likelihood (PL) and penalized partial likelihood (PPL) estimators in non-
proportional hazards model with dichotomous time-varying covariates and subject–specific frailty. We 
considered Gamma and Inverse Gaussian as frailty distributions. The methods were illustrated with a 
dataset on diabetes. Extensive numerical studies were conducted using Monte Carlo simulations to 
compare the efficacy of the methods in terms of Relative Bias (RB) and Root Mean Square Error 
(RMSE). A sensitivity analysis was carried out to assess the power of the estimators under 
misspecification of frailty distributions. It was found, that PPL estimator generally outperformed PL 
estimator in all scenarios considered. Efficiency was found to increase with increase in sample size, and 
decrease with increase in censoring proportion. The sensitivity analysis conducted to assess the effect 
of frailty misspecification revealed that sample size, proportion of censored observations and the shape 
of the frailty distribution (log-skewed) severely affected the power of the estimators.  
 
Keywords: Survival time; non-proportional hazards; frailty; time-dependent covariate; relative bias 
 

 
Introduction 

 
Non-proportional hazard models have become popular in the analysis of time-to-event data. 
In practical situations, the proportionality assumption which is often made regarding 
proportional hazards (PH) models is violated. This implies that the covariate under 
investigation no longer has a constant impact on the hazard ratio over time, and therefore, 
applicability of proportional hazards models, proposed by Cox (1972), becomes inappropriate. 
Correctly accounting for time-varying covariates is important because it allows one to avoid 
the problem of survivor-treatment or immortal-time bias (Suissa, 2007; Beyersmann, et al., 
2008; Austin et al., 2006). Non-proportional hazards can arise if some covariates only affect 
survival up until sometime t or if the size of their effects change over time. In such a situation, 
Extended Cox regression model will be more appropriate to model such time-varying 
covariates instead of the usual standard Cox model.  Some of the studies that have been 
carried out in the recent times in this direction include Zhou (2001), Robert and Casella (2009), 
Austin (2012 and Adeleke et al. (2015). Valenta and Weissfeld (2002) explicitly simulated a 
piecewise-exponential model to evaluate Gray’s piecewise constant time-varying coefficients 
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model in a study on problems with vaguely defined disease states. Lee, Seo, and Shin (2011) 
developed a general method that allow a set of covariates to have heterogeneous effects 
across the domain of the threshold covariate (Zhang et al., 2014)  

Incorporating subject-specific frailty or unobserved heterogeneity, in survival analysis has 
become popular, especially in medical research, because subjects differ substantially in 
characteristics and this causes variations in the effects of observed covariates amongst them. 
This may be as a result of exposure of individuals to different risk levels, which makes them 
experience failure events than others, even after controlling for the known risk factors. Also, 
some relevant covariates may be unavailable to the researchers (Munda, 2012), and this 
makes the assumption of independent and identical distribution, which is often made regarding 
survival data of different patients implausible.  

Frailty model was introduced in the biostatistical literature by Vaupel, Manton, and Stallard 
(1979), and discussed in details by Hougaard (2000), Duchateau and Janssen (2008), Wienke 
(2010), and Munda et al. (2012).   

The general family of distributions commonly used for frailties is the family of power variance 
function (PVF) distributions (Hougaard, 2000), and these include gamma, positive stable and 
inverse Gaussian distributions. They are most popular because their densities are easy to use, 
as they lead to closed-form expressions for the expectation of the frailties. Recent research 
have also used an extension of lognormal distribution to log-skewed normal distribution 
(Azzalini, 1985) as frailty distributions.  

The problem of frailty misspecification is actually a part of a more general area of 
misspecification in the statistical literature. Neuhaus et al. (1992) concluded in his study that 
the misspecified mixed effects model may result in regression parameter estimates that are 
asymptotically biased (inconsistent). Pickles and C'rouchley (1995) performed simtlations to 
examine the effect of frailty misspecification on regression coefficient estimation where the 
results indicate robustness to misspecification, and this is in contrast to the conclusions of 
Heckrnan and Singer (1984), who found high sensitivity of parameter estimates from economic 
duration data to the assumed functional form for the distribution of unobserved variables.  

Estimation of parameters in Cox model is often done by maximizing the partial likelihood 
(PL) or the log partial likelihood either directly (Andersen et al., 1997) or by using the 
expectation maximization (EM) algorithm (Nielsen et al., 1992; Vaida  Xu, 2000; Duchateau & 
Janssen, 2008). However, the resulting estimates from partial   could suffer from substantial 
bias caused by the presence of many nuisance parameters or may have large variance when 
collinearity exists among the explanatory variables (Huang and Harrington, 2002). Penalized 
partial likelihood (PPL) method of estimation (Therneau, Grambsch, and Pankratz, 2003, 
Therneau and Grambsch, 2000) has in recent times become a popular alternative to Cox PL 
method for (censored) survival data. Penalized estimating equations have been used in 
settings such as nonparametric regression modelling, where a penalty term is used to reduce 
over fitting with high dimensional models, and the key step is to apply a penalty function to 
smoothen covariate effects of interest. Verweij and Van Houwelingen (1993) have used a 
cross-validated partial likelihood (CVL) to choose the penalty parameter, where the optimal 
penalty parameter is often chosen to maximize the sum of the contributions of each subject to 
the log partial likelihood and thus minimize the CVL function.   
This study therefore, aims to comparing the two estimators (PL and PPL) using data on 
Diabetes and simulated data under the violation of proportional hazards assumptions in the 
presence of subject-specific frailty, and to assess their sensitivity to frailty misspecification. 
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Materials and Methods 

 
Model Formulation  

 
Consider the standard Cox proportional hazards model given by 
                  

)exp()(),( 0 iii Ztzt                                                (1) 

 
where   is a non-parametric baseline hazard function, Zi is a vector of time-invariant covariates 
for ith individual and  is a p vector of regression coefficients. The model in (1) assumes that 
the hazard at time t is constant over time. An important feature of the model which concerns 
the proportional hazards assumption is that the baseline hazard   is a function of t, but does 
not involve the Z’s. Often time, the effect of a covariate on survival probability may be time-
varying that depends on t, denoted by Xi(t) = Xi*r(t), which is an interaction of covariate Xi with 
the function of time r(t). The covariates for consideration under non-proportional hazards model 
framework may then be extended as  

Zi(t) = (Zi , Xi(t))                                                            (2) 
 

We can write the model in (1), including time-varying covariate as   

,                     ))(exp()())(( 0 tXZttZt itiii                              (3) 

 
The function r(t) in the time-varying covariates Xi(t) is usually selected according to the 
information level of the researcher. In this study, a dichotomous one-step change point function 
has been considered as in Austin (2012), and this is given as.  

,                         









a

a

ttif

ttif
tr

0

1
)(                                                            (4) 

where ta is the threshold value representing the point where the change occurs. An example 
of time varying covariates of this form is drug administration to patient on hospital admission 
which may have different effects at early and later time of the admission.  Other common 

choices of r(t) include t and )log(t  .   

      
Incorporation of subject-specific frailty   

Let Ti be the event time of the ith subject which is censored by a variable Ci. Then the 
observed survival time can be given as the minimum of the event time Ti and the censoring 
time Ci, with the censoring indicator given by δj =I(Ti ≤ Ci) where I(.) is the censoring indication 
function. If Wj is the associated frailty for subject i, then given Zi(t) = (Zi,Xi(t)) and Wj, the model 
with subject-specific frailty, extending (3) can be given (Wienke 2010, Munda et al. (2012) as. 

))(exp()(),,),(( 0 tXZtWWtZt itiitiii                          (5) 
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and the conditional survival function is given by 

                    )),((exp()),(( iiii WtZtHWtZtS                                                   (7) 

The model in (7) represents the probability of being alive at time t given the frailty Wi. 
 
Frailty Distributions 

 
We give three frailty distributions used in this study 
 
Gamma Frailty (GAF) Distribution     

The one parameter gamma distribution, has been the most popularly used frailty distribution 
in survival analysis. The density function is given as    
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where   (.) is the Gamma function. 
  
For the purpose of identifiability, it is assumed that the random variable W has mean and 
variance given respectively as  .)(and1)(  WVarWE                          

Larger values of   indicate that there is a higher degree of heterogeneity among subjects. 
 

Inverse Gaussian Frailty (IGF) Distribution 
 

The density for Inverse-Gaussian distribution   is given as 
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Log-skewed Normal (LSN) Distribution 
 
The log-skewed normal density distribution for a continuous random variable W (Azzalini, 
1985), is given as  
 

 ϕ(w,α) = 2ϕ(w)Φ(α,w),    w      ,             (10)  

 
where ϕ and Φ denote the standard normal density and distribution function respectively, and 
α is the skewness parameter such that α > 0 produces a distribution with positive skewness 
and α < 0 corresponds to negative skewness; if α = 0, the distribution reduces to the usual 
standard normal density.  
It should be noted that W > 1 indicates that a subject is frail, whereas W < 1 indicates that the 
subject is strong and has lower risk. 
 
Methods of Estimation 
Estimation of parameters in this study is based on the partial likelihood (PL) and penalized 
partial likelihood (PPL) methods (McGilChrist & Aisbett, 1991, McGilchrist, 1993). 
 
Partial Likelihood (PL)  

The likelihood is formed as a combination of the failures and the censored observations as in 
the standard survival models and is given as.  
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where )(1)( tFtS ii    is the survival function of the event time. 

Writing the hazard function in terms of the density and survival functions, we have   
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Then the conditional likelihood for the ith individual given frailty Wi can be written as  
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where  is the cumulative hazard function. Unconditionally, we can obtain the marginal likelihood 
of the ith individual by integrating out   so that we have   
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Where )(wh   is the probability density function of the frailty given in (8) and (9). The marginal 

likelihood in (13) is thus maximized to obtain the partial likelihood (PL) estimators )ˆ,ˆ,ˆ(  t  .   

 
Penalized Partial Likelihood (PPL) 

Rather than integrating out the frailty  i as in (13), the penalized partial likelihood method treats 
the frailty density in the complete data likelihood as a penalty term. Therefore, following 
(McGilchrist, 1993), the penalized partial likelihood for the frailty model can be written as 
 

                        
,                                  

(14)                                               
 
 
 

which is maximized over both ( t ,  ) and Wi to obtain the corresponding penalized partial 

likelihood estimators.  
 
Maximization of the penalized partial likelihood criterion leads to the same parameter estimates 
and the frailties Wi as in the EM algorithm (Therneau et al., 2003). Using the frailty distributions 
in (8) and (9) with the likelihoods in (13) and (14), four model configurations were considered 
in this study which are: Partial likelihood with Gamma frailty (PL-GAF), Partial likelihood with 
Inverse Gaussian frailty (PL-IGF), Penalized Partial likelihood with Gamma frailty (PPL-GAF) 
and Penalized Partial likelihood with Inverse Gaussian frailty (PPL-IGF). 
 
Results 
 
Application to Data on Diabetic Patients  
 

Data were collected on 150 diabetic patients who were diagnosed and admitted at the 
University of Maiduguri Teaching Hospital, Borno State. From these, 60 patients died during 
the duration of admission and the remaining 90 were either lost to follow-up or were still alive 
at the time of data collection and were censored at the time they were last seen or time of data 
collection. Survival time was defined as the time to death due to diabetes, recorded in weeks. 
The covariates thought to be associated with diabetes were also collected, and these included: 
age of the patient in years, sex (male=1, female=0), body mass index in kg/m2, alcohol intake 
(yes=1, no=0), salt intake (normal=1, abnormal=0), family history (inherited=1, uninherited=0) 
and exercise (yes=1, no=0). Individual patient identification number was used as the frailty 
information. To check the proportionality (PH) assumption, ln(-ln(survival)) plot was obtained 
for all the binary variables. The graphs are shown in Figure 1. PH assumption was violated for 
alcohol intake, doing exercise and family history as the lines cross each other for each of these 
covariates, but there is no evidence of violation for salt intake.     
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Salt intake                                                               Alcohol intake 

          

  Exercise                                                              Family History 

     

  

Figure 1. Testing PH assumptions on Salt intake, Alcohol intake, Doing exercise and Family  

history 
 

The change point at  as described by (4) was located at the median survival time which is 42 

weeks so that the time varying function was given as   
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The time-varying covariate Xi(t) was thus built with those covariates that violated proportionality 
assumption by their interactions with function of time )(tr ) as given in (16). Non-proportional 

Hazards model (5) was then fitted with the two estimators PL and PPL with the four 
configurations PL-GAF, PL-IGF, PPL-GAF and PPL-IGF earlier described.  

The results are presented in Table1. It is observed that the estimated hazard ratios (exp(β)) are similar for the 
two estimators under the two frailty distributions, with slightly low standard errors in favour of 
the penalized partial likelihood estimator. The significant variables in predicting the risk of death 
from diabetes are age of the patients, family history, exercise and body mass index. Older 
patients tend to have higher rate of mortality from diabetes. It is also noted that body mass 
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index is associated with increased risk of death from diabetes. As expected, those who do 
exercise are less likely to die from diabetes and family history is positively associated with 
mortality from diabetes. 
 

Table 1. Estimates of Hazard Ratio (HR), standard error (SE) and P-value for PL and PPL 
estimators of diabetes data under Gamma Frailty (GAF) and Inverse Gaussian Frailty (IGF) 

Models. 

 

The estimated frailty variance ̂  are similar under the two estimators, with higher variances for 

the Gamma frailty distribution compared to Inverse Gaussian distribution. As observed, the 

estimates of the frailty variance ( ̂ ) for PL-GAF is 0.503 and 0.508 for PPL-GAF, whereas 

under Inverse Gaussian frailty, ̂  for PL-IGF and PPL-IGF are 0.442 and 0.439 respectively. 

This implies that including gamma frailty accounts for more subject-specific heterogeneity in 
the data than the inclusion of Inverse Gaussian frailty.  
To evaluate the effect of time - varying covariates, four progressive models, M1, M2, M3 and 
M4 were fitted to the data. Model comparison was done using Akaike Information Criterion 
(AIC) and the results are shown in Table 2.  
         
                                              Table 2. AIC for model comparison 

 

 
It is observed from the table that models M3 and M4, which included alcohol intake, exercise 
and family history as time-varying covariates provide better fits than M1 and M2 which violated 
proportionality assumption on these covariates. However, penalized partial likelihood model 
with time-varying covariates (M4) performed the overall best with AIC of 2024.6.  
In the next analysis, simulation studies were conducted to compare PL-GAF, PL-IGF, PPL-
GAF and PPL-IGF configurations under the violation of proportionality assumption. 

Covariate    PL-GAF    PPL-GAF     PL-IGF   PPL-IGF 

HR (SE) 
P-value 

HR (SE) 
P-value 

HR (SE) 
P-value 

HR (SE) 
P-value 

Age 
 

1.213 (0.128) 
0.003 

1.211(0.125) 
0.007 

1.217 (0.131) 
0.003 

1.213 (0.127) 
0.002 

Sex 0.875 (0.078) 
0.130 

0.816 (0.069) 
0.242 

0.872 (0.073) 
0.156 

0.814 (0.064) 
0.137 

Body Mass 
Index 

1.073 (0.115) 
0.006 

1.043 (0.112) 
0.025 

1.068 (0.114) 
0.004 

1.043 (0.113 
0.025) 

Salt Intake 
 

0.916 (0.108) 
0.271 

1.016 (0.112) 
0.130 

0.909(0.101) 
0.210 

1.101 (0.110) 
0.132 

Famhis 1.152 (0.121) 
0.002 

1.154 (0.123) 
0.004 

1.153 (0.123) 
0.002 

1.154 (0.122) 
0.001 

Exercise 0.688 (0.067) 
0.030 

0.597 (0.047) 
0.031 

0.686(0.068) 
0.002 

0.607 (0.046) 
0.021 

Alcohol  
 

1.306 (0.137) 
0.086 

1.308 (0.144) 
0.107 

1.307 (0.141) 
0.261 

1.309 (0.146) 
0.244 

Famhis*Time 
 

2.242 (0.216) 
<0.0001 

2.235 (0.202) 
<0.0001 

2.244 (0.220) 
<0.0001 

2.233 (0.192) 
<0.0001 

Exercise*Time 
 

0.806 (0.074) 
<0.0001 

0.743 (0.070) 
<0.0001 

0.802 (0.071) 
<0.0001 

0.804 (0.071) 
<0.0001 

Alcohol*Time 
 

1.689 (0.168) 
<0.0001 

1.656 (0.160) 
<0.0001 

1.701(0.172) 
<0.0001 

1.654 (0.158) 
<0.0001 

̂   
0.503 

 
0.508 0.442   0.439 

Model Description GAF IGF 

M1 Model  with PL  and all covariates as time fixed 2503.7 2842.9 

M2 Model  with PPL  and all covariates as time fixed 2316.8 2643.5 

M3 Model  with PL incorporating time varying covariates 2101.2 2209.6 

M4 Model  with PPL incorporating time varying covariates 2024.6 2184.1 
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Simulation Study 

Simulation studies are useful for assessing the behaviours of analytic techniques under various 
conditions that present complexities in practice (Montez-Rath, et al. (2017). Two simulations 
studies were conducted to evaluate the performances of the four model configurations under 
various scenarios. The main objective of the simulations was not to estimate the frailty variance 
𝜃 but rather, to assess the performances of the PL and PPL estimators with the four 
configurations under study; and evaluate their sensitivity to frailty misspecification. 
 
Simulation 1 

Survival time data were simulated using model (5) with Gamma and inverse Gaussian frailty 
distributions. Frailty variance 𝜃 was set as 2.5.  The baseline hazard function was generated 
from Weibull distribution to simulate Cox-weibull survival time. Censoring times were 
generated from exponential distribution exp(λ) at 80th, 50th and 20th percentiles of the event 
times distributions conditional on the covariates and frailty term to achieve the censoring 
proportion 20%, 50% and 80% respectively. Time invariant covariate Zi was generated from 
N(0,1) distribution. The time-varying covariate Xi(t) was generated as an interaction of Xi with  
g(t), where Xi was generated from a Bernoulli distribution with success probability 0.5 and g(t) 
is a dichotomous change-point function as given in (4). The corresponding true parameters 
were chosen as γ = −0.5 and βt = 1. Survival times were then simulated using the general 
survival simulation algorithm as in Austin (2012). For each setting, 1000 data sets were 
simulated with sample sizes 50, 200, 500 and 1000. 
Models were then fitted with the four model configurations PL-GAF), PL-IGF), PPL-GAF and 
PPL-IGF. 
 
Data Generating Procedure 

The baseline hazard function for Weibull distribution with scale parameter  and shape 

parameter  can be written as )(0 t =
1t . The hazard increases with time if 0 , 

decreases if 0  and constant if 1 . Thus the Non-proportional frailty model, with time-

varying covariates (dropping subscript i henceforth for clarity) is  
given by 

  ))(exp()),(( 1 VtXZptWWtZt p    ,                                                (16) 

with cumulative hazard function given by  
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and the inverse of the cumulative hazard function is given as  
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Therefore, the Cox-Weibull survival time, following Austin (2012) can be simulated as  
 

Comparison of the estimators were done using Relative Bias ( RB ) expressed in percentage 
and Root means Square Errors (RMSE), which are respectively given as  


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(19) 
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where tj̂ is the estimated time-varying parameter of the jth sample and t  is the true value of 

the time varying effect. Lower value of RB implies a stronger agreement between the true and 
the estimated parameter values and this is a measure of consistency of the estimator whereas 
lower RMSE implies higher efficiency of the estimator. The Relative Bias (RB) and Root Mean 
Square Error (RMSE) of the various configurations PL-GAF, PL-IGF, PPL-GAF and PPL-IGF) 
for different sample sizes and censoring proportions are presented in Table 3. It is observed 
that the relative bias and the root mean square error decrease with increase in sample size 
across all scenarios. Comparing PL and PPL estimators, it is observed that RB and RMSE are 
consistently smaller for configuration involving PPL than for PL across all sample sizes. The 
proportion of censored observations also has an impact on the predictive accuracy of the 
estimators. As observed, for all sample sizes, both estimators become worse in terms of RB 
and are less efficient (higher RMSE) as the proportion of censored observations increases. 
One interesting finding from the study is the relatively high RMSE which results in substantial 
loss of efficiency for smaller sample size under both estimators when at least 50% of the 
observations were censored, compared to 20% censoring. For example, PL-GAF at sample 
size 50 has RMSE of 0.109 when 20% of observations were censored, compared to 0.356 
(about 3 times higher) when 50% were censored and 0.657 (about 6 times higher) for 80% 
censoring. The corresponding RMSE for PPL-GAF is 0.101 when 20% of observations were 
censored compared to 0.334 (about 3 times higher) for 50% censoring and 0.490 (about 5 
times higher) for 80 % censoring.  These differences are seen to reduce substantially as the 
sample size increases and almost vanish at sample size 1000.  
 

Table 3.  Relative Bias (RB) and Root Mean Square Error (RMSE) for PL and PPL 
estimates  of βt = 1.0 under, Gamma Frailty and Inverse Gaussian Frailty 

distributions. 
 

 
 
 
 
 

Sample 
Size     

 % cens                 Gamma Frailty   Inverse Gaussian Frailty  

     PL-GAF        PPL-GAF         PL-IGF PPL-IGF 

PRB RMSE PRB RMSE PRB RMSE PRB RMSE  

50 20 12.7 0.109 12.2 0.101 13.2 0.119 12.6 0.106 

 50 13.3 0.356 12.8 0.334 13.8 0.389 13.1 0.336 

 80 13.6 0.657 13.1 0.490 14.2 0.681 13.5 0.503 

200 20 12.0 0.055 11.4 0.039 12.4 0.060 11.7 0.042 

 50 12.6 0.060 12.0 0.054 13.1 0.066 12.3 0.060 

 80 13.0 0.094 12.4 0.080 13.5 0.103 12.7 0.088 

500 20 11.7 0.047 11.5 0.046 12.1 0.051 11.6 0.046 

 50 12.2 0.052 12.0 0.050 12.7 0.056 12.2 0.054 

 80 12.5 0.077 12.3 0.065 13.0 0.084 12.7 0.071 

1000 20 11.6 0.044 11.4 0.038 12.0 0.048 11.5 0.042 

 50 12.1 0.046 11.6 0.041 12.5 0.051 11.7 0.042 

 80 12.4 0.048 12.2 0.047 12.8 0.056 12.4 0.049 
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Simulation 2  
In this simulation, sensitivity analysis was carried out to evaluate the performance of the 
estimators under frailty misspecification. The data generating process was as in simulation 1 
but the frailty term was generated from log-skewed normal distribution given in (10). Skewness 

parameter was set as  = 0, 1.0, 2.5 and 5.0. The model given in (5) was then fitted by 

specifying Gamma and Inverse Gaussian frailty distributions with the four configurations as 
earlier described. Empirical power was calculated for each configuration as the proportion of 

cases, based on 1000 runs in which the hypothesis 0: toH  against a two-sided alternative 

0.1:1 tH   were rejected, using a Wald test at 5 % significance level. The results are shown 

in Figures 2 and 3. Generally, it is observed from all the configurations that frailty 
misspecification has an effect on the power of the estimators. From Figure 2, it is observed 

that the power for rejecting 0: toH   when  0.1t  generally increases with increase in 

sample size. Compared to PL-GAF and PL-IGF configurations, PPL-GAF and PPL-IGF 
configuration have higher power of rejecting Ho for all sample sizes.  However, the power of 
PPL-IGF configuration is the highest for all scenarios considered. The power also increases 
as the level of skewness of the correct frailty distribution (log-skewed normal) increases in all 
the configurations. Also, as observed from Figure 2, the superiority of PPL-GAF and PPL-IGF 
over PL-GAF and PL-IGF is higher in terms of power at sample size 50 and 200, but get close 
at sample sizes 500 and 1000.  
 
          n=50                                                                                n=200 

                     
                    

          n = 500                                                                         n = 1000 
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  Figure 2.  Empirical power for rejecting the hypothesis 0: toH   against 0.1:1 tH    

assuming a  Gamma and Inverse Gaussian frailty distributions when the true distribution is 
log skewed normal with  skewness parameters 0, 1.0, 2.5, 5.0 and sample sizes 50, 
200,500,1000 
 
          α=0                                                                              α=1 

                     

        α=2.5                                                                                α=5                                                                                           

                      

 

Figure 3.  Empirical power for rejecting the hypothesis 0: toH   against 0.1:1 tH   

assuming a Gamma and Inverse Gaussian frailty distributions when the true distribution is 
log skewed normal with skewness parameters 0, 1.0, 2.5, 5.0. and censoring percentage 
20%, 50% ,80%, n=200 
   

In Figure 3, it is clearly observed that empirical power decreases as the proportion of censored 
observations increases for all skewness levels.  It is also observed that the PPL-GAF and PPL-
IGF are more powerful than the corresponding PL-GAF and PL-IGF and their power advantage 
are more pronounced at censoring proportion 20%. This advantage is seen to reduce as the 
level of censoring increases and converge at 50% or higher censoring levels. The convergence 
in power of the four configurations is sharper at the skewness levels α=0 and α=1 than at α=2.5 
and α=5.  
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Discussion  
 
The main purpose of this study was to examine the performances of two estimators, namely 
the partial likelihood (PL) estimator and penalized partial likelihood (PPL) estimator in Non-
proportional survival models with subject-specific frailty. A dataset on diabetes was analysed 
and it was established under various scenarios that PPL estimator that treated the frailty 
densities in the complete data likelihood as penalty term outperformed PL estimator. 
Simulation studies were conducted to compare the two estimators. Efficiency of the two 
estimators was measured by the root mean square error (RMSE) and the consistency 
(agreement between the true and estimated parameters) measured by relative bias (RB).  
Results from simulation 1 showed from different likelihood-frailty configurations, namely PL-
GAF, PL-IGF, PPL-GAF and PPL-IGF, that PPL estimator generally had better performance 
than PL estimator in terms of efficiency and it was less biased. It was also found, as expected 
that efficiency increased with increase in sample size, which was a satisfactory performance. 
Censoring proportion was negatively correlated with the performance of both estimators. From 
the sensitivity analysis conducted to assess the effect of frailty misspecification on the 
estimators, it was found that sample size, proportion of censored observation and the shape 
of the frailty distribution (log-skewed) severely affected the power of the estimators. It was also 
revealed that configurations with PPL were better in performances than their PL counterparts 
under all scenarios considered in this study.  
 
Conclusion 

 
It was reported in Neuhaus et al.(1992) that one cannot establish effects of misspecification 
through fitting models on the basis of a single random effects distribution. In our current study, 
findings from fitting two random effects (frailty) distributions, the Gamma and Inverse Gaussian 
distributions revealed that misspecification tends to reduce the power of estimator, and this 
confirmed the claims of Litière et al. (2007), which states that random effects misspecification 
can produce marked decreases in power and also a similar study by Heckrnan and Singer 
(1984), revealed high sensitivity of parameter estimates to the assumed functional form for the 
distribution of unobserved variables. Our study has therefore proven that penalized partial 
likelihood method of estimation is a preferred candidate to partial likelihood method in the 
analysis involving Non-proportional hazards models, in the presence of frailty and its 
misspecification.  
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