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Abstract 
 

Classification is one of the most hourly encountered problems in real world. Neural networks have 
emerged as one of the tools that can handle the classification problem. Feed-Forward Neural Networks 
(FFNN's) have been widely applied in many different fields as a classification tool. Designing an efficient 
FFNN structure with the optimum number of hidden layers and minimum number of layer's neurons for 
a given specific application or dataset, is an open research problem and more challenging depend on 
the input data. The random selections of hidden layers and neurons may cause the problem of either 
under fitting or over fitting. Over fitting arises because the network matches the data so closely as to 
lose its generalization ability over the test data. In this research, the classification performance using 
the Mean Square Error (MSE) of Feed-Forward Neural Network (FFNN) with back-propagation algorithm 
with respect to the different number of hidden layers and hidden neurons is computed and analyzed to 
find out the optimum number of hidden layers and minimum number of layer's neurons to help the 
existing classification concepts by MATLAB version 13a. By this process, firstly the random data has 
been generated using an suitable matlab function to prepare the training data as the input and target 
vectors as the testing data for the classification purposes of FFNN. The generated input data is passed 
on to the output layer through the hidden layers which process these data. From this analysis, it is find 
out from the mean square error comparison graphs and regression plots that for getting the best 
performance form this network, it is better to use the high number of hidden layers and more neurons in 
the hidden layers in the network during designing its classifier but so more neurons in the hidden layers 
and the high number of hidden layers in the network makes it complex and takes more time to execute. 
So as the result it is suggested that three hidden layers and 26 hidden neurons in each hidden layers 
are better for designing the classifier of this network for this type of input data features. 

 
Keywords: ANNs, Back-Propagation algorithm, Tan Sigmoid Activation Function, Regression plot, 
classifier. 
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Introduction 
 

The neurons of Artificial Neural Networks (ANNs) are like the neurons of biological model 
(where there is no specific relationship between the inputs and outputs and it is not easy to 
formulate the mathematical model). Neural networks (NNs) are very well known for finding out 
the regression and classification problems in huge fields (Hagan et al.,1995) because of its no 
require any elaborated information regarding the system which conducts like a black box 
(Danaher et al., 2004). ANNs, shown in Figure 1, compose of input, hidden and output layers 
(Engelbrecht, 2007). ANN generally gets information from other ANNs or neighboring and 
gathers this information by transfer function using sum which control the firing and strength of 
the exciting signals as a function of their respective weights and biases. 

If a NN consists only by a single hidden layer is called Perceptron that is the simplest but 
not able to find out nonlinearly separable problems. On contrary, Multilayer Perceptron (MLP) 
is more useful to solve the nonlinearly separable problems. The merits of neural network come 
from its ability for recognizing and nonlinear relationships of model among data.  ANNs are 
easiest way for dealing nonlinear relationships and clustering of real data compare to strict 
linear relationship (Naguib and Sherbet, 2001). But ANNs designers face two problems, one 
is the network structure and another is the network generalization. ANNs design needs 
application-specific appropriate architecture that includes network type, number of layers, 
number of neurons (nodes) in hidden layers, and activation functions (transfer functions) 
between layers. 
 
 

 
 

Figure 1.  Neural network architecture 
 
 
The transfer potential of an ANN, Ai is equal to 
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Where 𝑁 is the amount of elements of input vector, 𝜔𝑖𝑗 are the interconnection weights, and 𝑏𝑖 
is the bias of the neurons (Haykin, 1994).), the bias is the coefficient that controls the transfer 
of the signal followed by the ANNs. The output of neurons trusts only on the information which 
is natively available in the neurons that is either stored in the inside or arrived through the 
weighted of coefficients. The output of neurons, 𝑦𝑖 is computed by the summing of the weighted 
inputs along with a bias through a transfer function in below: 
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The transfer function is desired to confine the neuron output within the rage [0, 1] or [–1, +1] 
(Pacelli and Azzollini, 2011). The most popular transfer functions are the linear combination, 
sigmoid function, and step function. In the linear combination, a number of linear neurons 
execute a linear transformation by the input vector, 𝑦𝑖 = Φ (𝐴𝑖) = 𝑘𝐴𝑖, where 𝑘 is a scale factor. 
A sigmoid transfer function that is continuous and differentiable generates an output within the 
limit [0,1]. For this reasons, it is used in ANN models where the learning algorithm demands 
derivatives. Usually, sigmoid transfer function represents to the particular issue through the 
logistic function followed by the following formula: 
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Where 𝑘 is the constant by which the shape of a curve is controlled. The sigmoid is that logistic 
function which has ability to evaluate the derivative easily and it is more important when 
evaluating the updates of weights in the network. Thus it makes the network easier 
manipulable in mathematically that is more attractive to early scientists for minimizing the 
computing load of their works. 

Before using the neural network to solve the specific problem, its weights and biases are 
to be adjusted. This function is performed by a learning algorithm that repetitively updates the 
weights until a predefined value is achieved and the learning algorithm is stopped. There are 
mainly two learning algorithm (Angelini et al., 2008), (i) supervised learning, and (ii) 
unsupervised learning algorithm. Supervised learning algorithm is distinguished by a training 
set consist of inputs and the respective desired outputs where the produced error is applied 
for updating the weights in backward direction. In unsupervised learning algorithms, the 
network is composed only by a set of inputs and without their corresponding desired output 
that guides the network to self-organize and adjusting its weights. This learning algorithm is 
mainly used in data mining and clustering where big data analysis is main concern. 

Many studies had been carried out on artificial neural networks for classifying the 
biomedical images. Based on studies, ANNs are categorized as FFNN, Cascade-Forward 
Neural Network, Nonlinear Auto-Regression Neural Network, Generalized Regression Neural 
Network (GRNN), Recurrent Neural Network (RNN), Radial Basis Function Neural Network 
(RBFNN) and Probabilistic Neural Network (PNN). All these are application specific. For 
biomedical image classification, FFNN with back-propagation learning algorithm, also known 
as a Feed-Forward Back propagation neural network (FFBPNN) is usually preferred because 
of its high accuracy and less iterations period (Rani and Vashisth, 2016). It is very simple and 
effective model of ANNs where a lot of input and target pairs are required for training and 
testing phases (Amardeep and Swamy, 2017). As it works only in multilayer, so it is also called 
multilayer FF neural network (Rodan et al., 2016). 

A feed forward neural network (FFNN) is a network where each neuron of a layer is 
associated to all the neurons of the next layer. This topology opposes backward connections 
that are set in numerous recurrent neural networks (Han et al., 2012; Rodan and Tiˇno, 2011; 
Jaeger, 2007; Jaeger, 2002; Lin et al.,1996;), layer-skipping, and in application specific neural 
network architectures like Fully Connected Cascade (FCC) (Wilamowski, 2009). Another 
important issue of this network is that no delay is permitted which make the network more 
meaningful only to illustrate the static models. Various studies exhibited that in spite of lacking 
dynamic abilities, a FFNN is used to illustrate the function mapping and its derivatives (Hornik 
et al.,1990). Nonetheless, the choosing suitable number of hidden layers and neurons in the 
layers of FFNN is more challenging in a general significance computing backgrounds (e.g. 
Matlab) and embedded environments (e.g. microcontrollers and Field Programmable Gate 
Array(FPGA)) as a function of its training proficiency and estimation cost during training. 

There are different types of training algorithm in NN such as Gradient Descent (function: 
traingd), Bayesian Regularization (function: trainbr), Variable Learning Rate Gradient Descent 
(function: traingdx), Gradient Descent with Momentum (function: traingdm), and Train 
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Levenberg Marquartdt Algorithm (LMA) (function: trainlm). When the network weights and 
biases are initialized, the network is prepared for training that demands a set of inputs and 
target outputs. During the training, the weights and biases of the network are automatically 
adjusted to minimize the network performance. The performance functions are Mean absolute 
error performance function (mae), Mean squared error performance function (mse), Mean 
squared error w/reg performance function(msereg), and Sum squared error performance 
function (sse). The default performance function for FFNN is mean squared error (mse). There 
are also various learning functions in NN such as Conscience bias learning function (learncon), 
Gradient descent weight/bias learning function (learngd), Gradient descent momentum 
learning function (learngdm), and Perceptron weight/bias learning function (learnp). No single 
training algorithm is applicable in all types of solution because these algorithm is application 
specific. Similar concept is applicable for learning algorithm and performance functions. Corte-
Valiente et al. (2017) evaluates the performance of these types of training algorithms in a FFNN 
for analyzing the whole uniformity in the lighting systems of outdoor and they found the 
minimum error with LMA (Valiente et al., 2017). 

Though FFNNS are used in a variety of purposes with great a success but the main 
demerits of this kind of networks is that there is no surety that this model will perform good for 
the all of kind problems at hand (Benardos and Vosniakos, 2007). Therefore, the development 
of FFNNs depends on the search of the best combination of the following four elements that 
consists its architecture (Cybenko,1989): 

1. The number of layers 
2. The number of neurons in each layer 
3. The activation function 
4. The training algorithm 
 

A multilayer perceptron network (MPN) consists of an input layer, one or more hidden 
layers of computation nodes, and an output layer. Figure 1 shows a typical feed-forward 
network with two hidden layers consisting of three nodes in each hidden layers, two input 
neurons and one output. As mentioned in (Ahmed and Noureldien, 2014), determining number 
of hidden layers and number of neurons in each layer of FFNN is a challenge depends on its 
specific-application. The random selections of hidden neurons and hidden layers may cause 
the problem of either under fitting or over fitting of data. 

So, during any application of neural networks for the classification, the same question 
always rises; how many hidden layers and how many nodes in each layer should be used? 
Although it has been almost two decades now since the first introduction of neural networks in 
remote sensing (Benediktsson et al., 1990) there exists no exact method to answer this 
question (Mas and Flores, 2008), and it is a critical question since the selection of topology 
has a profound impact on classification results. Traditionally identification of topology has been 
based on trial and error. Hecht-Nielsen (Nielsen,1987) imported that any continuous function 
can be represented by a neural network that has only one hidden layer with exactly 2n + 1 
nodes, where n is the number of input nodes. This is not the case however as Hecht-Nielsen 
stated that the 2n + 1 rule is not for any class of activation functions but for a specific one. This 
activation function is much more complex, compared with the commonly used sigmoidal 
functions. It has been suggested (Kurkova, 1992) that two hidden layers should be used to 
compensate for lost efficiency when using regular activation functions. The argument that it is 
sufficient to use a single hidden layer still holds when using regular transfer functions (e.g. 
sigmoidal) but the number of required hidden nodes can be as high as the number of training 
samples (Huang, 2003; Huang and Babri,1997). The purpose of using a second hidden layer 
is to drastically reduce the total required number of hidden nodes. Huang (2003) proved that 
in the two-hidden-layer case, with m output neurons, the number of hidden nodes that are 
enough to learn N samples with negligibly small error is given by: 
 

 Nm )2(2   (4) 
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Specifically, he suggests that the sufficient number of hidden nodes in the first layer is 
 

 NmmN )2()2/(2   (5) 

 
and in the second it is 
 
 

 )2/( mNm  (6) 

 
There are a lot of methods to find and the number of hidden layers and the numbers of hidden 
nodes in a layer, some of them are explained in (Panchal and Panchal, 2015; Stathakis, 2009). 
Though most of the research has been in the field of FFNN and it is believed that FFNNs are 
static input-output mapping representing a non-linear system but the hidden nodes in RNN are 
assumed to be constant (Lin et al., 2013). The challenge here in FFNN is to identify the optimal 
combination of hidden layers and neurons in each layer which will generate minimum error in 
lesser duration of iteration.  

So, for designing the FFNNs, one crucial and difficult challenge is to determine the 
number of hidden layers and the number of neurons in the hidden layers. The hidden layer is 
responsible for internal representation of the data and the information transformation from input 
to output layer. If there are too few neurons in the hidden layer, the network may not contain 
sufficient degrees of freedom to form a representation. Again if too many neurons are defined, 
the network might become over trained. Therefore, an optimum design for the number of 
neurons in the hidden layer is required. In this research, it is tried to analyze the effect and 
how many number of hidden layers and the number of neurons in hidden layers are required 
and what combination of its of FFNN to make its suitable application in classification purposes 
by counting its performance. 
 
Methodology 
 
FFNN with back propagation algorithm (FFBPNN) has the better accuracy and precision 
compared to than other techniques in classifying application. FFBP NN computes output in 
forward and error in backward direction. In forward processing, input layer is used for taking 
the input data that is passed on to the hidden layers, and hidden layer processes the data. 
Output is taken from the output layer which is shown in Figure 2. 
 
 

 
 

Figure 2.  FFNN General Architecture 
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FFNN with back propagation learning is the most commonly used technique for training the 
ANN to minimize the gradient.  For this research, Neural Network Toolbox™ of   MATLAB 
(Version 2013a) has been used. The design algorithm of this network for the classification 
purposes is as follows: 

Step 1: Generate the data randomly. 
Step 2: Create the network. 
Step 3: Configure the network. 
Step 4: Initialize the weights and biases randomly. 
Step 5: Train the network and feed the training sample. 
Step 6: Propagate the inputs to the forward. 
Step 7: Back propagate the error to the hidden layer. 
Step 8: Validate the network. 
Step 9: Use and analysis the performance of the network. 
 

After generating the data for preparing the training data which is introduced to this 
network as input and target vectors as the testing data for the classification purposes the 
network for FFNN is created by an appropriate MATLAB function with the different number of 
hidden layers and the different number of neurons in each hidden layers where the weights 
and biases are initialized randomly and also it demands three arguments to return the network 
objectives. The first is a matrix of input vectors and the second is a matrix of target vectors 
where these two are required for setting up the network dimensions and parameters. The last 
is an array bearing the sizes of each hidden layer (where the output layer size is equal to the 
number of target categories). Two input vectors means the two features or parameters of 
images and four target means four classes in this algorithm. After creating the network, the 
training processing is started by a suitable function of MATLAB that is used. Then the transfer 
function (Tan Sigmoid) is identified for training the data which is used in each layer. Transfer 
functions evaluate the layer's output from its input by using this training Algorithm. During 
simulation, the trial and error concept is followed. At first the initial number of hidden layers, 
neurons in the hidden layers and activation function find out, and the error of performance are 
recorded. After that for the same architecture, first the numbers of neurons in the hidden layers 
are changed and the error of performance using MSE and both are also recorded. And then 
the number of hidden layers is changed and the error of performance and both are also 
recorded. This procedure is repeated, and the number of hidden layers and neurons in the 
hidden are selected which provides the least error of performance. Based on this algorithm, 
the architecture of this network including input, output and hidden layers is shown in Figure 3. 

From this figure, it is clear that input and output layer has two nodes (input features) and 
four nodes (output classes) respectively. There are three successive hidden layers which 
contains 36 neurons, where learning rule is back propagation and training algorithm is 
Levenberg Marquartdt. All the neurons are made to pass from the input to output though their 
hidden layers and activation functions. The scaling of the output of this network into proper 
ranges depends on the number of hidden layers, neurons in the hidden layers. 
 
 

 
 

Figure 3.  FFNN Architecture with three hidden layers and the number of neurons in each layer is 36. 
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Results and Discussion 
 
In this work, Neural Network Toolbox™ of MATLAB (Version 2013a) has been used. The 
generated data is divided into three categories: training data, validation data and test data with 
ratio 75:15:10 respectively. The performance graph is counted in terms of mean square error 
(MSE). The number of input layer nodes is two which describes the input features and the 
number of output layer nodes is four which describes the target (output) classes. The activation 
(transfer) function in the hidden layers is tan sigmoid and in the output the activation function 
is pure linear (by default). The number of epochs (iteration) is fifteen. 

Now, the performance of this network is evaluated according to increasing the neuron’s 
number in the hidden layer. The measured results and the obtained graph with the increasing 
neuron numbers in the hidden layer (only one hidden layer) are shown in Figure 4. 
 

 
 

Figure 4. The effect of increasing the neuron’s number in the hidden layer with respect to MSE. 

 
 
From Figure 4, it is seen that with increasing the neuron’s number the MSE is decreased 
exponentially and after a certain number of neurons (16 neurons) in hidden layer the MSE is 
almost stable in spite of increasing the neuron’s number in the hidden layer. Finally, it is said 
that for this network it is better to use the neuron’s number in the hidden layer more than 16 
but so more the neuron’s number in the hidden layer the network takes more time to give the 
output though MSE is constant. So, considering all things, 26 neurons are chosen in the hidden 
layer for testing the effect of increasing the number of hidden layers that is shown in Figure 5. 
 

 
 

Figure 5. The effect of increasing the neuron’s number in the hidden layer with respect to MSE. 

 
It is observed from Figure 5 that with increasing the number of hidden layers in the network 
the MSE is decreased linearly and after a certain number of hidden layers (three) the MSE is 
almost stable in spite of increasing the number of hidden layers. So, it is easily said that with 
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increasing the number of hidden layers contribute to the enhancement of the network 
performance. The best performance is achieved when the numbers of hidden layers are three 
because after increasing the number of hidden layers from three the network takes more time 
to execute though MSE is constant. 

The performance of this network is also verified according to increasing the neuron’s 
number in the hidden layers and the number of hidden layers by the regression plot. For the 
best fitting of data by the network, the intended value of R is equal to 1 and for the worst fit R 
is equal to 0. From Figure 6, it is observed the effect of increasing the neuron’s number in case 
of only one hidden layer by regression plot. 

 Figure 6(a) gives the regression plot for one neuron. Here, the value of R is equal to 
0.5802, 0.56125, 0.55066 and 0.57389 for the training, test, validation and all data 
respectively. It is clear from this figure that the value of R is hugely drifted from 1. So, it is not 
better to use one neuron in the hidden layer because for this kind of designed network the 
classification will not work properly. But from Figure 6(b), it is also observed that the value of 
R is becoming tends to 1 and this is equal to 0.99889, 0.99922, 0.99763 and 0.99872 for the 
training, test, validation and all data respectively. Figure 6(c), it is showed that the value of R 
is equal to 0.99954, 0.99889, 0.99874 and 0.99943 for the training, test, validation and all data 
respectively that means the value of R for the all the cases is almost same like Figure 6(b). 
 

 
 

(a) 
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(b) 

 
(c) 

 
Figure 6. Regression plot for (a) one neuron, (b) 16 neurons, and (c) 26 neurons in case of only one 

hidden layer. 
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(a) 

 
(b) 

Figure 7. Regression plot for (a) two hidden layers, (b) three hidden layers in case of 26 neurons in 
each layer. 

 

Due to this situation, it is suggested that for this network it is better to use the neuron’s number 
in the hidden layer more than 16 but so more the number of neurons in the hidden layers the 
network takes more time to execution. So, it is said that 26 neurons in the hidden layer are 
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better for designing this network. Figure 6(c) shows the regression plot for 26 neurons in the 
only one hidden layer. Figure 7 shows the regression plot for two and three hidden layers 
where 26 neurons in each hidden layer. 

From Figure 7(a), it is observed that the value of R is increased in each case compare to 
Figure 6(c). This indicates that the network has the better fitting for the data for two hidden 
layers compare to single hidden layer. From Figure 7(b), it is also shown that the value of R is 
also increased in each case compare to Figure 7(a). This also indicates that the network has 
the better fitting for the data for three hidden layers compare to two hidden layers. So from this 
interpretation, it is said that with increasing the number of hidden layers contribute to the 
enhancement of performance of this network but so more the number of hidden layers in the 
network make it complex and takes more time to execute. 

From the above illustration, it is obvious that three hidden layers and 26 hidden neurons 
are better for designing the classifier of FFNNs for this kind of input data features and from the 
studied literature it is found that two hidden layers and neurons in the hidden layers is equal to 
the input features are the best choice in most applications. 
 
 
Conclusion 
 
From the result and discussion, it is clear that for getting well performance with less training 
time and complexity form this network it is better to use three the hidden layers and 26 neurons 
in hidden layers for designing the classifier of this network for this kind of input data features. 
As increasing the number of hidden layers and neurons in the hidden layers gives the less 
MSE and better accuracy to a great extent but neural network became more complex and 
takes more time to execute. So a compromising is taken to design this network. In this study, 
some methods for selecting the number of hidden layers and the number of hidden nodes was 
also found from the studied literature and finally from our simulation results and studied 
literature, it is said that the number of hidden layers and neurons number in the hidden layers 
are application specific. This concept may also be used in other kinds of ANNs and can be 
applied in aerospace, banking, defense, entertainment, insurance, oil and gas, speech, 
securities, telecommunication others for designing the classifiers, especially in the biomedical 
field for the automatic diagnosis of patients at different conditions more efficiently. As a result, 
it can help the doctors to take the appropriate decision about the diseases at different critical 
conditions of patients and reduce the diagnosis error and time as well as cost. 
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