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Abstract 
 
This paper proposes the use of bootstrap, robust and fuzzy multiple linear regressions method in 
handling general insurance in order to get improved results. The main objective of bootstrapping is to 
estimate the distribution of an estimator or test statistic by resampling one's data or a model estimated 
from the data under conditions that hold in a wide variety of econometric applications. In addition, 
bootstrap also provides approximations to distributions of statistics, coverage probabilities of confidence 
intervals, and rejection probabilities of hypothesis tests that produce accurate results. In this paper, we 
emphasize the combining and modelling using bootstrapping, robust and fuzzy regression methodology. 
The results show that alternative methods produce better results than multiple linear regressions (MLR) 
model. 
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regression 

 
 
Introduction 
 
Multiple linear regression modelling is a very powerful technique in statistics and is widely used 
in numerous research fields including finance, economic, agriculture. This method estimates 
linear relationship between dependent (response) and independent (explanatory) variables. 

The multiple linear regression model is expressed as   nn XbXbbY 110  where b

’s is parameters and  is the error term assumed to be, following a normal distribution. The 
parameters are usually estimated using method of least squares. A good explanation of 
various aspects of multiple linear regression methodology is given in Draper and Smith (1998). 

The primary goal of robust regression is to provide resistant results in the presence of 
outliers. In pursuit of this stability, robust regression limits the influence of outliers. Robust 
regression analysis provides an alternative to the least squares regression when fundamental 
assumptions are unfulfilled by the nature of the data (Marona et al., 2006). The properties of 
efficiency, breakdown, and high leverage points are used to define robust techniques 
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performance in a theoretical sense. One of the goals of robust estimator is a high finite sample 
breakdown point defined by Donoho and Huber (1983). Christmann (1994) and Rousseeuw 
and Leroy (1987) state that the breakdown point could be defined as the point or limiting 
percentage of contamination in the data at which any test statistics first becomes swamped. 
Hence, the breakdown point is simply the initial point at which any statistical test becomes 
swamped due to contaminated data. Some regression estimators have the smallest possible 
breakdown point of 1/n or 0/n. In other words, only one outlier would cause the regression 
equation to be rendered useless. Other estimators have the highest possible breakdown point 
of n/2 or 50%. If robust estimation technique has a 50% breakdown point, then 50% of the data 
could contain outliers and the coefficients would remain useable. 

MM estimation is a special type of M-estimation developed by Yohai (1987). In his paper, 
Stromberg (1993) states that MM-estimation is a combination of high breakdown value and 
efficient estimations. Yohai's MM estimator was the first estimation of a high breakdown point 
and high efficiency under normal error. MM-estimators have three-stage procedures;  
 

1. The first stage involves the calculation of S-estimate with influence function 
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2. The second stage involves the calculation of MM parameters that provide the minimum 

value of 
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  where  x  is the influence function used in the first stage 

and 
0̂  is the estimate of scale form the first step (standard deviation of the residuals). 

 
3. The final step computes the MM estimate of scale as the solution to 
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Bootstrap is a technique for resampling based on random sorts with retrieval in the data 
forming a sample. Additionally, this method provides approximations to distributions of 
statistics, coverage probabilities of confidence intervals, and rejection probabilities of 
hypothesis tests that produce accurate results (Hall, 1992; Efron and Tibshyrani, 1993). The 
theoretical bootstrap model is as follows; 
 

** ˆ uXY  
       (1) 

 

where *u  is a random term obtained from the residuals û  of the initial regression. At each 

iteration ),....,1( Bbb  , a sample  n
iiy

1

*


 of size (n, 1), is created from the theoretical bootstrap 

model.  
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Since the OLS residuals are smaller than the errors they estimate, the random term of the 
theoretical bootstrap model is constructed from the following transform residuals which have 
the same norm as the error term :iu  
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The theoretical bootstrap model is hence expressed as: 
 

   ,~ˆ ** buXby iii   i= 1… n                                                       (2) 

 

where  bu i
*~

 is resampled from 
iu~ . Let us consider the random variable jz , defined as

 j
jj

j
s

z




ˆ

ˆ 
 , the standard confidence interval of j  derives from the assumption according 

to which jz  is distributed according to a student's distribution with n-p degrees of freedom. 

Thus for a confidence level  21 , this confidence interval takes the following form: 

 

        ]ˆˆ,ˆˆ[ ,,1 pnjjpnjj tsts                                                    (3)  

 

where t  is the percentile values    and  1  from the bootstrap-t percentiles with pn   

degrees of freedom. The bootstrap confidence intervals are constructed from two percentile 
and percentile-t approaches. The first method, based exclusively on bootstrap estimations, is 
the simplest one for obtaining confidence intervals. For a level  21 , the percentile 

confidence interval for parameter j  is given by: 

 

     BB jj   1ˆ,ˆ
                                                          

(4) 

 

where  Bj  ˆ  is the B -th value (respectively   Bj   1ˆ  the  B1  -th value) of the 

ordered list of the B bootstrap replications. The threshold values are hence selected so that 

%  of the replications provide smaller (larger) 

ĵ  

than the lower (upper) bound of the 

percentile confidence interval.
 

 
A fuzzy regression model corresponding to multiple linear regression equation could be stated 
as; 
 

   
kk xAxAxAAy  22110                                                  (5)              

 
Previously, explanation variables sx i '  

are assumed to be precise. However, according to the 

equation above, response variable Y is not crisp but is instead fuzzy in nature. That means the 
parameters are also fuzzy in nature. Our objective is to estimate these parameters. In further 
discussion, sAi '  are assumed as symmetric fuzzy numbers which could be presented by 

interval. For example, iA  could be expressed as fuzzy set given by  wci aaA 11 ,  where ica  

is centre and iwa
 
is radius or vagueness associated. Fuzzy set above reflects the confidence 

in the regression coefficients around ica  in terms of symmetric triangular memberships 

function. Application of this method should be given more attention when the underlying 
phenomenon or the response variable is fuzzy. So, the relationship is also considered to be 
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fuzzy. This  wci aaA 11 ,  could be written as  RL aaA 111 ,  with 
wcL aaa 111   and 

wcR aaa 111   (Kacprzyk and Fedrizzi, 1992). In fuzzy regression methodology, parameters 

are estimated by minimizing total vagueness in the model. 
 

 kjkjjj xAxAxAAy  22110                                               (6)
 

 
Using ,, 11  wci aaA we could write 
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Thus 

njncjccjc xaxaay  110   

njnwjwwjw xaxaay  110
   

 

 
As 

jwy
 
represent radius and could not be negative, therefore on the right-hand side of 

equation njnwjwwjw xaxaay  110 , absolute values of 
ijx
 
are taken. Suppose there are 

m data point, each comprising   rowna 1  vector. Then parameters iA
 
are estimated by 

minimizing the quantity, which is total vagueness of the model-data set combination, subject 
to the constraint that each data point must fall within estimated value of response variable.  
 
 
Materials and Methods 
 
A Case Study of General Insurance 
 
 

Table 1. Description of the variables 
 

Variables Description 

Y Profitability of General Insurance Companies 

X1 Net Investment Income 

X2 Total Liabilities and Assets 

X3 Management Expenses 

X4 Annual Premium 

X5 Net Claims Paid by The Company 

Source: (Nawi, et al. 2012) 

 
 
/* First we do Multiple linear regression */  

procreg data= general;  

model y=x1 x2 x3 x4 x5 ; 

run; 
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Approach the MM-Estimation Procedure for Robust Regression  
 
/* Then we do robust regression, in this case, MM-estimation */  

ods graphics on;                                                                                                                             

procrobustreg method= MM fwls data= general plot=fitplot(nolimits) 

plots=all;                                                              

model y = x1  x2 x3 x4 x5/ diagnostics itprint;                                                                                                     

output out=resids out=robout r=residual weight=weight outlier=outlier 

sr=stdres;                                                            

run;                                                                                                                                        

ods graphics off; 

 

Procedure for Bootstrap with Case Resampling (n =100) 
 
/* And finally we use a bootstrap with case resampling */  

ods listing close; 

procsurveyselect data=general out=boot1 method=urs samprate=1outhits 

rep=100;  

run; 

 
Procedure for Bootstrap into Fuzzy Regression Model 
 
/*Combination of Bootstrap Technique with Fuzzy Regression*/                                                                     

ods listing close;                                                                                                                 

procoptmodel;                                                                                                                

set j= 1..30;                                                                                                                      

Number y{j}, x1{j}, x2{j}, x3{j}, x4{j}, x5{j};                                                                                                         

read data boot1 into [_n_]  y x1 x2 x3 x4 x5;                                                                                             

 

/*Print y x1 x2 x3 x4 x5*/                                                                                                                    

Print y x1 x2 x3 x4 x5;                                                                                                                     

number n init 30;  /*Total of Observations*/                                                                                      

 

/* Decision Variables bounded or not bounded*/  

/*Theses three variables are bounded*/                                                                                                      

var aw{1..6}>=0;  

 

/*These three variables are not bounded*/                                                      

var ac{1..6};                                                                     

 

/* Objective Function*/  

min z1= aw[1] * n + sum{i in j} x1[i] * aw[2]+sum{i in j} x2[i] * 

aw[3]+sum{i in j} x3[i] * aw[4]+sum{i in j} x4[i] * aw[5]+sum{i in j} x5[i] 

* aw[6]; 

                                                          

/*Linear Constraints*/                                                                                                                   

con c{i in 1..n}: 

ac[1]+x1[i]*ac[2]+x2[i]*ac[3]+x3[i]*ac[4]+x4[i]*ac[5]+x5[i]*ac[6]-aw[1]-

x1[i]*aw[2]-x2[i]*aw[3]-x3[i]*aw[4]-x4[i]*aw[5]-x5[i]*aw[6]<=y[i]; 

 

con c1{i in 1..n}: 

ac[1]+x1[i]*ac[2]+x2[i]*ac[3]+x3[i]*ac[4]+x4[i]*ac[5]+x5[i]*ac[6]+aw[1]+x1[

i]*aw[2]+x2[i]*aw[3]+x3[i]*aw[4]+x4[i]*aw[5]+x5[i]*aw[6]>=y[i]; 

                                     

expand;/* This provides all equations */ 

solve;                                                                                                                               

print ac aw;                                                                                                                        

quit;         

ods rtf close; 
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Figure 1. Flow chart of robust, bootstrap and fuzzy regression 

 
 

Results and Discussion 
 
A higher R-squared value shows how well the data fit the model and indicates a better model. 

 
Table 2. Goodness-of-fit 

 

Statistic Value 

R-Square 0.7764 

AICR 2448.3810 

BICR 2489.9700 

Deviance 3.3609 

 
 
Using the method of Multiple linear regression (MLR), we obtained the result as shown in Table 
3 using bootstrapping method for fuzzy regression with n = 100. The aim of bootstrapping 
procedure is to approximate the entire sampling distribution of some estimator by resampling 
(simple random sampling with replacement) from the original data (Yaffee, 2002).  
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Table 3. Parameter estimates for final weighted least squares fit 
 

Parameter DF Estimate 
Standard 

Error 
95% Confidence 

Limits 
Chi-Square Pr > ChiSq 

Intercept 1 0.2587 0.0166 0.2261 0.2913 241.7400 <.0001 

X1 1 0.0025 0.0038 -0.0049 0.0098 0.4200 0.5160 

X2 1 0.0030 0.0015 0.0001 0.0060 4.0100 0.0452 

X3 1 0.0009 0.0037 -0.0063 0.0081 0.0600 0.8054 

X4 1 0.9220 0.0020 0.9180 0.9259 210024 <.0001 

X5 1 0.0579 0.0025 0.0531 0.0627 555.1900 <.0001 

Scale 0 0.0311      

 
 
Method of Fuzzy Regression (FR) (OPTMODEL) 
 
Table 4 summarizes the findings of the calculated parameter. When using bootstrap 
procedure, we generate different output while using AC or AW, where AC denotes the centre 
and AW denotes the radius, i.e. half of the width of A. 
 
The next step is to compare the performance of multiple linear regression and fuzzy regression. 
 

Table 4. Value of center (AC) and radius (AW) 
 

 AC AW 

1 1.3069 0.0000 

2 0.4240 0.0000 

3 -0.0478 0.0000 

4 -0.4355 0.0000 

5 0.9180 0.0000 

6 0.1637 0.0058 

 
 
The Fitted Model for Multiple Linear Regressions 
 

54321 0579.09220.00009.00030.00025.02587.0 XXXXXY                (7) 

 
Standard Error  (0.0166) (0.0038) (0.0015) (0.0037) (0.002) (0.0025) 
 
The upper limits of prediction interval are computed by coefficient plus standard error 
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The lower limits of prediction interval are computed by coefficient minus standard error 
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Table 5. Average width for former multiple linear regression model and fuzzy bootstrap regression 
model 

 

Multiple Linear Regression Model Fuzzy Bootstrap Regression Model 

Lower Limit Upper Limit Width Lower Limit Upper Limit Width 

11.41 11.73 0.32 11.46 11.58 0.12 

12.02 12.37 0.35 11.80 11.93 0.13 

12.18 12.53 0.35 12.31 12.44 0.14 

12.11 12.47 0.36 12.27 12.41 0.14 

12.44 12.79 0.35 12.58 12.72 0.14 

10.99 11.31 0.32 11.05 11.17 0.12 

11.85 12.19 0.34 11.97 12.10 0.13 

13.67 14.06 0.39 13.95 14.11 0.16 

12.40 12.75 0.35 12.69 12.82 0.13 

12.34 12.69 0.36 12.46 12.61 0.14 

11.34 11.67 0.33 11.41 11.54 0.12 

11.10 11.43 0.32 11.09 11.22 0.12 

11.80 12.14 0.34 11.95 12.08 0.13 

11.43 11.78 0.35 11.49 11.63 0.13 

12.11 12.46 0.35 12.26 12.40 0.14 

11.42 11.75 0.33 11.55 11.68 0.13 

10.64 10.96 0.32 10.76 10.88 0.13 

9.55 9.84 0.29 9.65 9.75 0.10 

11.07 11.40 0.33 11.19 11.31 0.12 

11.73 12.06 0.34 11.85 11.98 0.13 

11.78 12.13 0.34 11.85 11.98 0.13 

11.36 11.70 0.34 11.51 11.64 0.14 

12.58 12.94 0.36 12.63 12.78 0.14 

12.47 12.82 0.36 12.63 12.77 0.14 

11.54 11.86 0.33 11.61 11.73 0.12 

13.12 13.49 0.37 13.17 13.31 0.14 

12.31 12.66 0.35 12.42 12.56 0.14 

12.58 12.94 0.36 12.65 12.79 0.14 

12.18 12.54 0.36 12.29 12.43 0.14 

12.12 12.47 0.35 12.24 12.38 0.14 

Average 0.34 Average 0.13 
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The Fitted Model for Fuzzy Bootstrap Regression 
 

54321 1637.09180.04355.00478.04240.03070.1 XXXXXY             (8) 

 
The upper limits of prediction interval are computed by coefficient plus standard error 
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The lower limits of prediction interval are computed by coefficient minus standard error 
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The width of prediction intervals in respect of multiple linear regression model and fuzzy 
regression model corresponding to each set of observed explanatory variables were computed 
manually. 
 
As shown in Table 5, the average width for former multiple regression was found to be 0.34 
while using fuzzy regression, while the average width for fuzzy regression is 0.13 which 
indicates the superiority of fuzzy regression methodology. From this analysis, the most efficient 
method to obtained relationship between response and explanatory variable is to apply fuzzy 
regression method compared to linear regression method. 
 
 
Conclusion  
 
This paper discusses the combination of an algorithm with robust, fuzzy regression and 
bootstrap method. The reasons for using a small sample size were (a) to apply a bootstrap 
method in order to achieve an adequate sample size; (b) to compare the efficiency of original 
method and the bootstrap method; and (c) to give a better understanding on how the algorithm 
works. According to general insurance data, three independent variables in this case were 
significant to the profitability of general insurance companies. Without using robust and 
bootstrapping, the result shows that only one out of five variables were significant. Interestingly 
when using robust to detect outliers and to provide resistant results in the presence of outliers 
and bootstrapping method (with n = 100), the entire significant variable are included in the 
model. This algorithm provides us with improved understanding of the modified method and 
underlying relative contributions. Further study looking at possibility to approach response 
surface methodology for each of significant variables in single algorithm is warranted.  
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