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Abstract 

Mathematical finance is a field of applied mathematics, concerned with financial markets. In the market of 

financial derivatives the most important problem is the so called option valuation problem, i.e. to compute a fair 

value for the option. The solution of the Black-Scholes equation determines the option price, respectively 

according to the used initial conditions. In this paper, first we show that the positivity is not ensured with 

classical finite difference schemes when applied to the Black-Scholes equation for very small time steps. Next, 

by reforming the discretization of the reaction term of equation, a family of efficient explicit schemes are derived 

that is free of spurious oscillations around discontinuities and preserving positivity. 
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1. Introduction 

In this work, we are interested in the option valuation problem satisfies the Black-Scholes partial differential 

equation presented in [5] as: 
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where ( ), tV S  is the price of the option and endowed with initial and boundary conditions: 
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here, the parameter 0r > is the interest rate and the reference volatility is 0σ > . 

To obtain the finite difference approximation for equation (1), let the computational domain [ ] [ ]max0, 0,S T×  

is discretized by a uniform mesh with steps S∆ , t∆  in order to obtain grid points (j S, n t)∆ ∆ , 
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This method has lower accuracy and often generates numerical drawbacks such as spurious oscillations and 
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negative values in the solution when applied to (1). Whenever the financial parameters of the Black-Scholes 

model σ  and r  satisfy the relationship 2 rσ  , see Figure 1. The parameters used in this simulation is taken 

from [5]. 

 

Figure 1. Truncated call option value for explicit method with 0.01S∆ = , 510t −∆ = . parameters: 90L = , 

100K = , 110U = , 0 .05r = , 0.001σ = , 0.01T = , 
max

120S = . 

 

2. Construction of new scheme 

Following the suggested strategy in [1, 2, 3, 4, 5], by reforming the discretization of the reaction term to
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we get a family of explicit nonstandard finite difference method as follows: 
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and the matrix form of the (4) is 

( ) 11
,n nr a b V AV

t

+ 
− + = 

∆ 
                             (5) 

 

where A is the following tridiagonal matrix 
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The constant a is chosen according to the following theorem: 

 

Theorem 1. Sufficient for scheme (5) to be positive is 
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Proof. From (5) it is enough to show that 
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The proposed positive scheme is convergent due to following theorem: 
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therefor the scheme is stable and convergent with local truncation error: 

 

1 1 1
(S , t ) (S , t ) (S , t ) (S , t )

2

j n j n j n j nn

j j

V V V V
T rS

t S

+ + −− −
= − +

∆ ∆
 

 

                      

                      1 12

2

(S , t ) 2 (S , t ) (S , t )1
( )

2

j n j n j n

j

V V V
S

S
σ − +− +

+
∆

 

 

                                              ( )1 1 1(S , t ) (S , t ) (S , t ) ( ) (S , t ) ,j n j n j n j nr aV V bV a b V− + +− + + − +               (14) 

 



Research Journal of Finance and Accounting                                                                                                                                    www.iiste.org 

ISSN 2222-1697 (Paper) ISSN 2222-2847 (Online) 

Vol.6, No.7, 2015 

 

104 

by Taylor’s expansion, we have 

 
2 3

2 3

1 2 3

1 1
(S , t ) (S , t ) ,

2 6

n nn

j n j n

j j j

V V V
V V t t t

t t t
+

   ∂ ∂ ∂ 
= + ∆ + ∆ + ∆ +    

∂ ∂ ∂     
L

 

 

2 3
2 3

1 2 3

1 1
(S , t ) (S , t ) ,

2 6

n nn

j n j n

j j j

V V V
V V S S S

S S S
+

   ∂ ∂ ∂ 
= + ∆ + ∆ + ∆ +    

∂ ∂ ∂     
L

 

 

2 3
2 3

1 2 3

1 1
(S , t ) (S , t ) ,

2 6

n nn

j n j n

j j j

V V V
V V S S S

S S S
+

   ∂ ∂ ∂ 
= − ∆ + ∆ − ∆ +    

∂ ∂ ∂     
L
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But V is the solution of the Black-Scholes equation so 
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Therefore, if a b= then ( )2,n
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3. Numerical Results 
To illustrate the advantage of the designed new positive explicit scheme see Figure 2 that shows the new explicit 

scheme is positivity-preserving and spurious oscillations are avoided. 

 
Figure 2. Truncated call option value for new explicit method with 0.01S∆ = , 510t −∆ = . parameters: 

90L = , 100K = , 110U = , 0 .05r = , 0.001σ = , 0.01T = , 
max

120S = . 

 

In the case of larger time step, we see the same behavior, see Figure 3. These numerical results are obtained with 
2 rσ  . 
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Figure 3. Truncated call option value for new explicit method with 0.01S∆ = , 310t −∆ = . parameters: 

90L = , 100K = , 110U = , 0 .05r = , 0.001σ = , 0.01T = , 
max

120S = . 

 

4. Conclusions and discussion 

We constructed a family of explicit method based on a nonstandard discretization scheme to solve option 

valuation problem with double barrier knock-out call option. In particular, the proposed method uses a 

nonstandard discretization in reaction term and the spatial derivatives are approximated using standard finite 

difference scheme. It has been shown that the proposed new scheme preserve the positivity as well as stability 

and consistence. Future work will include extending the method to nonlinear Black-Scholes equation. 
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