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Abstract 

Manufacturers are often faced with the problem of selecting the optimum process mean. Wen and Mergen (1999) 

used the unbalanced step loss function for measuring the cost of the non-conforming item and adopted a trade-

off model for determining the optimum process mean. They assumed that the quality characteristic is normally 

distributed, the process variance constant and the process mean is unknown. This paper presents the modified 

Wen and Mergen model with a step loss function and piecewise function using an exponential distribution. The 

proposed model is a generalization of Wen and Mergens model. 
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1. Introduction 

The selection of economic process mean is an important topic for statistical process control. The setting of the 

optimum process mean will directly affect the total cost to the society including the inspection cost, scrap or 

rework cost and the loss to the customer. Considerable researches in this area include Li (1997), Wu and Tang 

(1998), Lin and Chirng (1999), Wen and Mergen (1999), Li and Cherng (2000) Maghsoodloo and Li (2000), 

Philips and Cho (2000) and Li and Wu (2001). 

Wen and Mergen (1999) used the unbalanced step loss function for measuring the cost of the non-conforming 

item. The normal quality characteristic, the constant process variance, and the unknown process mean are 

assumed in their model. They selected the optimum process mean based on minimizing the costs of falling below 

the lower specification limit (TL) and exceeding the upper specification limit (TU). 

Cho and Leonard (1997) presented that the piecewise linear quality loss function for product is roughly 

proportional to the deviation of the quality characteristic from its specification limits. The linear loss function is 

usually applied in the filling/canning problem for determining the optimum manufacturing target Carlsson 

(1984), Golhar and Pollock (1998), Misiorek and Barnett (2000) and Lee et. Al (2001). 

The lognormal distribution is usually adopted for describing the lifetimes of mechanical and electrical systems 

and other survival data. It is apparent that the exponential distribution is an important competitor to the 

lognormal, gamma or weibull distributions as models for non-negative phenomena. 

This paper further presents the modified Wen and Mergen’s (1999) model with exponential distribution . the step 

loss and the piecewise linear loss function of product are considered in the modified model. 

 

2. Literature Review 

Wen And Mergen’s Model With Normal Distribution 

By minimizing the unbalanced costs of out-of-specification, Wen and Mergen obtained the optimum process 

mean. There are three assumptions in their model. 

1. The quality characteristic, X, is normally distributed with an unknown mean µ and a known variance σ
2
 

2. The quality characteristic nominal-is-best. 

3. The target value, T, is the middle value of the specification, i.e., T=(Tl + Tu) /2 

According to Wen and Mergen , the expected total loss per item is ��� = �� � 	
���∞�� + �� � 	
������∞
=  �� �1 − � ������ �� + ��� ������ �               (1) 

Where 

Tu = the upper specification limit 

Tl= the lower specification limit 

CT = total loss per item due to exceeding the Tu and Tl 

Du = the monetary loss per item of exceeding Tu 

Dl = the monetary loss per item of staying below Tl 	
�� = ��
���� exp "− �� �#��� ��$            (-∞ < � < ∞�                                                      (2) 

Φ (z) = the cumulative distribution function for the standard normal random variable with probability density 

function  	
�� =  �√�� ' −()      ,        (−∞ < * < ∞�                                                                            (3) 

In order to determine the optimum process mean µ, Wen and Mergen took the derivative of Equation 1. Since 
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the second order derivative of equation 1 is positive, we set the first-order derivative equal to zero. The optimum 

µ is, +∗ = - − �)
�.��/ 01 �2.2/ �                                                                                                              (4) 

2. Modified Wen And Mergen’s Model With Exponential Distribution 
Assume that the quality characteristic X follows the exponential distribution. The probability density function of 

X is as follows 	
�� = 3'�4#         ,        x  ≥ 0 ,               (5) 

Where λ is the parameter of the exponential distribution. 

The cumulative distribution function, the expected value, and the variance of the exponential distribution, 

respectively, are 5
�; 3� =  1 −  '�4#      ,  x ≥ 0               (6) 7
�� = �4                                                                                                                                                      (7) 89: 
�� =  '��;�)<'�) − 1=                                                                                                                      (8) 

We now formulate the modified Wen and Mergen model with the step loss function of exponential characteristic 

for determining the optimum process mean. 

Step Loss Function 

The expected total loss per item of the modified Wen and Mergen model with the step loss function is �-� =  �� � 	
��� +  ��∞�� � 	
��� =  ����> '�
4��. +  ��
1 − '�
4��/�                                             (9) 

Where 

Tu = the upper specification limit 

Tl= the lower specification limit 

Du = the monetary loss per item of exceeding Tu 

Dl = the monetary loss per item of staying below Tl 

If we assume a Weibull function then �-� =  �� � 	
��� +  �� � 	
��� =  ����> ?'�[A.BCD ]FG + �� ?1 − '�[A/BCD ]FG ∞��                                   (10) 

After taking the first order derivative we get the equation as follows 

	 ′
�� =  HIF J�� K'��A.BCD �FL [
-� − M�H��] − ��N'�[
���O�/I]FQ[
-� − M�H��]R              (11) 

Equation 11 is not a closed function. 

In order to determine the optimum µ, using an exponential function we take the derivative of equation 9. Since 

the second-order derivative of Equation 9 is positive, we set the first-order derivative equal to zero. The optimum 

parameter lambda is; 3 =  � ��.��/� 01 �2. ∗�.2/∗ �/ �                                                                                                                           (12) 

Hence, the optimum process mean 

E(X)= µ = 
�4             (13) 

 

 

3. Piecewise Linear Loss Function 

Cho and Leonard (1997) presented the piecewise linear quality loss function for the nominal-is best quality 

characteristic as follows: 

S
�� = T 0                V	   -� ≤ � ≤ -���
-� − ��,         V	  � ≤ -���
� − -��     V	   � >  -�
Z                                                     (14) 

Where 

Dl = the quality loss coefficient when the quality characteristic is less than Tl 

Du= the quality loss coefficient when the quality characteristic exceeds the Tu 

The expected total loss per item of the modified Wen and Mergen model with the piecewise linear loss function 

is. ��� =  � ��∞�� 
� −  -�� 	
��� +  � ����> 
 -� − �� 	
�� 
��  

  
2. ∗[B
\�A.

4 + 2/∗[B
\�A/
4 +  �� ∗ -� − 2/4 = 0                                                                              (15)                                                              

Since equation 15 is not closed, one can adopt the simple interval search method for obtaining the optimum 

parameter λ*  (the optimum process mean)  E(X)= µ = 
�4 
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4. Numerical Example 
Assume that the quality characteristic follows an exponential distribution. Let the lower specification limit, Tl =2 

and the upper specification limit, Tu =4. The monetary loss per item of falling below Tl is Dl = 1.5. The monetary 

loss per item of exceeding Tu is Du =1. We would like to determine the optimum process mean for minimizing 

the expected total loss per item. 

Step Loss Function For Product 

By solving equation (12) we have  λ* =0.144. Hence, the optimum process mean E(X) = 6.952 

Piecewise Linear Quality Loss Function For Product 

By solving equation (15) we have λ*= 0.50209. Hence the optimum process mean E(X) = 2 

Step Loss Sensitivity Analysis 

Figure 1: Graphical relationship between optimum values of λ* and the upper specification limit Tu. As Tu 

increases λ* increases initially at an increasing rate then gradually decreasing and then constant. 

 

 

 

Figure 2: Graphical relationship between optimum values of λ* and the upper specification limit Tl. λ* 

decreases at a decreasing rate leveling off at higher values of Tl. 

 

 

 

Figure 3: Graphical relationship between optimum values of λ* and the monetary loss per item Du. λ* increases 

at a decreasing rate with increases in Du. 
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Figure 4: Graphical relationship between optimum values of λ* and the monetary loss per item Dl .  λ* 

decreases at a decreasing rate with increases in Dl. 

 

 

Piecewise Sensitivity Analysis 

Figure 5: Graphical relationship between optimum values of λ* and the upper specification limit Tu. λ* 

decreases in varying rates with increases in Tu. 

 

 

Figure 6: Graphical relationship between optimum values of λ* and the monetary loss per item Du. λ* increases 

with increases with increases in Du and decreasing gradually. 
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Figure 7: Graphical relationship between optimum values of λ* and the upper specification limit Tu. λ* 

decreases at a decreasing rate with increases in Tu. 

 

 

 

Figure 6: Graphical relationship between optimum values of λ* and monetary loss per item Dl. λ* decreases 

steadily with increases in Dl. 
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