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Abstract 
 

EXAMINING STUDENTS’ COVARIATIONAL REASONING THROUGH 

MATHEMATICAL MODELING ACTIVITIES EMBEDDED IN THE CONTEXT 

OF THE GREENHOUSE EFFECT 

by Debasmita Basu 
 

The greenhouse effect is one of the most pressing environmental as well as social issues 

of the present age. In news media and weather reports, most of the essential information about 

the phenomenon is expressed in forms of graphs and pictures. However, the interpretation of 

such graphs is challenging for students; they often focus on the shape of the graphs, overlooking 

the covariational relationships between the concerned quantities. Building on the framework of 

critical mathematics literacy and social justice mathematics, in this study I aimed to explore the 

power of dynamic mathematical modeling activities for engaging students in covariational 

reasoning and developing their understanding about the greenhouse effect. More specifically, 

this study aimed to explore a) the extent to which students’ understanding of the greenhouse 

effect and covariational reasoning changed as a result of their engagement with the mathematical 

modeling activities, and b) the ways in which students may reason covariationally as they engage 

with mathematical modeling activities in the context of the greenhouse effect. 

To engage students in covariational reasoning in the context of the greenhouse effect, 

three NetLogo dynamic simulations and accompanied activities were developed and 

implemented in two sixth-grade classrooms in the form of a whole class design experiment. Both 

quantitative and qualitative data were collected in the form of pre- and post-assessments and 

video recordings of whole class discussions and small group interactions. The analysis of the 

quantitative data shows a significant improvement in post-assessment scores of the treatment 
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group students compared to their peers in a control group. The qualitative analysis that followed 

helped me understand the meaning of the improved post-assessment scores by studying students’ 

reasoning as they interacted with the simulations. The analysis of the qualitative data indicates 

that the design of the three simulations and activities as well as the targeted questioning 

provided a productive space for students to engage in different levels of covariational  

reasoning according to Carlson et al.’s mental action framework and helped them identify the 

causes and the consequences of the greenhouse effect. 

Keywords: Greenhouse effect, covariational reasoning, mathematical modeling. 
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1. Introduction 
 

Climate change is one of the most pressing issues of the present age for our society. At 

the Earth Summit at Rio de Janeiro in 1992, the United Nations Framework Convention on 

Climate Change (UNFCCC) defined climate change as the "change of climate which is attributed 

directly or indirectly to human activity" (Kolbert, 2006, p. 153). Indeed, with the increasing 

population and expanding technological advancement, human activities have maintained a 

dominant influence on the natural climatic condition of the earth (Heng, Karpudewan, & 

Chandrakesan, 2017; Karl & Trenberth, 2003; Shepardson, Niyogi, Choi, & Charusombat, 2009; 

Vitousek, Mooney, Lubchenco, & Melillo, 1997). Over the past few decades, human activities 

have altered the "earth's ecosystems more rapidly and extensively than in any comparable period 

of human history" (MEA, 2005, p. 4). For instance, fossil fuel combustion in the economically 

developed regions adds 5.5 ± 0.5 billion metric tons of CO2 to the atmosphere annually 

(Vitousek, Mooney, Lubchenco, & Melillo, 1997). Due to the large-scale burning of fossil fuels, 

the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide has 

increased, thus disrupting the normal atmospheric composition of the earth (Dolman, Verhagen, 

& Rovers, 2003). 

Apart from the industrial emission of greenhouse gases, research shows that an average 

US citizen, through his/ her daily course of action, contributes more than sixteen metric tons of 

CO2 into the atmosphere during their lifetime (Murn, 2017). We often remain unaware, but our 

simple act of choosing household goods, such as detergents, toilet papers, floor mops, and house 

paints, also impacts our environmental conditions (Black & Cherrier, 2010). Several of these 

household items often contain hazardous substances such as benzene, lead, asbestos and 

chlorine, which are added to nature due to the improper disposal of these items with common 
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household wastes (Malandrakis, 2008). Additionally, our choice of transportation and household 

energy use, such as driving big-size cars instead of carpooling or taking public transports, 

excessive use of highly efficient electronics, game systems, and uninterrupted service of heating 

and cooling systems constitute anywhere from 32 to 41 percent of the total carbon dioxide 

emission (Barkenbus, 2010; Murn, 2017). Due to all the human activities, the amount of carbon 

dioxide gas in our atmosphere, which was stable to 280 ppm for thousands of years has increased 

exponentially since 1800 (Vitousek, Mooney, Lubchenco, & Melillo, 1997). In 1993, Boyes, 

Chuckran, and Stanisstreet (1993) asserted that if the carbon emission level of the world remains 

unchecked, we might see a global rise of temperature between 2-degree and 5-degree Celsius in 

future, which in turn would melt polar ice caps and raise the sea level (Shepardson, Niyogi, Choi, 

& Charusombat, 2009). 

While a considerable section of the human population is concerned about the human- 

induced climate change and its impact on the natural habitats of the earth, many others deny the 

potential role of the human activities responsible for climatic disruption and often question the 

climate change authenticity (Abtahi, Gotze, Steffensen, Hauge, & Barwell, 2017). Hulme (2009) 

suggested that the complexities associated with the issue of climate change and the wide range of 

information and misinformation available to the general public about the climate might have 

resulted in such confusion. However, considering the gravity of the issue, if the general public, 

and especially the students, are not educated about climate change and its consequences, then 

that might worsen the current climatic situation. In other words, due to lack of knowledge and 

awareness, if human activities continue to put such a strain on the natural functions of the earth 

then "the ability of the planet's ecosystems to sustain future generations can no longer be taken 
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for granted" (MEA, 2005, p. 5). Unless we become more sensitive towards climate and alter our 

attitudes and actions, the stress on the earth's ecosystems will increase in future. 

1.1. Is Climate Change Affecting Everybody Equally? 
 

Though climate change is considered to be a potential threat to the entire humanity, not 

everybody has an equal contribution to the causes of climate change and not every individual 

incurs the consequences of climate change equally. In other words, climate change is not only an 

environmental issue but also an issue of inequity and social injustice (Agyeman, Bullard, and 

Evans, 2002). According to many researchers, climatic and environmental problems bear down 

disproportionately upon the poor though they are not the primary consumers of the available 

resources (Agyeman, Bullard, & Evans, 2002; Costello et al., 2009; Pettit, 2004). The poor 

people are more likely to endure the harmful effects of climate change compared to the affluent 

section of society (Corvalan, Hales, McMichael, Butler, & McMichael, 2005). As Kemp (2011) 

suggested, "where people live profoundly influences how they live, with important implications 

for equity and social justice" (p. 1200). A study conducted by The Dallas Morning News and the 

University of Texas in 2000 reported that 870,000 out of 1.9 million (46%) houses of the poor 

people are located within the one-mile radius of factories that have been reported to emit toxic 

chemicals according to Environmental Protection Agency. Indeed, big multinational companies 

often adopt unsustainable forms of production and waste disposal to maximize their profit 

(Agyeman, Bullard, & Evans, 2002), and most of these factories are located in urban areas, 

which are heavily resided by poor and minority groups of people. In Atlanta, about 83% of the 

African American people live near waste site compared to 60.2% of the whites, and in Los 

Angeles, 60% of the Hispanic people reside in areas heavily contaminated by industrial wastes 

compared to 35.3% of the whites (Bullard, 2000). 
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Another example that describes how environmental health threat is connected to people's 

economy was given by Bullard (2000) who discussed the influence of lead poisoning on the life 

of American children arguing that a child belonging to the low socio-economic strata is eight 

times more susceptible to the lead poisoning compared to a rich child. For instance, in West 

Dallas, which is resided by 85% black people and most of the families live below the poverty 

line, a local lead smelter pumps more than 269 tons of lead particles in the air every year. 

Another example is the case of Institute, a small community in the Kanawha County in West 

Virginia, where 90% of whose population is black and their health is compromised daily as a 

result of polluted air and odors emission from a local Union Carbide chemical plant (Bullard, 

2000). While the wealthy people can ensure their children healthier lives with clean air and non- 

polluted water supplies, the people belonging to the lower economic strata of the society are less 

able to avoid the environmental hazards such as lead emission, motor vehicle exhausts, polluting 

industry, and power generation (Agyeman, Bullard, & Evans, 2002). As a result, the poor 

population of our society is more vulnerable to health issues such as heart diseases, breathing 

problems, diarrhoea, malaria, and malnutrition (McMichael, 2013). 

Apart from health hazards, flooding, which can be caused by climate change also impacts 

the different strata of society disproportionally. According to Walker and Burningham (2011), 

poor people are more vulnerable to be affected by floods over others because they lack 

preparedness and financial resources to make their houses more water resilient. Considering the 

above, climate change can rightfully be claimed as an issue of social injustice as it has "its 

greatest effect on those who have the least access to the world's resources and who have 

contributed least to its cause" (Costello et al., 2009, p. 1694). 
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1.2. What Can We Do About It? 
 

To restrain the pace of the existing climatic disruption, several initiatives have been taken 

by the governments and different organizations worldwide. To mention a few, in 2015, all the 

United Nations Member States adopted the 2030 Agenda for Sustainable Development, which 

identified Climate Change as one of the 17 sustainable development goals that contribute 

towards a better and sustainable future for all. In November 2016, 175 countries in the world 

signed the Paris Agreement, with the unified intention to limit global temperature rise to 2 

degrees Celsius for the next hundred years. They aimed to enhance the adaptability of the 

countries towards climate change, minimize the loss and damage associated with climatic 

disruption, mitigate the pace of climate change by providing financial support to the countries to 

reduce greenhouse gas emission, and educating, training, and making public aware of issues 

related to climate change. As of 2018, 175 countries ratified the Paris Agreement, and 168 

countries have communicated their contributions to the United Nations Framework Convention 

on Climate Change Secretariat. 

While governments and organizations create initiatives to fight climate change, research 

shows that students often have a wide range of misconceptions about the climatic condition of 

the earth. Some of those misconceptions include students believing that climate change is caused 

by ozone depletion (Shepardson, Niyogi, Choi, & Charusombat, 2009), excessive solar radiation 

(Boyes & Stanisstreet, 1993) and proximity of earth to the sun (Pruneau, Gravel, Bourque, & 

Langis, 2003). Consequently, many students often do not consider climate change as an 

immediate or future threat to the society or humans (Pruneau et al. 2001, 2003; Shepardson, 

Niyogi, Choi, & Charusombat, 2009). Hence, it is essential that we as educators acknowledge 

our own share of responsibility towards the planet and task ourselves to educate our students so 
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that the future citizens develop an awareness about the issue of climate change and cultivate 

sensitivity towards climate (Bostrom, Morgan, Fischhoff, & Read, 1994; Shepardson, Niyogi, 

Choi, & Charusombat, 2009; UNESCO, 2013). As educators, our goal should also be to engage 

our students in a study of this scientific phenomenon using equity and social justice lens. 

1.3. Climate Change and The Role of Mathematics Education 
 

Climate change and mathematics are closely related. Governments and the policymakers 

develop laws and policies around climatic conservation, primarily based on the predictions made 

by mathematical models on climate (Barwell, 2013). Mathematics literacy is not only necessary 

to identify the different traits that indicate climatic disruptions, but it also helps us predict the 

future impacts of climate change. Abtahi et al. (2017) acknowledged the role of mathematics for 

understanding, predicting, and communicating issues related to climate change, and questioned 

the "ethical and moral responsibilities" (p. 2) of the mathematics educators and teachers to 

educate students about this complex yet pressing issue. They argued that, if teachers assume their 

ethical responsibilities to educate their students about the rapidly changing climate, then that 

would prepare the future decision makers to effect change for the betterment of the climate. 

In line with this call, in this study, I aimed to explore the power of mathematical 

reasoning for developing students' understanding of the greenhouse effect, which is a significant 

cause behind climate change. Acknowledging the complexity of climate change, my goal was to 

engage students in targeted dynamic mathematical modeling activities that would not only help 

them develop their mathematical reasoning but would also provide them with a platform to 

identify the causes and consequences of the greenhouse effect and discover the role of human 

activities as a cause behind this phenomenon. To address the social impact of the greenhouse 

effect, this study utilizes the frameworks of critical mathematics education (Frankenstein, 1994) 
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and teaching mathematics for social justice (Gutstein, 2003) to advocate the power of 

mathematics for questioning the existing social injustice and use mathematics as a potential tool 

to critique it. 

1.4. Structure of The Thesis 
 

This dissertation is organized into five chapters. In Chapter Two, I present my review of 

the literature around the following five major themes: critical education theory, critical 

mathematics education, social justice mathematics, mathematical modeling, and covariational 

reasoning. First, I discuss the essential idea of critical education theory as introduced by Freire 

(1973). Building on the framework of critical education theory, next I describe the concept of 

critical mathematics education (Frankenstein, 1994) and social justice mathematics (Gutstein, 

2003) to illustrate how mathematics education can help students to read the world, generate 

within the learners a sense of agency to change the world, and question the hegemonies and the 

established norms of the society. Then I review the literature on mathematics modeling and 

discuss how mathematics modeling helps students to engage in meaningful learning of different 

real-life phenomena. I end chapter two focusing on the mathematical aspect of the greenhouse 

effect and reviewed pertinent literature illustrating what is covariational reasoning, and how this 

particular form of cognitive activity might help students to read graphs and understand the 

causes and the consequences of the greenhouse effect. 

In Chapter Three, I describe the methodology of my study, the whole class design 

experiment. I explain why the particular methodology is best suited for this study. Then, I review 

the general design features of the tasks followed by design features my research. First, I discuss 

the role of technology in students' learning; then I provide a detailed description of all the three 

NetLogo simulations I designed, and the five Investigations to illustrate how the simulations and 
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the activities could conjointly engage students in different stages of covariational reasoning and 

help them understand the greenhouse effect. Next, I described the participants of the study, the 

research setting, as well as my data sources and collection methods. Lastly, I end the chapter 

describing the methods of data analysis and the framework I used to analyze students' 

covariational reasoning. 

In Chapter Four, I describe my findings. First, I present the results of the pre- and the 

post-assessments of the treatment and the control groups and compare them to illustrate the 

difference in the performance of the two groups of students in the pre- and the post-assessment. 

Next, to get an insight into the quantitative data and identify the possible reasons that might have 

resulted in the difference between the scores, I analyze the qualitative data. I look into the 

students' experiences interacting with the three NetLogo simulations and discuss how the 

simulations and the activities might have enabled students to reason covariationally and helped 

them identify the causes and the consequences of the greenhouse effect. 

In Chapter five, first I summarize the findings of my study in connection to existing 

research literature on mathematical modeling and covariational reasoning and discuss the 

implication the study in the field of mathematics education. Then I discuss the limitations of the 

study and end the chapter by discussing implications for future research. 
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2. Literature Review 
 

For my dissertation, I examine the impact of dynamic mathematical modeling activities 

on students’ understanding of the greenhouse effect. More specifically, I focus on how the 

dynamic mathematical modeling activities helped students to engage in different levels of 

covariational reasoning and helped them shape their opinions about the issue of the greenhouse 

effect through data and graphs. 

The literature review is organized into five sections. In section 2.1, I explore what is 

critical education theory and its role to generate within students a sense of critical awareness 

about different socio-political issues. Developing on the role of critical education theory, in 

section 2.2 and section 2.3, I discuss how critical mathematics education and social justice 

mathematics can help students to become familiar with deep-rooted social injustice and explore 

how an environmental issue such as the greenhouse effect can be studied as a social justice issue. 

I envision to use mathematical modeling activities to make students aware of the impact of 

greenhouse effect on their daily lives and propose strategies to curb the pace of the changing 

climate. Therefore, in section 2.6, I provide a brief overview about how mathematical modeling 

has been defined by educators, describe the role of modeling for integrating different subjects, 

such as mathematics, science, and social science, and present the current place of mathematical 

modeling in school education. Finally, section 2.7 describes how modeling activities can help 

students to interpret and analyze graphs and data that they encounter outside of the school 

context and focuses on how covariation reasoning may assist students in this interpretation and 

analysis. 
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2.1. Critical Education Theory 
 

Historian Howard Zinn (1990) once wrote that "in a world where justice is maldistributed, 

there is no such thing as a neutral or representative recapitulation of the facts" (p. 24). Echoing 

the opinion of Zinn about non-neutrality in education, Gutstein (2005) stated that teaching is not 

a neutral activity; it is a political act. Indeed, in a society, which is highly diverse socially, 

culturally, and economically, anything that teachers do from selecting a mathematical activity for 

the students to deciding on the mode of instruction in a mathematics classroom, sends a message 

to the students about what is essential and valued in school mathematics. 

A similar argument was also made by Setati (2008), who stated that the language of 

instruction in a multicultural classroom is never just a "vehicle to express ideas (a cultural tool), 

but also a political tool that we use to enact (i.e. to be recognized as) a particular 'who' (identity) 

engaged in a particular 'what' (situated activity)" (p. 105). Under such circumstances, it is 

essential for educators to reconsider the role of mathematics. We can either treat mathematics as 

it has been treated traditionally and pose nonsensical problems to the students, such as 

calculating the speed of two trains moving on a single track or finding the total amount of time a 

jet plane will take to catch a passenger plane, or we can use topics, such as corruption, child 

labor, impact of a war, and climate change to make students familiar with socially pressing 

issues (Cirillo, Bartell, & Wager, 2016; Koestler, 2010). 
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In his book "Pedagogy of the Oppressed," Freire (1973) argued that our education system 

has turned into an act of deposition, where the teachers and the students play the role of 

depositors and depositories respectively. Freire used the analogy of a banking system to describe 

that knowledge is treated as a gift, which is imparted by somebody knowledgeable to those 

whom they consider being less intellectual and less competent. Freire claimed that this banking 

education system positions the learners in passive roles and does not develop within them a sense 

of inquiry about their own lives or the society they live in. Eventually, the banking system of 

education serves the purpose of the oppressors by refraining the oppressed from asking 

questions, thus keeping the later under the impression that "causality is a static, established fact" 

(Freire, 1973, p. 44) and, therefore, not susceptible to change through their actions. 

Opposing the banking system of education, Freire (1973) proposed that our education 

system should establish within students a sense of conscientizacao or a critical sociopolitical 

awareness to "understand what one reads and to write what one understands" (Freire, 2014, p. 

284). Originally, the concept of critical consciousness was introduced by Freire (1973) as an 

approach to develop Brazilian peasants' ability to identify the different socio-political factors that 

contribute to their inequitable social conditions, and empower them to lift themselves up from 

the pitfall of social injustice and biases that became an eternal part of their lives. With a similar 

goal in mind, Freire emphasized the development of students' critical consciousness through 

dialogue and problem posing. He stated, "authentic thinking, thinking that is concerned about 

reality, does not take place in ivory tower isolation, but only in communication" (Freire, 1973, p. 

77). Problem-posing education regards dialogue as indispensable to the act of cognition that 

encourages students to be critical thinkers and fosters within them deep consciousness towards 

apprehending the world and take actions to transform it. Comprehending the world, or in Freire's 
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words reading the world and transforming it, that is writing the world, are the two fundamental 

components of critical education. 

Henry Giroux (cited in Frankenstein, 1983) collectively defines the concept of reading and 

writing the world as "a critical mode of reasoning and behavior…[that] functions so as to help 

people analyze the world in which they live, to become aware of the constraints that prevent 

them from changing that world, and, finally, to help them collectively struggle to transform that 

world." (pp.114, 116). Building on Freire's framework of critical consciousness, recent studies 

(Diemer et al., 2006; Godfrey & Grayman, 2014; Watts et al., 1999) identified three components 

of critical consciousness: (i) critical reflection, (ii) socio-political efficacy, and (iii) critical 

action. Critical reflection, as described by Godfrey and Grayman (2014) is the "youth's ability to 

analyze current social realities critically, and recognize how social, economic, and political 

conditions limit access to opportunity and perpetuate injustice" (p. 1802). Critical literacy 

motivates an individual to critically reflect on accepted ways of living and thinking, discerning 

the established norms and hidden interests of a particular section of the society (Hopper, 1999). 

The Socio-political efficacy defines "one's perceived ability to act to change social and political 

conditions" (Godfrey & Grayman, 2014, p. 1802), and critical action describes the extent to 

which an individual takes active roles to condemn social biases and work towards abolition of 

unfair practices that slipped into and became an integral part of our lives. Though Godfrey and 

Grayman (2014) recognized critical reflection, socio-political efficacy, and critical action as 

three distinct components of critical literacy, these three components collectively highlight the 

goals of reading and writing the world. The three goals suggest that an individual's critical 

consciousness develops through their ability to understanding the world deeply and their 

perceived and active capability to work towards rewriting the world in their own terms. 
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2.2. Critical Mathematics Education 
 
 

Developing on Paolo Freire's critical education theory in the context of mathematics, 

Frankenstein (1983, 1990, 1994) established what we refer to as critical mathematics literacy. 

She stated that mathematical numbers and representations would "explode the myths about the 

institutional structure of our society and understanding the limitations of the knowledge we gain 

from mathematical analyses of our world" (Frankenstein, 1994, p. 25). Similar to Freire, 

Frankenstein (1983) emphasized the role of dialogue in mathematics classrooms, as a tool for 

bridging the existing critical consciousness of the students with their developing critical 

approach towards knowledge. She argued that current school mathematics establishes and 

reinforces hegemonic ideologies; however, critical mathematics education can develop within 

students a deeper understanding of race, gender, and class along with learning mathematical 

concepts. Consequently, Frankenstein (1990) defined critical mathematics literacy as "the ability 

to ask basic statistical questions in order to deepen one's appreciation of particular issues and the 

ability to present data to change people's perception of those issues" (p. 336). She suggested that 

when students start identifying mathematics embedded in social or political situations, they can 

then develop an in-depth understanding of the situation and question "sentences and myths that 

are slipped into their lives in so many ways" (p. 336). Frankenstein (1994; 2001) identified four 

goals of critical mathematics literacy: a) understanding the mathematics, b) understanding the 

mathematics of political knowledge, c) understanding the politics of mathematical knowledge, 

and d) understanding the politics of knowledge. In the following paragraphs, I provide some 

examples to explain each of those four goals. 

For calculating the demographic percentage of unemployed people, students would 

require the knowledge of calculating the percentage. This is what Frankenstein refers to the 
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understanding of mathematics (Goal 1). On the contrary, understanding the mathematics of 

political knowledge (Goal 2) refers to how students' mathematical knowledge may help them to 

understand the complexities of a real-life situation. For instance, if students are provided with 

unemployment data, then their data analysis ability would enable them to apprehend the 

unemployment situation of the working-class people of the country. According to Frankenstein, 

students' mathematical competencies would successfully organize their thoughts around the data 

and help them ask relevant questions to unmask other factors hidden in the data. Though 

researchers have emphasized on the power of numeracy to develop critical consciousness among 

students, numbers can also be misused to politicize an issue or to make a situation favorable for 

the dominant section of the society. Frankenstein regarded such misuse of numbers as 

understanding the politics of mathematical knowledge (Goal 3). For instance, in the United 

States, the unemployment rate is usually calculated based on the number of people applying for 

unemployment insurance. However, the current procedure of calculation understates the 

percentage of unemployed people in the US. Many people, who cannot find a full-time job and 

work part-time, underpaid people, and workers who ran out of their unemployment benefits, are 

omitted from unemployment insurance. As a result, they are not considered as unemployed. This 

example shows how certain policies are built to mellow or misrepresent relevant issues such as 

unemployment by using seemingly neutral mathematical data. 

The fourth goal of critical mathematics literacy, the politics of knowledge (Goal 4) 

involves “what counts as mathematical knowledge and why” and “how mathematical knowledge 

is learned in schools” (Frankenstein, 1994, p. 36). Frankenstein said, in schools, students do not 

encounter difficulties in learning mathematics due to the discipline's difficult abstraction, but due 

to the cultural form in which mathematics is presented (Frankenstein, 1994). 
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Considering the above, critical mathematics literacy "ranges from demystifying the 

structure of mathematics to using numerical data for demystifying the structure of society" 

(Frankenstein, 1994, p. 24). Developing on Freire's theory of critical education, the goals of 

critical mathematics literacy is to use the power of mathematics to help students develop a 

critical understanding of the society, which in turn leads to critical action (Frankenstein, 1983). 

Critical mathematics literacy demands students to analyze the patterns in a given set of data and 

mathematical graphs, examine the connections between them and reflect on how certain people 

use numbers to serve their own purposes while pushing others towards a life filled with 

oppression and injustice. As Frankenstein (1983) states, "reflection which is not ultimately 

accompanied by action to transform the world is meaningless" (p. 3); as a result, critical 

mathematics literacy further motivates students to challenge the biases and injustice in the 

society and develop a plan of actions to transform them. 

2.3. Social Justice Mathematics 
 

Building on the framework of critical education theory by Freire (1973) and critical 

mathematics literacy by Frankenstein (1990, 1994), Gutstein (2006) developed a model for 

teaching mathematics for social justice. He acknowledged Freire’s idea of liberation from 

oppression as the fundamental objective of teaching mathematics for social justice. More 

specifically, he defined the purpose for teaching mathematics for social justice to involve helping 

students learn mathematics more meaningfully through issues of social concern and enabling 

students “to investigate and critique injustice, and to challenge, in words and actions, oppressive 

structures and acts” (Gutstein, 2006, p. 4). In other words, social justice mathematics (SJM) 

develops within students an awareness against deep-rooted social inequities and unfair practices 

while developing a mathematical identity. 
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Gutstein (2006) identified three goals of teaching mathematics for social justice: a) a 

mathematics pedagogical goal, suggesting that we can help students learn mathematics through 

the study of social issues b) a social justice pedagogical goal, suggesting that we can use 

mathematics as a medium to teach students about the issues of equity, diversity, and social 

justice and c) developing positive cultural and social identities, that emphasizes on grounding 

mathematics instruction in students’ languages, cultures, and communities, while providing them 

with the mathematical knowledge they need to survive and thrive in the dominant culture. This 

study is developed at the intersection of the first two goals and explores how mathematical 

activities embedded in the context of the greenhouse effect help students to understand the 

environmental and social aspects of the phenomenon through data and graphs. As identified by 

Gutstein (2006), the two goals of mathematics pedagogical goal and social justice pedagogical 

goal are dialectically connected and complement each other enabling students to learn 

mathematical concepts through socially relevant issues and develop socio-political awareness 

during their interaction with mathematical tasks. 

In terms of the mathematics pedagogical goal, Gutstein emphasized students’ academic 

success in the traditional sense. He argued that unless students gain mathematical competencies, 

their limited understanding of mathematics would keep them ignorant about socio-political ideas 

around them. In relation to the social justice pedagogical goal, Gutstein (2003) utilized Freire’s 

literacy scholarship to introduce the concepts of “reading and writing the world with 

mathematics” (p. 24) as the two main objectives of this goal. The following paragraphs describe 

each of those two objectives in more depth. 
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2.3.1 Reading the world with mathematics 
 

Building on Freire’s concept of reading the world, Gutstein (2003), defined reading the 

world with mathematics as using: 

mathematics to understand relation of power, resource inequities, and disparate 

opportunities between different social groups and to understand explicit discrimination 

based on race, class, gender, language, and other differences. Further, it means to dissect 

and deconstruct media and other forms of representation. It means to use mathematics to 

examine these various phenomena both in one’s immediate life and in the broader social 

world and to identify relationships and make connections between them. (p. 45) 

In other words, reading the world with mathematics involves students seeing themselves and 

their future in a given set of numbers and as a result developing a sociopolitical consciousness of 

their own lives. 

Gutstein (2003) developed a series of real-world mathematics projects on his students’ 

lived experience as urban Latino immigrants belonging to working-class families. The purpose 

of his study was to explore how students may move beyond simple mathematical computation 

and use mathematics as an analytical tool to learn about their own positionality in the society. In 

one of the projects, Gutstein provided students with a data set containing the 1997 SAT and ACT 

scores of students and asked them to analyze the data based on race, gender, and social class. 

Interestingly, Gutstein found that during their interaction with the ACT and SAT scores, students 

moved beyond mathematics and started asking questions to find the truth embedded in the data 

and examine how a student’s ACT/SAT score depends on his family income, race, and ethnicity. 

Some of those questions include, “How come whites and Asians get higher scores, yet everyone 

else lower scores?”, “How does race affect your scores?”, and “All of these [low-income] people 
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want to become doctors, lawyers, sports players, etc. So why are 'rich' smarter?” (Gutstein, 2003, 
 

p. 52). Gutstein (2003) wrote, “their questions were genuine and from their experiences as 

educationally disadvantaged and marginalized students, who saw themselves in the data” (p. 52). 

Likewise, Peterson (2005) suggested that teachers and educators integrate mathematics 

across curricula including history and social science and provide students with instances where 

mathematics has generated major controversies around social and political events. He asserted 

that an in-depth knowledge of mathematics and statistics may enable students to have better 

clarification about social structures and policies. Peterson (2005) also argued that students’ 

ability to read numbers would make them competent enough to successfully participate in 

debates on social issues such as soaring unemployment rate, wage inequality and the federal 

budget. 

In an attempt to make his students aware of the unequal wealth distribution in the world, 

Peterson (2005) provided them with data on the distribution of population and wealth in the six 

continents and engaged them in the discussion on the disparity of wealth in the US and other 

continents. He divided his twenty-four students into groups, as per the world’s population 

distribution and used twenty-four chocolate chip cookies as representative of the total world 

wealth. When the cookies were divided among students following the proportional distribution 

of world wealth, students found that some of them received more cookies than others. One 

student who represented the USA and Canada received eight cookies, whereas three students 

representing the population of Asia and fifteen students representing the population Africa 

received .5 and six cookies respectively. By the end of the activity the participating students 

realized that similar to the result of this activity, in reality as well their “classmates in North 

American and European sections of the map get so many more cookies even though they have so 
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many fewer people” (Peterson, 2005, p. 13). In this particular task, instead of learning about the 

issue from their teacher, students modeled the world-wealth disparity and discovered the 

disproportionate distribution of world wealth among its residents, concluding that the total 

amount of wealth possessed by a continent does not provide the true picture of its general 

population (Gutstein, 2003). 

Similar to Gutstein (2003) and Peterson (2005), many other researchers also attempted to 

introduce students with real-life data to familiarize learners with socially relevant issues. For 

instance, Stinson, Bidwell and Powell (2012) conducted a study to explore how pedagogical 

practices of teachers evolve when they teach mathematics around issues related to social 

injustice. Stinson et al. (2012) described the classroom scenarios of two mathematics teachers 

and illustrated how students’ attitude towards racial profiling changed when they were provided 

with an actual dataset on the particular issue. More specifically, during instruction one of the 

teachers provided her diverse group of urban/suburban high school students with a dataset on the 

racial composition of people pulled over for traffic violations in the neighboring state and asked 

her students to analyze the data, calculate its mean, mode, and standard deviation, and represent 

the data in graphical form. Following this activity, the teacher asked the students to reflect on 

their own experience regarding racial profiling. Initially, many students showed skepticism about 

the relevance of the topic in the mathematics classroom, but as they worked through the 

mathematics their attitude about the project changed, and they shared their own experience about 

racial profiling and discrimination. As the students got involved in the project, they got engaged 

in an interesting and provocative conversation about racial profiling, and they went a step ahead 

to find instances of racial discrimination in their communities. 
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2.3.2 Writing the world with mathematics 
 

Writing the world with mathematics is defined as “developing a sense of social agency” 

(Gutstein, 2006, p. 27) and using mathematics as a tool to change the world. An excellent 

example of writing the world with mathematics has been described by Tate (1995), where a 

teacher organized her mathematics lessons around issues relevant to her students and their 

community. She used tasks that encouraged the students to engage in a series of mathematical 

activities to model their own society and asked her students to pose a problem that is important 

for their community and develop strategies to resolve that problem. Students discussed the issue 

of the inappropriate number of liquor stores in their community and studied in detail the codes, 

regulations, tax-advantage, and fiscal incentives applied to the situation. Following the data 

analysis, the students collected, interpreted and presented a data-based argument to the city 

council complaining about the excess number of liquor stores around their school. Following this 

movement, about fifteen per cent of the total number of liquor stores were closed, and the city 

council passed a bill making liquor consumption illegal within 600 feet of the school. This is 

certainly an example of students moving beyond “percentages, decimals, and fractions” (Tate, 

1995, p. 170) and utilizing the power of mathematics to bring changes in their society. 

Gutstein (2005) argued that Tate’s story is a “relatively rare example” (p. 27) where younger 

students have used mathematics to bring some impact in the society. According to Gutstein, 

writing the world with mathematics is a developmental process, where students start to see 

themselves capable of fighting against social evils and bringing social changes. They see 

themselves as reformists in the movement and feel obligated to respond to social injustice, even 

though they are not physically or mentally ready to speak out for themselves. 
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2.4. Bridging Critical Education theory, Critical Mathematics Literacy and Social 

Justice Mathematics 

Critical education theory, which was once introduced by Freire (1973) as a means to 

develop within an individual critical socio-political awareness, served as a platform to the 

development of critical mathematics literacy (Frankenstein, 1994) and social justice mathematics 

(Gutstein, 2003). All three concepts emphasize on the ability of an individual to critically reflect 

on the society and take critical actions to transform it. Freire (1973) established his conception of 

critical literacy on the fundamentals of reading and writing the world. Reading enables an 

individual to understand the structure of the society and perceive how their “lives are shaped by 

and in turn can shape the world” (Frankenstein, 1983, p. 7). Writing the world, on the other hand 

“concentrates on the role of human consciousness in changing the world” (Frankenstein, 1983, p. 

23). Building on Frankenstein, Gutstein (2006) talked about the power of mathematics to help 

students interpret and “make sense of social reality” (p. 70) and support them to “develop a sense 

of agency, that they would stand up and speak out for that which they believe(d)” (p. 100). 

The two factors that I identify to run across all the three concepts are critical reflection 

(through mathematics) and critical action (through mathematics). Critical reflection, as already 

been discussed focuses on an individual’s ability to critically reflect on injustices and biases 

across the society, develop awareness about the socio-political inequality, and critical action calls 

for an “individual’s ability to take action to change the socio-political situations around them” 

(Godfrey & Grayman, 2014, p. 1802). This study is motivated by critical mathematics literacy 

and teaching mathematics for social justice and is developed on the belief that like any other 

sociopolitical issues, mathematics literacy can make individuals aware of the greenhouse effect 

and motivate them to ask questions such as “What is the greenhouse effect?”, “Why is it 
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happening?”, “Who is responsible for the greenhouse effect?”, “Who is most victimized by the 

phenomenon? Why?”, and “What are our responsibilities towards addressing the issue?” Like 

Freire (1973), Frankenstein (1990, 1994), and Gutstein (2003, 2005), in this study I argue that 

mathematics is a powerful tool that would provide students with the opportunity to understand 

the issue of the greenhouse effect and prepare them to critically reflect on the different aspects of 

the issue and take critical action to mitigate it. 

2.5. Social Justice Mathematics and Climatic Issues 
 

Though extensive research has been conducted to promote teaching mathematics as a 

catalyst to make learners aware of social and political issues (e.g. Frankenstein, 1994; Gutstein, 

2005; Tate, 1995), there are only a few studies (e.g., Abtahi et al., 2017; Barwell, 2013; Karrow, 

Khan, & Fleener, 2017) that focused on the role of mathematics for addressing issues related to 

climate change or the greenhouse effect. As aforementioned in the introduction, the greenhouse 

effect is an issue of social justice, which brings down its effect on the poorer people 

disproportionately, who instead of being the minor consumers of the available resources 

(Agyeman, Bullard, & Evans, 2002; Costello et. al., 2009; Pettit, 2004), are more likely to 

endure its harmful effects. Hence, I anticipate that, like any other social justice issues, the 

greenhouse effect can be better interpreted and addressed through mathematics. 

Acknowledging the complexities of the issues related to the climate, Abtahi et al. (2017) 

questioned the ethical and moral responsibilities of mathematics teachers and educators to 

educate students about this complex yet pressing issue. They argued that, if teachers assume their 

ethical responsibilities and incorporate climate change in their mathematics instruction, then that 

would help students identify the role of mathematics in climate change and prepare the future 

decision makers to effect change for the betterment of the climate. As Karrow, Khan, and 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 23 
 

Fleener (2017) argued, mathematics education should “concern itself with the development of 

the individual, in relation with our Planetary Ecosystem” (p. 9). 

In their study, Abtahi et al. (2017) reported results from a survey to explore Norwegians 

and Canadian mathematics teachers’ opinion about incorporating climate change in mathematics 

classrooms and found that although overall teachers’ action towards introducing climate change 

was guided by their personal awareness and ethical responsibility towards the environment, there 

were concerns about the effective implementation of such lessons. Common concerns that 

echoed through the teachers’ responses regarding the implementation of climate change in 

mathematics instruction include the complexity of climatic issues, the lack of students’ 

mathematical and technical knowledge, and the lack of resources and time. In order to enable 

mathematics teachers introduce climate-related issues in their classrooms, Gonzalez Martinez 

(2017) suggested including scientific concepts in mathematics teacher education courses and 

help them model real-world situations, such as global warming. He further said that such 

initiative would not only provide students with the opportunity to learn concepts in both 

mathematics and science more meaningfully but would help both teachers and students to make 

informed decisions in their lives about the impact of changing climate. 

One of the many ways to enable students to recognize social injustice is through the use 

of mathematical modeling. Research has shown that social justice mathematics and mathematical 

modeling share some common goals and practices, that make them powerful tools for deepening 

students’ understanding about issues related to their own life and their society (Cirillo et al., 

2016). Determining a specific answer to a given problem is not the focus of either of them; rather 

both the systems encourage learners to engage in discussions with their peers and teachers, 

investigate a situation from different lenses, and develop an insight about the situation that was 
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presented to them (Johnson, 2007). Similar to social justice mathematics, mathematical modeling 

provides students with the scope to examine any issue with reference to one’s everyday 

experience via mathematics (Barbosa, 2006). In the following sections, I present how 

mathematical modeling has been defined by researchers over the last two decades, discuss the 

benefits of mathematical modeling for school education and for our daily life, and finally 

describe the role of mathematical modeling in the current study. 

2.6. Mathematical Modeling 
 

Mathematical modeling is a cognitive activity of conceptualizing a real-world situation 

through mathematics (Dym, 2004; Blum & Niss, 1991; Lesh, Amit, & Schorr, 1997; Lesh, 2006; 

Lesh & Caylor, 2007). It allows a problem solver to create a conceptual system, to understand 

how a real-world phenomenon occurs, why it occurs, and extend the understanding of the present 

phenomenon to anticipate a set of similar events in the future (Dym, 2004). This conceptual 

system, which is purely conceived within the mind of an individual (Lesh & Caylor, 2007), can 

be represented in the form of mathematical equations, algorithms, diagrams, graphs, computer 

programs, or any other representations (Abrams, 2001; Lesh, Carmona, & Post, 2002) and can be 

used to “describe, explain or predict the behavior of some other familiar system” (Doerr & 

English, 2003, p. 112) is called a mathematical model. 

In a traditional problem-solving situation, students learn mathematical ideas and skills to 

interpret and solve real-life problems in future, whereas, the process of mathematical modeling 

starts by exploring a real-life situation (Lesh, Doerr, Carmona, & Hjalmarson, 2003), which 

students might experience in their everyday lives, in and outside the work place (Lesh, Amit, & 

Schorr, 1997; CCSSO, 2010). Doerr and Pratt (2008) considered mathematical modeling as an 

activity of mapping, where elements of the real world are selected, organized, and modified to 
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map into the model world. When exposed to a real-life situation, the modeler asks questions, 

gathers information, and carefully observes the minute details of the situation aiming to develop 

a better understanding about the situation (Zbiek & Conner, 2006) and construct a model of the 

situation. For instance, consider the following situation: 

To increase the cost efficiency of the school transport system, the finance department of 

the APJ university is considering reducing the frequency of shuttle buses from the university 

train station to campus on Fridays. Before making the decision final the authority asked the 

graduate student association to measure the effectiveness of this decision. To develop a better 

knowledge about the situation, the graduate student association might request or seek 

information about different factors involved in the situation. Based on the gathered information 

they would conduct their further analysis. 

Mathematical modeling can be a complex process as a real-life situation might have 

several extraneous factors. However, to diminish the complexities of the situation and to reduce 

the situation to a structured and ideal one, a problem solver often excludes some of the 

insignificant factors (Blum, 2002) and creates a model with the dominant ones and their 

governing relationship (Voskoglou, 2015). The modeler’s consideration about which factors are 

significant, and which are not dependent on the underlying assumption about the situation is the 

purpose of the modeling activity (Blum & Niss, 1991; Zbiek & Conner, 2006). 

For instance, if we consider the previous example, the graduate student association might 

recognize that there are several factors involved in the situation, such as the number of classes on 

Fridays, the number of trains on Fridays, the services available on campus (e.g. cafeteria, library, 

and gym), other transport options available, the salaries of the shuttle drivers and the cost of fuel. 

If the graduate student association considers all the factors, then the situation would be extremely 
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complex to be modeled. Instead, they can combine two or three factors and find if there is a 

correlation between the chosen factors and the number shuttle buses. Since in this example, the 

purpose of modeling is to determine the cost efficiency of school transport system, then the 

graduate students’ association may choose to examine if there is a correlation between the 

number of Friday classes and the frequency of the shuttle bus from the train station to campus. 

It is also worth mentioning that although mathematical modeling has a close association 

with problem-solving, there is a significant difference between the two processes. Problem- 

solving is a single cycle process (Wessels, 2014) where students are required to provide a 

specific response to a given problem (Lesh, Amit, & Schorr, 1997). However, development of a 

model seldom follows a unique developmental path (Lesh, 2006). It undergoes a series of 

iterative testing and revision cycles (Doerr & Pratt, 2008; Lehrer & Schauble, 2000; Lesh & 

Lehrer, 2003) to develop the initial fuzzy model to a more predictable, generalizable, re-usable 

and sharable one (Lesh, Amit, & Schorr, 1997; Blum & Niss, 1991; Lesh, Doerr, Carmona, & 

Hjalmarson, 2003). 

Further, unlike mathematical modeling, problem-solving does not refer to an unedited 

real-life situation. It either includes non-contextual mathematical tasks or problems containing 

idealized real-life situations (Hirsch & McDuffie, 2016). I will refer to the previous example to 

explain this difference: Imagine that the graduate students’ association found that there is a 

strong correlation between the number of Friday classes and the frequency of the shuttle bus 

from the train station to campus. Based on this result they might conclude that the decision of the 

university authority to reduce the frequency of shuttle buses might not be effective. However, on 

further analysis the association might find that only a few classes are scheduled on Fridays after 
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2 PM, therefore the association might revise their initial model to introduce time as a second 

factor and thus create a new model with a different outcome. 

Although mathematical modeling, as described by many researchers seems to be a linear 

cyclic process (see Figure 1a), some researchers (e.g. Barbosa (2006); Doerr & Pratt (2008)) 

oppose to the idea of linearity of steps in the process of mathematical modeling. Instead, they 

argue that modeling involves multiple stages and several cycles of revision where learners move 

from one stage to another without aligning to a strict succession order. Doerr and Pratt (2008) 

expressed the non-linear nature of modeling process through nodes and interconnectedness in the 

following diagram (Figure 1b). 

  
(a) (b) 

Figure 1: a) Seven-stage framework of mathematical modeling by Blum and Ferri (2009); b) 
Non-linear process of modeling proposed by Doerr and Pratt (2008) 

In summary, I used the example with the graduate student association to illustrate that 

mathematical modeling is a non-linear cyclic process, which uses mathematics to explain a 

reality-based phenomenon, analyze that phenomenon, modify and manipulate the different 

factors involved, and predict similar phenomena in future that are yet to be measured (Lesh et al., 

1997). The process is repeated in a loop of continuous development (Lesh et al., 2003) until a 

generalizable and sharable mathematical model is developed that can be used for future 

references to parallel events. 
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Mathematical modeling activities require higher order thinking skills to reason between 

the different factors involved in a situation, recognize the patterns between them, synthesize the 

factors and analyze the situation to enable students to build a simple yet meaningful model 

(Maiorca & Stohlmann, 2016). Hence, the process of modeling contributes towards students’ 

development of thinking and analyzing skills. In the following three sub-sections, I describe the 

role of modeling for mathematical sense-making and extend the role of modeling beyond 

mathematics to explore its connection with different other subjects. Next, I focus on how 

modeling activities can enable students to become aware of different social and political issues 

and investigated the position of modeling in current mathematics school curricula. 

2.6.1 Mathematical modeling for mathematics sense-making 
 

A students' experience with school mathematics is often limited to textbook problems, 

where a mathematical problem is “preprocessed and detached” (Doerr & English, 2003, p. 111) 

from its context and students are expected to apply rules and formulas to solve those problems 

(Lesh et al., 1997). However, as Mokros and Russell (1995) stated, in mathematics and statistics, 

"an average makes no sense until data sets make sense as real entities" (p. 35). Indeed, I would 

argue that unless students are provided with mathematical problems that are embedded in some 

relevant and meaningful contexts, the mathematical calculations that students perform remain 

meaningless to them. 

Unlike traditional mathematics, mathematical modeling encourages students to focus on a 

meaningful problem situation, analyze the different factors involved in the situation, develop 

their thinking around it and finally build an explicit mathematical interpretation of the problem 

(Lesh, 2006). The cycle of mathematical modeling initiates from an experientially real situation 

that provides students with a rich platform for the independent development of their 
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mathematical ideas and enables them “to use mathematics as a generative resource in life beyond 

the classroom" (Doerr & English, 2003, p. 112). 

Based on the result of their exploratory study on data modeling with middle-grade 

students, Doerr and English (2003) stated that mathematical modeling allows students to take 

diverse approaches towards a mathematization of a real-life situation. It also provides the 

learners with the opportunity to see and understand the alternate approaches and explanations 

shared by other students solving the same situation. Doerr and English (2003) conducted a study 

across two countries, Australia and the USA, where they provided five modeling activities to the 

participants and asked them to evaluate an object, such as a pair of sneaker or a restaurant, by 

considering the different factors of the sneaker or the restaurants. For example, in the first 

activity, students brainstormed the different factors they consider important for buying a pair of 

sneakers and ordered those factors based on their weight in influencing the purchase decision. 

Some groups laid emphasis on the style of sneakers, while for some other groups comfort or the 

brand of the product was more important. During the process, the students engaged in discussion 

with each other and through negotiation, they modified and remodified their initial models until 

all the group members came to a consensus. 

Lesh and Lehrer (2003) argued that when students are engaged in such meaningful 

activities of model building or sense-making of a system, then even the most under-privilege 

students “often produce high quality results that are far more impressive than anything that 

would have been predicted based on results from their prior work in traditional textbooks and 

tests” (p. 117). This kind of model-eliciting activities encourage students to spend a quality 

amount of time thinking about mathematics that they encounter in and outside the classroom 

(Lesh, 2006). For example, in an exploratory study, Lesh et al. (1997) provided seventh-grade 
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students with a set of data representing money earned by vendors in an amusement park during 

the summer and asked them to evaluate the performance of each vendor and build a model to re- 

employ them for maximizing the profit. Lesh and his colleagues observed that the children, who 

were considered to be of average ability by their teachers emerged as most productive in 

constructing powerful mathematical models. These students went beyond the simple analysis of 

the data and investigated the strengths, weaknesses, and assumptions associated with the model 

they developed to reach their conclusion about re-employment Lesh et al. (1997). 

In addition to making mathematics more meaningful, mathematical modeling assists in 

showing the connections between mathematics and other disciplines, such as science, 

engineering, and technology. This is because a mathematical model of a real-life situation 

usually requires a blend of more than one discipline in order to understand it. In the following 

sub-section, I describe how mathematical modeling may contribute towards the integration of the 

STEM subjects and explain the importance of this blend for students’ understanding of the 

world. 

2.6.2 Mathematical modeling for making the connection between STEM subjects 
 

The process of modeling helps students not only to learn mathematics more meaningfully 

but also to develop a sense of interconnectedness between different subjects, topics and ideas 

that they learn in schools (Abrams, 2001; Zbiek & Conner, 2006). Smith (1996) for instance, 

stated that most of the scientific theories that students learn in schools are developed as 

mathematical models of “descriptive or predictive nature” (p. 38). In other words, scientific 

theories which involve multiple factors are expressed through mathematical equations, relations 

or diagrams, explaining an existing situation or predicting similar situations. For instance, the 

equation M = ρ x V, which shows how the mass (M) of a liquid depends on the volume (V) and 
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density (ρ) of the liquid, is an expressive form of mathematical model. Similarly, Figure 2 is 

another model expressed in a diagrammatic form, which shows the chemical structures of 

Glucose. 

 

Figure 2: Chemical Structure of Glucose 
 

Scientific theories and concepts presented under the umbrella of mathematical modeling 

not only help students to develop a deeper understanding of mathematics and science but also 

make the two curricula more relevant and purposeful (Lesh & Lehrer, 2003; Roehrig, Moore, 

Wang, & Park, 2012). In fact, Stewart and Golubitsky (2010) criticized the idea of presenting 

mathematical and scientific concepts as individual bodies of finished knowledge. They argued 

that our education system should adopt an activity-centered approach, which would engage 

learners in an ongoing production of knowledge through their active engagement with 

meaningful tasks. For instance, consider an engineering project of designing the model of a cargo 

ship. In order to create an optimal design of the ship, students would experiment with the shape 

of the ship and materials required to make the different parts of the ship. Following their research 

and multiple trials, students may determine which shape is best for what purpose, and understand 

different mathematical and scientific concepts, such as buoyancy and water displacement behind 

the engineering design of the ship. Further, during their engagement in the project students 

would also perform mathematical calculations to determine the optimal size or weights of 

different parts of the ship which would maximize its capacity to carry cargos. Thus, modeling 
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activities focus on real-life situations, such as engineering problems, which in turn provide 

students a natural platform to develop mathematical competencies and scientific understanding. 

Considering the above, mathematical modeling can help integrate the STEM subjects for 

understanding various phenomena of the world. Students often find the content matter of the 

individual subjects irrelevant, difficult and unrelated to other disciplines and their regular lives 

(Christensen, Knezek, & Tyler-Wood, 2014; Stohlmann, Moore, & Roehrig, 2012). An 

integrated STEM curriculum may assist students in understanding and address complex issues of 

their society, such as issues of social justice. In the following paragraph, I will discuss how 

modeling activities can also integrate social science and help students identify different socio- 

political issues. 

2.6.3 Mathematical modeling for addressing social issues 
 

As mentioned earlier, teaching mathematics for social justice and mathematical modeling 

share some common goals and practices that nurture within students a deep-rooted understanding 

of the society (Wessels, 2014). Cirillo et al. (2016) identified three overlapping features of 

modeling and social justice that allows learners to engage in real-life issues more meaningfully: 

a) engage students in ill-defined problems, b) leverage students’ real-world knowledge, and c) 

raise students’ awareness. The three features aim to emphasize students’ engagement with 

mathematical problems, developed around learners’ experiences or some issue of social and 

political relevance. These contexts can be used as “anchoring points for the reinvention of 

mathematics by the students themselves” (Gravemeijer & Doorman, 1999, p. 111) and vice- 

versa. Modeling activities emerge within students a sense of integrity and enable them to “see 

and judge independently, to recognize, understand, analyze, and assess representative examples 

of actual uses of mathematics, including (suggested) solutions to socially significant problems” 
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(Blum & Niss, 1991, p. 43). When students explore or develop a mathematical model of a 

realistic situation, they analyze the different factors involved in the situation, understand how the 

different factors influence each other and the situation, and evaluate the situation in an unbiased 

manner. 

Barbosa (2006) argued that mathematical models are not “neutral descriptions about an 

independent reality” (p. 294) rather they encompass several socio-political factors, which are not 

comprehensible to general people. She argued that most policies and decisions in society are 

formed based on some form of mathematical models, hence it is important for students to be able 

to understand these models and engage in discussion around those models. 

To illustrate how the modeling experience enables students to understand governmental 

policies, Barbosa (2006) described a classroom situation where she provided her seventh-grade 

students with newspaper excerpts on the government’s decision about distributing bean and corn 

seeds among farmers. Since many of the students were the direct beneficiary of this program, the 

mathematical problems that Barbosa (2006) created around this news were meaningful to 

students. After a brief exploration, students pointed out some discrepancies in the government’s 

announcement, such as discovering that if the government awards 5kg of seeds to each farmer, 

then 37.5 tons of seeds would not be sufficient for 8000 farmers. This disparity in data led 

students to investigate the factors based on which the government decided to distribute the seeds 

and also discussed what factors should be ideal in the distribution process. Through discussion 

with their peers and constant negotiation, the students discarded the government’s criterion and 

developed new models containing new criteria. During this modeling process, not only students 

explored different mathematical concepts and ideas, but also explored and made sense of a social 

situation. 
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Cirillo et al. (2016) asserted that, when students are presented with a real-life situation, 

then the students may engage in the continuous cyclic process of developing an optimal model, 

or they may reframe the task, and brainstorm questions that would provoke them to engage in 

critical discussions about the concerned issues with their peers. For instance, a modeling task 

built around the topic of different food habit and obesity can be restructured by leveraging on 

students’ real-life knowledge about the geographical location of fast food shops in different 

neighborhoods. The task may encourage the students to investigate how the consumption of fast 

food items is related to more calories and how the low pricing of fast foods and its easy 

availability is pushing the people of the certain section of the society towards health hazards. 

Hence, mathematical modeling tasks not only provide students with a meaningful context to 

learn mathematics, but it imbibes within students a socio-political awareness about the world 

they live in. However, “genuine modeling activities are still rather rare in mathematics lessons” 

(Blum, 2002, p. 150). In the following section, I will provide a brief account about the state of 

mathematical modeling in the current mathematics curriculum and in classrooms. 

2.6.4 Current state of mathematical modeling in the school curriculum 
 

Since the last few decades, a lot of work has been done in the field of mathematics 

education to promote modeling in school and university mathematics (Blum, 1993). Some 

countries, such as Germany, Netherlands, and Australia have included compulsory modeling 

components throughout their secondary mathematics curricula (Blum & Niss, 1991). In the 

United States, the Common Core State Standard Mathematics (CCSSO, 2010) has included 

modeling both as one of their eight mathematical practices (i.e. “Model with mathematics”) and 

as a content strand of standards in the high school curriculum. This dual nature of modeling in 
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the math curriculum shows that the significant role of modeling is acknowledged. However, this 

action evokes some concerns that I discuss in the following paragraphs. 

Though CCSSM has laid a substantial emphasis on the role of mathematical modeling in 

the content of high school, we find a limited mention of the term in elementary and middle 

school mathematics content standards. This comes in contrast with research showing that even 

young “children are natural modelers” (Lehrer & Schauble 2000, p. 40). Elementary school 

students have the capacity to solve non-routine mathematical problems which are personally 

meaningful to them even before classroom instruction (Hirsch & McDuffie, 2016). During her 

study with fourth and sixth-grade students, English (2016) found that when elementary school 

students were provided with model-eliciting activities, they engaged in the process of modeling 

and built various sophisticated models by completing multiple iterations of the modeling cycles. 

Further, during their involvement in the modeling process, students also developed their thinking 

about advanced mathematical topics, such as weighted means. 

Envisioning the introduction of mathematical modeling in elementary school classrooms, 

Carlson, Wickstrom, Burroughs, and Fulton (2016) proposed a framework for teaching modeling 

to young kids that consist of three phases: a) developing and anticipating, b) enacting and c) 

revising. More specifically, teachers first develop modeling tasks and tailor questions to 

anticipate students’ working strategies and possible misconceptions during their interaction with 

the tasks. Then they engage students in the process of modeling, pose relevant questions to help 

students translate a real-life situation to the mathematical world and finally revise their tasks and 

questions based on their reflection about students’ response during the modeling cycles. Similar 

to Carlson et al. (2016), Lehrer and Schauble (2000) also suggested that modeling should be a 

central concept of early childhood mathematics education and teachers should design their 
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instruction in order to stretch children’s early competencies to long-term “that are complex, 

multifaceted, and subject to development over years, rather than weeks or months” (p. 40). 

For decades, researchers such as Lehrer and Schauble (2000) and Carlson et al. (2016) 

have appealed for the inclusion of modeling activities in early childhood mathematics education. 

However, very few classrooms around the world organize their discourse around modeling 

activities and take initiatives to implement model-eliciting tasks in practice (Blum, 2002). Rather 

than nurturing within students a genuine disposition for realistic mathematical modeling, most of 

the classrooms implement “word problems” as an alternative to modeling tasks. Unlike modeling 

tasks, which encourage students to use common sense to tackle a real-life situation, word 

problems are pre-structured and are “nothing more than a dressing up of a purely mathematical 

problem in the words of a segment of the real world” (Blum, 2002, p. 153). In word problems, all 

the data that are necessary for finding the answer(s) are included. So, such problems provoke 

students to apply known mathematical rules and perform calculations to find a solution rather 

than fostering in students a new mathematical knowledge (Schukajlow et al., 2012; Zbiek & 

Conner, 2006). 

Additionally, in the United States, although the CCSSM emphasized students’ 

development of modeling skills to better analyze a mathematical situation within and outside 

school curriculum (CCSSO, 2010), it does not include mathematical modeling as an explicit 

topic in K-12 mathematics. According to CCSSM, students proficient in mathematical modeling 

are better able to analyze a practical situation through identification of different factors involved 

in that situation and map their relationships through diagrams, tables, graphs, formulas and other 

representations. However, in school education, mathematical modeling has remained an 

alternative and engaging setting, which assists students to develop a deeper understanding of 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 37 
 

curricular mathematics rather than gaining recognition as an instructional goal on its own (Zbiek 

& Conner, 2006). One of the reasons of why this might be the case is that mathematics content is 

not always explicit in those modeling activities. Consequently, the next two sections focus on the 

mathematics content in mathematical modeling aiming to illustrate the importance of modeling 

not only for developing mathematical practices but also mathematical concepts. 

2.7. The Mathematics in Mathematical Modeling 
 

In this age of technological advancement, the internet is a crucial data source. It is 

flooded with tons of information generated every day by people around the world and is used by 

researchers, government and multi-national institutions to understand different phenomenon 

connected to the data. However, considering the vastness of the data it is essential for modelers 

to extract relevant data from the data pool. Hence, data management and interpretation are 

essential parts of the 21st Century literacy. Data management, which includes data analysis, is 

one of the many concepts that students need to use outside of their classroom to better 

understand the information that they encounter in their daily lives through news media, internet, 

weather report, advertisement, sports and stock market (Friel, Curcio, & Bright, 2001; Glazer, 

2011). Among all forms of data representations, graphs and tables are the most commonly 

practiced and effective way to visually represent numerical data (Tufte, 1983). Glazer (2011) 

suggested that in today’s information age, an extreme use of visual demonstration to represent 

any social, political, or cultural issue, is based on the underlying assumption that the viewers 

would be well able to read and interpret graphs that they encounter in their daily lives. In other 

words, we assume that readers would gain a transparent and proper understanding of the pictures 

that they come across in newspapers, magazines, and educational journals without being engaged 

in an investigation of that situation. For instance, the following graphs (Figure 3a and b) are 
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published in the website of NASA (https://climate.nasa.gov), illustrating how the level of carbon 
 

dioxide in the atmosphere has increased steeply over last few decades and how the global surface 

temperature has changed over the period of 136 years. If an individual is able to understand how 

the two factors plotted in the graph are changing in relation to each other, then he/she can 

become familiar with the reality of the greenhouse effect. Further, the reader could use the 

graphs to predict future global, regional or local effects of the greenhouse effect on human life 

based on the current trend. 

 
(a) (b) 

Figure 3a) Graph showing the level of carbon dioxide in the atmosphere has increased 
over last few years. b) The graph shows how global surface temperature has changed over last 

136 years 
 

However, understanding graphical representation is not an inherent skill (Roth & 

McGinn, 1997). Reading graphs and interpreting them can be challenging for many students and 

adults too (Glazer, 2011; Monk & Nemirovsky, 1994). Research shows that, when students are 

asked to interpret a graph, they often correctly respond to the mathematical questions embedded 

within the graph and fail to provide a correct explanation of the underlying situation. In an 

exploratory study conducted by Friel and Bright (1996), the researchers provided seventy-six 

middle school students with four graphs representing everyday life situations coupled with some 

questions to guide students to read the data and develop an in-depth understanding of the data. 
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Results of the study suggested that most of the students provided correct answers to the 

mathematical questions asked to them. However, when they were asked to provide an 

explanation for their responses, they failed to provide correct reasoning for their answers. Friel 

and Bright (1996) suggested that our usual emphasis on getting an answer of a mathematical 

problem without asking follow-up questions to learn about students’ logical explanation behind 

the solution, often make our students unable to develop a deeper understanding of the situation. 

Another common difficulty in reading graphs relates to viewing graphs as a mere picture 

of a particular situation and overlooking the underlying relationship between the factors 

represented there. According to Monk and Nemirovsky (1994), when students interact with 

graphs, they often make overly simple connections between the visual features of the graphs with 

the physical events. Students often get captivated by the pictorial representations of the graphs, 

such as steepness of a line segment, wavy curves or one graph is more spread apart than the 

other, rather than focusing the mathematical relationships represented there. During his work 

with advance level students from Calculus class, Kaput (1992) found that students often get 

distracted by the shape of a graph and overlook the covariational relationships between two 

variables involved in the situation. Consequently, many researchers in mathematics education 

have conducted research focusing on the relationships between quantities in a situation rather 

than working on decontextualized situations. In the following section, I discuss how 

covariational relationships have been defined in the literature and the role of such covariational 

relationships for developing students’ understanding of reading and interpreting data. 

2.7.1 Covariational reasoning and mathematical modeling 
 

Covariational reasoning is an explicit form of thinking and reasoning in the field of 

mathematics; however, rarely it has been considered as an explicit mathematical concept 
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(Thompson & Carlson, 2017). Confrey and Smith (1994) defined covariational reasoning as a 

coordination between two sets of variables as the values of those variables change. They stated 

that two variables x and y are connected covariationally if the variable y moves operationally 

from ym to ym+1 when the variable x moves from xm to xm+1. For instance, if the two sets of 

variables are written in a tabular form, covariational reasoning “involves the coordination of the 

variation in two or more columns as one moves down (or up) the table” (Confrey & Smith, 1994, 

p. 33). In the following table (Figure 4a), as the value of year (x) is increased by +1, the value of 

air temperature (y) is increased by +3, whereas in the second table the value of temperature (y) is 

increased multiplicatively by .2, as the value of year (x) is incremented by +1 (Figure 4b). 

 

 

(a) (b) 
Figure 4: Students’ covariational reasoning as described by Confrey and Smith (1994) 

 
Thompson (1993) studied covariation from a quantitative reasoning perspective. His 

interpretation of covariation reasoning stemmed from students' understanding of quantities and 

the relationship between two changing quantities. According to him, a quantity is a measurable 

attribute of an object, such as length, width, and height of an object (Thompson, 1993, 2011) and 

quantification is the process of assigning numerical values to the quantities. According to 

Thompson’s theory of quantitative reasoning, a person reasons covariationally when “she 

envisions two quantities’ values varying and envisions them varying simultaneously” (Thompson 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 41 
 

& Carlson, 2017). For instance, when the height of sea water rises due to the increase of 

atmospheric temperature, then the two quantities, the height of water level in the sea and the 

amount of habitable land, co-vary. Engaging in this type of reasoning is what constitutes 

covariational reasoning. 

In an attempt to study high performing students’ conceptions of functions, Carlson (1998) 

conducted an investigation with students enrolled in college algebra, calculus or those who 

started graduate study in math. She provided them with tasks on the concept of function that 

prompted them to construct a graph to represent how the values of two quantities change 

together dynamically. Some of the tasks given to the students including filling a bottle with water 

and dragging the base of a ladder leaning along a wall and reasoning about the change in the 

quantities involved. Based on students’ work and excerpts collected during the follow-up 

interviews, Carlson reported that very few of the high performing Calculus students were able to 

represent continuously changing events graphically. Further, students’ tendency to view a 

dynamic situation in a static way hindered them from expressing one quantity as the function of 

another. Aiming to classify students’ reasoning of these relationships, Carlson, Jacobs, Coe, 

Larsen, and Hsu (2002) elaborated Saldanha and Thompson’s (1998) conjecture that 

covariational reasoning is developmental and proposed a framework that describes five mental 

actions that an individual may go through when involved in covariational reasoning (see Table 

1). 
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Table 1: Mental Action of Covariational Framework by Carlson et al. (2002) 
 

 
Table 1 consists of three columns: the first column contains the different levels of mental 

actions, the second includes a description of each mental action and the third presents the 

behaviors that students exhibit as they reason covariationally. The five mental actions are 

hierarchical in the sense that, students reach a certain level of reasoning only when they are able 

to reason using the mental actions associated with that level and the levels lower to it (Moore, 

2010). In the following paragraph, I explain Carlson’s mental action of framework with an 

example to demonstrate how students’ covariational reasoning may progress when they are 

provided with a graph similar to the one shown in Figure 5. 
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Figure 5: Rate of change of temperature for a change in the amount of carbon dioxide 

The graph in Figure 5 represents how the temperature of the earth changes due to change in the 

amount of carbon dioxide. According to Carlson et al., (2002), students exhibit MA1 when they 

focus on coordination of quantities. For instance, if students recognize that the value of 

temperature changes as the value of carbo-dioxide changes, then they would exhibit a behavior 

supported by Mental Action 1 (MA1). 

In Mental Action 2 (MA2), students turn their attention from the values of the two 

variables to the direction of change in one variable due to the change in the other variable. 

During this stage, they focus on the shape of the straight line representing the relationship 

between the two variables (increasing/ decreasing). In Figure 5, if students can reason that the 

value of temperature increases, as the value of carbon dioxide increases, then their behavior is 

guided by Mental Action 2 (MA2). 

Mental Action 3 (MA3) involves the coordination between the amount of change in one 

variable due to change in the other variable. During this stage, a student may partition the x-axis 

into small intervals of equal length, say x1, x2, x3, …, xn, and observe the amount of change in 

the value of y, for every interval of x. In the temperature-carbon dioxide graph, if students 

partition the axis containing carbon dioxide and observe that the value of temperature increases 
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by Y as the value of carbon dioxide increases by X (310 to 320 or 320 to 330), then students 

exhibit Mental Action 3 (MA3). 

Students exhibit Mental Action 4 and 5 (MA4 and MA5) if they can coordinate the 

average and instantaneous rate of change of one variable with respect to change in the other 

variable. If students consider how air temperature increases with a uniform change of carbon 

dioxide amount respectively, then they exhibit behavior guided by MA4. For example, if 

students plot the amount of carbon dioxide along x-axis and air temperature along y-axis, then in 

Mental Action 4 (MA4) students would be able to verbalize that the average rate of change of 

temperature due to change in carbon dioxide for successive intervals (say [x1= 310, x2= 320]) is 
𝑦𝑦2−𝑦𝑦1	(Figure 5). If they identify the instantaneous rate of change of temperature over an interval 
𝑥𝑥2−𝑥𝑥1	

	
of the domain, that is, if students identify that the rate of change of temperature for the change of 

 
carbon dioxide (say [x1= 310, x9= 400]) is 𝑦𝑦9−𝑦𝑦1, then their behavior is guided by Mental Action 

𝑥𝑥9−𝑥𝑥1	
	

5 (MA5). 
 

Although many studies have been conducted to investigate how covariational reasoning 

enables students to understand specific math topics, such as exponential growth (Confrey & 

Smith, 1994, 1995), rate of change (Saldanha & Thompson, 1998), and functions (Carlson, 

1998), but none of these studies focused on students’ understanding of covariational reasoning 

for reading and interpreting real-life data neither for interpreting and addressing environmental 

issues and social justice issues. Specifically, I want to employ Carlson’s Mental Action 

framework as a lens to understand how students reason covariationally when they are provided 

with mathematical tasks embedded in the context of the greenhouse effect. The next section 

gathers all these gaps I found in the literature and describes how these gaps helped me formulate 

my dissertation research topic. 
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2.8. Conclusion 
 

In this chapter, I reviewed the pertinent literature concerning the role of critical 

mathematics and social justice mathematics for developing within students a sense of critical 

consciousness about their life and about the society they live in. Some common social issues that 

were chosen by mathematics educators to study the impact of mathematics literacy on 

developing students’ social awareness are unemployment rate (Frankenstein, 1990), racial 

profiling (Stinson et. al., 2012), and gentrification (Gutstein, 2003); however, there are very few 

studies where researchers focused their attention towards the social aspect of environmental 

issues, such as the greenhouse effect. Barwell (2013), Abtahi et al. (2017), and Karrow, Khan, 

and Fleener (2017) are some of the names that emerged in last few years in the field of 

mathematics education who identified and urged the inclusion of climatic issues in school 

mathematics curriculum in order to prepare the future generation to understand, predict, and 

mitigate climatic disruption through mathematics literacy. Following their path, in this study I 

attempt to engage students to understanding the environmental as well as social aspects of the 

greenhouse effect through dynamic mathematical modeling activities. 

Mathematical modeling is a very powerful approach for generating within students an 

awareness about the society they live in. Consequently, I aim to engage students in mathematical 

modeling activities to help interpret and address social issues related to the greenhouse effect and 

climate change. In order to identify the impact of their daily actions on the greenhouse effect and 

understand how this can influence their lives in future, students would engage in covariational 

tasks in which they will explore quantities that co-vary, such as the amount of carbon dioxide, air 

temperature, and height of sea level rise. Apart from generating within students an awareness 

about the greenhouse effect, I hope that students will also develop their covariational reasoning 
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through as a result of their interaction with the modeling activities, which in turn would help 

them understand the causes and consequences of the greenhouse effect. 
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3. Methodology 
 

The primary goal of my research is to design dynamic mathematical modeling activities 

that engage students in covariational reasoning and help them identify the traits and 

consequences of the greenhouse effect. Considering the above, in this study I designed three 

mathematical modeling activities that I anticipated would support students’ covariational 

reasoning and the greenhouse effect. To be specific, in this research, I investigated: 

i) To what extent do the students’ understanding of the greenhouse effect and 

covariational reasoning change as a result of their engagement with the mathematical 

modeling activities? 

ii) How may students reason covariationally as they engage with mathematical modeling 

activities in the context of the greenhouse effect? 

This chapter begins with an overview of my research methodology, the design experiment, and 

then describes the three phases of my research: the development phase, the implementation 

phase, and the data collection and analysis phase. The development phase provides a detailed 

description of the mathematical tasks I created using technological tools and describes how each 

of the task is expected to help students reach different levels of covariational reasoning based on 

Carlson et al.’s (2002) Mental Action of Covariation framework. A description of each task 

along with its intended goal helped me establish a transparency between the goal of this study 

and the principles of the design experiment methodology. Next, the implementation phase 

includes a detailed account of the research design, participants, and context. Subsequently, the 

data collection and analysis phase describes the methods I used to collect data and analyze them 

to study the above research questions. 
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3.1. Design Experiment 
 

The primary methodology for this study is the design experiment. According to Cobb et. 

al. (2003) a design experiment is a highly interventionist method (involving some sort of design) 

where a researcher engineers particular forms of learning in naturalistic settings and studies the 

impact of those forms of learning in the given context with the implicit goal of supporting them. 

An individual might argue that to test the effectiveness of a given intervention, researchers can 

conduct the study in a controlled laboratory setting. However, as Schoenfeld (2006) states, 

“design experiments are set in the messy situations that characterizes real life learning, in order 

to avoid the distortions of laboratory experiment” (p. 9). Hence, a design experiment is a test-bed 

for innovation (Schoenfeld, 2006) where a researcher identifies a problem in the context of 

education, such as some unquestioned institutionalized instructional goals (Cobb & Gravemeijer, 

2008), generates a hypothetical solution to that problem, conducts an anticipatory thought 

experiment regarding how the anticipated solution might support students’ learning (Cobb, 

Stephan, McClain, & Gravemeijer, 2001), and tests the hypothesis with students in classroom 

settings with the aspiration to improve the students’ learning as a result of the given intervention. 

The hypothetical solution is usually in the form of testable conjectures formulated by the 

researcher as a means to support students’ learning and these hypothetical solutions often include 

instructional activities, associated resources such as computers and other manipulatives, and the 

norms and classroom discourse (Cobb & Gravemeijer, 2008). As mentioned during the literature 

review, we know very little about how mathematical modeling activities might help middle 

school students to develop an awareness about the causes and consequences of climatic issues 

such as the greenhouse effect. Hence, in this study, I conjectured that when students are 

introduced to dynamic mathematical modeling activities, embedded in the context of some 
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relevant environmental and social issue, such as the greenhouse effect, then the dynamic nature 

of the tasks would help students to reason covariationally, which in turn would help them 

identify the different traits of the greenhouse effect. 

My initial conjecture, which was also the broader goal of my study, was based on the 

framework of critical mathematics literacy (Frankenstein, 1994) and reading and writing the 

world with mathematics (Gutstein, 2003). Both these frameworks advocate the positive role of 

mathematics to develop within students a sense of critical awareness towards the world they live 

in and question different socio-political and environmental phenomena. Any methodology, as 

observed by Saxe (1994) offers a two-fold goal to a research study. It informs the researchers 

about the techniques of gathering and analyzing data and also contributes towards framing of 

research questions by relating the methodological approach to central epistemological 

assumptions. Building on Saxe’s argument, this study is also informed by design experiment 

methodology both in terms of selecting theoretical frameworks and design techniques, which is 

thoroughly described in the following sections. 

An integral property of a design experiment is the development of theories regarding both 

the process of learning and the means that are designed to support that learning (Cobb et. al., 

2003; Gravemeijer, & Cobb, 2006). As mentioned above, a design experiment is conducted with 

the goal to generate a plausible solution to a problem in a given setting. The solution might refer 

to the entire problem-solving process or it might indicate an actual design, such as a set of tasks, 

tools, materials, program or instruction that a researcher anticipates might address the concerned 

teaching-learning problem. In either case, the design is not an “ostensible product” (Crompton, 

2015, p. 4), rather, it is a set of conjectures that are tentative and provisional and are subject to a 

regular modification based on the ongoing analysis of classroom events (Cobb, Stephan, 
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McClain, & Gravemeijer, 2001). Such designs, which are constantly generated and refined 

during a design experiment, are tools that help reveal important information and develop theories 

and test those theories to understand the learning ecology (Cobb et. al., 2003). These theories are 

considered “humble” (Cobb et. al., 2003, p. 9) because they focus on the specific learning 

processes and are accountable to the activity of the designs. 

Similarly, in this study, I designed a set of dynamic mathematical modeling activities on 

the greenhouse effect. I theorized that as students would engage with the tasks and reason 

between two or more dynamically changing quantities, such as the amount of carbon dioxide, 

global air temperature, and height of future sea level, they would engage in covariational 

reasoning as per Carlson et al.’s (2002) Mental Action Framework. Further, I conjecture that 

students’ conception of covariation would help them discover the causes and consequences of 

the greenhouse effect, such as recognizing, the more the amount of carbon dioxide in the 

atmosphere, the higher the global air temperature and the higher the height of future sea level. 

The theory I developed about students’ developing conception of covariation is “humble” (Cobb 

et. al., 2003, p. 9). The theory is best justifiable when similar dynamic mathematical modeling 

activities are administered in middle school classrooms and might not be applicable in other 

settings. 

Though design-based research develops theories in local contexts, its goal is “not just to 

meet local needs, but to advance a theoretical agenda to uncover, explore and confirm theoretical 

relationships” (Barab & Squire, 2004, p. 5). In other words, researchers do not conduct design 

experiments just to provide warrants regarding the effectiveness of a proposed strategy in a local 

context, but also to treat the changes made in one context, as evidence towards forming a theory 

in the broader educational context. Similarly, in this study I developed artifacts and practices that 
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I hoped would not only help middle school students in understanding covariational reasoning 

and the greenhouse effect but, when revised and refined, would also be applicable in other 

settings. I hoped that the results of the study would lay a promising path for other similar 

studies in the field of mathematics education, which would intend to use the power of 

mathematics to address environmental and social issues such as the greenhouse effect. 

Considering the above, I used the design experiment methodology to undertake the 

following four primary objectives: 

a) to develop dynamic mathematical modeling tasks for the middle school students; 
 

b) to study students’ thinking as they engage with the tasks and observe the progression 

of their covariational reasoning; and, 

c) to examine the role of covariational reasoning in students’ identification of the 

different traits and consequences of the greenhouse effect; 

3.1.1 Development Phase 
 

The primary goal of a design-based research is the development of instructional 

sequences guided by a domain-specific theory (Cobb, Stephan, McClain, & Gravemeijer, 2001). 

Likewise, in this study, I developed a series of dynamic mathematical modeling activities, which 

consisted of three NetLogo simulations, five investigations (APPENDIX II to APPENDIX VI) 

containing tasks in order to prompt students to focus on specific features of the simulations and 

reason about dynamic events, and discussion questions in order to guide students’ reasoning 

through particular forms of covariational reasoning. All the simulations, tasks, and the questions 

were guided by Carlson et al.’s (2002) Mental Action framework of covariation. In this section, 

first I will describe the framework and explain how the five mental actions described in the 

framework have helped me to anticipate the probable levels of students’ covariational reasoning 
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in light of my study. Next, I present the rationale of using technology in the task design and 

describe the three simulations I developed together with the tasks that accompany each of the 

simulations. 

3.1.1.1 Task design framework 
 

To develop mathematical modeling activities that would engage students in covariational 

reasoning, I employed Carlson et al.’s (2002) Mental Action framework of covariation. As 

aforementioned in the literature review, this constructivist framework captures five mental 

actions that an individual may go through when involved in covariation reasoning through 

graphical activities. Every simulation of this study was accompanied with a set of tasks, some of 

which explicitly asked students to express the relationships between two or more concerned 

quantities in words, while others were activities involving graphical representations, which I 

anticipated might create a platform for students to visualize how two quantities covary with 

respect to each other and help them construct a relationship between them. 

For instance, a particular simulation connecting ‘global air temperature’ and ‘the height 

of future sea level’ includes questions, such as “How does the height of future sea level change 

as the global air temperature rises by 2 degrees?” It was my hope that such a question would 

prompt students to focus on the two quantities and coordinate the amount of change of the output 

variable (height of future sea level) with the change in the input variable (rise in global air 

temperature), thus helping them engage in Level 3 covariational reasoning. The same simulation 

includes a graphical activity that asked students to collect the values of future sea level for 

different rises in global air temperature in a table and then plot those ordered pairs on a graph. I 

conjectured that this graphing activity would provide students with the scope to think deeply 
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about the relationship between the two quantities and investigate the amount of change (MA3) 

and the rate of change (MA4) of one quantity with respect to the change in the other quantity. 

The following table (Table 2) is an adaptation of the Mental Action of Covariational 

Framework table developed by Carlson et al. (2002), where in the third column I included 

questions that I created to complement the simulations and prompt the participating students to 

attain different levels of mental actions. 

Table 2: Mental Action of Covariational Framework by Carlson et al. (2002) 
 

Mental Action Description of mental action Probing Questions 
Mental Action 1 

(MA 1) 
Coordinating the value of one 
variable with changes in the other. 

What happens to the value of air 
temperature as you change the value 
of carbon dioxide? 

Mental Action 2 
(MA 2) 

Coordinating the direction of change 
of one variable with changes in the 
other variable. 

How does the value of air 
temperature change as we increase 
the value of carbon dioxide? 

Mental Action 3 
(MA 3) 

Coordinating the amount of change 
of one variable with changes in the 
other variable. 

How does the value of air 
temperature change when the 
amount of carbon dioxide increases 
from 200 to 300 and 300 to 400? 

Mental Action 4 
(MA 4) 

Coordinating the average rate-of- 
change of the function with uniform 
increments of change in the input 
variable. 

What can you say about the change 
in the value of air temperature for 
each interval of carbon dioxide? 

Mental Action 5 
(MA 5) 

Coordinating the instantaneous rate 
of change of the function with 
continuous changes in the 
independent variable for the entire 
domain of the function 

How did the value of air temperature 
change for the entire change in 
carbon dioxide? 

 
The five mental actions are hierarchical, in the sense that if a student exhibits a Level 3 

reasoning (MA3), then the student has already reached the lower levels of understandings 

(Carlson et al., 2002). The objective behind developing such mathematical modeling activities 

was to provide students with an exploratory space to engage in different levels of covariational 

reasoning that closely aligns to the practice standards laid by Common Core State Standard of 

Mathematics (CCSSO, 2010). CCSSO encourages students a) to use mathematics to identify 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 54 
 

important quantities in a practical situation, b) map their relationships using such tools as 

diagrams, two-way tables, graphs, flowcharts and formulas, and c) analyze the relationships 

between the concerned quantities to draw conclusions of the given situation. According to 

CCSSO, these practices help students connect classroom mathematics to everyday life, work, 

and decision-making. Consistent with the practice standards of CCSSO, this study utilized the 

power of technology to develop dynamic mathematical modeling activities and created an 

opportunity for students to engage in covariational reasoning between two or more quantities and 

build their understanding about the causes and consequences of the greenhouse effect. To 

discuss, how the dynamic nature of the activities created an interactive environment for the 

students to explore the relationships between covarying quantities, in the next section, I describe 

the role that technology played in the task design procedure. 

3.1.1.2 The role of technology in task design 
 

Jonassen, Carr, and Yueh (1998) emphasized the importance of technology in the modern 

education system and stated that technology should not only be used to provide students an 

engaging ambience and supporting students’ learning, but it should also be used as a knowledge 

construction tool. They stated that technology has the potential to provide students with a 

discovery space where they could explore different real-life phenomena, experiment with them 

and engage in critical thinking about the context and the underlying content that they are 

studying. Technology-enhanced learning environment offers students a scope to learn new 

mathematical and scientific concepts through visualizations and helps them develop a sound 

mental representation (Varma & Linn, 2012). For instance, when students learn certain 

mathematical or scientific concepts using software, such as Geometer sketchpad, GeoGebra, or 

using programing languages such as NetLogo or Scratch, then these programming languages 
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provides students an interactive space to explore and create various mathematical models 

dynamically along with satisfying the cognitive demand of the curricular mathematics (Johnson, 

2007). Instead of receiving direct instructions about any algorithm, technology provides students 

with an interactive mathematical interface where they can explore relationships between 

different quantities based on the increasing or decreasing values of the quantities (Bos, 2009). In 

a self-exploratory and dynamic interface, students get the opportunity to tinker and manipulate 

the values of different quantities and observe patterns between them (Resnick, 2014). Such 

mathematical patterns that emerge intuitively, help students construct their own algorithms and 

form conjectures based on their own observations and interpretations (Bos, 2009; Pratt, 2012). 

In this study, I used NetLogo (Wilensky, 1999) to design a set of three simulations aiming 

to provide students with a research bed (Pratt, 2012) to self-explore different quantities included 

in the simulation and develop a deeper conception about covariational reasoning. NetLogo is an 

agent-based modeling tool developed by Uri Wilensky in 1999, which uses Java and a version of 

the Logo programming language (Papert & Harel, 1991). According to Wilensky and Reisman 

(2006), there is a sharp contrast between the ways a subject matter is learned by students in a 

usual school setting and in NetLogo. They argued that though in both approaches the object of 

study might remain the same, the process involved in understanding the intended conception is 

quite different. Unlike traditional classroom instruction, NetLogo treats its participants as “active 

theorizers” (Wilensky & Reisman, 2006, p. 172), who are involved in the process of constructing 

and testing theories in light of new evidence students gather through observing the simulations. 

Similarly, in my study, on the onset of exploring each simulation, I encourage students to 

hypothesize the outcome of the simulation and then engage with the tasks “searching for 

confirming-disconfirming evidence” (Wilensky & Reisman, 2006, p. 172) to either accept their 
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initial hypothesis or to refine it. For instance, in a simulation involving the two quantities of 

carbon dioxide and air temperature, students may create a conjecture regarding the relationship 

between the two quantities, such as arguing that either the two quantities change in the same or 

in the opposite direction, and then explore the simulation to gather evidence to either accept or 

refine their theory. 

3.1.1.3 Simulations and tasks 
 

The design experiment is an iterative ongoing process where the researcher designs an 

initial task and based on students’ responses, it undergoes continuous cycles of refinement and 

enactment (Middleton, Gorard, Taylor, & Ritland, 2006; Schoefeld, 2006). During each cycle, 

the researcher engages in a daily cycle of classroom analysis, reform modification and 

implementation to nurture within students a deep mathematical understanding (Brown, 1992; 

Cobb, 2000; Schoenfeld, 2006). Following the same principle, I attempted to design and refine 

mathematical activities that went through two rounds of iterations based on the participants’ 

responses. It is worth mentioning that, I do not claim that the latest version of the tasks that I 

have at present is beyond further revision. 

This study is a part of a bigger STEM project developed by an interdisciplinary team of 

mathematics educators, computer scientists and environment scientists. I was fortunate to be a 

part of the STEM project and work with the interdisciplinary team who assisted me in the task 

design process. The computer scientists helped me design the simulations in NetLogo while I 

consulted the environmental scientists about the greenhouse effect content. 

For the first iteration of my study, except the first simulation, the Climate Change, I could 

not find any pre-existing mathematical tasks that I could use. This might have happened due to a 

lack of substantial research in the field of mathematics education exploring the role of 
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covariational reasoning in middle school students’ understanding of the greenhouse effect. The 

only relevant tasks that I found were primarily designed for high school and college 

undergraduates and could not be used in a middle school setting. Therefore, I created an original 

sequence of tasks using NetLogo simulations to provide middle school students with an 

opportunity to engage in dynamic experiences of exploring the greenhouse effect. All the tasks 

had two-fold goals, mathematical and environmental, and consisted of a series of questions, 

which prompted students to reach the target understandings. The following sub-sections 

describe the three simulations I used and the “investigations” (set of tasks) I designed to 

accompany each simulation. 

3.1.1.4 Description of NetLogo interface 
 

NetLogo provides students with a naturalistic environment to engage in mathematical 

modeling activities (Johnson, 2007). Its design is based on an “embodied modeling approach 

[that] connects more directly to students’ experience, enables extended investigations as well as 

deeper understanding” (Wilensky & Reisman, 2006, p. 171). In this section, I will provide some 

description of the NetLogo environment, with reference to one of the simulations I used in this 

study to provide the readers an intuitive understanding of the interface. 

The interface of NetLogo simulation is divided into two sections. On the right is the 

graphics window section and on the left is the control section. The graphic window section, as 

shown in Figure 6, contains the visuals that makes the “world” of the model visible. The Control 

section comprises of (i) the buttons that controls the model, (ii) the sliders that regulates all the 

parameters, and (iii) plotting windows that contains graphs expressing the relationship between 

two or more quantities. The Setup button, on the top left of the control section prepares the 

model, resets it to the initial interface, and the Go button runs the model. In this particular 
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Graphic Window section Control section 

Climate Change simulation, every time a user clicks the Setup button, the graphics returns to its 

initial display mode and restarts the simulation from the beginning. The sliders, below the Setup 

and Go buttons in Figure 6, enable the users to control the values of different parameters within 

given ranges and observe the impact of the change on the graphs and the graphics. For example, 

in this particular simulation when users move the albedo slider to the left and right, thus 

decreasing and increasing the value of albedo between zero and one, the thin rectangular patch 

on the earth’s surface (green in the picture) changes its color from black to white, thus 

representing the reflective surface of the earth. Apart from the visual on the right side, the 

movement of the albedo slider also leads to change of the Global temperature vs. Time graph, 

thus expressing the impact of albedo on the Global air temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Description of the NetLogo Interface 
 

3.1.1.5 Simulation 1: Climate Change 
 

The first simulation that I use in this study is the Climate Change simulation (Figure 7). 
 

The simulation has been adopted from NetLogo 
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(https://ccl.northwestern.edu/NetLogo/models/ClimateChange). The Climate Change simulation 
 

represents a model of the heat energy flow in the earth. When sunlight falls on the earth’s surface 

it either gets reflected in the atmosphere or is absorbed by the earth. The absorbed particles are 

infrared rays and they are represented as red-dots in the simulation. The red dots randomly move 

around the earth and the simulation shows that as the amount of infrared rays absorbed by the 

earth increases, the air temperature also increases. 

 
 

Figure 7: Change of global temperature with change in time 

The simulation includes two more factors of the environment, the albedo of the earth and 

the amount of carbon dioxide. The albedo of the earth, otherwise known as terrestrial albedo, is 

the measure of the reflective nature of the earth’s surface. It is the proportion of the sun’s 

radiation reflected by the surface of the earth. Various elements of the earth, such as the clouds, 

oceans, deserts, and forests absorb solar radiation and contribute to the global temperature of the 

planet. Since regions like forests and oceans are darker in color, they have lower albedo and 

absorb more amounts of sun’s energy. On the contrary, ice and white clouds have a high albedo 

and absorb less amount of the sun’s energy. All these different albedos at different sections of 
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the earth are averaged out to give the albedo of the planet. In this simulation, the user can 

manipulate the value of albedo of the earth (from 0 to 1 and back) and observe the effect of 

albedo on the graphics of the simulation and on the atmospheric temperature. 

When the value of albedo was zero, the graphic of the simulation exhibited a black 

rectangular patch on the earth’s surface, and the number of reflected sun rays was significantly 

low. When the slider was dragged to the right, halfway through, the black patch turned green, 

and the reflected rays increased simultaneously. Finally, when the albedo reached its maximum 

value, the green patch was replaced by a white patch, indicating the higher reflective surfaces 

such as ice or snow and the number of reflected rays became maximum (Figure 8). 

 

 
Figure 8: Graphics showing the reflective natures of the earth's surface for different values of 

albedo 

The original ‘Climate Change’ model also included clouds, where the users were allowed to add 

and remove clouds, thus manipulating the value of albedo of the earth and influencing the 

atmospheric temperature. For simplifying the simulation for middle school students, I removed 
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the cloud from the modified version to reduce the number of input variables that might affect the 

air temperature. 

The simulation also allows the users to increase and decrease the amount of carbon dioxide 

molecules and investigate how the value of atmospheric temperature changes along with it. The 

climate change simulation includes a time-series graph representing the change in the value of 

global air temperature with respect to time. In the graph, time is plotted along the horizontal axis 

and global temperature along the vertical axis. Though the graph represents time along the x- 

axis, the users do not have the capability to manipulate the value of time. Rather they can change 

the value of carbon dioxide or albedo and observe the graph to understand how these changes 

influence the value of global temperature with increasing time. 

The simulation is accompanied by two investigations (see APPENDIX II and APPENDIX 

III). In the first investigation, students were asked to freely and independently explore the 

simulation and respond to a series of statements pointing to the non-numeric covariational 

relationships between carbon dioxide, albedo, and air temperature. The goal of the second 

investigation is to prompt students to engage in numeric covariation reasoning and develop an in- 

depth understanding of how the global air temperature changes with the enhanced concentration 

of carbon dioxide and the value of albedo. Both investigations have questions that engage 

students in the first, second, and third levels of covariational reasoning as per Carlson et. al.’s 

(2002) Mental action framework. For instance, to prompt students to identify the direction of 

change of the input and output variables, the first investigation includes questions such as, “If I 

increase the amount of carbon dioxide, the air temperature increases/ decreases”. To answer this 

question, students might focus on the values of the two variables or observe the graph to see if 
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the curve representing air temperature moves upward or downward as the value of carbon 

dioxide increases (MA2). 

Similarly, in the second investigation, instead of providing students with any specific 

formula connecting carbon dioxide, air temperature and albedo, I ask the students to collect the 

values of air temperature for different values of carbon dioxide in a table and coordinate the 

values of the two variables as they change with respect to each other (MA3, MA4). To ensure 

that students equitably focus on the change of both the variables, in this investigation I included 

questions such as “find the air temperature when carbon dioxide is 300” and “find the carbon 

dioxide when the air temperature is 33”. Further, students are asked to plot the ordered pairs in a 

graph paper and focus on the nature of the graph (linear, curved, increasing from left-to-right, 

increasing from right-to-left) to investigate the relationship between the concerned quantities. 

3.1.1.6 Simulation 2: Sea level rise 
 

The second simulation, the Sea Level Rise (Figure 9) was developed to model the 

phenomenon of sea level rise. A sea level rise is an increase in the global mean sea level as a 

result of an increase in the volume of ocean water. Sea level rise is usually attributed to the rise 

in atmospheric air temperature, which causes melting of ice sheets and glaciers in the land. To 

make students feel more connected to the problem, I deliberately included the names of four 

places in New Jersey-New York City area. I selected the places according to their elevations 

from sea level starting with downtown Manhattan (10 feet) being at the lowest elevation 

followed by East Newark (20 feet), Newark (32 feet) and Kearny (108 feet). Students are able to 

increase and decrease the value of temperature rise from zero to five degrees Celsius and observe 

how the change in global temperature rise influences the height of sea level. 
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Similar to the previous simulation, the Sea Level Rise simulation is accompanied by a 

series of non-numeric and numeric covariational reasoning questions encouraging students to 

recognize a connection between the increased global temperature, height of sea level and 

habitable land area. Questions such as “As the global temperature is increasing by 0.5, the height 

of the future sea level is increasing by  feet” were included with the anticipation that they 

would prompt students to coordinate the values of the two variables and extend that 

understanding to construct a relationship between the input and output variables. If students can 

reason about the relative change in the value of future sea level for a unit change of air 

temperature, then that would indicate their level 3 understanding, as per Carlson et al.’s (2002) 

Mental Action framework of Covariational reasoning. 

 
 
 
 

Figure 9: Future Sea Level Rise 
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Another major goal of this investigation is for students to recognize that if the current trend 

of temperature rise persists as a result of the increasing concentration of greenhouse gases, then 

the sea level would rise, and shorelines would move inland by hundreds of meters displacing 

millions of people from their places. To help students identify the risk factor associated with sea 

level rise, the investigation also asks students questions such as the one presented in Figure 10. 

 
Figure 10: Sample Question included with Simulation 2 

3.1.1.7 Simulation 3: The carbon calculator 
 

The first two simulations were developed with the intention to help students identify the 

different traits and consequences of the greenhouse effect through mathematical tasks. This is 

what Gutstein (2003) referred to as “reading the world with mathematics.” However, to develop 

an equitable society, it is important to develop within students a sense of agency, that is, a belief 

in themselves as people who can make a difference in the world, as ones who are makers of 

history. Educators working toward an equitable and unbiassed society can help students develop 

not only a sophisticated understanding of power relations in society but also the belief in 

themselves as conscious actors in the world. Helping young people develop a sense of personal 

and social agency is the goal of this next simulation. 

As the climate around us is changing alarmingly, the term carbon-footprint is gaining 

enhanced attention among people of different sectors such as environmentalists, researchers, 

educators, and politicians. According to Wiedmann and Minx (2008), “the carbon footprint is a 

measure of the exclusive total amount of carbon dioxide emissions that is directly and indirectly 

caused by an activity or is accumulated over the life stages of a product” (p. 4). In other words, 

The elevation of East Newark (20 feet) is double the elevation of downtown Manhattan (10 feet) from the sea 
level. Which of the statements best describes the impact of sea-level rise on the two places? 
a) The risk of going under sea water of downtown Manhattan is the same as East Newark. 
b) The risk of going under sea water of downtown Manhattan is double than East Newark. 
c) The risk of going under sea water of downtown Manhattan is half than East Newark. 
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the carbon footprint is a sophisticated term used as a generic synonym of carbon dioxide 

emission over a given period of time. 

According to Padgett, Steinemann, Clarke, and Vandenbergh, (2008), to restrict the 

emission of carbon dioxide and preserve the natural consistency of our climate, it is essential to 

estimate the amount of CO2 an individual emits over a given period of time. With growing 

awareness about the elevated atmospheric CO2 amount, at present, numerous websites contain a 

tool named carbon calculator or carbon emission calculator that helps an individual calculate 

their carbon footprint or the total amount of released carbon dioxide as a result of their daily 

activities. These calculators, developed by government agencies, non-government organizations, 

and private companies are usually very powerful and interpretable tools that help people 

understand the impact of their personal behavior on climate change. For instance, when an 

individual drives a car, the engine burns fuel which releases a certain amount of CO2, depending 

on its fuel consumption and the driving distance. Similarly, when we heat up our houses with oil, 

gas, coal or electricity, tons of carbon dioxide are emitted, which enhance the proportion of 

greenhouse gases in the atmosphere. 

Discussing the reliability of the different carbon calculators available to common people, 

Padgett, Steinemann, Clarke, and Vandenbergh, (2008) argued that the carbon calculators 

produced by different bodies might give different estimation of carbon footprints that can vary 

by several metric tons per annum per individual. Different calculators include different factors 

and follow different methodologies for calculation of carbon dioxide, which are not often clearly 

described to the users. As a consequence, these different calculators provide variable results. 

Padgett, Steinemann, Clarke, and Vandenbergh, (2008) argued that although the variability 

observed across different calculators invokes further research, it does not necessarily imply that 
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the results are invalid. Building on the argument that if an individual wants to minimize their 

share of carbon emission, the calculation and constant monitoring of personal carbon footprint is 

essential, in this study I created a carbon calculator for the participating students. The Carbon 

calculator simulation (Figure 11) aims for students to reflect on their own lives and inspect the 

amount of carbon dioxide they contribute to the environment annually. 

 
 

Figure 11: Carbon calculator simulation to calculate the amount of CO2 we add as individuals 
through our daily activities 

I adopted this simulation from the carbon calculator developed by “The Nature 

Conservancy” (https://www.nature.org/en-us/get-involved/how-to-help/consider-your- 

impact/carbon-calculator/) and developed a much simpler version suitable to the middle school 

students. I assumed that the participating students might not be familiar with their household’s 

primary heating sources or average monthly electricity bills, so I overlooked several such factors 

and developed a carbon calculator that focuses on activities that might be more familiar to 

students, such as watching TV, playing video games or using an air conditioner. For each of 

these factors, students can manipulate the number of hours and calculate the total amount of 

carbon dioxide they emit in a year. For instance, if students watch TV for one hour and switch it 

off after watching, then the total amount of carbon dioxide added in the atmosphere in one year 
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is 82Kg. The calculator contains a slider for the TV hours, which the students can manipulate 

and increase the time watching to up to four hours and calculate the total amount of carbon 

dioxide added in the atmosphere. To facilitate students to engage in different forms of 

covariational reasoning, both linear and non-linear, I deliberately chose the values of carbon 

dioxide which would prompt students to plot and identify such relationships between two given 

quantities. 

This simulation is accompanied by two investigations. In the first investigation, students 

were asked to reflect on some of their daily activities and calculate the amount of carbon dioxide 

that each of their activities adds in the atmosphere. Further, through their engagement with 

carbon calculator, students were prompted to make generalizations, such the double/triple the 

distance travelled by a car, the double/triple the amount of carbon dioxide released, or the more 

the number of people carpools, the less the amount of carbon dioxide that is released in the 

atmosphere. The investigation also asked the students to plot graphs and discuss the two 

relationships depicted in the graph. Students focused on the shapes of the two graphs, ‘number of 

TV hours - amount of released CO2’ and ‘number of friends carpooling - amount of released 

CO2’ to identify the contrasting covariational relationship between the variables, that is the 

amount of carbon dioxide increases as the number of TV hours increases and the amount of 

carbon dioxide decreases as the number friends carpooling increases. 

The last part of the investigation asks students to select some of their daily life activities, 

such as number of hours they spend watching TV and playing video-games, or the number of 

hours they use AC or heater, and calculate the total amount of carbon dioxide they produce 

annually as a result of their current lifestyle (Table 3). Students are not required to fill all the 
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rows of the table, rather, they are asked to choose those activities that are most closely related to 

their own lives. 

Table 3: Carbon Calculator table given to students to record their daily activities 
 

Consumption Value chosen Amount of 
Carbon dioxide 

Total Carbon 
dioxide 

TV-hours_Stand-by    
TV-hours_Turn off    
Video_Game_hour_Standby    

Video_Game_hour_Turn off    

Battery_charger_plugged_ unused    

Computer-hours    

Bath once a week    

Shower    

Number of AC    

Heater    

Carpool    

Carpool distance    

Vacation 
(within state car, inter-state car, inter- 
state bus, inter-state plane, 
international plane) 

   

Total Carbon dioxide    

 
 

As mentioned earlier, the goal of this activity is to also motivate the students to take 

initiative and build strategies to change their own life-style and reduce carbon emission. 

Therefore, in the last investigation of the study I ask them to find ways to minimize the carbon 

emission by reconsidering some of the activities they mentioned in Table 3, such as video games 
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hours or turning televisions off after watching. This activity aims to instill within students a 

sense of responsibility towards the environment they live in and to motivate them to be cognizant 

about their role in disrupting the natural climatic condition of the earth. 

3.1.2 Implementation Phase 
 

In the implementation phase, I describe the research setting and the research participants. I 

also present a pictorial representation of the entire implementation phase of my study to provide 

the readers with an organized structure of the implementation process. 

3.1.2.1 Research setting 
 

As mentioned earlier, the primary methodology for my study is the design experiment, 

and more specifically the whole class design experiment. In a whole class design experiment, the 

research team collaborates with the teachers, and the teachers assume the responsibility of the 

instruction (Cobb, et. al., 2003). Likewise, in this study I collaborated with two teachers, Mr. 

Doug (Pseudonym) and Ms. Chelsea (Pseudonym) from two schools located in the town of 

Kearny. Both Doug, the science teacher and Chelsea, the mathematics teacher were participants 

of the bigger STEM project. During Summer 2018 both the teachers expressed their interest 

about implementing the greenhouse effect module in their middle school science and 

mathematics classrooms and for the purpose of my dissertation data collection, I visited their 

classes and conducted whole class design experiments. As mentioned above, both the schools 

were located in Kearny, which is a culturally-diverse community in western Hudson County, 

New Jersey. The Kearny school district has a total enrollment of 4,300 students, and nearly 59% 

of them are Hispanic or African Americans and 59% of them are classified as economically 

disadvantaged. According to Partnership for Assessment of Readiness for College and Careers 

(PARCC), the two schools I considered for this study are low performing schools where a very 
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low percentage of students either met or exceeded school-wide expectations in PARCC. These 

performance reports indicate an alarming signal that these underrepresented and economically 

disadvantaged students desperately need an education intervention to be prepared for the higher 

grades. 

3.1.2.2 Macro-cycles 
 

I used two classrooms because I conducted two cycles of design experiments, which I 

refer to as macro-cycles. Each macro-cycle of this design-based study consisted of two 

components: (a) classroom-based instruction and b) small group interaction with the students. 

Both macro cycles lasted for a week (5 days). Each macro cycle consisted of a series of mini- 

cycles which are the daily teaching-learning episodes. The ongoing analysis during those mini 

cycles helped me develop and refine a local instruction theory. Figure 12 illustrates the macro- 

and mini-cycles of this study. 

 
 

Figure 12: Macro-cycles and mini-cycles of this study 

The first macro cycle of design experiment was conducted in late Spring 2018. It took 

place in a sixth-grade science classroom containing 27 students. I collaborated with Mr. Doug 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 71 
 

(Pseudonym), a science teacher, who conducted the whole-class instruction and I assumed the 

role of a facilitator. The second macro-cycle took place a week after the conclusion of the first. It 

took place in a sixth-grade mathematics classroom and 17 students participated in the study. 

Similar to the first macro-cycle, the second cycle also consisted of a series of five mini-cycles of 

discussion sessions. I collaborated with Ms. Chelsea (Pseudonym), a math teacher, who assumed 

responsibility for instruction. Additionally, one of these teachers taught the greenhouse effect as 

he traditionally does without our STEM module in a third classroom. This third classroom acted 

as the control group and consisted of 31 students. The assignment of which classroom was the 

treatment or control was determined based on convenience as the research team could video- 

record the treatment classroom in the morning. 

Before each mini-cycle session, I sat with the teacher to discuss the goals of the study and 

go over the lesson. After each mini-cycle session, I met the teacher again to discuss any 

modifications in simulations, tasks and questions that might be required before the next session. 

All the instruction and interactions were audio- and video-recorded. 

During each design experiment, I was not only responsible for recording the classroom 

discourse and take notes on the classroom activities, but when students worked individually on 

the tasks on their computer, I sat with a small group of students and facilitated a discussion 

among them regarding covariational reasoning and the greenhouse effect. The students belonging 

to the small groups were selected by the teachers based on their articulateness and 

expressiveness. That is, for the small group discussion, the teachers chose those students who 

they identified as expressive and eloquent. My aim behind engaging in one-to-one interaction 

with the small group of students were to “create a small-scale version of learning ecology so that 

it can be studied in depth and detail” (Cobb et. al., 2003, p. 9). To explore how students’ 
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reasoning about covarying quantities progress as they engage with the tasks, I used open-ended 

questions that aimed to prompt the students to talk about the covarying quantities and their 

interpretations of the graphs involved. Starting from general questions, such as “Can you explain 

what you are doing here?” and “What are some relationships you found?” I then moved to more 

specific ones such as, “What do you think the graph will look like?”, or “How do you recognize 

the relationship between amount of carbon dioxide and air temperature in the graph?” 

3.1.3 Data Collection and Analysis Phase 
 

In this study, to receive a comprehensive view of students’ covariational reasoning and 

development of their awareness regarding the causes and consequences of the greenhouse effect 

I collected both quantitative and qualitative data. I anticipated that analysis of the quantitative 

data would help me identify if there has been any change in the participants’ covariational 

reasoning and their understanding of the greenhouse effect. On the other hand, I hoped that the 

analysis of the qualitative data would give me an insight about the quantitative data. It would 

walk me through the students’ experience as they engaged with the dynamic activities and help 

me understand the probable causes behind the shift in students’ covariational reasoning and their 

understanding of the greenhouse effect. In this study, to collect the two types of data I drew upon 

a variety of data sources including a) whole class and small group video recordings, b) students’ 

written artifacts, and c) pre- and post-assessments. Given this wealth of data, I provide an outline 

of the data collection and analysis (Figure 13) method to provide an organization of the process 

that captures and analyzes students’ reasoning about covariation and understanding of the 

greenhouse effect. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 73 
 

 

Data Data Collection Data Analysis  

 
 

Qualitative Data 

 
Whole class and small group 

videos 

 
 

Ongoing 

 
Retrospective 

Carlson’s Mental Action 
Framework  

Students’ written artifacts 

Quantitative 
Data 

Pre- and Post-Assessment: 
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Figure 13: Outline of Data Collection and Analysis 
 

The rich collection of data ensures the rigor of the study. I anticipate that the quantitative 

and qualitative data that I collected would complement each other and strengthen the claim of the 

study. While students’ responses in the pre- and post-assessments would inform me if the 

dynamic mathematical modeling activities have been effective to deepen students’ understanding 

of covariational reasoning and the greenhouse effect, the qualitative data would provide me with 

detailed information about students’ development of covariational reasoning and identification of 

the traits of the greenhouse effect through “observation, description and interpretation of the 

features of interactions” (Anderson & Shattuck, 2012, p. 19). Further, the data collected through 

the whole class instruction and small group interaction would inform me whether the conjectures 

I proposed at the beginning of the study have been supported by the design intervention or if I 

need to further revise my tasks for an additional task reimplementation. 

A distinct characteristic of the design experiment methodology is that the researcher or 

the research team develops an in-depth understanding of the phenomenon under investigation 

while the research is in progress (Cobb et. al., 2003). Therefore, it is crucial for the research 

team to generate and maintain a comprehensive record of the ongoing design process, which 

later on would aid the retrospective analysis (Figure 14) of the experiment (Cobb et. al., 2003). 

In the 
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following section, I will provide a brief account of the data I collected from the two classrooms 

along with the method I employed to analyze those data. 

 
 

Figure 14: Data Collection and Analysis 

3.1.3.1 Whole class and small group video recordings and students’ artifacts 
 

During the whole class instruction and the small group discussion, the conversations 

between teacher, students, and researcher were audio- and video-recorded. Two cameras, set on 

two tripods, were used to record the teaching sessions. During the whole class instruction, one 

camera constantly focused on the instructor and the other camera followed the students’ 

responses. When the students worked individually or in small groups, then each of the camera 

focused on one chosen group of students and recorded their activities on the computer screen and 

the worksheets. Apart from video recording the classroom sessions, I also collected students’ 

written artifacts in order to complement their verbal utterances. For each of the five 

investigations students received a worksheet that contained questions and prompts, and spaces to 

enter their responses. These worksheets were collected with the intent to support my 

investigation of understanding students’ covariational reasoning 
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3.1.3.2 Ongoing analysis during mini cycles 
 

The primary goal of a design experiment, as described by Cobb et. al., (2003) is “to 

improve the initial design by testing and revising conjectures as informed by ongoing analysis” 

(p. 11). During each micro cycle, based on the constant analysis of individual students’ activity 

and discourses, researchers perform anticipatory thought experiments, revise the instructional 

activities, and modify the learning goals (Cobb, Stephan, McClain, & Gravemeijer, 2001). 

Consistent with this principle, during each teaching episode I took field notes to record my 

interpretation of the students’ responses to the tasks and wrote down the modifications that I 

might require to make in the simulations or the tasks before the next cycle of design experiment. 

For instance, in the Carbon-Calculator task, initially I did not ask the students to calculate the 

annual amount of carbon dioxide added in the atmosphere as a result of playing video games or 

charging phones. When students from the first macro-cycle identified these activities as parts of 

their daily lives, I modified the initial version of the carbon calculator and added consumption 

caused as a result of ‘Video_Game_hour_Standby’, ‘Video_Game_hour_Turn off’, and 

‘Battery_charger_plugged_unused’. 

Apart from taking field notes, every day I watched parts of the recorded videos to observe 

how the other students of the class responded to the implemented tasks and how my conversation 

with the selected group of students went, so that I could plan my questions before next session. 

The videos also helped me to notice if students encountered any difficulty as they engaged with 

the tasks. My aim was not only to help the participating students to reach the intended 

mathematical and environmental goal, but also to refine and develop a set of instructional tools 

that might best fit similar settings. 
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3.1.3.3 Retrospective analysis at the end of each macro cycle 
 

As the ongoing analysis helped me to construct and de-construct local instructional 

theories, the data collected from the two macro-cycles will be used to create a more robust 

instructional theory that might be applicable to a larger instructional setting. This type of analysis 

is called retrospective analysis. During each retrospective analysis, all the classroom instruction 

and interaction videos were transcribed and analyzed. At this stage, the analysis was more fine- 

grained and included students’ and teachers/researchers’ conversations in order to capture the 

students’ development of covariational reasoning that might have formed during their interaction 

with the simulations and tasks. To investigate how students reasoned covariationally when they 

interacted with the dynamic mathematical modeling activities, I used Carlson et al.’s (2002) 

Mental action framework of covariation. 

After transcribing the videos, first I read the data and then I coded them using the software 

program Quirkos. Quirkos is a CAQDAS (Computer-assisted qualitative data analysis 

software) software package for the qualitative data analysis. After uploading the textual product 
 

in Quirkos, I went through the data and extracted phrases and sentences that might be identified 

under any one of the five mental levels or indicated students’ identification of the traits and 

consequences of the greenhouse effect and showed their developing critical consciousness about 

the issue. Some of my codes, as shown in Figure 15 are albedo-air temperature, consequences of 

the greenhouse effect, and agency. Quirkos provides a thematic framework represented with a 

series of circles. When any new code was generated, I created a circle as a representative of the 

code and dragged all the phrases or sentences on the circle that falls under the specific code. As 

the number of phrases or sentences under each code increased, the size of the circle became 

bigger. Hence, the size of each circle in the figure indicates the amount of data coded to 
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them. For example, looking at the Quirkos interface in Figure 15 it can be concluded that there 

are more students’ excerpts under the code CO2 and Temperature compared to Carpool. 

 
Figure 15: Quirkos for Qualitative Data Analysis 

Once all the codes are created, a user can click on any code and see all the students’ 

excerpts under that code on the right side of the interface. Further, Quirkos allows its users to 

create multiple files and merge them to have a convenient look into the data. In this study, 

initially I created two separate files for the two schools and later merged them to put all the codes 

together and have a better interpretation of the data. 

3.1.3.4 Carlson et al.’s (2002) mental action framework of covariation 
 

As aforementioned, to examine students’ covariational reasoning, I used Carlson et al.’s 

Mental Action of Covariational Framework. To provide a detailed explanation of my analysis 

plan, I present a modified version of Carlson et al. (2002)’s Mental Action of Covariational 

Framework (Table 4), where in the third column I include some probable students’ excerpts that 

I used as identifiers to determine the students’ level of reasoning. 

Table 4: Mental Action of Covariational Framework by Carlson et al. (2002) 
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Mental Action Description of mental 
action 

Probable responses 

Mental Action 
1 

(MA 1) 

Coordinating the value of 
one variable with changes in 
the other. 

• As the amount of carbon dioxide changes from 25 
to 50, and the value temperature also changes. 

• The global temperature is changed from 1 degree 
Celsius to 2 degree Celsius, the height of sea 
level is increased by 8 feet. 

Mental Action 
2 

(MA 2) 

Coordinating the direction of 
change of one variable with 
changes in the other variable. 

• As the value of carbon dioxide increases, the 
value of global air temperature also increases. 

• The greater number of hours I watch TV, the 
more the amount of carbon dioxide I add in the 
atmosphere. 

Mental Action 
3 

(MA 3) 

Coordinating the amount of 
change of one variable with 
changes in the other variable. 

• When the number of computer hours is increased 
by 1, the amount of carbon dioxide is increased 
by 36 Kg/ year. 

• The relation between air-temperature and carbon 
dioxide in interval [x1-x2] is different from the 
relation between air-temperature and carbon 
dioxide in interval [x2-x3]. 

Mental Action 
4 

(MA 4) 

Coordinating the average 
rate-of-change of the 
function with uniform 
increments of change in the 
input variable. 

• The rise in the height of future sea level with 
respect to increasing global air temperature is 8 
feet. 

• The average rate of change of temperature due to 
change in carbon dioxide for intervals [x1= 100, 

x2= 200] is 𝑦𝑦2−𝑦𝑦1
	𝑥𝑥2−𝑥𝑥1	

Mental Action 
5 

(MA 5) 

Coordinating the 
instantaneous rate of change 
of the function with 
continuous changes in the 
independent variable for the 
entire domain of the 
function. 

• The rise in the height of future sea level with 
respect to increasing global air temperature is 
linear. 

 
 

Since in each macro cycle I interacted with a small group of students working together, I 

did not segregate individual students’ reasoning regarding covariation; rather I focused on how 

students’ covariational reasoning progressed as a group when they engaged with the dynamic 

mathematical modeling activities. During this stage I also reviewed students’ written artifacts 

and used them as reference to justify their verbal utterances. For instance, during the coding 

when I identified any students’ excerpts that suggested their level 2 understanding, I returned to 
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the students’ written artifacts and reviewed the corresponding mathematical work 

complementing the generalization. 

3.1.3.5 Pre- and post-assessments 
 

To measure the effectiveness of the dynamic mathematical modeling activities in 

developing students’ covariational reasoning and their understanding of the causes and the 

consequences of the greenhouse effect, a pre-assessment and a post-assessment were 

administered to the participating students one day prior to the commencement of the macro- 

cycles and after the completion of the task implementation respectively. The assessment consists 

of nineteen multiple choice questions (see APPENDIX VII for the complete assessment). All the 

pre- and post-assessment questions were created by me with sufficient help from my advisor and 

expertise of the earth and environmental science fellows. Almost all of the pre- and post- 

assessment questions were created by me with sufficient help from my advisor and expertise of 

the earth and environmental science fellows, but a few questions were either taken or adapted 

from other researchers’ questionnaires (Varma & Linn, 2012). 

Out of the nineteen questions included in the pre- and post-assessments, nine focused on 

the several factors responsible for the greenhouse effect and ten questions addressed the 

consequences of the greenhouse effect. For example, questions such as “If I use my computer for 

1 hour every day, I release 36 kg of CO2 in the atmosphere in one year. How many kgs of CO2 

will I release in the atmosphere if I use my computer for 3 hours? (#8)” or “What will happen if 

you go to school every day by carpooling with your two friends? (#2)” were developed to 

encourage students to think about the causes of the greenhouse effect. Whereas the intention 

behind developing questions such as “Which of the following statements is correct for the global 

temperature and the height of future sea level? (#6)” and “Which of the statements is true about 
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the height of sea level and elevation of a place? (#7)” were to help students identify the 

consequences of the greenhouse effect. Additionally, all the questions required students to 

engage in covariational reasoning between two or more quantities. For example, to answer 

question #4 (Figure 16), students were required to coordinate the direction of change of carbon 

dioxide and air temperature. Likewise, question #5, #6, #7 (see APPENDIX VII, p. 231) 

demanded students to engage in MA2 reasoning. 

 
 

Figure 16: Question #4 from the Pre- and Post-Assessment asking students to coordinate the 
direction of change of carbon dioxide and air temperature 

To investigate if students could coordinate the amount of change of one quantity with 

respect to the change in the other quantity, in the assessments I included questions such as, 

#9: If I use my computer for 1 hour every day, I release 36 kg of CO2 in the atmosphere in one 
year. This year I released 540 kg of CO2. For how many hours did I use my computer every day? 

a) 8 hours 
b) 10 hours 
c) 15 hours 

 
and 

 
#11f: What is the Increase in Height of Sea Level, when the Global temperature rise is 8 degree 
Celsius? (Refer the given graph) 

i. 40 feet 
ii. 80 feet 

 
 

To answer question #11, first students were required to coordinate the amount of change of the 

height of future sea level for 1-degree Celsius temperature rise, followed by using the value to 
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calculate the height of sea level for 8-degree Celsius temperature rise (MA3 reasoning). 

Therefore, considering the nature of the questions included in the pre- and the post-assessment, I 

hypothesized that the students’ correct responses for any of the questions not only indicate their 

understanding of the greenhouse effect, but also proclaims their reasoning ability between two or 

more covarying quantities. 

3.1.3.6 Analysis of multiple-choice questions 
 

The linear mixed effect model within the repeated measures framework was selected as 

an analysis technique for the quantitative data, which consist of the pre- and post-assessment 

scores of the students in the treatment and control groups. The repeated measures framework was 

chosen as an appropriate tool to repeatedly measure the pre- and post-assessment scores of the 

subjects (student in this case) to examine if there has been any significant change in the treatment 

students’ understanding of the greenhouse effect compared to their peers from the control group. 

Further, I used the R programing language (R core team, 2014) to perform the linear mixed 

effect model analysis using the package nlme (Pinheiro et al., 2018) and utilized the 

tidyverse package (Wickham, 2017) to generate a visual figure of this analysis. 
 
 

3.2. Conclusion 
 

This chapter outlines the methodology for investigating the role of mathematical modeling 

activities in developing students’ covariational reasoning, which in turn I hope would facilitate 

students to identify the different traits and consequences of the greenhouse effect and develop 

within them an awareness towards the rapidly changing climate. I followed the design 

experiment methodology aiming to design, implement, and revise tasks that I anticipate would 

help in developing students’ covariation reasoning. 
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I divided my methods into three phases: the development phase, implementation phase, and 

the data collection and analysis phase. In the developmental phase, first I explained how I used 

Carlson et al.’s (2002) Mental Action of Covariation framework to design my tasks. Next, I 

provided a detailed description of the three NetLogo simulations, Climate Change simulation, 

Sea Level Rise simulation, and Carbon Calculator simulation and explained how I anticipate 

these simulations may help students develop understanding about covariational reasoning and the 

greenhouse effect. 

The implementation phase described the macro and micro-cycles of my study to provide 

readers with an overview of the whole process I conducted to implement the tasks in two middle 

school classrooms and collect quantitative and qualitative data. The last phase of the method 

section described the methods I followed to collect and analyze data. In this study I collected 

both quantitative and qualitative data to receive a comprehensive view of students’ covariational 

reasoning as a result of their interaction with the dynamic mathematical modeling tasks. I 

collected three types of data, namely a) whole class and small group video recordings, b) 

students’ written artifacts, and c) pre- and post-assessments. I used Carlson et al.’s (2002) Mental 

Action of Covariation framework to analyze students’ covariational reasoning. In the following 

chapter I discuss the findings of this study. 
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4. Findings 
 

The primary purpose of this chapter is to provide the results of the study which explored 

the power of mathematical reasoning for developing students’ understanding of the greenhouse 

effect, a significant cause behind climate change. Students engaged with dynamic mathematical 

modeling activities, which I anticipated might help them to reason covariationally between two 

or more quantities and provide them with a platform to identify the causes and consequences of 

the greenhouse effect. 

This study sought to answer two research questions around students’ covariational 

reasoning and the greenhouse effect. To answer the first research question, I begin the chapter 

describing how students belonging to both the treatment and control group performed in the pre- 

and post-assessments. Next, to get an insight of the quantitative data analysis, I focus on the 

analysis of the qualitative data, which were collected in the form of whole class and small group 

video recordings. My goal was to observe the video recordings and investigate the possible 

causes behind the shift in students’ performance from the pre- to the post-assessment. Through 

the video data I explored students’ reasoning about covarying quantities in connection with the 

three mathematical modeling activities. I used Carlson et al.’s (2002) Mental Action Framework 

to identify how students navigated through the different levels of covariational reasoning during 

their interaction with the activities. Through the discussion of students’ covariational reasoning, I 

sought to answer my second research question in which I investigated how students may 

navigate through different levels of covariational reasoning as they engage with mathematical 

modeling activities in the context of the greenhouse effect. 

As mentioned earlier in the Method section, during the small group discussions I 

interacted with six students from the first macro cycle and five students from the second macro 
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cycle. The names of the six students from the first macro cycle are Ani, Elen, Nia, Gina, Amber, 

and Paula and the names of the five students from the second macro cycle are Gio, Celine, Myra, 

Jake, and Simi. In this chapter, I present the students’ excerpts from the whole class discussions 

and small group interactions to tell stories of these students' experiences interacting with the 

simulations. Also, students’ written works, graphs, tables, and pictures are included along with 

students’ verbal utterances to provide the readers a window into the students’ thought processes. 

It is worth mentioning that, since the methodology of this study is whole class design 

experiment, the small group interactions occurred only for brief periods between whole class 

discussions. As a result, considering the time constraint, on several occasions the voices of one 

or two students were more prominent than others. 

4.1. Overall impact of the module on students’ reasoning 
 

To examine the extent to which students’ scores shifted from the pre- to the post- 

assessment, I used a linear mixed effect model within the repeated measures framework to 

compare the treatment and control groups. First, I compared the pre- and post-assessment scores 

of the students participating in both the treatment and the control groups. The analysis shows that 

students belonging to both the groups exhibited significant improvement (p < 0.005) in their 

performance from the pre- to the post-assessment (see Testpost_test on Table 5). 

Table 5: Linear mixed effect model 
 

 Value Standard Error DF t-value p-value 
Intercept 11.741935 0.5540278 73 21.193767 0.0000 

Testpost_test 1.483871 0.5402645 73  2.746564 0.0076 
 

Module_Treatment -0.219208 0.7233289 73 -0.303055 0.7627 

Testpost_test:Module_Treatment 1.447947 0.7053599 73 2.052778 0.0437 
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To examine if the shift in the treatment students’ scores from the pre- to the post- 

assessment can be attributed to their engagement with modeling activities, I compared the post- 

assessment scores of the treatment and control groups. From the analysis of the results I found a 

significant difference (p < 0.05) between the post-assessment scores of the students belonging to 

the treatment and the control groups (see Testpost_test: Module_Treatment in Table 5). As 

Figure 17 visually illustrates, the difference between the medians of the pre- and post-assessment 

of the treatment group is greater than the difference in the medians of the pre- and post- 

assessment of the control group. 

 
Figure 17: Change in students' scores (control and treatment) from pre- to post assessment 

The analysis of the pre- and post-assessment scores using the linear mixed effect model 

suggests that the treatment group students who worked with the greenhouse module showed 

significant improvement in their post-assessment scores compared to their peers in the control 

group, who also learned about the phenomenon of the greenhouse effect without this particular 

module. To get an insight into the quantitative data and identify the possible reasons that might 

have resulted in the increase of the post-assessment scores, in the following sections I looked 

into the students’ experiences interacting with the three NetLogo simulations. I anticipated that 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 86 
 

the analysis of the qualitative data would shed some light into the quantitative data and help me 

understand the meaning of the increase in the post-assessment scores. 

As mentioned earlier in the Method section, out of the nineteen questions included in the 

pre- and post-assessments, nine focused on the several factors responsible for the greenhouse 

effect and ten questions addressed the consequences of the greenhouse effect. Additionally, all 

the questions as explained earlier required students to engage in covariational reasoning between 

two or more quantities. To give the reader a comprehensive view of how the three NetLogo 

simulations provided the students a space to engage in covariational reasoning and thus helped 

them develop their understanding of the causes and consequences of the greenhouse effect, the 

following sections are divided into two sub-sections: students’ reasoning about the consequences 

of the greenhouse effect and students’ reasoning about the causes of the greenhouse effect. 

Under each of the sub-section, first I present the analysis of the treatment-group students’ scores 

in the two sets of questions - consequences of the greenhouse effect and causes of the greenhouse 

effect - and discuss how their performance shifted from the pre- to the post-assessment. Next, to 

understand the possible reasons behind the shift in the post-assessment scores, I delve deep into 

the qualitative data. I present the stories of the students, illustrating their reasoning about two or 

more covarying quantities as they interacted with the simulations and the accompanying 

activities. Each sub-section ends with a discussion about how the design of the simulations might 

have provided a space for students to think critically about the causes and consequences of the 

greenhouse effect. 

4.2. Students’ reasoning about the consequences of the greenhouse effect 
 

As aforementioned, ten out of nineteen questions in the pre- and post-assessment were 

developed concentrating on the consequences of the greenhouse effect. To investigate how the 
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treatment group’s responses to the ten items about covariation and the consequences of the 

greenhouse effect shifted from the pre- to the post-assessment, I calculated the total scores of the 

students for all ten items in both assessments (maximum possible score 10 and minimum 

possible score 0) and determined the frequency of the students belonging to each scoring 

category (each score formed a category). The results from a comparison of the pre- and the post- 

assessment (Table 6) indicate that during the pre-assessment, only 29.5% of the students’ scores 

were 8 or above, whereas during the post-assessment the percentage of the students scoring equal 

to or above eight rose to 68.2%. 

Table 6: Frequency of the students scoring 0 through 10 in the pre- and post-assessment 
(covariation and consequences of the greenhouse effect) 

 

 

Figure 18 further illustrates how the frequency of the students scoring eight or above increased 

during the post-assessment, while the number of students scoring between seven and three 

declined. The figure indicates a positive shift in students’ understanding of covariational 

reasoning and the consequences of the greenhouse effect from the pre- to the post-assessment. 
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Figure 18: Bar Graph showing frequency of students in each scoring category (0 through 10) in 

the pre- and post-assessment (covariation and consequences of the greenhouse effect) 

I delve deeper into the analysis of some these ten questions to provide examples of these 

changes. One of the major consequences of the greenhouse effect, as addressed in this study, is 

the rise of sea level. In two items, #6 and #11, students were asked to identify the relationship 

between air temperature and height of future sea level. During the pre-assessment, 54.5% of the 

students identified that as global temperature increases, height of sea level increases. However, 

the percentage of the students reasoning between the two quantities increased to 68.2% during 

the post-assessment. Since one of the three NetLogo simulations was developed around the issue 

of Sea Level Rise and the participating students engaged considerably in reasoning between air 

temperature, height of future sea level, and total land area, I would argue that the shift in 

students’ responses during the post-assessment might have occurred as a result of their 

engagement with the intervention. 

One of the ten questions in the pre- and post-assessment also asked students to reason 

covariationally about the elevation of a place and its associated risk of going under water. In the 

pre-assessment, 59.1% (n=26) of the students identified that the higher the elevation of a place, 

the lower the risk being affected by sea level rise, while in the post-assessment 82% (n=36) of 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 89 
 

the students recognized this relationship between the two quantities. During their engagement 

with the Sea Level Rise simulation, students were prompted to think about the covariational 

relationship between elevation of a place and risk of going under water. As a result, the 

simulation might have helped the students understanding of the risks associated with the 

elevations of places. 

Overall, the quantitative data analysis of the treatment group students’ mean scores in the 

pre- and post-assessment indicate that a higher percentage of treatment group students identified 

the consequences of the greenhouse effect during the post-assessment. I conjecture that the 

treatment group students’ engagement with the Climate Change simulation and the Sea Level 

Rise simulation might have helped them identify the consequences of the greenhouse effect. 

However, it may be too early to make this claim. To get insight into how the students’ 

engagement with the simulations and their covariational reasoning might have impacted their 

performances in the post-assessment, in the following paragraphs I describe the design principles 

of each of the simulations and activities and discuss stories of the students' experiences 

interacting with the simulations. By doing so I will present substantiated claims about what 

knowledge they abstracted from those interactions. 

4.2.1 Exploring the relationships of the Climate Change simulation 
 

The first NetLogo simulation that I used in this study is the Climate Change simulation 

(Figure 19). This simulation was designed with the intention of supporting students in reasoning 

about two sets of covarying quantities, albedo and air temperature and carbon dioxide and air 

temperature, helping them identify the consequences of the greenhouse effect. Students were 

asked to explore the simulation, change the values of albedo by dragging the albedo slider left 

and right, increase and decrease the amount of carbon dioxide by clicking the add and remove 
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CO2 buttons, and observe the impact of the changes on the value of air temperature. I conjectured 

that the exploration of the simulation would provide a space for the students to identify the 

direction of change of two covarying quantities, for example, as albedo increases, the air 

temperature decreases or as carbon dioxide increases, the air temperature increases, and thus 

provide students an opportunity engage in Level 2 covariational reasoning as per Carlson et al.’s 

(2002) Mental Action Framework. In the following paragraphs I present how students reasoned 

about those two relationships by discussing four cases from the two macro-cycles. 

 
Figure 19: The Climate Change Simulation 

4.2.1.1 Relationship between albedo and temperature: The case of Ani and Gina from MC1 

For the first simulation, Doug (teacher) asked the students to explore the simulation and 

identify the different factors that might impact the value of air temperature. Students identified 

carbon dioxide and albedo as two factors that influence air temperature. During the small group 

discussion, when I asked the students if they identified any relationship between albedo and air 

temperature, Ani moved the albedo slider to the left and right, thus decreasing and increasing the 

value of albedo, and stated that when value of albedo increases, air temperature decreases. 

Further, he and Gina identified the reflection of sunlight as a third quantity to bridge the 
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relationship between albedo and air temperature. The following excerpt illustrates Ani and 

Gina’s reasoning: 

Interviewer: What do you think, if I increase the value of albedo? 

Ani: It (earth) will reflect more. 

Interviewer: It will reflect more. 
 

Gina: It will reflect more sunlight. 
 

Ani: Which means no heat. 

Interviewer: Which means? 

Ani: It will decrease. 
 

Interviewer: It will decrease? What will decrease? 
 

Ani: Well the temperature (pointing the time graph on the screen). 

[Excerpt 1] 

Excerpt 1 shows that Ani and Gina were able to illustrate MA2 reasoning and coordinate three 

quantities: albedo, reflection of sunlight, and air temperature. Ani pointed to the time graph to 

justify his response. Because the graphics of the Climate Change simulation (Figure 20) 

explicitly expresses the connection between the three quantities, I conjecture that the graphics of 

the simulation might have helped Ani and Gina see the connection between the three quantities 

(MA2). More specifically, in the simulation, when the value of albedo is set to zero, the graphics 

of the simulation exhibit a black rectangular patch on the earth’s surface and the number of sun 

rays reflected back from the earth’s surface is zero (see Figure 20a). During this time, all the 

incident sunlight is absorbed by the earth in the form of infrared rays (red dots) and air 

temperature, expressed through time graph and temperature monitor, is maximum. When the 

albedo slider is dragged to the right and stopped halfway through, the black patch turns green 
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and part of the reflected sun rays are absorbed by the earth as infrared rays while the rest are 

reflected back (see Figure 20b). Finally, when the albedo reaches its maximum value of one, the 

green patch is replaced by a white patch to indicate the higher reflective surfaces such as ice or 

snow and the number of reflected rays become maximum, with no sun rays being absorbed by 

the earth (see Figure 20c). At this time, the value of air temperature remains the lowest. Because 

Ani and Gina stated that when albedo increases, the earth reflects maximum sunlight, which in 

turn decreases heat and reduces air temperature, I conjecture that the graphics of the Climate 

Change simulation (Figure 20c) might have had a significant impact on both Ani and Gina’s 

reasoning. The students’ responses indicate that the graphics of the simulation not only helped 

them see the connection between the different quantities, but also enabled them to model the 

covariational relationship between them. 

 
(a) (b) 

 
(c) 

Figure 20: (a) When albedo is zero, the earth's surface is represented by a black patch and no 
sunlight is reflected back; (b) When albedo is 0.5, the earth's surface is represented by a green 
patch and part of sunlight is reflected back and part of sunlight is absorbed; (c) When albedo is 

one, the earth's surface is represented by a white patch and no sunlight is reflected back 
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4.2.1.2 Relationship between albedo and temperature: The case of Gio from MC2 
 

Similar to the first macro cycle, the second macro cycle also started with students 

exploring the first simulation. Following the exploration, during the whole class discussion when 

Chelsea (teacher) asked the students if they noticed any relationship between albedo and air 

temperature, Gio moved the albedo slider to the right and then left and replied, “as the albedo 

goes down, temperature goes up.” This statement shows that by manipulating the albedo slider 

and observing the change in temperature, Gio was able to identify the direction of change of the 

two quantities, albedo and air temperature, which is what Carlson et al. (2002) distinguished as 

MA2 reasoning. 

In order to have the students further identify the covariational relationship between 

albedo and air temperature, they were given four graphs and were asked to explore the Climate 

Change simulation, observe how air temperature changes with increasing and decreasing values 

of albedo, and accordingly choose the graph that correctly represents the relationship between 

earth’s albedo and air temperature (Figure 21). 
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Figure 21: Four graphs asking students to select the correct one that represents the relationship 

between albedo and air temperature 

Gio selected graph C as a representative of the albedo-temperature relationship. Aiming to 

examine why Gio selected graph C, I asked him, “How did you identify that the graph C 

represents that (relationship)?” In response he said, “as albedo was higher, this means the albedo 

was going higher, then the temperature is dipping down in a curved way because as we saw 

before it is not everything is on the same straight line, it is in a curved line.” At this point Gio not 

only focused on the direction of change of temperature with direction of change of albedo 

(“albedo was going higher, then the temperature is dipping down”), a type of reasoning that 

aligns to MA2 as per Carlson et al.’s (2002) Mental Action Framework, but also tried to reason 

about the curvilinear nature of the albedo and air temperature graph. When he said “because as 

we saw before” it seems that he referred back to the simulation and focused on the curved nature 

of the time graph being developed as a result of changing albedo (Figure 22). 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 95 
 

 

  
(a) (b) 

 
(c) 

Figure 22: (a)Time-Graph showing low values of temperature (19 degrees Celsius) when albedo 
is maximum, that is one; (b) Time-Graph showing increased values of temperature (around 25 

degrees Celsius) when albedo is decreased to 0.50; (c) Time-Graph showing maximum air 
temperature 

In order to prompt Gio to think about the nature of the graph, I asked him, “Why it is not 

a straight line and curved?” I anticipated that this question might encourage Gio to focus on the 

amount of change of temperature for different values of albedo. In response to my question, Gio 

took some time and said, “it is not a straight line because it is different every time in range of 

temperature, because if we do it with a certain amount of carbon dioxide it doesn't just stay the 

same but actually dips up and dips down.” From Gio’s response, it appears that he not only 

identified that temperature would be different every time albedo is changed, but also referred to 

the simulation and identified how temperature “dips up and dips down” for a specific value of 

albedo. Because Gio talked about the dipping up and dipping down of the temperature graph, it 

seems that the time graph in the Climate Change simulation (Figure 22) provided space for the 

students to notice the fluctuating values of air temperature (MA3). Hence, based on Gio’s 

response I infer that the time graph of the simulation provided Gio with the space to reason about 
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the direction of change of air temperature for direction of change of albedo (MA2) and allowed 

him to see how air temperature fluctuates at and between different values of albedo (MA3). 

4.2.1.3 Relationship between CO2 and temperature: the case of Nia and Elen from MC1 
 

After students identified the covariational relationship between albedo and air 

temperature, next, students explored the relationship between the amount of carbon dioxide and 

air temperature. During the small group discussion, when I asked the students, “what will happen 

if I increase carbon dioxide?”, Nia responded, “it increases the temperature.” Aiming to examine 

how Nia identified the increase of temperature, I asked her, “how do you know it is increasing?” 

In response to the question, both Nia and Elen pointed to the time graph (Figure 23) in the 

simulation and identified that if carbon dioxide increases, temperature gets higher. Excerpt 2 

illustrates Nia and Elen’s reasoning. 

Interviewer: How do you know it is increasing? 

Elen: It’s going up. 

Interviewer: It is going up? Okay, say it goes up, then what happens? If it goes up, 

what happens? 

Nia: The temperature gets higher 

[Excerpt 2] 
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Figure 23: (a) Nia pointing the time graph to show how air temperature increases with carbon 

dioxide (b) Time graph showing how air temperature increases with carbon dioxide 

I interpret that both the students engaged in reasoning aligned with Carlson et al.’s (2002) MA2 

as they focused on the direction of the air temperature curve (increasing curve line going from 

left to right) in the graph and coordinated the direction of change of air temperature (going up 

from left to right) with changing values of carbon dioxide. 

Next, I was interested to know more about the impact of the simulation on the students’ 

understanding of the phenomenon underlying covariational relationship between carbon dioxide 

and air temperature. So, I asked, “you are adding more carbon dioxide? Okay. But why is it 

increasing? Why is the temperature increasing?” While Elen was thinking of the answer, Nia 

replied, “it is gaining more energy.” Being unsure of what Nia referred to as energy, I prompted 

her to describe the term energy. After a brief thought, Nia said, “The red dots. Some are going 

up. Some are going up here, but some are going down. That's increasing the temperature.” When 

I asked her if she remembers the name of the red dots, she said, “infrared rays.” Nia’s response 

indicates that during the exploration of the carbon dioxide and air temperature relationship, she 

not only focused on the numerical values of the two quantities or the graph, but also observed 

how the changes in the quantities impact the simulation interface. She changed the value of 

carbon dioxide and noticed that when the amount of the gas increases, then the red dots 

representing the infrared rays also increase (Figure 24). She said a part of the red dots “are going 
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down” and “some are going up” however, the increased amount of carbon dioxide (represented 

by small green dots floating in the atmosphere) (Figure 24) “will not allow the infrared to 

escape,” concluding that “the more carbon dioxide, the more temperature.” From her response it 

appears that Nia focused on the graphics of the simulation interface to observe and understand 

the phenomenon underlying the relationships. By engaging with the simulation, Nia observed 

that when she added the amount of carbon dioxide, both the number of carbon dioxide molecules 

and infrared rays (represented by green and red dots) increased (Figure 24) and as a result, the 

value of air temperature on the earth also increased. Nia showed evidence that she coordinated 

the direction of change of carbon dioxide and air temperature, thus engaging in a type of 

covariational reasoning that aligns to MA2 according to Carlson et al.’s (2002) framework. 

 
Figure 24: Climate Change Simulation showing what happens to the simulation interface when 

amount of carbon dioxide increases 

4.2.1.4 Relationship between CO2 and temperature: The case of Gio from MC2 
 

Similar to the first macro cycle, in the second macro cycle also students explored the 

Climate Change simulation to identify the relationship between carbon dioxide and air 

temperature. They clicked the add CO2 and remove CO2 buttons and observed the impact of the 

change on the simulation interface and value of air temperature. In order to encourage students to 
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articulate their reasoning about carbon dioxide and temperature, during the small group 

discussion, I asked them “can you explain what is happening to carbon dioxide and 

temperature?” It is worth noting that from the first to the second macro cycle, I modified my 

questioning style. Unlike the first macro cycle, I did not ask the students to think about the value 

of air temperature when carbon dioxide increases or decreases. Rather, I tried to encourage the 

students to think about and articulate the relationship between the two quantities without any 

prompt. I hypothesized that if the students are supported in thinking about the relation between 

carbon dioxide and air temperature, without providing them any external cues, then that might 

help them to engage in reasoning between covarying quantities. The following excerpt describes 

my interaction with Gio. 

Interviewer: Can you explain what is happening to carbon dioxide and temperature? 

Gio: It is increasing. 

Interviewer: It is increasing? Like how do you know it is increasing? 
 

Gio: It is going higher. [showing the time graph on the simulation] 

Interviewer: Okay. What is going higher? 

Gio: Carbon dioxide. 

Interviewer: Carbon dioxide? 

Gio: The air temperature 

Interviewer: The air temperature? 

Gio: As the carbon dioxide increases. 

[Excerpt 3] 

As Excerpt 3 suggests, when Gio was asked to explain the relationship between carbon dioxide 

and air temperature, he did not articulate the relationship between both the quantities. Rather he 
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said, “it is increasing.” As a result, when I asked him “how do you know it is increasing?”, Gio 

referred to the time graph in the simulation and pointed at the direction of the air temperature 

curve to justify his response (Figure 25). Similar to Nia and Elen from the first macro cycle, Gio 

also focused on the direction of the air temperature curve and recognized that as the value of 

carbon dioxide increases, the air temperature graph goes higher (going up from left to right). 

Such reasoning indicates that Gio coordinated the change of direction of the two quantities, 

carbon dioxide and air temperature, and engaged in MA2 reasoning as per Carlson et al.’s (2002) 

Mental Action Framework. 

 
Figure 25: Time graph showing how air temperature changes with carbon dioxide 

4.2.2 Graphing the relationship between CO2 and temperature 
 

After students explored the Climate Change simulation and coordinated the direction of 

change of albedo and air temperature and carbon dioxide and air temperature (MA2), they 

engaged in a graphing activity. First, students were provided with a carbon dioxide and air 

temperature table (Figure 26a) and were asked to change the value of carbon dioxide in the 

simulation as indicated in the table, observe the values of air temperature for corresponding 

values of carbon dioxide, and record the values of air temperature in the table. 
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(a) (b) 

Figure 26: (a) Graphical Activity 1 where students collected the values of air temperature for 
given values of carbon dioxide, and (b) Graphical Activity 2 where students were asked to plot 

the carbon dioxide and air temperature ordered pairs 

Next, students were asked to use the values of carbon dioxide and air temperature 

recorded in the table to plot the ordered pairs on a graph (Figure 26b). I hypothesized that the 

graphing activity might allow the students to recognize visually the amount and rate of change of 

air temperature with change in the value of carbon dioxide and express covariational reasoning 

aligned to Carlson et al.’s (2002) MA3 and MA4. In the following paragraphs, I describe two 

cases of students interacting with the activity to illustrate the forms of reasoning that they 

developed. 

4.2.2.1 Relationship between CO2 and temperature: the case of Ani from MC1 
 

When Ani engaged with the graphing activity, first he recorded the values of air 

temperature for given values of carbon dioxide in the table (Figure 27a) and then he plotted the 

carbon dioxide versus air temperature ordered pairs on a graph (Figure 27b). 
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Figure 27: Ani’s (a) table showing the carbon dioxide air temperature ordered pairs and (b) graph 

representing the relationship between carbon dioxide and air temperature 

During the small group discussion when Ani was asked to explain the graph, he measured the 

‘space’ between two consecutive values of air temperature, arguing (Excerpt 4): 

Ani: This one from here has more space than this one from here, and from this 

one to here. This one has more space in between of them. [Showing two 

different intervals on the graphs] 

Interviewer: It has more space between them? Like what do you mean by more space? 
 

Can you show me with fingers? 
 

Ani: Yes, like here. Here from here, like 3 fingers and from here to here like 4 

fingers. So, it has more space here than here. 

[Excerpt 4] 
 

By measuring the space between the various intervals, Ani seemed to focus on the change of 

value of air temperature when the amount of carbon dioxide changed from 0 to 100 units, 100 to 
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200 units, and so on. He used his fingers to measure the space between two consecutive values of 

air temperature (that space between air temperature at 100 and 200 units of carbon dioxide 

versus space between air temperature at 200 and 300 units of carbon dioxide) and determined the 

relationships between carbon dioxide and air temperature in corresponding intervals of carbon 

dioxide. Ani’s response indicates that the graphing activity provided him a space to coordinate 

the amount of change of air temperature with change in the value of carbon dioxide, a type of 

reasoning aligned to Carlson et al.’s (2002) MA3. 

4.2.2.2 Relationship between CO2 and temperature: the case of Myra and Celine from MC2 
 

Similar to students of the first macro cycle, students of the second macro cycle also 

collected the values of air temperature for different values of carbon dioxide and plotted the 

different ordered pairs to graph the relationship between the two quantities. Students displayed 

MA2 reasoning during their engagement with this particular activity and identified the 

covariational relationship between carbon dioxide and air temperature. During this activity, Myra 

looked at the table she created (Figure 28) and stated that “as the carbon dioxide gets higher, the 

temperature rises.” By observing that every time she increased the value of carbon dioxide, the 

value of air temperature also increased, she was able to coordinate the direction of change of air 
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temperature with the direction of change of carbon dioxide and identify carbon dioxide as a 

major contributor to the increased air temperature. 

 
 

Figure 28: Myra’s carbon dioxide vs. air temperature table 

When I asked Myra if she observed any pattern in the values of air temperature for 

different values of carbon dioxide, she argued that every time the carbon dioxide is changing, 

“the number (air temperature) is getting 10 degrees higher.” This shows that she was able to 

reason about the change of the value of air temperature for every 100-unit change in carbon 

dioxide and illustrate evidence of MA3 reasoning. Next, I asked students to use the graph (Figure 

29) and estimate the value of air temperature for 400 units carbon dioxide: 
 

Interviewer: How much would be the temperature when carbon dioxide is 400? 

Myra: Maybe like, 50-56. 

Interviewer: 50-56? How do you know that? 
 

Myra: Because the numbers like, keep going on like that, umm, as they get 

higher, they get closer intervals? Like the range of number gets smaller. 

Interviewer: Can you explain, what do you mean by closer interval? 
 

Myra: Like over here 44 to 48 and carbon dioxide went up to 100, and this 
 

one went up 4. When it is 100 to 200, it went up 10. So, every time like it 

goes up, the carbon dioxide goes up, the air temperature as they go up like, 

the range between them would be smaller. So, it be around 50. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 105 
 

Interviewer: Around 50? 
 

Myra: 50 or 53 something like that. 

[Excerpt 5] 

 
 

Figure 29: Myra’s graph representing relationship between carbon dioxide and air temperature 

Excerpt 5 shows that Myra observed the change of air temperature for each interval 

change of carbon dioxide (100 units) and concluded that as the value of carbon dioxide went up 

by 100 units, the value of air temperature increased but the amount of the amount of that increase 

became smaller. For instance, when the amount of carbon dioxide rose from 0 to 100 units, the 

air temperature went up by 10 degrees, while as the value of carbon dioxide increased from 100 

to 200 units, the value of air temperature increased by only 4 degrees. Following this pattern, 

Myra stated that the probable value of air temperature for 400 units of carbon dioxides would be 

around 50 to 53 degrees Celsius. 

A similar argument was also made by Celine when I asked her to use the graph (Figure 
 

30) to find the probable value of air temperature for 300 units of carbon dioxide (Excerpt 6): 
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Interviewer: Can you say for sure what the temperature would be when carbon dioxide is 

300? 

Celine: I can make an estimate. 
 

Interviewer: You can make an estimate? How are you making the estimate? 
 

Celine:  Each of them increases more than at least 5. So then next temperature would 

be 46 or higher. 

Interviewer: 46 or higher? Why 46 or higher? Like how are you finding out? 

Celine: Because if it is more than a 5, you would add 5 to 41 it would be 46. 

[Excerpt 6] 

 
 

Figure 30: Graph representing relationship between carbon dioxide and air temperature (Celine) 

Excerpt 6 shows that Celine also observed the amount of increase of air temperature for 

consecutive intervals of carbon dioxide and identified that for every 100 unit increase in the 

value of carbon dioxide, the value of air temperature “increases more than at least 5.” Leveraging 

on that pattern of increase of air temperature, Celine estimated that when the value of carbon 
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dioxide would increase from 200 to 300 units, air temperature would increase by at least 5 

degrees. She added 5 degrees to 41 degrees Celsius (the temperature for 200 units of carbon 

dioxide) and found 46 degrees Celsius to be the value of air temperature corresponding to 300 

units of carbon dioxides. 

To prompt students to think about the rate of change of air temperature in each interval of 

carbon dioxide, I asked them to explain why they joined the plotted points by straight lines and if 

they could draw curves between the consecutive points. In response to this question, Celine said 

that “the straight line probably means there is a relationship, like a solid relationship and then, 

these curved lines probably mean that sometimes it goes down, sometimes it goes up.” Being 

intrigued by the term “solid relationship”, I asked Myra to elaborate her answer. Myra then 

added, “So it would be straight line up. It is like one number, like between the air temperature 

and the amount of carbon dioxide.” Through the discussion of the amount of change of air 

temperature for consecutive values of carbon dioxide, both Myra and Celine’s responses were 

consistent to the third mental action (MA3) of Carlson et al.’s (2002) framework of covariational 

reasoning. However, I was not convinced if the students were trying to express the idea of the 

constant rate of change through terms such as “solid relationship” or “one number.” Such an 

argument, in that case, would establish students’ engagement in level four covariational 

reasoning (MA4) as per Carlson et al.’s (2002) Mental Action Framework of covariational 

reasoning. Therefore, I asked students for further explanation (Excerpt 6): 

Celine: [Pointing at Myra’s amount of CO2 and air temperature graph; Figure 31a] 

Like right here, this, this relationship [A; Figure 31b] is different from this 

relationship [B; Figure 31b]. 

Interviewer: Oh, so the relationship is different for different points? 
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Myra: Yes. 
 

Interviewer: Can you explain the relationships? Like, if I have to, if you have to 

compare the relationship here vs here, what is the difference? 

Myra: [Pointing to the amount of CO2 and air temperature graph; Figure 32a] 

That, at 300, and 200, the relationship between them [C; Figure 32b] was 

different because the numbers were closer together, and over here [D; 

Figure 32b] amount of CO2 and air temperature relationship between 200 

and 100 units of carbon dioxide) the numbers are further apart. So, one 

will be higher, one will be lower (Figure 31b). 

[Excerpt 7] 
 

(a) (b) 
Figure 31: (a) Celine pointing at Myra’s carbon dioxide and air temperature graph to explain 

how the relationship between the two quantities is different in different intervals, and (b) Myra’s 
graph, in which Celine pointed the amount of CO2 and air temperature curve to show that the 

relationship between 200 and 300 carbon dioxide (A) is different from the relationship between 
200 and 100 carbon dioxide (B) 
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(a) (b) 

Figure 32: (a) Myra pointing at her amount of CO2 and air temperature graph to explain the 
relationship between air temperature and carbon dioxide; (b) An illustration of her explanation 

(red dotted lines) that the value of air temperature between 300 and 200 carbon dioxide is closer 
(C), while the value of air temperature between 200 and 100 carbon dioxide is farther apart (D) 

Both Celine and Myra used the graph and identified that the relationship between carbon dioxide 

and air temperature is different in different intervals of carbon dioxide. Continuing the 

discussion, when I asked the students to explain how they would find the difference between two 

corresponding values of air temperature, Celine replied, “you would subtract from your table.” 

Seeing students fluctuating their attention between the numerical values of air temperature, as 

expressed in the table, and the carbon dioxide and air temperature graph, I wanted to ensure that 

the students do not overly rely on numbers to build their arguments. I anticipated that, instead of 

concentrating on the numbers, if students are encouraged to focus on the graphical relationship 

between the two quantities then that would prompt them to move beyond the amount of change 

of one quantity with respect to the other (MA3) and direct their attention towards the rate of 
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change of one quantity with respect to the change in the other quantity (MA4). Hence, I asked 

them: 

Interviewer: Suppose I do not have the table, just looking at the graph can we find out 

which one is growing more and which one is growing less? 

Celine: Yes. 

Interviewer: How? 

Celine: [Pointing to the carbon dioxide and air temperature graph; Figure 33a] 

Because these you can see, these points are higher like they are more steep 

[A; Figure 33b]. So, that means there is a higher increase. 

[Excerpt 8] 
 

Figure 33: (a) Celine pointing the carbon dioxide and air temperature graph to show that a 
steeper air temperature curve indicates more increase in value of air temperature; (b) The carbon 
dioxide and air temperature graph where the air temperature curve (A) between 0 and 100 units 
of carbon dioxide is more steep. An illustration of her explanation is presented with red dotted 

lines. 
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The above excerpt shows that to compare the slopes of air temperature curves in corresponding 

intervals of carbon dioxide, Celine focused on the carbon dioxide and air temperature graph and 

examined the slope of the line segments drawn in each interval of carbon dioxide. Though the 

students did not use the word ‘rate’ explicitly in their explanation, their focus on the steepness of 

the line segments joining the corresponding values of air temperature indicates students’ 

attention towards slope of line segment, thus arguably establishing their conception of level 4 

covariational reasoning (MA4), which as per Carlson et. al.’s Mental Action Framework prompt 

students to coordinate the average rate-of-change of the function with uniform increments of 

change in the input variable. 

 
4.2.3 Exploring the relationships of the Sea Level Rise simulation 

 
After students explored the Climate Change simulation, next I engaged the students with 

the Sea Level Rise simulation. The Sea Level Rise simulation provides the users with a dynamic 

environment where the users can play with the temperature rise slider to increase or decrease the 

value of temperature rise and observe the impact of this change on the simulation interface and 

the value of height of future sea level (Figure 34). This simulation was designed with the 

intention to support students’ covariational reasoning about the quantities involved and help 

them identify sea level rise as a consequence of the greenhouse effect. 
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(a) (b) 
 

(c) 
Figure 34: (a) When height of sea level is low, total land area is more (b) When height of sea 
level increases, total land area decreases (c) When height of sea level is maximum, total land 

area is minimum 

Apart from temperature rise and height of future sea level, the Sea Level Rise simulation 

also contains a third quantity called the total land area. This quantity was included with the 

intention to enable students to explore the impact of sea level rise on their own lives. The 

directional relationship between height of future sea level and total land area varies according to 

the value of temperature rise. That is, when temperature rise is minimum, height of future sea 

level is minimum also, and the total land area is maximum. However, when the temperature rise 

is maximum, height of future sea level is maximum, and the total land area is minimum. I 

conjectured that the Sea Level Rise simulation would provide the students a platform to 

coordinate the direction of change of these two sets of quantities, and thus provide students an 
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opportunity to engage in level 2 covariational reasoning as per Carlson et al.’s (2002) Mental 

Action Framework. 

Further, students engaged in graphing activity in which they modified the values of 

global temperature rise in the simulation, collected the values of height of future sea level for 

corresponding values of the temperature rise, and plotted the ordered pairs on a graph to express 

the relationship between the height of future sea level and the rise of global temperature (Figure 

35). I anticipated that the graphing activity might allow the students to identify the amounts of 

change and rate of change of height of future sea level for change in the value of global 

temperature and exhibit covariational reasoning aligned to Carlson et al.’s (2002) MA3 and 

MA4. In the following paragraphs I present two cases from the two macro cycles to discuss how 

students reasoned as they interacted with the simulation and the activities. 

 
Figure 35: (a) Graphical Activity 1 where students collected the values of Height of future sea 
level for different values of Global Temperature; (b) Graphical Activity 2 where students were 

asked to plot the Height of future sea level and Global Temperature ordered pairs. 
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4.2.3.1 The case of Ani from MC1 
 

After being given some time to explore the Sea Level Rise simulation, students were 

asked to change the value of temperature rise and observed its impact on the height of future sea 

level. The simulation allowed the students to drag the slider and change the value of temperature 

rise from 0 degrees Celsius to 4 degrees Celsius at an increment of 0.5 degrees Celsius. During 

the small group discussion when I asked the students to explain their activity, Ani said that he 

was changing temperature rise to increase the height of future sea level. The following excerpt 

illustrates Ani’s reasoning during this activity: 

Interviewer: So, what are you doing here? 

Ani: I am raising the sea level. 

Interviewer: You are rising the sea level? How are you rising the sea level? 

Ani: The temperature rises. 

Interviewer: So how are you rising the sea level? 

Ani: With the temperature. 

[Excerpt 9] 
 

Excerpt 9 suggests that Ani focused on the directional relationship between the two quantities. 

He identified that the more he increased the air temperature, the higher the height of future sea 

level would be, a type of reasoning that aligns to MA2 as per Carlson et al.’s (2002) Mental 

Action Framework. 

Next, to help the students identify the consequences of sea level rise for their own lives, I 

encouraged them to think about the impact of sea level rise on total land area. When I asked Ani, 

what would happen to total land area if the sea level rises, he responded that “the less land, the 

total land area is going to be less.” When I asked him to justify his answer, he stated, “because 
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the more higher the sea level is, it takes over land. So, instead of land over water, it will be under 

water.” Through his reasoning, Ani coordinated the direction of change of the height of sea level 

with the change on the total land area, in other words coordinating the direction of change of the 

two quantities (MA2). 

Further, from Ani’s reasoning it appears that the that the graphics of the simulation 

helped him notice the connection between higher sea level and total land area. In the Sea Level 

Rise simulation, as demonstrated in Figure 36, as the value of temperature rise increases, blue 

rectangular strips representing sea water overlap the green rectangular strips of land area and 

icons of buildings and houses. The simulation shows possible flooding in three locations at 

different elevations: downtown Manhattan, East Newark, and Newark. So, considering the 

design of the simulation and Ani’s articulation “instead of land over water, it will be under 

water” I infer that the graphics of the overlaying sea water helped Ani to observe the relationship 

between the increased sea level and decreased land area. 
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(a) (b) 

 
(c) 

Figure 36: (a) When height of sea level is low, total land area is more; (b) When height of sea 
level increases, total land area decreases; (c) When height of sea level is maximum, total land 

area is minimum 

Next, to prompt students to focus on the amount of change of the height of future sea 

level with respect to change in temperature rise, I asked them to graph the relationship between 

the temperature rise and the height of future sea level. Students used the simulation to find the 

height of future sea level for different values of temperature rise and plotted the ordered pairs on 

a graph. During the small group discussion when I asked the students to explain the graph, Ani 

identified that the graph represents the relationship between the temperature rise and height of 

future sea level (Figure 37). 
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Figure 37: Graph showing the relationship between Global Temperature and Height of future sea 

level 

Ani stated that the temperature rise versus height of future sea level graph was “rising like super 

straight line” because “when temperature rises, 0.5, it rises by 4 feet every time.” From his 

response it seems that he attributed the “straight” shape of the graph to the constant increase of 

height of future sea level for an equal change of temperature rise. I interpret that Ani’s 

coordination of the amount of change of height of future sea level for uniform change in 

temperature rise indicates an MA3 type of covariational reasoning (Carlson et al., 2002). 

In order to have Ani further consider the amount of change of height of future sea level 

with changes in global air temperature (MA3), I asked him to explore the temperature rise versus 

height of future sea level graph and the carbon dioxide versus air temperature graph and compare 

them (Figure 38). I anticipated that comparing the two graphs would encourage Ani to examine 

corresponding values of the two sets of quantities and allow him to focus on the rate of change of 

height of future sea level with respect to the global air temperature rise (MA4-MA5, Carlson et 

al., 2002): 
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Interviewer: Remember, yesterday also we did a graph. Was it also super straight 

like this? 

Ani: No, it was curvy. 
 

Interviewer: It was curvy? Why do you think this is straight and that was curvy? 
 

Ani: This one is straight because when temperature rises, 0.5, it rises by 4 feet 

every time. Unlike the other graph, it was all mixed up. And each time 

it rises it was a different height. Height it goes up to…. 
 

Interviewer: Can you show me what do you mean by height? 
 

Ani: So, the sea level rises by 4 feet every time, but this one, like here, here it 
 

is all mixed up [showing the graph in Figure 38a]. Some of them are super 

straight line, some are super close, some are higher than others. In this 

[showing the graph in Figure 38b] they are all evenly spaced out. 

[Excerpt 10] 
 

Figure 38: (a) The carbon dioxide and air temperature graph; (b) The rise in air temperature and 
height of future sea level graph 
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As Excerpt 10 shows, Ani first distinguished the two graphs (Figure 38) based on their “super 

straight” and “curvy” shapes. When probed to explain his answer, he reasoned about the constant 

increase of the height of future sea level for every 0.5 degrees Celsius increase of temperature 

rise as the cause behind getting a straight line representing the relationship between the two 

quantities. He also explained his curvy graph by reasoning that in the carbon dioxide versus air 

temperature graph, for every equal interval of carbon dioxide, air temperature increased 

randomly. For an interval of carbon dioxide, the air temperature rise is a “super straight line,” 

while for others it is “super close” and “higher than others.” By coordinating the amount of 

change between the various quantities in each graph, Ani showed a consistent pattern of 

behaviors supported by MA3. 

4.2.3.2 The cases of Gio and Jake and Myra and Celine from MC2 
 

Similar to the first macro cycle, in the second macro cycle students also explored the Sea 

Level Rise simulation to determine if there is a relationship between temperature rise and height 

of future sea level. During the whole class discussion, when Chelsea (teacher) asked the students 

what would happen to future sea level when global temperature would increase or decrease, Gio 

and Jake stated that when global temperature increases, future sea level increases and vice versa. 

The following excerpts illustrates their reasoning. 

Teacher: The higher the temperature, what happens to the future sea level? 

Gio: Higher. 

Teacher: It goes higher right? It increases. The lower the global temperature and 

you saw this when you were exploring, the lower the global temperature… 

Jake: The lower the sea level. 

[Excerpt 11] 
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The above excerpt suggests that by manipulating the slider of temperature rise and observing the 

change of the sea level in the graphic of the simulation, both Gio and Jake coordinated the 

direction of change of global temperature and future sea level, and thus engaged in MA2 

reasoning as per Carlson et al.’s (2002) Mental Action Framework. 

The dynamic nature of the Sea Level Rise simulation, as we saw before, allows the users 

to modify the values of temperature rise and observe the change in height of future sea level and 

total land are simultaneously. After students explored the relationship between temperature rise 

and height of future sea level, next they engaged with the simulation and identified a third 

quantity embedded in the Sea Level Rise simulation, that is the total land area. As mentioned in 

the last section, my goal behind including total land area in the simulation was to have students 

explore the impact of sea level rise on their own lives. During the small group discussion when I 

asked the students if they identified any relationship between the quantities global temperature, 

height of future sea level, and total land area, Myra stated, “The higher the global temperature, 

the higher the height of the future sea level, and the less the total land area.” In her response, 

Myra reasoned about the direction of change of the three covarying quantities (MA2), which 

appeared to be attributable to the design of the simulation. 

Following students’ reasoning about the impact of sea level rise on total land area, next I 

prompted them to think about the risk associated with places at lower elevations. Places located 

in lower elevations endure a higher risk of going under water in events of sea level rise. 

Consequently, I asked students to reflect on the relationship between the two quantities, 

elevation of a place and risk of going under water. In response Celine (MC2) argued, “the higher 

the elevation, the lower the risk of going under sea water.” Celine’s focus on the directional 
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relationship between the elevation of a place and risk of going under water indicates her MA2 

reasoning as per Carlson et al.’s (2002) Mental Action Framework. 

Further, to engage students in numerical covariational reasoning about reason about 

elevation of a place and risk of going under water, I provided them with three statements asking 

whether the risk of downtown Manhattan going under water is the same, double, or half that of 

East Newark, given that the elevation of East Newark is double that of Manhattan (Figure 39). 

 
Figure 39: Question on covariational relationship between elevation of a place and its risk of 

going under water 

In response to these statements Celine said “I think it is the second one (The risk of going under 

sea water of downtown Manhattan is double than East Newark) because it says that [reading 

question], that is because East Newark has, is more elevated, and because of that it would be 

doubled because like this is double, double the amount of downtown Manhattan (Figure 40). 
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Figure 40: The Sea Level Rise simulation illustrating the elevations of four different places 

From Celine’s response it appears that she argued that since the elevation of East Newark 

is double the elevation of downtown Manhattan, the risk of downtown Manhattan going under 

water would be doubled. However, being unsure of what Celine referred to by saying “it would 

be doubled because like this is double, double the amount of downtown Manhattan”, I asked her 

“what is double the amount?” In response Celine replied, “the elevation.” Though Celine’s 

response indicated MA2 reasoning, I still asked her to explain why the risk of downtown 

Manhattan going under water would be double. In response to this question, Myra added, “the 

higher the elevation, the lower, the less is the risk it will go under the water. So, if the water is 15 

feet, downtown Manhattan will be flooded.” To explain her answer, Myra chose a particular 

value of sea level at 15 feet however she did not say anything indicating the double risk factor. 

Hence, I asked her “why double?” and she argued that “it is half the elevation of East Newark, 

so, I feel like the double the chance to get flooded.” This question not only helped Myra to 

identify the covariational relationship between elevation and risk by coordinating the direction of 
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change of the two quantities (MA2), but also enabled her to identify the specific relationship 

between the two quantities. 

Next, to prompt students to focus on the amount of change of the height of future sea 

level with respect to change in temperature rise, I asked them to graph the relationship between 

the temperature rise and the height of future sea level. Students used the simulation to find the 

height of future sea level for different values of temperature rise and plotted the ordered pairs on 

a graph. Before plotting, the teacher asked the students to predict the shape of the graph 

representing the relationship between temperature rise and height of future sea level. Celine 

(MC2) stated “I know what it is, because I felt a relationship already on line.” Celine’s answer 

intrigued me since she made the statement about the “relationship already on line” even before 

she plotted the ordered pairs. After plotting the temperature rise and the height of future sea level 

graph (Figure 41), she argued that “every time you increase by 0.5 degrees, the sea level rises 4 

feet.” Celine’s reasoning shows that she coordinated the amount of change of the two quantities 

and identified that for every identical change of the air temperature by 0.5 degrees Celsius, the 

height of sea level increases by an equal amount of 4 feet, a type of reasoning that aligns to level 

3 covariational reasoning according to Carlson et al.’s Mental Action Framework. 
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Figure 41: Celine’s graph representing the relationship between temperature rise and height of 
future sea level 

 
Though Celine’s initial response indicated that she coordinated the amount of change of 

the height of future sea level with changes in temperature rise, I wanted to know more about her 

conception about linearity of a relationship between two or more quantities. I conjectured that if 

she could move beyond the specific values of temperature and height and focus on reasoning 

about a linear relationship in a more general sense, then that would help her attend to a higher 

level of covariational reasoning (Excerpt 12): 

Teacher: What did you notice? 

Celine: It has a linear relationship. 

Teacher: It has a linear relationship. Celine, why is it linear? 
 

Celine: Because every time it rises it increases by the same amount. 

Teacher: Okay, every time, it, what is it? 
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Celine: The sea level. 
 

Teacher: Every time sea level rises, 

Celine: It increases by the same amount. 

[Excerpt 12] 

Celine predominantly used MA3 reasoning (Carlson et al., 2002) and identified that when 

one quantity changes by a constant amount (height of future sea level) with the uniform change 

in the other quantity (temperature rise), then the two quantities are linearly related to each other 

(Figure 41). Even though Excerpt 13 does not establish that the graphing activity engaged Celine 

in covariational reasoning beyond MA3, it suggests Celine’s understanding of the linear 

relationship. 

4.2.4 Bridging quantitative and qualitative data 
 

The analysis of the pre- and post-assessment scores of the treatment and control group 

students indicated that overall students belonging to both the groups exhibited a significant 

improvement (p < 0.005) in their performance from the pre- to the post-assessment. Further, 

comparison of the post-assessment scores of the students belonging to the treatment and the 

control groups illustrated that the difference between the medians of the pre- and post- 

assessment scores of the treatment group is greater than the difference in the medians of the pre- 

and post-assessment of the control group. That is, the improvement of scores from the pre- to the 

post-assessment is higher for treatment group students compared to their peers in the control 

group. Further, analysis of the 10 out of 19 pre- and post-assessments questions that addressed 

the consequences of the greenhouse effect shows that a higher percentage of treatment group 

students identified different consequences of the greenhouse effect during the post-assessment. 

During the pre-assessment only 29.5% of the treatment group students scored 80% or more in the 
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10 consequences questions, whereas during the post-assessment, the percentage of students 

scoring 80% or more was more than doubled (68.2%). To get an insight into the quantitative data 

and understand what the increase in the post-assessment scores mean and what are some possible 

reasons that might have increased the post-assessment scores, I looked into the qualitative data 

collected in the form of video recordings during whole class discussion and small group 

interactions. 

Overall, the qualitative data suggest that the dynamic simulations provided students with 

a space to engage in different levels of covariational reasoning as per Carlson et al.’s Mental 

Action Framework. Consistent with Carlson et al.’s (2002) description of students’ covariational 

reasoning as an emergent concept, this study also found that the participating students’ reasoning 

about covarying quantities shifted based on their interaction with the different activities. 

Students’ exploration of the dynamic simulations allowed them to coordinate the direction of 

change of two or more quantities; however, the graphing activities provided them with the 

platform to gradually refine their directional reasoning and coordinate the amount of change and 

rate of change of one quantity with respect to the change in the other quantity. For example, 

during their exploration of the Sea Level Rise simulation, students modified the value of 

temperature rise and observed the impact of the change on the height of future sea level, thus 

coordinating the direction of change of the two covarying quantities (MA2). However, when 

students engaged in graphing activities, they focused on the amount of change of height of sea 

level with respect to change in temperature rise and identified that for every 0.5-degrees Celsius 

increase in temperature rise, the height of sea level increases by 4 feet. The graphing activities 

encouraged the students not only to focus on in what direction the two quantities were covarying 
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but helped them refine their directional understanding to reason about how the two quantities 

were covarying (MA3-MA4). 

Consequently, I consider students’ engagement with the dynamic simulations and 

accompanying investigations as a significant reason behind their shift in performance from the 

pre- to the post-assessment. For example, question #4 (Figure 42) asks students to identify the 

relationship between carbon dioxide and air temperature and question #7 (Figure 43) requires 

students to focus on the covariational relationship between elevation of a place and risk of being 

affected by sea level rise. During the design experiment, students explored the relationship 

between the concerned sets of quantities in the Climate Change and Sea level rise simulations 

respectively. As a result, during the post-assessment, students might find the phenomena and the 

involved quantities familiar and performed better after their interaction with the simulations. 

Secondly, the ten pre- and post-assessment questions on the consequences of the greenhouse 

effect, as shown in Figure 42 and Figure 43, require students to have a conception of covariation. 

 

Figure 42: Pre- and Post-assessment question #4 illustrating requirement of students’ 
covariational reasoning to be able to answer the question 

 

Figure 43: Pre- and Post-assessment question #7 illustrating requirement of students’ 
covariational reasoning to be able to answer the question 

For example, to answer question # 4 (Figure 42) students need to reason how air temperature 

covaries with respect to increases and decreases of carbon dioxide. Likewise, to answer question 
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# 7 (Figure 43), students need to coordinate the direction of change of elevation of a place and 

the risk of being affected by sea level rise. As a result, because the activities of the simulations 

encouraged the students to reason about the different covarying quantities, it is arguable that the 

engagement of the students with the module facilitated their performance during the post- 

assessment. 

4.3. Students’ reasoning about the causes of the greenhouse effect 
 

The nine remaining items of the assessment attended to the different contributing factors 

of the greenhouse effect including carbon dioxide emission due to watching televisions and 

carpooling. Consequently, this section focuses on the pre- and post-assessment responses of the 

students from the treatment group to identify how the students’ perception about the causes of 

the greenhouse effect shifted over the course of five days of design experiment. To examine how 

the treatment group’s understanding about covariation and the causes of the greenhouse effect 

shifted from the pre- to the post-assessment, I executed the following procedure. First, I 

calculated the amount of correct responses of each individual student in the pre- and post- 

assessment for those nine items. The maximum possible score of correct responses is 9 if they 

responded to all the nine questions correctly and the minimum possible score is 0 if they 

responded to none of the questions correctly (see third column of Table 7 for possible scores). 

Then I calculated the number of students that got each score in the pre- and post-assessment, 

presented in the second and fourth columns in Table 7 respectively. The results of the analysis 

show that in the pre-assessment 29.5% of the students scored correctly in 7 or more responses, 

while during the post-assessment, the percentage of students scoring 7 or higher changed to 

52.3%. Also, during the pre-assessment 11.4% of the students’ score was 2 or below, which was 

reduced to 4.5% during the post-assessment. 
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Table 7: Frequency of students scoring zero through 9 in the pre- and post-assessment 
(covariation and the causes of the greenhouse effect) 

 

 
Figure 44 shows a bar graph illustrating the frequency of the students belonging to each scoring 

category (0 to 9) during the pre- and the post-assessment. The figure indicates a shift in students’ 

understanding of covariation and the causes of the greenhouse effect as a result of the 

intervention. 

 
Figure 44: Bar Graph showing frequency of students in each scoring category (0 through 9) in 

the pre- and post-assessment (covariation and the causes of the greenhouse effect) 
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Delving deeper into the analysis of some those nine questions, five of the nine items, #8, 

#9, #13a, #13b, #13c (see APPENDIX VII), in the assessments entailed different daily-life 

practices that result in carbon dioxide emission in the atmosphere. In these five items, students 

were asked to calculate the total amount of carbon dioxide emitted over the period of one year as 

a result of watching TV or playing video games. During the pre-assessment, slightly more than 

half of the students (56.4%) belonging to the treatment group responded correctly to these five 

questions. During the post-assessment the percentage of the participants responding correctly to 

the questions increased to 67.8%. 

Carpooling or sharing of cars by two or more people cuts down the number of cars on 

roads, thus resulting in less emission of carbon dioxide in the atmosphere. One of the nine items, 

#2, in this particular category asked students about the relationship between carpooling and 

carbon dioxide emission (see APPENDIX VII). During the pre-assessment, 22 students (50%) 

indicated that carpooling with friends would add less carbon dioxide in the atmosphere. 

However, during the post-assessment, the number of students identifying the correct relationship 

between the two quantities increased significantly (n=38, 86.4%). 

Although the treatment group students’ engagement with the Carbon Calculator 

simulation and the accompanying activities might have helped them identify the causes of the 

greenhouse effect and be the reason for the above increase, the quantitative data do not provide 

enough information about students’ development of reasoning to support this claim. To get an 

insight into how the students’ engagement with the simulation and their covariational reasoning 

might have impacted their performances in the post-assessment, in the following paragraphs I 

describe the design principles of the Carbon Calculator simulation and activities and discuss 
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stories of the students' experiences interacting with the simulations to present substantiated 

claims about what knowledge they abstracted from those interactions. 

4.3.1 Exploring the relationships of the Carbon Calculator simulation 
 

The first two simulations, Climate Change and Sea Level Rise, were designed to provide 

students a platform to engage in covariational reasoning between different relevant quantities and 

thus identify the causes and consequences of the greenhouse effect. The third simulation, the 

Carbon Calculator, was developed with the goal of helping students to model the covariational 

relationships between different quantities such as watching TV carpooling or amount of carbon 

dioxide and foster within them an awareness towards human impact on the climate. 

 
Figure 45: The Carbon Calculator Simulation 

The Carbon Calculator simulation (Figure 45) provided the students with a dynamic 

environment where they could modify their daily practices and calculate the total amount of 

carbon dioxide being released in the atmosphere as a result of those practices. I conjectured that 

the simulation would provide students with a space to engage in covariational reasoning between 

different quantities, for example, as TV hours increases the carbon dioxide emission increases, 

thus providing students an opportunity to engage in Level 2 covariational reasoning as per 

Carlson et al.’s (2002) Mental Action Framework. Further, students engaged in graphing 
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activities where they collected the carbon dioxide emission amount for different practices such as 

number of TV hours, carpool distance, and number of people carpooling and plotted the ordered 

pairs on a graph, expressing the covariational relationship between the different sets of 

quantities. I anticipated that the graphing activity might allow the students to identify the 

amounts of change and rate of change of carbon dioxide emission for different practices and 

exhibit covariational reasoning aligned to Carlson et al.’s (2002) MA3 and MA4 levels. In the 

following paragraph first, I describe the how the students belonging to the two macro cycles 

reasoned covariationally during their interaction with the simulation. Next, I discuss in what 

ways the activities might have generated within students a sense of critical consciousness about 

the impact of human activities on the natural climatic condition of the earth. 

4.3.1.1 The case of Amber from MC1 
 

At the beginning of the Carbon Calculator simulation, students were asked to manipulate 

different daily practices such as working on computers, taking showers, and using air 

conditioners, or heaters and observe the impact of these activities on the annual carbon dioxide 

emission. One of these practices included in the Carbon Calculator was the number of TV hours. 

Students were asked to modify the number of hours they watch TV and observe the change in the 

amount of carbon dioxide they add in the atmosphere annually. Students increased and decreased 

the TV hours between zero and four, calculated the amount of carbon dioxide for corresponding 

values of TV hours (Figure 46), and entered the ordered pairs in the TV hours and CO2 amount 

table (Figure 47b). 
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(a) (b) 

  
(c) (d) 

Figure 46 (a) Amount of carbon dioxide released for one TV hour; (b) amount of carbon dioxide 
released for two TV hour; (c) amount of carbon dioxide released for three TV hours; (d) amount 

of carbon dioxide released for four TV hours. 

Next, students engaged in a graphing activity where they were asked to plot the TV hours versus 

amount of carbon dioxide ordered pairs and graph the covariational relationship between the two 
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quantities. However, before students graphed the relationship, during the small group interaction 

I asked the students to reflect on the relationship between the two quantities. In response Amber 

referred to the TV hours and CO2 amount/year table (Figure 47b) and stated that when TV hours 

doubles, the amount of carbon dioxide also doubles. 

  
(a) (b) 

 
(c) 

Figure 47: (a) Pointing towards the TV hours and CO2 amount/ year table to show how CO2 
amount changes with TV hours; (b) TV hours and CO2 amount/ year table; (c) Amber’s table and 

graph showing the relationship between TV hours and Carbon dioxide. 

When I asked Amber to explain her response of doubling carbon dioxide, she added, “You just 

keep adding depending on the hours of usage of TV.” Being unable to understand if Amber was 

thinking across the two quantities or coordinating the change of one quantity with the change in 
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another, I prompted Amber to explain her answer. Excerpt 13 demonstrates my conversation 

with Amber. 

Amber: Per hour it is 82. The amount of…. 

Interviewer: Carbon dioxide? 

Amber: Yeah. And if you multiply 82 times 2, the total is 164 which is 2 hours. 
 

So, for just every hour you just keep adding 82. 
 

[Excerpt 13] 
 

Amber’s statement, “So, for just every hour you just keep adding 82” (Figure 18) indicates that 

by looking at the table she focused on the amount of change of carbon dioxide for every hour 

change of TV usage and incremented the carbon dioxide amount by 82 for each unit increment of 

TV hours. Excerpt 15 not only establishes Amber’s covariational reasoning but is also indicative 

of MA3 (Carlson et al., 2002). 

Another activity in the Carbon Calculator simulation asked the students to explore the 

covariational relationship between the number of people carpooling and the amount of carbon 

dioxide (Figure 48). First, they were asked to use the simulation to find the different values of 

carbon dioxide for corresponding number of people carpooling and fill the values in a table. 

Then they were asked to plot the ordered pairs to graph the relationship. However, before 

students could plot the carpooling versus carbon dioxide graph, I asked Amber to predict the 

nature of the graph. The following excerpt illustrates my conversation with Amber. 

Interviewer: Before plotting can you give me some idea how the graph will look like? 

Amber: It will start going down, decreasing. 

Interviewer: Why? 
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Amber: Because since you are carpooling, the more people you carpool, the less 

cars you use. So, that means the less carbon dioxide you are using. 

[Excerpt 14] 
 

To determine the nature of the graph between carpooling and carbon dioxide, Amber 

focused on the directional relationship between the two quantities and identified the more 

number of people carpool, the lesser would be the number of cars, and as a result, the reduced 

would be the amount of emitted carbon dioxide (MA2). Next, Amber plotted the collected values 

of carpooling and carbon dioxide and constructed a concave down graph expressing the 

relationship between the number of people carpooling and amount of carbon dioxide added in the 

atmosphere (Figure 48). When I asked Amber to explain the graph, she reasoned that “It started 

at 167 and ended at 42, which is big difference.” Amber’s reasoning shows that she coordinated 

the change of the carbon dioxide values from zero carpools to carpooling with three friends. 

 
Figure 48: Amber’s table and graph representing the relationship between number of people 

carpooling and carbon dioxide 
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When Amber was asked to explain why the TV hours versus carbon dioxide graph is a 

straight-line graph but the carpool people versus carbon dioxide graph is curved, she stated 

“Because here they were going by 82 (Figure 48). Going up every time by 82 and here (Figure 

19) it just, gone down by don’t know how much.” As a result, the graph representing the 

relationship between TV hours and carbon dioxide is a “straight line.” Through comparison of 

the two graphs, Amber observed the change of values of carbon dioxide for corresponding 

changes in the TV hours and number of people carpooling and identified that for the first set of 

quantities (TV hours versus carbon dioxide), carbon dioxide changed by the same amount. As a 

result, the graph representing the relationship between TV hours versus carbon dioxide is a 

“straight line.” On the contrary, Amber did not recognize any pattern in the change of carbon 

dioxide for different values of carpool people. In her reasoning, the absence of a pattern in the 

relationship between number of people carpooling and carbon dioxide led to a representation of a 

curved line (Figure 48). Amber’s responses illustrate that she reasoned about the amount of 

change between the two quantities, illustrating a behavior that was suggestive of MA3 reasoning 

(Carlson et al., 2002). 

4.3.1.2 The case of Gio from MC2 
 

Similar to the students of the first macro cycle, students of the second macro cycle also 

explored the Carbon Calculator simulation and calculated the total amount of carbon dioxide 

they add in the atmosphere annually. However, it is worth mentioning that when the Carbon 

Calculator was implemented in the first classroom, Doug asked the students to think of other 

daily practices that might also emit carbon dioxide in the atmosphere. In response, students 

suggested additional activities that were more familiar to them and that they practice regularly. 

Some of those activities were playing video games, video games kept in stand-by mode or turned 
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off after use and keeping battery chargers plugged in when not in use. Hence, before 

implementing the Carbon Calculator simulation in the second classroom, I modified the 

simulation and added the suggested activities. 

After exploration of the simulation, students engaged in graphing activities where they 

were asked to find the carpool friends and CO2 amount/year ordered pairs and plot those points to 

graph the relationship between the two quantities. Before students could draw the graph, when I 

asked them to predict the shape of the graph, Gio (MC2) replied that the graph would be an 

increasing “straight line moving from left to right,” but immediately changed his response to “a 

straight line decreasing from left to right.” When Gio was asked to explain his answer, he stated, 

“If you have more people in the car, then you will have less [carbon dioxide].” He used his hand- 

gesture, from up to down and stated, “we have to start up here and go down.” (MA2). Next, 

when Gio plotted the ordered pairs and joined the points, he noticed that the graph (Figure 49), 

which he had anticipated to be linear, was curved. Gio justified his decreasing curve construction 

by saying, “it is not the same every time. It is not the same amount of CO2, there is no doubling 

or tripling. It is all different. It is not tripling or doubling or anything like that. Whole bunch of 

different numbers.” 
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Figure 49: Gio’s graph representing the relationship between number of people carpooling and 

carbon dioxide 

Gio’s reasoning shows that he compared the change of carbon dioxide value for different 

intervals of carpool people (i.e., [1-2], [2-3], [3-4]) and found that the change in the amount of 

carbon dioxide is different in consecutive intervals, and accordingly the graph representing the 

relationship between the two quantities “would be curved.” This type of reasoning is aligned to 

Carlson et al.’s (2002) MA3. 

4.3.2 Bridging quantitative and qualitative data 
 

The analysis of the nine pre- and post-assessments questions that addressed the causes of 

the greenhouse effect showed that during the post-assessment a higher percentage of treatment 

group students identified different factors responsible for the greenhouse effect. Out of the total 

of nine questions, during the pre-assessment only 29.5% of the treatment group students scored 

seven or above, while during the post assessment the percentage of students scoring equal to or 
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above seven increased to 52.3%. To get an insight into the analysis of the quantitative data and 

understand the possible reasons that might have led to the increase in the post-assessment scores, 

I looked into the qualitative data collected during students’ interaction with the Carbon 

Calculator simulation. Because the Carbon Calculator was designed with the intention to make 

students aware of their own contribution towards carbon dioxide emission, I anticipated that a 

window into students’ experience interacting with the Carbon Calculator simulation might help 

me find the possible causes that enhanced treatment group students’ mean scores during the post- 

assessment. 

The qualitative analysis showed that the Carbon Calculator simulation provided students 

with an interactive space where they modified their daily practices such as watching televisions, 

playing video games, and taking showers, and observed the impact of these modification on their 

annual carbon dioxide emission. By exploring the dynamic sliders of the simulation, students 

showed evidence that they coordinated the direction of change of two or more quantities, such as 

TV hours and carbon dioxide amount and number of people carpooling and carbon dioxide 

amount, thus engaging in Level 2 covariational reasoning as per Carlson et al.’s (2002) Mental 

Action Framework. The graphing activity provided them with the platform to refine their 

directional reasoning and coordinate the amount of change of one quantity with respect to the 

change in the other quantity (MA3). For example, students plotted both TV hours and CO2 

amount/year and carpool friends and CO2 amount/year ordered pairs and compared the two 

graphs to identify that in the first scenario (TV hours and carbon dioxide amount), amount of 

carbon dioxide increased uniformly with uniform increase in TV hours, thus producing a linear 

increasing graph. On the contrary, the carpool friends and CO2 amount/year graph would be “a 

straight line decreasing from left to right” because “If you have more people in the car, then you 
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will have less [carbon dioxide]” (Gio, MC2). On further discussion, Gio identified that unlike the 

TV hours and CO2 amount/year graph, the carpool friends and CO2 amount/year graph would be 

curved downward since the change in CO2 amount/year “is not same every time.” Hence, the 

graphing activities encouraged the students not only to focus on in what direction the two 

quantities were covarying but helped them refine their directional understanding to reason about 

how the two quantities were covarying (MA3-MA4). 

Hence, considering students’ interactions with the Carbon Calculator simulation, it seems 

that the simulation itself and the students’ engagement with covariational reasoning collectively 

helped them perform better during the post-assessment. The questions on the causes of the 

greenhouse effect in the assessment closely aligned with the quantities included in the Carbon 

Calculator simulation. For instance, in the pre- and the post-assessment, to measure students’ 

understanding of the causes of the greenhouse effect, students were asked “What will happen if 

you go to school every day by carpooling with your two friends?” and “If I use my computer for 

1 hour every day, I release 36 kg of CO2 in the atmosphere in one year. How many kg of CO2 

will I release in the atmosphere if I use my computer for 3 hours?” As it can be seen, both the 

practices of carpooling and using computers are included in the Carbon Calculator simulation, so 

students’ familiarity these practices might have influenced their performance in the post 

assessment. 

Further, as discussed earlier, all the questions included in the pre- and the post- 

assessment required students to reason between covarying quantities. For example, to answer 

question #2 (Figure 50) students need to reason about how carbon dioxide emission covaries 

with number of friends carpooling to school. 
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Figure 50: Pre- and Post-assessment question #2 illustrating requirement of students’ 

covariational reasoning to be able to answer the question 

Hence, I conjecture, because the Carbon Calculator simulation engaged students in covariational 

reasoning between different quantities and the pre- and post-assessment questions also necessitate 

students to engage in reasoning between different covarying quantities, there is a possibility that 

the engagement of the students with the Carbon Calculator simulation might facilitate the 

improvement in their performance during the post-assessment. 

4.4. Conclusion: Providing a space for students’ covariational reasoning 
 

The findings of the study suggest that the three NetLogo simulations, the five 

investigations, and the discussion questions conjointly helped the students to navigate through 

the different levels of covariational reasoning as per Carlson et al.’s Mental Action Framework 

and developed their understanding of the greenhouse effect. Table 8 is an outline of the different 

models of covariational relationships that students expressed as a result of their engagement with 

the three dynamic activities. Under each mental action, in the first column of the table I discuss 

the models of covariational relationships that the students articulated, and in the second column I 

describe the activities that provided students a space to engage in the particular forms of 

reasoning. 
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Table 8: Models of Covariational Reasoning developed by students and activities that helped 
them to build the models. 

 
 MA2: Coordinating the direction of change of one variable with changes in the other 

variable. 
Students’ Articulations Activities 
Albedo versus air temperature 

 
The higher the albedo, the lower the 
temperature; the lower the albedo, higher the 
temperature. 

Dragging the albedo slider of the 
Climate Change simulation to the left 
and right, thus decreasing and increasing 
the value of albedo, and studying the 
impact of the change on the graphics of 
the simulation and the value of air 
temperature. 

 
Increasing and decreasing the amount of 
carbon dioxide by clicking the Add CO2 

and Remove CO2 buttons on the Climate 
Change simulation and studying the impact 
of the change on the graphics of the 
simulation and value of air temperature. 

Carbon dioxide versus air temperature 
 
The higher the amount of carbon dioxide, the 
higher the temperature; the lower the amount of 
carbon dioxide, the lower the temperature. 

Temperature Rise versus Height of Future 
Sea Level 

 
The higher the temperature rise, the higher the 
height of future sea level; the lower the 
temperature rise, the lower the height of future 
sea level. 

Dragging the temperature-rise slider to 
the left and right on the Sea Level Rise 
simulation, thus decreasing and 
increasing the value of temperature rise, 
and studying the impact of the change 
on the graphics of the simulation and 
value of height of future sea level and 
total land area. Height of Future Sea Level versus Total 

Land Area 
 

The higher the height of future sea level, the 
lesser the total land area; the lower the height 
of future sea level, the more the total land area. 
TV hours versus Total Carbon dioxide 

 
The more the number of TV hours, the higher 
the amount of carbon 
dioxide released in the atmosphere; the less the 
number of TV hours, the lower the amount of 
carbon dioxide released in the atmosphere. 

Changing the value of TV hours between 0 
and 4 on the Carbon Calculator simulation 
and studying the impact of the change on 
amount of CO2/year. 

Carpooling versus Total Carbon dioxide 
The more the number of people carpooling, the 
lower the amount of carbon dioxide released in 
the atmosphere; the less the number of people 
carpooling, the higher the amount of carbon 
dioxide released in the atmosphere. 

Changing the number of friends carpooling 
between 0 and 3 on the Carbon Calculator 
simulation and studying the impact of the 
change on amount of CO2/year. 
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 MA3: Coordinating the amount of change of one variable with changes in the other variable.  
Carbon dioxide versus air temperature 

 
Every time the carbon dioxide is increased or 
decreased by 100 units, air temperature is 
increased or decreased by 10 degrees or 
higher. 

 
The change in air temperature in one interval 
of carbon dioxide (say 
X) is more/less than the change in air 
temperature in another interval of carbon 
dioxide (say Y). 

Using the Climate Change simulation to 
record the value of air temperature for 
given values of carbon dioxide, plotting the 
ordered pairs to graph the relationship 
between the two quantities, and studying 
the relationship in the graph. 

Temperature Rise versus Height of Future 
Sea Level 

 
Every time temperature rises by 0.5 degrees 
Celsius, height of future sea level increases by 
4 feet. 

 
The graph representing the relationship 
between temperature rise and height of future 
sea level is straight/linear because every time 
you increase by 0.5 degrees, the sea level rises 
4 feet/ every time you increase by 0.5 degrees, 
the sea level rises by the same height. 

Using the Sea Level Rise simulation to 
record the value of height of future sea 
level for different values of temperature 
rise, plotting the ordered pairs to graph 
the relationship between the two 
quantities, 
and studying the relationship in the graph. 

Carbon dioxide versus air temperature and 
Temperature Rise versus Height of Future 
Sea Level 

 
Since air temperature changes randomly in 
every equal interval of carbon dioxide, the 
carbon dioxide versus air temperature graph is 
curvy. On the contrary, since the increase of 
the height of future sea 
level for every 0.5 increase of temperature-rise 
is constant, the graph is straight. 

Compare the carbon dioxide versus air 
temperature graph with the temperature 
rise- height of future sea 
level graph. What do you notice? 

TV hours versus Total Carbon dioxide 
 

Every time the TV hours increase by an 
hour, the amount of carbon dioxide 
increases by 82 units. 

 
The graph representing the relationship 
between TV hours and amount of carbon 
dioxide is straight because every time TV 

Using the Carbon Calculator simulation to 
record the amount of CO2/year for different 
TV hours, plotting the ordered pairs to 
graph the relationship between the two 
quantities, and studying the relationship in 
the graph. 
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hours are increased by 1 hour, amount of 
CO2/year is increased by 82 units. 

 

Carpooling versus Total Carbon dioxide 
 

The graph representing the relationship 
between carpooling and amount of carbon 
dioxide decreases from left to right, because 
every time the number of people carpooling 
increases, the amount of carbon dioxide 
decreases. 

 
The graph representing the relationship 
between carpooling and amount of carbon 
dioxide is not straight/linear because every 
time the number of people carpooling is 
increased by 1, the amount of carbon dioxide 
is not increased by the same amount. 

Using the Carbon Calculator simulation to 
record the amount of CO2/year for different 
number of friends carpooling, plotting the 
ordered pairs to graph the relationship 
between the two quantities, and studying 
the relationship in the graph. 

MA4: Coordinating the average rate-of-change of the function with uniform increments of 
change in the input variable. 

 
Carbon dioxide versus air temperature 

 
The air temperature between 0 and 100 units of 
carbon dioxide is growing more because the air 
temperature graph is steeper between these two 
points, that means higher increase of air 
temperature. 

Using the Climate Change simulation to 
record the value of air temperature for 
given values of carbon dioxide, plotting the 
ordered pairs to graph the relationship 
between the two quantities, and studying 
the relationship. 

 
 

As Table 8 indicates, the modeling activities provided students a space to explore the 

relationships between different sets of quantities such as carbon dioxide versus air temperature 

and temperature rise versus height of future sea level and conceptualize phenomena such as the 

greenhouse effect and sea level rise. More specifically, the three NetLogo simulations, 

accompanied non-graphing activities, and the interview questions during the small group 

interactions prompted students to engage in level 2 covariational reasoning, as per Carlson et 

al.’s mental action framework. Students explored the simulations, observed how the different 

quantities covaried with respect to each other, and coordinated the direction of change of one 

quantity with respect to the change in the other quantity. For example, in the first NetLogo 
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simulation, Climate Change, students increased and decreased the amount of carbon dioxide by 

clicking the Add CO2 and Remove CO2 buttons and reasoned about the direction of change of air 

temperature with the direction of change of carbon dioxide amount, that is as the carbon dioxide 

increases, the air temperature increases and vice versa. Further, students dragged the albedo 

slider to the left and right and identified that as they decrease or increase the value of albedo, the 

surface of the earth changes and so does the reflection of the sun rays, thus impacting the air 

temperature. Through their interaction with the simulation, students modeled the dynamic event 

as a covariational relationship between albedo and air temperature. They stated that as albedo 

increases air temperature decreases and as albedo decreases air temperature increases, a type of 

reasoning that aligns with level 2 covariational reasoning as per Carlson et al.’s mental action 

framework of covariation. 

Likewise, in the second NetLogo simulation, Sea Level Rise, students focused on and 

analyzed the factors responsible for increased height of sea level. The simulation allowed the 

students to increase and decrease the value of temperature rise, observe the impact of the 

change on the height of future sea level, and develop cognitive models of the covariational 

relationship between the two quantities. Students modified the values of temperature rise and 

identified that as the value of temperature rise increases, height of future sea level increases, a 

type of reasoning that aligns to MA2 as per Carlson Mental Action (2002). Further, through 

their identification of the direction of change of the two quantities, students built an explicit 

mathematical interpretation of the situation, which as Lesh (2006) identified is an important 

goal behind any modeling activity. Consistent with the principle of mathematical modeling, 

students’ engagement with the Sea Level Rise simulation initiated with them exploring the 

impact of increased height of sea level on four places located at different elevations and 
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gradually developed their mathematical understanding, thus enabling them to “to use 

mathematics as a generative resource in life beyond the classroom" (Doerr & English, 2003, 

p. 112). 

Students also observed and modeled the relationship between the height of future sea 

level and total land area and recognized that as the height of future sea level increases, total 

land area decreases, a type of reasoning that aligns to MA2 as per Carlson Mental Action 

framework. As discussed earlier, mathematical modeling is a cognitive activity that helps 

students to conceptualize a real-world situation (Blum & Niss, 1991; Lesh, Amit, & Schorr, 

1997). It further provides an opportunity to the learners to understand how a real-world 

phenomenon occurs, why it occurs, and extend the present understanding of the learners to 

anticipate similar events in the future (Dym, 2004). Likewise, the findings of the study 

suggest that the graphics of the simulation helped the students to conceptualize the impact 

of sea level rise on total land area as one student Ani said, “because the more higher the sea 

level is, it takes over land. So, instead of land over water, it will be under water.” It seems 

that the graphics of blue rectangular patch overlapping the green rectangular patch helped 

Ani to identify that increased height of sea water would replace and hence decrease total 

land area. Further, the vertical arrangement of the four places according to their elevations 

from sea level also allowed the students to identify the impact of sea level rise on those 

places and reason about their associated risk of going under water. 

The last NetLogo simulation, Carbon Calculator, was developed to encourage the 

students to examine the amount of carbon dioxide emissions that are directly and indirectly 

caused by their modern lifestyles. Students reflected on their daily practices such as watching 

television or using an air conditioner and calculated the total amount of carbon dioxide they 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 148 
 

add to the atmosphere annually. The activities helped students to develop cognitive models of 

the covariational relationships between different sets of quantities and identify the activities 

that might seem trivial but add significant amounts of carbon dioxide gas into the atmosphere, 

and activities that help resist the carbon dioxide emission. For example, students calculated 

the amount of carbon dioxide added in the atmosphere as a result of watching television and 

carpooling and identified the direction of change of one quantity with respect to the other, 

illustrating their second level (MA2) covariational reasoning as per Carlson et al.’s mental 

action framework. 

Apart from the design of the simulations, this study also showed the power of the 

interview questions during the small group interactions for prompting students to reason 

covariationally according to the different levels of mental actions. In fact, the teachers’ 

and interviewer’s questions during the exploration of the simulation provided a wide 

window into students’ MA2 reasoning. Some of those questions were, “What is the 

relationship between albedo and air temperature?” or “What happens to total land area 

when temperature is increased? Why?” Such questions acted as external cues to facilitate 

students’ engagement in different forms of covariational reasoning. 

As Table 8 illustrates, the graphing activities allowed students to move beyond MA2 

and engaged them in higher levels of covariational reasoning, as per Carlson et al.’s mental 

action framework (MA3-MA4). Students plotted the ordered pairs of different quantities (for 

example, carbon dioxide and air temperature, temperature rise and height of future sea level), 

coordinated the amount of change of one quantity with respect to the change in the amount of 

the other quantity, and compared the rate of change of a quantity in consecutive intervals of 

the second quantity. For example, in the carbon dioxide and air temperature graph, students 
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identified that the air temperature does not increase by any specific values for a constant 

increase in the value of carbon dioxide, therefore they described the graph representing the 

relationship between the two quantities as not linear. They focused on each interval of carbon 

dioxide (0-100, 100-200, and so on) and recognized that for some interval the growth of the 

air temperature graph is more compared to other intervals. In other words, the graphing 

activities provided students with a space to develop more sophisticated and meaningful 

models through exploration of the pattern of change of the two quantities. In the first 

simulation, after students coordinated the direction of change of albedo and air temperature 

and carbon dioxide and air temperature (MA2), they explored the simulation to record the 

values of air temperature for different values of carbon dioxide, plotted those ordered pairs, 

and mapped the relationship between the two covarying quantities. The graphing activity 

allowed students to focus on specific values of air temperature for values of carbon dioxide 

and coordinate the amount of change of one quantity with the amount of change of the other 

quantity (MA3). Students observed the change of air temperature in different intervals of 

carbon dioxide (100) and identified that the relationship between carbon dioxide and air 

temperature is different in different intervals of carbon dioxide. Further, students stated that 

as the value of carbon dioxide increases by 100, the value of air temperature also increases, 

but the amount of the increase becomes smaller. 

While exploring the relationships of the second NetLogo simulation, students were 

also asked to graph the temperature rise and height of future sea level ordered pairs and 

examine how the height of future sea level changes for every 0.5 degree increase of 

temperature rise. Students identified that the temperature rise versus height of future sea level 

graph was linear and increasing because every time temperature rise increased by 0.5 degrees 
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Celsius, height of future sea level increased by 4 feet, a reasoning aligned to MA3 as per 

Carlson et al.’s mental action framework. Students were also further encouraged to compare 

the carbon dioxide versus air temperature and temperature rise versus height of future sea 

level graphs. They distinguished the two graphs based on the “super straight” and “curvy” 

shapes of the graphs and reasoned that since air temperature changed differently in every 

equal interval of carbon dioxide, the carbon dioxide versus air temperature graph is curvy. On 

the contrary, the constant increase of the height of future sea level for every 0.5 degree 

increase of temperature-rise produced a straight line. Such reasoning that aligns to MA3 as 

per Carlson Mental Action framework indicates that the graphing activity not only exposed 

students to the real life situation of the greenhouse effect and sea level rise, but also 

encouraged students to carefully observe the minute details of the situation and develop a 

better understanding about the situation (Zbiek & Conner, 2006). 

Students also engaged in graphing activities during the third NetLogo simulation, the 

Carbon Calculator. They modeled the relationship between the two sets of quantities 

graphically and analyzed how and why the TV hour and carbon dioxide ordered pairs led to a 

linear increasing graph, while the carpooling and carbon dioxide ordered pairs generated a 

non-linear decreasing graph. To do the analysis, students focused on the change in carbon 

dioxide amount for each interval of TV hours and carpooling and identified that in the former 

case the change in carbon dioxide amount is uniform for each TV hours interval but does not 

maintain any pattern for carpooling. Such reasoning indicates students’ engagement in MA3 

as per Carlson et al.’s mental action framework. 

Though the three NetLogo simulations were designed with the goal to engage students 

in different levels of covariational reasoning through MA1 and MA4, during the five days of 
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the design experiment, on limited occasions students reasoned about the rate of change of the 

quantities, thus illustrating their level 4 covariational reasoning. Most of the students, as seen 

in the Findings chapter, reached MA3 as the highest level of their covariational reasoning. The 

only exception was Celine. Celine engaged with the graphing activity and identified that the 

relationship between carbon dioxide and air temperature is different for different intervals of 

carbon dioxide. When I asked her “just looking at the graph can we find out which one is growing 

more, and which one is growing less?” Celine focused on the carbon dioxide versus air 

temperature graph and examined the steepness (slope) of the line segments drawn in each 

interval of carbon dioxide. Though Celine did not explicitly used the term ‘rate’ to explain her 

answer, the graphing activity enabled Celine to focus on the steepness of the line segments in 

each interval of carbon dioxide. This illustrates her attention towards slope of line segment, thus 

arguably establishing a conception of level 4 covariational reasoning (MA4). 
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5. Discussion and Conclusion 
 
 

The purpose of this study was to examine the role of mathematical modeling activities in 

engaging students in covariational reasoning and helping them identify the causes and the 

consequences of the greenhouse effect. Consequently, three dynamic mathematical modeling 

activities embedded in the context of the greenhouse effect were developed and implemented in 

two middle school classrooms to examine the following research questions: 

1. To what extent do the students’ understanding of the greenhouse effect and their use of 

covariational reasoning change as a result of their engagement with the mathematical 

modeling activities? 

2. How may students reason covariationally as they engage with mathematical modeling 

activities in the context of the greenhouse effect? 

This study collected pre- and post-assessment data from two treatment groups and one control 

group and qualitative data in the form of video recordings of the whole class and small group 

discussions from the two treatment groups. By examining middle school students’ covariational 

reasoning through mathematical modeling activities embedded in the context of the greenhouse 

effect, my dissertation makes three fundamental contributions to mathematics education 

research. First, it provides empirical evidence regarding the development of dynamic 

mathematical modeling activities that provided students with an exploratory space to engage in 

reasoning between different covarying quantities. Secondly, this study illustrates how research in 

mathematics and science education can be integrated to develop integrated STEM activities that 

provide learners with an opportunity to engage in learning of mathematical and scientific 

concepts in a more meaningful way. These STEM activities can help students understand the 

complex yet pressing issues such as the greenhouse effect and sea level rise. Lastly, this study 
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shows the potential of bridging students’ mathematical and scientific understanding through 

covariational reasoning. 

In this chapter, first I discuss the task design principles emerged from the study that helped 

students engage in different forms of covariational reasoning within the context of the 

greenhouse effect. Subsequently, I discuss the insights that this study provided for developing 

integrating curriculum and the role of covariational reasoning for integrating the math and 

science disciplines. Then I reflect on the findings from a critical lens and discuss instances where 

students showed evidence of developing critical consciousness about the greenhouse effect as a 

social issue. I end this chapter by discussing the limitations of this study as well as implications 

that this study has for research and practice. 

5.1. Design Principles for Engaging Students in Covariational Reasoning in the context 

of the Greenhouse Effect 

Thompson, Carlson, and Silverman (2007) stated that “educational tasks are designed for 

a purpose and with an intended effect” (p. 416). Indeed, in this study the three mathematical 

modeling activities were designed with two main purposes: firstly, to provide students with a 

space to engage in covariational reasoning, and secondly, to identify the different causes and 

consequences of the greenhouse effect. The modeling activities contained three dynamic 

NetLogo simulations, five investigations containing questions to assist students to focus their 

attention to particular features of the simulations and reason about dynamic events, and 

discussion questions that prompted students to engage in particular forms of covariational 

reasoning. The findings of the study suggest three design principles of the modeling activities 

that can make a contribution to the field of mathematics education: a) the power of dynamic 

simulations in engaging students in covariational reasoning, b) using meaningful contexts to 
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design the dynamic simulations, and c) the power of questioning. In the following paragraphs, I 

will reflect on each of the design principles and discuss how they provided students with the 

opportunity to engage in covariational reasoning and helped them examine the causes and 

consequences of the greenhouse effect. 

5.1.1 The Power of Dynamic Simulations in Engaging Students in Covariational 

Reasoning 

Prior research on students’ covariational reasoning showed the power of technology for 

helping students envision the change in the quantities as well as to reverse change, which is not 

always practical with physical manipulations (Castillo-Garsow, Johnson, & Moore, 2013). In this 

study, the dynamic NetLogo simulations allowed the students to engage in an exploration of 

covariational relationships between different sets of quantities. As Jonassen, Carr, and Yueh 

(1998) stated, technology provides students with a discovery space to explore various real-life 

phenomena, experiment with them, and engage in critical thinking about the content and the 

underlying context. Further, it allows students to engage in an interactive interface where 

students can explore the relationships between different quantities based on their increasing or 

decreasing values (Bos, 2009). Consistent with these statements, in this study, the design of the 

three NetLogo simulations contained several features, that provided the participants with an 

exploratory space to reason both non-numerically and numerically about covarying quantities 

and enabled them to identify the mathematical and scientific aspects of the phenomenon in a 

more meaningful context. For example, in the first simulation, when the students were asked to 

identify the relationship between carbon dioxide and air temperature, students increased and 

decreased the value of carbon dioxide by clicking the Add CO2 and Remove CO2 buttons, 
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observed the impact of the change on air temperature, and identified the directional relationship 

between the two quantities. 

Further, the graphics of the simulation helped the students to understand the scientific 

aspect of the phenomenon in more depth. Students observed that, as the value of carbon dioxide 

was increased, the green dots representing carbon dioxide and the red dots, representing infra-red 

rays also increased. When the red infra-red rays tried to escape through the atmosphere, the 

green carbon dioxide molecules reflected them back, thus trapping the heat and increasing the air 

temperature. To identify the relationship between albedo and air temperature, students dragged 

the albedo slider to the left and right and identified that as they decrease or increase the value of 

albedo, the surface of the earth changes and so does the reflection of the sun rays, thus impacting 

the air temperature. They stated that as albedo increases air temperature decreases and as albedo 

decreases air temperature increases, a type of reasoning that aligns with level 2 covariational 

reasoning as per Carlson et al.’s mental action framework of covariation. 

During students’ engagement with the Sea Level Rise simulation, they observed and 

modeled the relationship between temperature rise, the height of future sea level, and total land 

area. Students recognized that as temperature rise increases, the height of future sea level 

increases, and total land area decreases, a type of reasoning that aligns to MA2 as per Carlson 

Mental Action framework. Further, the graphics of the simulation helped the students to 

conceptualize the impact of sea level rise on the total land area as one student Ani said, “because 

the more higher the sea level is, it takes over land. So, instead of land over water, it will be under 

water.” The graphics of the blue rectangular patch (representing water) overlapping the green 

rectangular patch (representing land) provided an opportunity to Ani to understand why the real- 

world phenomenon of sea level rise occurs and how it displaces people living in places at lower 
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elevations. Further, the vertical arrangement of the four places according to their elevations from 

sea level also allowed the students to identify the impact of sea level rise on those places and 

reason about their associated risk of going under water. 

The last simulation, the Carbon Calculator helped students to develop cognitive models 

of the covariational relationships between different daily life practices and the total amount of 

carbon dioxide emitted in the atmosphere. The simulations provided students with a dynamic 

exploratory space for students to explore and discover different practices that might seem trivial 

but add significant amounts of carbon dioxide gas into the atmosphere. For example, students 

calculated the amount of carbon dioxide added to the atmosphere as a result of watching 

television, taking showers, and carpooling and identified the direction of change of one quantity 

with respect to the other, illustrating their second level (MA2) covariational reasoning as per 

Carlson et al.’s mental action framework. Further, students were surprised to identify the amount 

of carbon dioxide they add in the atmosphere through simple acts of taking showers or brushing 

the teeth. 

5.1.2 Using meaningful Contexts to Design the Dynamic Simulations 
 

To provide students with a meaningful mathematical experience, Gutstein (2005) said 

that mathematics should originate from the students’ real lives. Likewise, Thompson, Carlson, 

and Silverman (2007) suggested that “one must design tasks with the learner in mind” (p. 417). 

With that goal in mind, at the onset of the module development, I searched for local issues 

relevant to the students which I used to introduce the lesson and then transition to the exploration 

of the first NetLogo simulation. The video of Asthma in Newark appealed to the students’ 

consciences and triggered them to ask some questions around the causes behind the disparate 

environmental conditions in the two neighboring places. 
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Apart from the introductory video, the three simulations and the accompanying activities 

were designed with the intention to engage students with situations that were meaningful to 

them. For example, in the Sea Level Rise simulation, the inclusion of the names of four places 

familiar to the students helped them understand the significance of the sea level rise in 

connection to their own lives. Students were relieved to find themselves located at a higher 

elevation. Also, the students identified that if sea level rises, then that will “cause places like … 

low elevation like Newark will go under water (Gio, MC2).” Further, observing downtown 

Manhattan at a lower elevation, Gio said, “Oh that is why you can see New York through your 

window. You can look down on it. Oh, makes so much more sense.” It seemed to me that the 

simulation allowed Gio to bridge their prior experience with the formal learning of the 

greenhouse effect and created a platform for him to understand the significance of sea level rise. 

5.1.3 The Power of Questioning 
 

Though the three NetLogo simulations provided students with a discovery space to 

explore the relationships between different covarying quantities, the simulations alone could not 

invoke students’ covariation conception. According to Boaler and Brodie (2004), questioning in 

a mathematics classroom can be both critical and challenging. Good questioning, as the authors 

suggested, has a positive influence on students’ classroom engagement, critical thinking, and has 

the potential to shape students’ cognition. Consistent with Boaler and Brodie (2004), this study 

also identified the significance of efficient questioning and witnessed its potential through the 

two cycles of the design experiment. For instance, during the ongoing analysis of the first cycle 

of the design experiment, I found that most of the questions that I asked the students were 

leading. Some examples include “what would happen if I increase the amount of carbon 

dioxide?” or “how would the value of carbon dioxide change if the number of TV hours is 
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increased by an hour?” These leading questions left students with limited opportunities to 

express the relationships between the two covarying quantities in their own words. Instead, they 

were responding to the questions using one or two words only and as a result it was not evident 

whether they could reason covariationally. Consequently, during the second cycle of the design 

experiment, I modified my questioning to allow for a range of student responses, such as asking 

“What are some relationships you found?” “What is the relationship between air temperature and 

carbon dioxide?” and provide students with an opportunity to express the covariational 

relationships in their own words. 

Additionally, I found that it was the careful questioning that prompted students to engage 

in different levels of covariational reasoning. For instance, to prompt students reason about MA3 

and the amount of change of the covarying quantities I asked them questions such as “What 

would happen to air temperature when carbon dioxide changes from 100 to 200 units? ” and 

“Why is the temperature rise versus height of future sea level graph linear?” Likewise, to prompt 

them to notice the rate of change between the quantities (MA4) I asked questions such as “How 

does the relationship between carbon dioxide and air temperature change in each interval of 

carbon dioxide?” 

5.2. Integrated STEM activities 
 

Wang, Moore, Roehrig, and Park (2011) stated that to provide students with a more 

meaningful STEM experience and retain them in STEM fields, STEM education should follow 

an interdisciplinary approach and “cut across subject areas and focus on interdisciplinary content 

and skills, rather than subject-based content and skill” (p. 3). With that goal in mind, this study 

provides some important insights for the design of integrated curriculum through a seamless of 

the concepts of the greenhouse effect and covariational reasoning. The study showed that these 
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integrated activities could be implemented in both mathematics and science classrooms to help 

students to study both the concepts together, which addresses recent calls to focus on integrated 

STEM education (Baldwin, 2009; McCright, O’Shea, Sweeder, Urquhart, & Zeleke, 2013). 

Because the topics of the greenhouse effect and covariational reasoning were consistent with 

both science and mathematics education standards, teachers of both math and science found the 

module relevant to their curriculum. Specifically, in the Next Generation Science Standards 

(NGSS), the middle school standard MS-ESS3-5 focuses on the impact of human activities 

causes a rise in global temperature, thus changing the climate. In the Common Core State 

Standard for Mathematics (CCSSM) for middle school, though covariational reasoning does not 

explicitly belong to any specific content or practice standards, it aligns with multiple standards of 

the Expressions and Equations strand, such as CCSS-M 6.EE.C.9 (using variables to represent 

two quantities in a real-world problem and focusing on the analysis of the relationship between 

the depended and independent variables using graphs and tables), CCSS-M 8.EE.B.5 (graphing 

proportional relationships and comparing two different proportional relationships represented in 

different ways). Also, it aligns with standards in the Ratio and Proportion strand, such as CCSS- 

M 7.RP.A.2 (recognizing and representing direct proportional relationships and deciding whether 

two quantities are in a proportional relationship by graphing), and the Functions strand such as 

CCSS-M 8.F.B.5 (describing qualitatively functional relationships between two quantities in 

graphs). In addition to the content standards, the activities in this study address the MP4 practice 

standard (Model with Mathematics). 

The activities were designed bridging the science and mathematics standards, which in 

turn fostered within students a sense of interconnectedness between the mathematical and 

scientific concepts of the greenhouse effect (Zbiek & Conner, 2006). As the findings suggest, the 
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three NetLogo simulations helped students to develop both the mathematics and scientific 

reasoning as one unified construct. In their generalizations, such as that as carbon dioxide 

increases, air temperature increases, students did not distinguish between the “math reasoning” 

and “science reasoning” of the greenhouse effect, rather their integrated reasoning showed that 

they developed “interdisciplinary content and skills” (Wang et al., 2011), avoiding disconnected 

disciplinary learning that other studies have previously noted (Barnes, 2000; Honey et al., 2014; 

Tytler et al., 2019). 

5.3. The power of covariational reasoning for integrating science and math 
 

The third fundamental contribution of this research in the field of mathematics education 

is exploring the potential of covariational reasoning to bridge the mathematical and scientific 

concepts of covariational reasoning and the greenhouse effect. The review of pertinent literature 

illustrates that there is a scarcity of empirical research in mathematics education that focuses on 

the application of covariational reasoning to integrate mathematics and science conceptions. 

Most of the studies explored the role of covariational reasoning in developing students’ 

mathematical reasoning. However, this study focused on students’ covariational reasoning as 

they engaged with the mathematical modeling activities and investigated how covariational 

reasoning contributed towards students’ understanding of the greenhouse effect. The 

effectiveness of the module, as evidenced by the findings of this study, was likely due to the 

integration of a strong covariational reasoning component into the module design of the 

greenhouse effect. Covariational reasoning, as illustrated by the students’ excerpts, bridged the 

mathematical and scientific aspects of the greenhouse effect, and helped students develop an 

integrated understanding of the phenomenon. Possibly, that is why the treatment group students, 

who engaged with the greenhouse effect modules and engaged in covariational reasoning, 
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showed significant improvement in post-assessment scores compared to the control group of 

students, who explored the same phenomena without being engaged with the module or 

covariational reasoning. 

As already has been discussed, covariational reasoning does not explicitly belong to any 

specific Common Core State content or practice recommendations from the CCSS-M. However, 

in middle school, covariational reasoning aligns with multiple middle-school and high-school 

standards of CCSS-M. Additionally, research has also shown that reasoning covariationally can 

be the basis on which functional thinking can be developed and built in the later years of 

schooling (Confrey & Smith, 1994). As a result, this study suggests the development of future 

research on designing similar covariational situations that would seamlessly connect the 

scientific aspect of different phenomena, such as gravity and water cycle, with advanced 

mathematical concepts and contribute towards developing students’ reasoning about both science 

and mathematics. Instead of directly giving students scientific formula such as Newton’s law of 

gravity or teaching them factors responsible for evaporation or precipitation, if students are 

encouraged to think about the conditions under which the force of gravity increases or the rate of 

evaporation decreases, then that would not only help them learn about the factors that impact the 

phenomenon but would provide them with an opportunity to engage in covariational reasoning 

and seamlessly learn about the direct and inverse proportional relationships between these 

quantities. 

5.4. Students’ Critical Consciousness about the Greenhouse Effect 
 

This study was motivated by the observation of an insufficient number of studies 

addressing the inclusion of climate justice issues in the school mathematics curriculum. An 

increasing body of literature is available on exploring different human-induced factors that are 
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responsible for the rapidly changing climate and discussing the potential threats of climate 

change on the natural environmental condition of the earth and human vulnerabilities. However, 

there is a distinct lack of attention in the field of mathematics education with respect to studying 

how mathematics can be used as a potential tool to make students aware of the different climatic 

issues and injustice associated with them. According to Karrow, Khan, and Fleener (2017), “of 

the many environmental challenges that we face, climate change currently epitomizes great 

ecological complexity and ethical urgency” (p. 2). They suggested that mathematicians and 

mathematics educators should work towards addressing climate change “by modeling types of 

thinking necessary to make sense of the phenomenon itself” (Karrow, Khan, & Fleener 2017, p. 

19). Moore, Paoletti, and Musgrave (2013) argued that covariational reasoning is essential for 

understanding graphs. Therefore, in this study, students’ cognitive models of the covariational 

relationships between different quantities of the greenhouse effect phenomenon can be 

foundational for understanding graphs related to climate change. 

Apart from examining students’ covariational reasoning and their understanding of the 

greenhouse effect, this study also intended to encourage students to develop their consciousness 

about the social aspect of the greenhouse effect. More specifically, it aspired to help students 

identify the different human-induced factors that contribute towards the greenhouse effect and 

motivated them to recognize how the economic disparity might make some people more 

vulnerable towards the impact of changing climate over others. In the following paragraphs I 

describe how this study tried to develop students’ consciousness and present some students’ 

articulations that might contain seeds for this development. 

On the first day of the design experiment, I showed the students a news report on asthma 

in Newark. I anticipated that the video would engage the students in discussion within an 
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environmental context familiar to them and help me build the lesson on their thinking. The news 

report stated that one out of every four kids in Newark has asthma, which is three times the state 

average. They identified pollution from trucks, industries, and chemical sites also as fumes from 

airplanes as some of the major reasons behind the poor environmental condition in Newark. 

Further, the news report referred to a study conducted by the Environmental Protection Agency 

(EPA) and stated that there exists a strong correlation between areas in Newark with high 

pollution and low economic condition. I predicted that the video would allow the students to see 

how people living so close to their town are victims of asthma and think critically about why the 

environmental and health condition of Newark residents are so vulnerable despite the proximity 

of the city to the students’ towns. 

After showing the video, the teachers initiated a whole class discussion. They asked the 

students a set of pre-decided questions, such as, “What is the video about?”, “Why do you think 

so many children in Newark suffer from asthma?”, and “Since Kearny is so close to Newark, do 

you think that you should be worried about your health too? Why/Why not?” These questions 

were designed with the intention to encourage students to critically reflect on the factors that 

might have resulted in such unfavorable living conditions in Newark and discuss if, as a 

neighboring town to Newark, the students are also exposed to any potential environmental or 

health threat. Though the questions engaged students in a brief discussion around the differential 

environmental conditions in Newark and Kearny, there is a lack of evidence that can ensure the 

development of students’ critical consciousness in terms of critical reflection, socio-political 

efficacy, and critical action. That is, the discussion students had after watching the video does 

not ensure if they developed the ability to analyze the social realities of climate change critically 

and identified how the economic condition might limit access to healthy environmental condition 
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to some people. Further, there is not enough evidence to affirm if students recognized their 

perceived and active capability to work towards rewriting the world, which offers everyone equal 

access to resources. I explain this lack of evidence by describing the conversations below. 

After students watched the asthma video, both Doug and Chelsea conducted a whole 

class discussion asking students to express their thoughts on the video. When Doug asked his 

students, “what is the video about?” Ani responded, “we are treating the earth like it is nothing.” 

Adding to Ani’s comment, another student Paula said, “People are kind of careless where they 

put the factories, where most people live.” While Ani’s voice expressed his displeasure towards 

lack of human awareness about their exploitation of the earth and its resources, Paula was more 

anxious about the location of factories in highly populated regions and its impact on human lives. 

Paula’s comment stirred a discussion in the classroom. Students discussed the correlation 

between the economic condition of a neighborhood and the number of factories that have been 

established there. When Doug asked the students “Why do you think there is a lot of factories or 

industries in that region?”, Ani replied, “they do not have that much money.” Adding to Ani’s 

response, Paula said, “You don’t find them in the rich people’s places. You find them in poor 

people’s places.” Both Ani and Paula attributed lack of monetary affluence as a significant 

reason behind the establishment of factories in impoverished areas such as Newark. These 

articulations indeed indicate that students recognized how the economic condition might limit 

access to healthy environmental condition to some people over others. However, there is no clear 

evidence which can ensure if Ani or Paula could reflect critically to investigate why economic 

conditions create such differential treatment and who is responsible for such unjust condition. 

When the Asthma in Newark video was shown in Chelsea’s classroom, and students were 

asked about their thoughts on the video, Gio said, “it is very different to see actually someone so 
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close to you being affected.” Gio sounded both upset and sympathetic towards his peers in 

Newark, who in spite of being so close to his town, are suffering from higher rates of asthma. 

The above excerpts illustrate that while Doug’s students focused on the role of people’s 

economic status on their environmental and health conditions, Chelsea’s students were more 

compassionate towards the victims who live so close to their town yet experience such different 

environmental conditions. However, in both the classrooms, the discussion never led the students 

to dig deeper into the issue and critically reflect on the possible factors that might result in such 

health and environmental conditions in Newark. 

Following the whole class discussion, students explored the Climate Change simulation. 

Students identified that the increased amount of carbon dioxide enhances air temperature. When 

I asked them if we share any responsibility towards the increased concentration of carbon 

dioxide in the atmosphere, Ani (MC1) answered affirmatively. Agreeing with Ani, Gina (MC1) 

also identified cars and pollutions to be some factors contributing to the issue. 

Interviewer: Do you think we also add carbon dioxide in the atmosphere? Are we 

responsible? 

Ani: Yes. 
 

Interviewer: How? 
 

Gina: Cars. 
 

Interviewer: Cars. Do you agree? [Turning to Ani] 

Ani: Yes. 

Gina: Pollution. 
 

Interviewer: Pollution. […] Am I doing anything , which is also adding carbon 

dioxide? 
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Ani: Driving cars as she said. Using technology, like some time they give out 

carbon dioxide. Some factors mean technology, which gives more carbon 

dioxide. Since the world is evolving with technology, so then more 

technology would mean factories have to work more spreading out more 

carbon dioxide. 

Ani identified, “since the world is evolving with technology” there would be more establishment 

of factories, which in turn would increase the concentration of carbon dioxide gas in the 

atmosphere. Both Ani and Gina emphasized the contribution of human activities and modern 

lifestyle on the climatic condition of the earth. 

Later, during students’ engagement with the Carbon Calculator simulation, they 

identified that many of their daily practices emit a profound amount of carbon dioxide in the 

atmosphere annually. Some of the daily practices that drew the students’ attention and stimulated 

a discussion in the classroom were using AC, taking showers, and keeping chargers and other 

electronic devices plugged even after use. Simi (MC2) said, “I did not realize how much CO2 is 

produced by taking a shower every day.” Adding to Simi’s comment, Gio (MC2) uttered, “It 

surprised me like everyday things, I am guessing even like brushing your teeth could be releasing 

CO2 like doing everyday things you need to do." He further said, “I did not think even if the TV 

is plugged in or the video game or X-box is plugged in it still releases CO2, I didn’t think.” Paula 

expressed a similar concern about carbon dioxide release without the consumers’ knowledge. 

When Paula realized that if a TV is kept in standby mode, it still releases carbon dioxide, she 

said, “I never knew that that (TV) can use electricity as we go, no one told me that thing. No one 

told me.” The Carbon Calculator activity was not only an eye-opener for the students, but it also 
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encouraged Gio, Simi, and Paula to think about their daily practices, which with or without their 

knowledge releases carbon dioxide in the atmosphere. 

According to Padgett, Steinemann, Clarke, and Vandenbergh (2008), to restrict carbon 

dioxide emission to preserve the natural consistency of the climate, it is essential for an 

individual to be aware of the different sources of carbon dioxide emission. If individuals identify 

various sources of carbon dioxide and can estimate their contributions to the issue, then that 

would lead them to change their own behavior and work towards mitigation of the problem. So, 

there are two steps of mitigating carbon dioxide emission: a) identification of the sources of 

carbon dioxide emission, and b) taking action to reduce carbon dioxide emission. In the first half 

of their exploration with the Carbon Calculator simulation, students identified their daily life 

practices that emit carbon dioxide in the atmosphere. I consider students’ identification of the 

different CO2 sources as a pre-cursor to their sense of agency, which enables them to perceive 

themselves as an individual capable of mitigating carbon dioxide emission by adjusting their 

daily practices. Hence, to persuade students to take the next step to reduce carbon dioxide 

emission, I then encouraged them to propose strategies to lower atmospheric carbon dioxide 

concentration. Students suggested reducing TV hours, turning TVs off after watching, lessening 

the number of daily showers, and modification of modes of transportation to decrease carbon 

dioxide concentration. For example, Ani suggested that all students need to “talk to their parents 

not to use cars so much.” As a substitute for using cars, he recommended: “stop driving, more 

walking, using bicycles.” A similar proposal was also made by Gio who suggested using “public 

transport” to reduce the concentration of carbon dioxide in the atmosphere. While Ani and Gio 

focused on the other alternatives to driving cars, Celine suggested “carpooling” as a potential 

solution towards the problem. The mutual concern that emerged through the conversation of Ani, 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 168 
 

Celine, and Gio was the excessive usage of cars. It was also interesting to see that one of the 

students mentioned the need to have a conversation with their parents to make other family 

members aware of the environmental crisis. Consequently, I interpret that the carbon calculator 

simulation allowed students to see themselves as individuals capable of bringing changes in the 

earth’s environment through some simple changes in their daily practices. Although the 

simulation or the classroom discussions provided limited opportunities for the students to 

critically reflect on how their actions would impact the environment and health conditions of the 

society, it gave the students an outset to work towards developing their critical consciousness 

about climatic issues. 

The Sea Level Rise simulation allowed the students to recognize how the elevation of a 

place determines its chance of going underwater, thus displacing the people living there. As Gio 

(MC2) said, “the higher the future sea level, which is gonna cause places like … low elevation 

like Newark will go under water.” To persuade the students to think about the displaced people, 

Chelsea asked her students, “And now your house is underwater. What would you do?” Students 

suggested repositioning displaced people to other places at higher altitudes such as Kearny, but 

then the discussion shifted around the feasibility of the solution. Some of the anxieties that 

emerged among the students included big family size, space limitation, the inadequacy of 

transportation, and lack of money to meet the demands of the rising population. The following is 

an excerpt of these conversations: 

Teacher: And now your house is underwater. What would you do? 

Gio: You move to Kearny. 

Celine: Well you can't move […] you can't really move if everything is flooded 

and Kearny is like a mile away. But that is not how it works. No. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 169 
 

Teacher: What are some things that would affect how it works? 

Simi: If you have big family. 

Teacher: If you have a big family. Okay. 

Myra: Transportation. 

Teacher: Transportation. […] 
 

Student: Finding another place to stay. 

Teacher: Finding another place to stay. 

Celine: Also, if this entire thing is going to flooded, everyone is going to need a 

place. There might not be enough for everyone. 

Teacher: Right. How about, would you have enough money to move? 

Celine: Probably not since everything got destroyed. 

Similar concerns around financial limitations also surfaced in Doug’s classroom when he 

asked his students to reflect on the effects of sea level rise. Interestingly, students not only 

recognized that the increased sea level would cause flooding, thus displacing most of the people 

residing in lower elevations, but also expressed concerns regarding the shelter of the displaced 

people. I sensed an anxiousness among some of the students concerning the lack of economic 

affluence to endure the impact of displacement caused by flooding. The following excerpt 

illustrates an example of one such conversation that Doug had with his student Ani. 

Teacher: What is gonna happen to our home? 
 

Ani: It is gonna be destroyed, and we cannot rebuild it. 

Teacher: What is gonna happen to their homes? 

Ani: Destroyed, but they can rebuild it. 

Elen: They have the chance to rebuild it. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 170 
 

Both Ani (MC1) and Elen (MC1) resonated the argument of Corvalan et al., (2005) and 

Agyeman, Bullard, and Evans (2002) that environmental threats, such as sea level rise and 

flooding, are issues of social justice since they bear down a disproportionate impact on the 

people belonging to different socioeconomic strata. Their articulations of “they can rebuild it” 

and “they have the chance to rebuild it” and “It (home) is gonna be destroyed, and we cannot 

rebuild it” indicate that students recognized how low socioeconomic conditions of certain people 

limit their access to resources and opportunities (Godfrey & Grayman, 2014) to fight the impact 

of climatic disruption. However, the conversation does not ensure that students critically 

reflected on the reasons why some people are better able to cope with climatic disruption, or the 

responsibilities they share towards ensuring a healthy and sustainable environment for all. 

Overall, students’ articulations show that to some extent they identified that people 

belonging to lower economic strata experience disparate environmental and climatic conditions 

compared to the affluent people. However, this study has inadequate evidence to claim that 

students developed a sense of critical consciousness following their engagement with the 

greenhouse effect module. Further, I did not follow up with the students to examine if there has 

been any change in their own daily practices that could ensure students socio-political efficacy 

and critical action. Consistent with Gutstein’s (2003) definition of agency, I acknowledge that 

the development of agency within an individual is a developmental process. Students identifying 

themselves as agents of change, that is identifying themselves as capable of making changes 

(socio-political efficacy) and taking actions to actually make the changes (critical action), is an 

emergent process and therefore requires time and more work for development. Though this study 

aimed towards developing students’ critical consciousness through critical reflection, socio- 

political efficacy, and critical action, it also identified that the design of the activities and the 
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teacher/researcher questioning was limited to examine the development of students’ reasoning of 

critical consciousness. Nevertheless, this study showed that the dynamic activities provided 

students with an opportunity to engage in critical thinking around the phenomenon of the 

greenhouse effect, and I hope that the limited evidence I have about students’ emerging critical 

consciousness can act as seeds for developing critical reflection, socio-political efficacy, and 

critical action in the future through careful design and questioning. 

5.5. Limitations 
 

In this study, I discussed the potential of dynamic mathematical modeling activities in 

engaging students to reason covariationally and helping them develop an understanding and 

critical consciousness towards relevant environmental and social issues such as the greenhouse 

effect. A fine-grained analysis of students’ interaction with the dynamic activities indicates that 

the NetLogo simulations provided space for students to explore the relationships between 

different covarying quantities and thus allowed them to identify the different causes and 

consequences of the greenhouse effect. Though I anticipate that this study would contribute 

significantly towards similar research connecting mathematics and climate, I recognize there 

were limitations to this study, many of which provide avenues for future research. 

First, the findings of the study would have been more rigorous and generalizable if I had 

a larger number of students participating in the study. The purpose of this study was to examine 

the effectiveness of the dynamic mathematical modeling activities on students’ covariational 

reasoning as well as their understanding of the greenhouse effect. Such integrated activities, if 

tested in more classrooms and proved effective, can be used by both science and mathematics 

teachers in their classrooms to provide students with a holistic meaningful learning experience. 

As it is now, for quantitative data I focused on the pre- and post-assessment scores of forty-four 
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treatment group students and thirty-one control group students, and for qualitative data, I focused 

on the small group interaction of six students from the first macrocycle and five students from 

the second macrocycle. With such a small sample size, it would be difficult to claim the 

generalizability of the findings. However, I am hopeful that if these integrated activities are 

implemented in a higher number of mathematics and science classrooms, then that might 

produce some significant and generalizable findings. 

The second limitation of the study is the inadequate time allotted for the small group 

conversations. As I discussed in the Methods section, the two teachers Doug and Chelsea 

assumed the responsibility of the whole class instruction and I sat with a small group of students, 

identified by the teachers, and facilitated discussions around the three simulations. The video 

recordings of the small group conversations contributed towards the qualitative data of this 

study, which provided me with a window to students’ covariational reasoning and their 

understanding of the greenhouse effect. However, on several occasions, the small group 

interaction was interrupted by the whole class discussion, and the students’ chain of thoughts 

were disturbed, leaving me to wonder about the data I missed. Additionally, I only interacted 

with the students in person during the time when they were asked to self-explore the simulations 

and this was the time when all other students were also working independently. As a result, the 

entire classroom was loud and did not offer the best ambience to capture students’ mental models 

as they engaged with the mathematics modeling activities. A probable way to address this 

limitation would be to conduct one-to-one design experiments or design experiments with pairs 

of students, where I would receive the opportunity to interact with a small number of students 

and would be able to “create a small-scale version of a learning ecology so that it can be studied 

in depth and detail (Cobb et al., 2003, p. 9). 
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The third limitation of the study was the implementation of the greenhouse module in two 

different classrooms: science and mathematics. In fact, I would treat such implementation as 

both a strength and a weakness. Since the module was first implemented in a middle school 

science classroom, followed by implementing it in a middle school mathematics classroom, the 

enactment ensures the integrated nature of the activities included in the greenhouse module. As a 

result, such activities could be considered as empirically tested integrated activities and could be 

used as samples for designing similar tasks. Though the activities are effective, the limitation is 

the difference in the module implementation by the two subject teachers. For example, in the 

first macrocycle, Doug spent a lot of time introducing the topic of the greenhouse effect through 

the Asthma in Newark video. He encouraged his students to think about the causes of the 

greenhouse effect and how the issue might impact different people from different economic 

sectors disproportionately. Unlike Doug, Chelsea kept her introduction brief and spent more time 

discussing the graphs representing the covariational relationships between different quantities. 

Though the two teachers took different approaches to implement the greenhouse effect module in 

their science and mathematics classroom, in this study I did not focus on the difference in 

module implementation or examined the impact of the dynamic mathematical modeling activities 

on students’ covariational reasoning and their understanding of the greenhouse effect. In future 

research, it would be interesting to explore the nature of module implementation by different 

subject teachers and its effect on students’ forms of reasoning. 

The fourth limitation of the study is the restrictive nature of the questioning that was used 

by the teachers and me to prompt students’ reasoning. One common issue that I noticed in both 

the classrooms was that the teachers were too leading in facilitating the whole class discussions. 

In several instructional episodes, Doug and Chelsea would monopolize the conversation and 
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provide limited opportunities for students to talk. Also, other instances students answered to 

teachers’ questions in a word or two, which made me uncertain about their covariational 

reasoning ability or their own understanding of the greenhouse effect. For example, in the 

following excerpt it is seen that instead of providing students with enough time to reason 

covariationally between carbon dioxide and air temperature, the teacher decides to ask leading 

questions and students just “fill in” the statements made by the teacher: 

Teacher: What trend are you finding between CO2 and temperature? […] Which 

one is increasing? 

Student 1: The temperature. 
 

Teacher: The temperature is increasing as, 

Student 1: The carbon dioxide. 

Teacher: Carbon dioxide is increasing yes. Is it increasing a lot, or a little bit? 

Student: 10 degrees Celsius. 

Teacher: 10 degrees Celsius, it is quite significant. 
 

A fifth limitation of the study that I realized during the retrospective analysis was my 

own questioning style. At several occasions, I felt that my questions were too leading and left 

students with limited opportunity to engage in in-depth thinking about the relationships between 

the different quantities. For example, instead of asking students to articulate the relationship 

between two covarying quantities, say albedo and air temperature, I asked: “What do you think 

[would happen], if I increase the value of albedo?” I recognize that this type of questions 

provided students with leading cues to increase the value of albedo and observe its impact on the 

air temperature. Instead, if students were encouraged to explore the simulation without such 

external cues but more open questions such as “What relationships do you see?” or “What is the 
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relationship between albedo and air temperature?”, then that might have helped me better 

understand students’ covariational reasoning as this emerged. 

5.6. Implications to Research and Practice 
 

This exploratory study provided empirical evidence of how dynamic mathematical 

modeling activities can be designed to engage students in studying the greenhouse effect through 

covariational reasoning. In this section, I discuss some of the implications for research and 

practice that arise from this study. 

Barwell (2013) argued that mathematics literacy is needed to interpret data and graphs on 

climate as available in the news and public media. Consistent with this argument, in this study I 

focused on students’ covariational reasoning as a fundamental concept for reading data and 

graphs about climate. However, other mathematical topics that can be seamlessly integrated with 

the phenomena of the greenhouse effect or sea level rise. Barwell (2013) suggested several 

school mathematics topics, such as mathematical modeling, differential equations, non-linear 

systems, and stochastic processes that are intimately connected to several climatic issues and can 

be utilized to help students understand the current climatic condition of the earth and predict 

future global and regional climate. Future studies could build on the findings of this study and 

focus on other mathematical topics such as ratio-proportion and percentages to explore questions 

such as “How has the percentage or proportion of different greenhouse gases changed over the 

past few decades?” or “If 3 trillion tons of ice melted in the Atlantic region in last 25 years, then 

under the assumption that the rate of melting stays constant, how many years would it take to 

melt the current 27 million billion tons of ice?” 

Additionally, as already discussed, though the rapidly changing climate is a potential 

threat to humanity, it bears down its effect disproportionately upon the impoverished and 
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minority people (Agyeman, Bullard, & Evans, 2002; Costello et al., 2009). People belonging to 

lower economic strata often experience a higher chance of being affected by environmental 

hazards compared to the people belonging to the richer section of society. Following the path 

laid by Frankenstein and Gutstein, it is essential that we mathematics educators work towards 

educating the future generation about issues related to climate justice. In this study, we saw that 

the introductory video and the three NetLogo simulations initiated some discussions that could 

be fruitful in developing students’ critical consciousness towards the climate. Although the 

design of this study lacked to explore these ideas in depth, it illustrated the potential of 

mathematics for developing students’ critical consciousness about the climate change in the 

future. In a similar way, I believe that mathematics can be utilized to make students aware of 

other environmental and climate justice issues such as inappropriate waste disposal system or 

access to clean drinking water. As Cirillo, Bartell, and Wager (2016) suggested, instead of 

treating mathematics traditionally and posing nonsensical problems to students, mathematics 

educators and teachers should choose relevant topics that will make students familiar with 

socially pressing issues. Consistent with their argument, I propose re-developing mathematics 

tasks on environmental and climate justice issues, which I anticipate would not only provide 

students with a meaningful math and science learning experience but would also encourage them 

to question these social and environmental disparities. 

Furthermore, as discussed in the Literature Review, research shows that there are many 

misconceptions among students about different climatic issues such as the greenhouse effect, 

global warming, and climate change (Bostrom, Morgan, Fischhoff, & Read, 1994; Shepardson, 

Niyogi, Choi, & Charusombat, 2011). For instance, students often consider ozone layer depletion 

as a consequence of climate change (Shepardson, Niyogi, Choi, & Charusombat, 2011), which in 
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turn allows increased ultraviolet rays to enter the atmosphere and results in global warming 

(Bostrom, Morgan, Fischhoff, & Read, 1994). Another common misconception about climate 

prevalent amongst students is that climate change occurs as a result of seasonal variation, or due 

to proximity of the earth to the sun; alarmingly many students do not even see climate change as 

an immediate or future threat to society or humans (Shepardson, Niyogi, Choi, & Charusombat, 

2011). In this study, I provided a space for students to explore the causes and the consequences 

of the greenhouse effect and to think about the immediate and future threat of climatic disruption 

on people belonging to different socioeconomic strata. However, this was an initial attempt 

towards helping students become aware of the climate issues. To address inconsistencies in 

ideas, misconceptions about climate, and lack of awareness about the rapidly changing climate, it 

is necessary to educate students about the various environmental and social aspects of climate. 

Mathematics provides a concrete platform to do so. In this particular study, I focused on the 

greenhouse effect and its consequences of sea level rise, but future studies can explore other 

climatic and environmental issues, such as global warming, waste disposal, and pollution. 

5.7. Conclusion 
 

This study was motivated by the urgency of issues related to climate (the greenhouse 

effect in this case), and the role that mathematics can potentially play to address them. Three 

mathematical modeling activities were developed and implemented in two middle school 

classrooms to help the future generation become aware of the causes and consequences of the 

greenhouse effect on the normal atmospheric condition of the earth and human lives. The overall 

findings of the study suggest that the treatment group students showed significant improvement 

in covariational reasoning as well as their understanding of the greenhouse effect from the pre- to 

the post-assessment compared to their peers in the control group. Since, the treatment group 
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students engaged with the three dynamic mathematical modeling activities during the five-day 

long design experiment, this study concludes that the intervention has had a significant impact on 

the students’ performance during the post-assessment. Further, the study showed that the 

dynamic modeling activities accompanied with careful questioning provided a space for students 

to reason covariationally and suggested some possible design principles that helped constructing 

that learning space. For instance, students engaged in MA2 covariational reasoning, as per 

Carlson et al.’s mental action framework, as a result of their exploration of the NetLogo 

simulations. The graphical activities that followed prompted students to focus on specific values 

of the quantities and coordinate the amount of change of the two quantities, a reasoning that 

aligns with MA3 reasoning. 

The overall findings of the study conveyed hope in the current climatic crisis. Students 

identified several human-induced factors that are responsible for climatic disruptions and 

indicated how economic disparity could make a certain group of people more vulnerable to the 

change of climate compared to others. Over the five days of the design experiment, students 

expressed their concerns regarding the consequences of a rapidly changing climate and showed 

compassion towards the people who bear a disproportionate impact of climatic disruption 

because of their economic conditions. I see optimism in the students’ attitudes about the climate 

and find the necessity of similar studies, because if we do not take the initiative to educate our 

next generation to conserve this planet then “we are the ones who are gonna live with the 

damaged planet.” (Paula, MC1) 
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6. APPENDIX I 

Module: Greenhouse Effect Theme: Earth System Science 
This module focuses on how greenhouse gases, especially carbon dioxide, impact the temperature of the 
earth and the height of sea level. The module also provides students with a space to explore and discover 
how their own everyday practices may increase the carbon dioxide in the atmosphere and find ways to 
limit this. 

 
Objectives (S for Science, M for Math, CS for Computer Science)  
Students will: 

• (S) Define greenhouse effect. 
• (S) Identify the impact of greenhouse gases, especially, carbon dioxide on the temperature of the 

earth. 
• (S) Define albedo and identify its impact on the temperature of the earth. 
• (S) Identify the impact of increased global temperature on the height of sea level. 
• (M) Define a variable as a quantity that varies. 
• (M) Express non-numeric and numeric covariation relationships between the amount of carbon 

dioxide and the temperature of the air. 
• (M) Express non-numeric and numeric covariation relationships between the temperature of the 

earth and the height of sea level. 
• (M) Express non-numeric and numeric covariation relationships between the number of hours 

students use resources and the total amount of carbon dioxide. 
• (M) Identify independent and dependent variable and express the relationships between them. 
• (CS) Explore a computer simulation model on greenhouse effect. 
• (CS) Modify the parameters of the simulation model and show how different variables influence 

carbon dioxide, air temperature, and height of sea level. 
 

Key Terms: Greenhouse Effect, carbon dioxide, temperature, albedo, height of sea level, 
Covariational reasoning, coordinate system, rate of change, simulation. 

 
Content and Practices  

 

NGSS Standards 

ESS3.C: Human Impacts on Earth Systems: Human activities have significantly altered the 
biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other 
species. But changes to earth’s environments can have different impacts (negative and positive) for 
different living things. (MS-ESS3-3) 

 
ESS3.D: Global Climate Change: Human activities, such as the release of greenhouse gases from 
burning fossil fuels, are major factors in the current rise in earth’s mean surface temperature (global 
warming). Reducing the level of climate change and reducing human vulnerability to whatever climate 
changes do occur depend on the understanding of climate science, engineering capabilities, and other 
kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely 
in decisions and activities. (MS-ESS3-5) 
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Computational Thinking 

Troubleshooting Comprehensive troubleshooting requires knowledge of how computing devices and 
components work and interact. A systematic process will identify the source of a problem, whether 
within a device or in a larger system of connected devices. 

 
Algorithms Different algorithms can achieve the same result. Some algorithms are more appropriate 
for a specific content than others. 

 
Variables. Programming languages provide variables, which are used to store and modify 
data. The data type determines the values and operations that can be performed on that data. 

 
Control. Control structures, including loops, event handlers, and conditionals, are used to 
specify the flow of execution. Conditionals selectively execute or skip instructions under 
different conditions. 

Mathematical Thinking 

CCSS.MATH.CONTENT.5.G.A.1 Use a pair of perpendicular number lines, called axes, to define a 
coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on 
each line and a given point in the plane located by using an ordered pair of numbers, called its 
coordinates. Understand that the first number indicates how far to travel from the origin in the 
direction of one axis, and the second number indicates how far to travel in the direction of the second 
axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis 
and x-coordinate, y-axis and y-coordinate). 

 
CCSS.MATH.CONTENT.5.G.A.2 Represent real world and mathematical problems by graphing 
points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the 
context of the situation. 

 
CCSS.MATH.CONTENT.7.RP.A.2 Recognize and represent proportional relationships between 
quantities. 

 
CCSS.MATH.CONTENT.6.RP.A.3 Use ratio and rate reasoning to solve real-world and 
mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double 
number line diagrams, or equations. 

STEM+C practices 

M4. Model with Mathematics; S7. Engage in argument from evidence; CS4. Developing and using 
abstractions. S5: Use mathematics and computational thinking. 

 

Prerequisite Knowledge  
(S) Different sources of air pollution. 
(S) Knowing that names of some greenhouse gases such carbon dioxide, ozone, methane 
(M) Defining a variable as an unknown quantity. 
(M) Basic knowledge of coordinate system 
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(M) Basic knowledge of plotting graphs. 
(M) Basic knowledge of mathematical operations such as multiplication division, and addition. 
(CS) Basic familiarity with computers (user interfaces). No programming experience required for 
students. 

 
Teacher Preparation  
We will be using 3 simulations in this module: 

 
Simulation #1: Climate change simulation on NetLogo. 

Simulation #2: Height of future sea level simulation on NetLogo. 

Simulation #3: Carbon calculator simulation on NetLogo. 

Prior to the lesson, please explore the NetLogo simulations and become comfortable with changing and 
using the elements provided and setting up different scenarios. 

 
Materials  

 

Required Materials Media Equipment 
 
• Whiteboard and markers. 
• 1 computer for each 

student or pair of students. 
• Notebooks and pens for 

each student. 

 

• NetLogo must be on each 
computer to be used for the 
class. 

 

• Computer and a 
projector for the 
instructor. 

 
Safety  
No physical safety issues. 

 
Lesson 1: Simulation #1 & Forming non-numeric relationships (45 min)  

 

Introduction 
15 minutes 

[Whole class discussion] Use Greenhouse-Introduction powerpoint 
 

1. Show the following “Asthma in Newark” video (It’s on the same folder as this 
module plan) and ask students the following questions: 

• What’s the video about? 
• How did the video make you feel? (e.g. upset, worried, etc) Why? 
• What do you think about the situation shown in the video? 
• Why do you think so many children in Newark suffer from asthma? 
• Do you know anyone who has asthma? If yes, where does this person live? 
• Since Kearny is so close to Newark, do you think that you should be worried 

about your health too? Why/Why not? 
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 Show the graph that shows the difference between the age adjusted asthma Emergency 
department visits per 100,000 population in Essex county and the state of New Jersey. 
(Slide 2 at the Greenhouse-Introduction powerpoint) 

 
• Why do you think this is happening in some towns such as Newark? 
• Why did the factories choose Newark as their base? 
• What can we do to help the community of Newark deal with this problem? 

 
Now the video shows that one reason behind asthma is pollution. Different 
gases emitted as a result of pollution from factories, trucks and other vehicles 
are ground level ozone, oxides of nitrogen etc. Have you heard about Ozone 
gas before? 

 
(Based on the students’ responses) We know that ozone protects us from UV 
radiation. Now that is good ozone. However, when the same ozone comes in 
contact with us (i.e. when it is formed/found at ground level) it is considered 
bad for us. Again, we have bad ozone. Ground level ozone is bad ozone. Ozone 
is a greenhouse gas. The increase in the ground level ozone and fine particulate 
concentrations is primarily responsible for asthma. It can trigger a variety of 
reactions including chest pains, coughing, throat irritation, and congestion. 
Other greenhouse gases responsible for asthma are oxides of nitrogen which is 
result of automobile emission. 

 
Another reason which also enhances the asthma problem among people is 
pollen. The greenhouse gas that increases the production of pollens is carbon 
dioxide. Apart from health, carbon dioxide also has a major influence on our 
natural environment. Over last 10 years the concentration of atmospheric 
carbon dioxide has increased enormously. 

 
(Show the graph of CO2 concentration) 

 
In this module we are going to delve deeper and learn about the different 
sources of carbon dioxide and consequences of the increased carbon dioxide 
concentration. 

Exploration 
20 minutes 

[Investigation 1, Whole Class Investigation] 
 
Focus: Exploring the program interface and forming non-numeric relationships 

 
For this investigation, students will not have a computer, but the teacher will project 
everything on the board and initiate the discussion. Students will be provided with a 
handout (see Investigation 1_Student version) that they will complete as the discussion 
unfolds. 

 
The teacher follows the instructions in the Investigation 1_Teacher’s copy. 
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 The purpose of this investigation is for the students to explore the tools, find the 
variables of the model and construct non-numeric relationships among the 
tools/variables. 

 
The non-numeric relationships we would like the students to identify are: 

 
1. The greater/less the amount of carbon dioxide, the higher/lower the 

temperature. 
2. The more/less the amount of albedo, the more/less the amount of light reflected 

from the earth’s surface. 
3. If I increase/decrease the value of albedo, the air temperature decreases/ 

increases. 
 
Questions that you can use throughout the investigation to help students reach the 
generalizations: 

 
1. What do you notice in the simulation? 
2. What are the model’s variables? How do they work? 
3. How does air temperature change if I add more carbon dioxide? 
4. How does air temperature change if I remove carbon dioxide? 
5. What change do you observe in air temperature if the albedo is increased from 

0 to 1? 
6. What change do you observe in air temperature if the albedo is decreased from 

1 to 0? 
7. What can you conclude about influence of carbon dioxide on air temperature? 
8. How does the albedo of the earth influence the air temperature, if at all? 

Reflection 
5 minutes 

[Whole class discussion] Students reflect on their model exploration. 
 
Ask: 

 
• What have you learned today? 
• What surprised you? 
• What phenomenon does the model represent? 
• How would you describe the model to someone who is not here? 
• How does the model work? 
• What are some relationships you found? 
• What are you wondering about after today’s lesson? 

 
 

Lesson 2: Simulation #1 & Forming numeric relationships (45 min)  

[Whole class discussion] In the previous lesson we explored a simulation model. Introduction 
10 minutes 

• What was the model about? 
• What were its variables? 
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 � What are some relationships we found?  
 
Say the following: The relationships of the type, “The more the amount of carbon 
dioxide, the higher the temperature of the air” or “The less the amount of carbon 
dioxide, the lower the temperature of the air are called non-numeric relationships, 
because they don’t involve any numbers. 

 
Today we will explore some numeric relationships between albedo, amount of carbon 
dioxide and temperature. They are called numeric because they involve numbers, for 
example, “What will happen to temperature of the earth, if the amount of carbon 
dioxide is doubled?” Or “What will happen to temperature of the earth, if the amount of 
albedo is changed from 0 to 1?” 

Exploration 
30 minutes 

[Investigation 2, Students work individually or in pairs] 
 
Focus: Forming numeric relationships 

 
The purpose of this investigation is for the students to: 

 
(a) record the air temperature for different concentrations of carbon dioxide and plot the 
values graphically 

 
(b) identify that “As the amount of carbon dioxide in the atmosphere increases, the air- 
temperature increases.” 

 
(c) identify the graph that represents the relationship between the albedo of the earth 
and air-temperature (that is, if the albedo of the earth increases, the air temperature 
decreases.) 

Reflection 
5 minutes 

[Whole class discussion] Students reflect on their model exploration. 
 
Ask: 

 
• What have you learned today? 
• What are some relationships you noticed in this simulation? 
• How would you describe the relationship between amount of carbon dioxide 

and air temperature to somebody who is not present here? 
• How would you describe the relationship between the albedo and air 

temperature to your friend who is not here? 
• What are you wondering after today’s lesson? 

 

Lesson 3: Simulation #2 & Forming numeric relationships (45 min)  
 

Introduction 
5 minutes 

[Whole class discussion] In the previous lesson we explored a model showing the 
relationships between air temperature, carbon dioxide and albedo. 
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 Ask: 
 

• What are some relationships you found? 
• If the amount of carbon dioxide increases, what happens to air temperature? 
• If the value of albedo decreases, what happens to the air temperature? 
• What do you think it will happen if this trend persists and the amount of carbon 

dioxide in the air continues to increase in that way? (Hear what they have to 
say) 

 
Today we will work on a simulation which will show the effect of the increasing air 
temperature. We will see how the increased air temperature might affect our lives. 

Exploration 
30 minutes 

[Investigation 3, Students work individually or in pairs] 
 
Focus: Constructing numeric relationships 

 
The purpose of this investigation is for the students to: 

 
• identify that if the amount of air temperature gets higher, the sea level also 

rises; 
• recognize that as the height of future sea level rises, the amount of land area 

decreases; 
• reason about the relationship between three quantities, stating that if air 

temperature gets higher, the height of future sea level rises, and the amount 
of land area decreases. 

Reflection 
10 minutes 

[Whole class discussion]: Students reflect on their model exploration. 
 
Ask: 

 
• What have you learned today? 
• What are some relationships you found? 
• How would you describe the relationship between the air temperature and level 

of sea? 
• Have you thought about any of these relationships before? 
• How do you think the sea level rise might affect your life? 
• What do you think we should do to delay this rise of sea level? 
• What are you wondering after today’s lesson? 

 

Lesson 4: Simulation #3 & Forming numeric relationships (45 min)  
 

Introduction 
5 minutes 

Ask: In the previous lesson we explored the relationships between the amount of 
carbon dioxide, air temperature and height of sea level. 

• Do you remember any of these relationships? 
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 • What happens to air temperature if the concentration of carbon dioxide 
increases? 

• What happens to the height of sea level, if the value of air temperature 
increases? 

• So, what happens to the height of sea level, if the concentration of carbon 
dioxide increases? 

• What are the different sources of carbon dioxide in the atmosphere? 
 
Today we will explore how we, as humans, also add carbon dioxide in the air. 
We will explore a simulation that will show us how we do that and also calculate how 
much carbon dioxide we are adding in the atmosphere every year. 

Exploration 
35 minutes 

[Investigation 4, Students work individually or in pairs] 
 
Focus: Constructing numeric Relationships 

 
The purpose of this investigation is for students to: 

 
(a) calculate how much carbon is added to the atmosphere every year due to daily 
activities, such as watching TV or traveling to school by cars. 

 
(b) realize that the more resources they use, the more the amount of carbon dioxide 
they add to the atmosphere every year. 

 
Ask: 

 
• How much carbon dioxide are you adding each year, if you watch TV for 4 

hours and keep it on standby? 
• How much carbon dioxide will you add in one year if you watch TV for 4 

hours and turn it off after watching it? 
• How much carbon dioxide will you add each year if you travel to your school 

alone in a car? 
• What will happen, if you carpool with two other friends of yours? 

Reflection 
5 minutes 

[Whole class discussion] Students reflect on their model exploration. 
 
Ask: 

 
1. Today we explored how some of our daily activities add carbon dioxide in the 

atmosphere. What are some daily activities that do that? 
2. Can you think of any other activities that you do every day not presented in the 

simulation, that might also add carbon dioxide in the atmosphere? 
3. What are the possible effects of increased carbon dioxide in the air? 
4. What might happen if the amount of carbon dioxide continues to increase? 
5. What are some things that we can do to reduce the amount of carbon dioxide 

that is added in the atmosphere? 
6. Is there anything in the simulation that surprised you? 
7. What are you wondering after today’s lesson? 
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Lesson 5: Simulation 3 & Building a model to take action (45 min)  

 

Introduction 
5 minutes 

[Whole class discussion] Last few days we discussed the different sources that 
enhance the atmospheric carbon dioxide and also saw the impact of increasing amount 
of carbon dioxide in the atmosphere. 

 
Do you think our daily life activities also adds to the problem? 

 
How can you reduce the amount of atmospheric carbon dioxide you add every year? 

 
What are some other ways which you can adopt to reduce harmful carbon emissions 
and combat climate change? 

Exploration 
20 minutes 

[Investigation 4, Students work in groups of three.] 
 
Focus: Comparing and creating a model of daily life activities to minimize the amount 
of carbon dioxide released in the atmosphere. 

 
The purpose of this investigation isis for the students to: 

 
• calculate how much carbon they add to the atmosphere every year due to their 

daily activities such as watching TV or traveling to school by cars; 
 

• build a model to optimize their actions for minimizing the amount of CO2 they 
add to the atmosphere every year (e.g. by adjusting their different daily life 
actions such as hours they spend watching TV or number of people who 
carpool to school with the intention); 

Presentations 
10 minutes 

Each group presents their models to the whole class. 
 
The purpose of this activity is for students to compare and contrast their model with 
the other students and think critically what are some other actions they can take to 
combat climate disruption. 

Reflection 
10 minutes 

[Whole class discussion] Students reflect on the building of their model and their 
overall experience with the module. 

 
1. What did you learn these past few days? 
2. Has anything that we discussed surprised you? How? 
3. Have you heard about this issue before? Where? 
4. What are some relationships we discovered? 
5. How will this module impact your life? 
6. Will you continue taking actions to save our planet? How? 
7. How will you discuss this issue with your friends and parents? 
8. What are some of the issues that you will like to discuss more in future? 
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7. APPENDIX II 
Investigation 1 

Module 2.5: Greenhouse Effect Theme: Human Impact 
Investigation 1: Exploring the program interface and forming non-numeric relationships 

Simulation: Simulation 1_Climate Change.nlogo 

1. Let us explore the simulation together! A variable is any quantity that can be changed or 
controlled. What are the variables of the model? Check all that apply. 

• Add Carbon dioxide 

• Remove Carbon dioxide 

• Albedo 

• Temperature 

• Sun’s brightness 

• Infrared Rays (Red dots) 
 

2. Each time you add carbon dioxide, the value of carbon dioxide goes up by  . 
 

3. This simulation includes an interactive graph. It’s interactive because it changes as you 
manipulate the simulation. It can take many forms depending on your activity. Let’s explore 
some of those forms. 

 

(A) 
 

What does Graph A show? 
 

a) As time increases, the global temperature increases. 
b) As time increases, the global temperature decreases. 
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c) As time increases, the global temperature remains stable. 
4. Graph B: 

 

What does the highlighted portion of Graph B show? 
 

a) As time increases, the global temperature increases. 
b) As time increases, the global temperature decreases. 
c) As time increases, the global temperature remains stable. 

 
5. Graph C: 

 

 
What does the highlighted portion of the third curve represent? 

 
a) As time increases, the global temperature increases. 
b) As time increases, the global temperature decreases. 
c) As time increases, the global temperature remains stable. 

 

Note: Understanding how the model works can be a complex process and it needs time. 
Remember, while working with any model whenever you are making any change in one 
variable, the other variables might get impacted. So, after making change, give some time to 
the model and let it stabilize. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 206 
 

6. The term albedo refers to the amount of solar energy that gets reflected off of the earth and 
lands back in space. 

 

 
In this simulation, the albedo slider shows the value of albedo of the earth’s surface. 

a) The further the albedo slider is moved to the right, the value of albedo increases/ 
decreases. 

b) The further the albedo slider is moved to the left, the value of albedo increases/ 
decreases. 

7. Change the value of albedo from 0 to 1 and observe how the number of reflected sun-rays 
changes on the program interface: 

a) The more the amount of albedo, the more/ less the amount of light reflected from the 
earth’s surface. 

b) The less the amount of albedo, the more/ less the amount of light reflected from the 
earth’s surface. 

 

8. What is the relationship between the albedo of the earth and air temperature? 

a) If I increase the value of albedo, the air temperature increases/ decreases. 

b) If I decrease the value of albedo, the air temperature increases/ decreases. 

9. What is the relationship between amount of carbon dioxide and air temperature? 

a) If I increase the amount of carbon dioxide, the air temperature increases/ decreases. 

b) If I decrease the amount of carbon dioxide, the air temperature increases/ decreases. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 207 
 

8. APPENDIX III 
Module 2.5: Greenhouse Effect Theme: Human Impact 

Investigation 2: Explore numerical relationships 

Simulation: Simulation 1_Climate Change.nlogo 

1. Which are the two factors that change the temperature of the earth? (Remember to give 
some time and let the model stabilize.). 

a) Amount of carbon dioxide 
b) Albedo 
c) Infrared rays 
d) Clouds 
e) Time 
f) Sun’s rays 

 
2. Understanding how the model works can be a complex process if we have many 

variables. That’s why in this task we will just change one variable only and see what 
happens. Change the carbon dioxide as shown in the table below and record the air 
temperature accordingly. Remember to give some time after each change and let the 
temperature stabilize and take the nearest whole number (e.g. if the temperature is 22.3, 
22.2, 21.9 then temperature is around 22). 

 
Carbon dioxide Air Temperature 

0  

100  

200  

300  

400  

 
3. What patterns do you see in the table? 

a) As the carbon dioxide is increasing by 100, the air temperature is also increasing. 
b) As the carbon dioxide is decreasing by 100, the air temperature is decreasing. 
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4. Use the values you found in the table above to plot a graph showing the relationship between 
the carbon dioxide and air temperature. Label your axes as follows: 
x- axis: Amount of carbon dioxide 
y-axis: Air temperature 
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5. Which of the following describes what the graph shows. 

• A straight line (going up from left to right) 
• A straight line (going down from left to right) 
• A curve (going up from left to right) 
• A curve (going down from left to right) 

 
6. Use the graph to find the air temperature when carbon dioxide is 300. The approximate 
temperature is: 

• 10 
• 46 
• 15 
• 33 

 
7. Use the graph to find the carbon dioxide when the air temperature is 33. The approximate 
value of carbon dioxide is: 

• 300 
• 400 
• 0 
• 100 

 
8. Fix the amount of carbon dioxide at 150, and gradually change the value of albedo and 
observe how air temperature is changing. Which of the following graphs correctly represents the 
relationship between earth’s albedo and air temperature? 

 

(a) (b) 
 

(c) (d) 
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9. APPENDIX IV 
Module 2.5: Greenhouse Effect Theme: Human Impact 

Investigation 3: Explore numerical relationships 

Simulation: Simulation 2_Sea level rise.nlogo 

1. Free Play: Take 5 minutes to explore the simulation! 
 
 

 

2. An independent variable is a factor that can be changed by the scientist. Which is the 
independent variable of the model? 

• Global temperature 

• Future sea level 

• Total land area 

• The height of the buildings 
 

3. A dependent variable is a factor that might be affected by the change in the independent 
variable. Which are the independent variables of the model? 

• Global temperature 

• Future sea level 

• Total land area 

• The height of the buildings 

4. The interactive graph shows how the sea level may change in the future as the global 
temperature changes. Manipulate the global temperature. What do you notice? Circle what 
applies. 

Terms we will be using in this investigation 
 
An independent variable is a factor that is changed by the scientist. 

• What is tested 
• What is manipulated 

 
A dependent variable is a factor that might be affected by the change in the independent 
variable. 

• What is observed 
• What is measured 
• The data collected 
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a) The higher the global temperature, the (higher / lower) the height of future sea 
level. 

b) The lower the global temperature, the (higher / lower) the height of future sea 
level. 

 
 

4. Take a moment and imagine what will happen to the total land area if the height of future 
sea level increases. 

a) The higher the height of the future sea level, the (more / less) is the total land area. 

b) The lower the height of the future sea level, the (more / less) is the total land area. 
 
 
 

5. Based on the above, what is the relationship between the three variables: global 
temperature rise, height of future sea level, and total land area? Choose the correct 
statement. 

 
 

a) The higher the global temperature, the lower is the height of future sea level, and the 
more is the total land area. 

b) The higher the global temperature, the higher is the height of future sea level, and the 
more is the total land area. 
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7. Use the model to collect some data about the height of future sea level as the global 
temperature rises. 

 

Global Temperature (Celsius) Height of future sea level (Feet) 
  

  

  

  

  

  

  

  

  

  

 

8. What is the relationship between the global temperature and the height of future sea level? 

a) As the global temperature is increasing by 0.5, the height of the future sea level is 
increasing by  feet. 

b) As the global temperature is decreasing by 1, the height of the future sea level is 
decreasing by  feet. 
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9. Use the values you collected in the table before to create a graph showing the relationship 
between the height of the sea level and the rise of global temperature. Label the x-axis as ‘global 
temperature’ and the y-axis as ‘height of sea level.’ 

 

 
10. Which of the following statements describes what the graph shows. 

• As the global temperature increases, the height of sea level increases. 

• As the global temperature increases, the height of sea level decreases. 
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11. Which of the following relationships is best described in the simulation? 

• The higher the elevation of a place, the lower the risk of going under sea water. 

• The higher the elevation of a place, the greater the risk of going under sea water. 
 

12. The elevation of East Newark (20 feet) is double the elevation of downtown Manhattan (10 
feet) from the sea level. Which of the statement best describes the impact of sea-level rise on the 
two places? 

• The risk of going under sea water of downtown Manhattan is the same as East Newark. 

• The risk of going under sea water of downtown Manhattan is double than East Newark. 

• The risk of going under sea water of downtown Manhattan is half than East Newark. 



EXAMINING STUDENTS’ COVARIATIONAL REASONING 215 
 

10. APPENDIX V 
Module 2.5: Greenhouse Effect Theme: Human Impact 

Investigation 4: Carbon-Calculator 
Simulation: Simulation 3_Carbon Calculator.nlogo 

 
1. Free Play: Take 5 minutes to explore the simulation! Click ‘Setup’ to start the simulation. 
Modify the different variables and observe the change in the value of carbon dioxide. 

 

 

2. Before starting this task please turn the variables off and put them to zero. We watch TV every 
day. Observe how the amount of carbon dioxide changes based on TV hours, when you turn off 
the TV after watching it. 

 

TV-hours CO2 amount/ year 

1  

2  

3  

4  

 
3. Based on the above table, we can say that: 

a) As the tv-hours increase by 1, the CO2  amount increases by 82 kg. 
b) As the tv-hours increase by 1, the CO2 amount decreases by 82 kg. 
c) As the tv-hours increase by 1, the CO2 amount doubles. 

 
4. Based on the above table, we can say that: 

a) If the number of tv-hours becomes 10 times bigger, the amount of CO2 becomes 10 times 
bigger. 

b) If the number of tv-hours becomes 10 times bigger, the amount of CO2 becomes 10 times 
smaller. 

 
5. What is the relationship between the number of TV-hours and the amount of CO2 released in 
the atmosphere? 

a) The amount of CO2 released is 82 times the number of TV-hours. 
b) The amount of CO2 released is 164 times the number of TV-hours. 

Explaining how the model works 
 

• The model shows the amount of CO2 in the atmosphere per year. 
• Every time you change a variable please click on Setup. 
• The amount shown is cumulative, meaning that it includes all the variables involved. 
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6. Use the table above to graph the relationship between the number of tv-hours and the amount 
of carbon dioxide. Label the x-axis as the number of tv-hours and the y-axis as amount of CO2. 

 

 
7. Which of the following describes the shape of the graph? 

• A straight line (going up from left to right) 
• A straight line (going down from left to right) 
• A curve (going up from left to right) 
• A curve (going down from left to right) 
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8. For this task, please put TV hours on 0 and turn it off. Sharing a ride or carpooling is a 
common practice for commuters or travelers going to the same destination. Explore the 
simulation and observe what impact carpooling has on our environment. 

a. Express graphically how much carbon dioxide would be added in the atmosphere each 
year if you live 1 mile away from the school and you carpool with a different number of friends. 
Complete the first column of the table below. 

 

Carpool friends CO2 if you live 1 mile from 
school 

CO2 if you live 2 miles from 
school 

No Carpool   

Carpool with 1 
person 

  

Carpool with 2 
people 

  

Carpool with 3 
people 

  

 
(b) What if you live 2 miles away from the school? Use the simulation to complete the second 
column of the table. 

9. Based on the table created, we can say that: 

a) As the number of friends carpooling increases, the amount of CO2  released increases. 
b) As the number of friends carpooling increases, the amount of CO2  released decreases. 

 
10. Based on the table created, we can say that: 

a) If the distance between your school and house doubles, the amount of CO2 released 
doubles. 

b) If the distance between your school and house doubles, the amount of CO2 released 
becomes half. 
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11. Use the table above to graph the relationship between the amount of carbon dioxide and 
carpooling per year if you lived 1 mile away from school. Label the x-axis as the number of 
friends and the y-axis as amount of CO2. 

 

 
 

12. Which of the following describes the shape of the graph? 

• A straight line (going up from left to right) 
• A straight line (going down from left to right) 
• A curve (going up from left to right) 
• A curve (going down from left to right) 
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13. Based on the graph, what are the relationships between the distance travelled, the amount of 
carbon dioxide, and carpooling? 

 
a) The more the distance travelled, the (more / less) carbon dioxide is added to the 

atmosphere each year. 
b) The more the number of people in carpool, the (more / less) carbon dioxide is added to 

the atmosphere each year. 
 

14. Manipulate each factor, based on your own life, and calculate how much carbon dioxide you 
add to the atmosphere every year. 

 

Consumption Value chosen Amount of Carbon 
dioxide 

Total Carbon 
dioxide 

TV-hours_Stand-by    

TV-hours_Turn off    

Video_Game_hour_Standby    

Video_Game_hour_Turn off    

Battery_charger_plugged_ 
unused 

   

Computer-hours    

Bath once a week    

Shower    

Number of AC    

Heater    

Carpool    

Carpool distance    

Vacation    

Total Carbon dioxide    
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11. APPENDIX VI 
Module 2.5: Greenhouse Effect Theme: Human Impact 

Investigation 5: Building a model to take action 

Simulation: Simulation 3_Carbon Calculator.nlogo 

1. Modify the table you created in Investigation 4 to help reduce the amount of carbon 
dioxide you add every year. Manipulate some of the factors below to create a model that 
minimizes the total carbon dioxide that you add to the atmosphere. Note that some of 
these factors are important for you and you may decide not to change them. 

 

Consumption Value 
chosen 

Amount of Carbon 
dioxide 

Total Carbon 
dioxide 

TV-hours_Stand-by    

TV-hours_Turn off    

Video_Game_hour_Standby    

Video_Game_hour_Turn off    

Battery_charger_plugged_ 
unused 

   

Computer-hours    

Bath once a week    

Shower    

Number of AC    

Heater    

Carpool    

Carpool distance    

Vacation    

Total Carbon dioxide    

 
 
 

2. Compare this new model with the previous one in Investigation 4 and see how much carbon 
dioxide you avoided releasing to the atmosphere. 
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a) Previous amount of carbon dioxide:    
b) New amount of carbon dioxide:    
c) I saved:    

3. What are some other ways which you can adopt to reduce the CO2 release in the atmosphere? 
 

a) Ride my bike 
b) Carpool to school 
c) Use night lamps 
d) Practice eco driving 
e) Take public transportation whenever possible 
f) Increase use of plastic bags 
g) Switch off lights 
h) Plant trees 
i) Print double-sided 
j) Increase use of high-voltage light bulbs 
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12. APPENDIX VII 
Pre- and Post-Assessment 

 

Full Name:  Circle One: PRE / POST (2.5 p1) 
 
 

Greenhouse Effect Module 
Summative Assessment 

 
1. Which of the following graphs show that as the time increases, the air temperature 

increases? 

  
(a) (b) 

 

(c) (d) 
 

2. What will happen if you go to school every day by carpooling with your two friends? 
a) You will add less carbon dioxide in the atmosphere. 
b) You will not add any amount of carbon dioxide in the atmosphere. 
c) You will add more carbon dioxide in the atmosphere. 

 
3. Two factors that influence the air temperature are: 

a) Time and the height of sea level. 
b) Sun rays and the height of sea level. 
c) The albedo of the earth and the greenhouse gas concentration in the atmosphere. 
d) Time and the elevation of the land. 
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4. Which of the following statements is true about atmospheric carbon dioxide and air 
temperature? 

a) If the atmospheric carbon dioxide increases, the air temperature increases. 
b) If the atmospheric carbon dioxide increases, the air temperature decreases. 
c) If the atmospheric carbon dioxide increases, the air temperature stays the same. 

 
5. Which of the following statements is true about albedo and air temperature? 

a) If the albedo of the earth increases, the air temperature increases. 
b) If the albedo of the earth increases, the air temperature decreases. 
c) If the albedo of the earth increases, the air temperature stays the same. 

 
6. Which of the following statements is correct for the global temperature and the height of 
future sea level: 

a) The higher the global temperature, the higher the height of future sea level. 
b) The higher the global temperature, the lower the height of future sea level. 

 
7. Which of the statements is true about height of sea level and elevation of a place: 

a) The higher the elevation of a place, the lower the risk being affected by sea level rise. 
b) The higher the elevation of a place, the greater the risk of being affected by sea level rise. 

 
8. If I use my computer for 1 hour every day, I release 36 kg of CO2 in the atmosphere in one 
year. How many kg of CO2 will I release in the atmosphere if I use my computer for 3 hours? 

a) 12 
b)  108 
c)  324 

 

9. If I use my computer for 1 hour every day, I release 36 kg of CO2 in the atmosphere in one 
year. This year I released 540 kg of CO2. For how many hours did I use my computer every day? 

d) 8 hours 
e) 10 hours 
f) 15 hours 
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10. Consider the following statement: 
“If I use my computer for 3 hours every day, I release 108 Kg of carbon dioxide in one year.” 

 
(i) The independent variable in the above statement is: 

a) Number of years. 
b) Number of computer hours. 
c) Amount of carbon dioxide released in one year. 

 
(ii) The dependent variable in the above statement is: 

a) Number of years. 
b) Number of computer hours. 
c) Amount of carbon dioxide released in one year. 

 
11. Explore the following graph: 

 

 

d. What relationship does the graph show? 
i. As the global temperature increases, the height of sea level increases. 
ii. As the global temperature increases, the height of sea level decreases. 

 
e. What do you notice when you look at the graph? 

i. The graph is increasing from left to right. 
ii. The graph is decreasing from left to right. 

 
f. What is the Increase in Height of Sea Level, when the Global temperature rise is 8 

degree Celsius? 
i. 40 feet 
ii. 80 feet 
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g. For what value of Global temperature rise, the increase in height of sea level is 70 
feet? 

i. 7 degree Celsius. 
ii. 9 degree Celsius. 

 
12. Which of the following graphs correctly represents the relationship between earth’s albedo 
and air temperature? 

 

(a) (b) 
 

(c) (d) 
 

13. Complete the following table: 
 

Activities Number of hours Amount of CO2 released/ year Total CO2 

TV-hours   hours 82 Kg per hour 246 Kg 

Video Games 2 hours 40 Kg per hour   Kg 

Music system 1/2 hour   Kg per hour 40 Kg 
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