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Abstract

In May 1989, Hurricane Hugo impacted St. Johns USVI destroying the Red Mangrove
(Rhizophora mangle) Forest of Great Lameshur Bay. The impact restricted the tidal flow
and caused massive destruction in the mangroves. Hurricane Marilyn (1995) hit St. John
causing the storm wall formed by Hugo to be washed out. It returned limited tidal flow to
the dead forest. It was not until a subsequent hurricane in 2010 broke down the sediment
wall and natural flow returned. Up to that point, water quality restricted any fouling
organisms’ survival on the prop roots. By using photo identification, three different bays
of St. John were assessed to identify the local fouling community diversity; comparing the
new fouling communities of Great Lameshur to that of Hurricane Holes community. The
second objective of this study was to use remote sensing data to map the growth rate of
the forest. The subsequent Great Lameshur study years showed an increase in similarity
to Hurricane Hole as the years progressed. Which is in line with the remote sensing data
showing the forest slowly recovering. Given enough time, Great Lameshur Bay’s fouling
community is expected to increase in diversity and become similar to undisturbed sites.
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1.0 Introduction
Tropical ecosystems represent a mosaic of diverse communities. These

communities are extremely susceptible to climatological events and anthropogenic

impacts that can cause damage or death. Mangroves, seagrass beds, and coral reefs are

dominant aspects of tropical coastal communities, as they provide valuable resources to

fish and other aquatic life. There are three native mangrove species associated with the

Virgin Islands: red (Rhizophora mangle), white (Laguncularia racemosa), and black

(Avicennia germinans). Specifically, mangrove estuaries are among the most diverse and

productive environments on the planet. The underwater proproot structure host

nitrogen fixing bacteria along the outer layers of the root, enhancing primary production

and is used as a primary food source for various fish, crustaceans, and micro-

invertebrates (Perry 1988). Fish utilize the interlocking prop root structure to feed and

hide from predators until they reach maturity (Bologna 2014, Nanjo et al. 2011). These

forests’ unique root structures provide valuable ecosystem services hosting a vast

number of different biotic and abiotic roles; such as providing nursery habitats, surfaces

for epibiont species, storm surge mitigation, sequestration of carbon and stabilization of

coastlines.

Mangroves represent a large group of trees that have adapted to a very specific

niche, brackish to hypersaline intertidal coastal zones of tropical and subtropical

biomes. Mangroves are halotolerant and adaptable to a wide range of salt

concentrations. In order to survive in these hostile hypersaline environments, mangrove

species have evolved very specialized adaptions to avoid high salt conditions within their

cell physiology. By maintaining a low water potential, mangroves minimize diffusion to

the outside environment, thus maintaining their water balance (Reef and Lovelock

2014). Reef and Lovelock (2014) also found that by maintaining dephosphorylation

within the root system, the mangroves minimize water loss under hyperosmotic

conditions present in the soil allowing the tree to survive. Many of these species have

the ability to exclude up to 95% of the NaCl in the waters around their root systems,

allowing active uptake of water for photosynthesis while minimizing salt loads to keep
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their water/carbon intake in balance (Alongi, 2002). These adaptations allow the trees

to live in very hostile habitats, in which most plants could not survive.

1.1 Mangroves Ecosystem Services

1.1.1 Blue Carbon and Coastal Protection
The ocean is the largest ecosystem on the planet.  It is estimated to contain

38,000 gigatons of carbon, an order of magnitude larger than the geological carbon pool

with an estimated value of 4,000 gigatons (Mcleod et al. 2011). With climate change

continuing to impact the globe and society, it is critical that carbon sequestering

habitats are protected, and actions taken to enhance their effectiveness (e.g., habitat

restoration). Aquatic habitats such as mangroves, seagrass beds, salt marshes, and coral

reefs represent a valuable niche within the carbon sequestration community. These

habitats are far more efficient at removing carbon from the atmosphere and water than

their terrestrial counterparts. Mangrove and seagrass habitats effectively remove the

carbon permanently from the system through burial in anoxic sediments where

decomposition is minimal (Mcleod et al.  2011), unlike terrestrial communities which

only remove it on a decadal time scale (Fourqurean et al. 2012, Lavery et al. 2013).

These systems, however, are constantly under threat from urban development

because of the economic incentive of their locations. Coastal mangrove forests are

prime real estate for developers looking for waterfront property and potentially

valuable habitat for aquaculture. As such, a significant decline in forests has occurred

globally (Valiela et al. 2001). Deforestation has the potential to become a significant

carbon balance problem. While living forests are active in the uptake and sequestrating

of carbon, destruction of forests not only stops uptake, but also exposes the buried

carbon in the sediments to decomposition and release back to the atmosphere. It also

can cause turbidity, limiting light in adjacent waters impacting seagrasses and coral

reefs. With the tightly coupled relationship of mangrove forests and near shore seagrass

beds, the destruction of a mangrove forest could have the potential to create two

sources of carbon release instead of two sinks.
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Aquatic inshore habitats like mangroves and seagrass beds also face some of the

most extreme storm impacts from hurricanes and cyclones. These habitats are usually

the frontline defense against storm forces like wind, waves and storm surge. Since these

systems will be the first “structures” a hurricane hits, they experience the full force of

these physical forces. Mangrove forests and seagrass beds act as bioshields, breaking up

the storm surge, waves and winds through the dissipation of tidal forces across the tree

structures and physical blockers. Many coastal communities globally have seen the

benefits of having established mangroves planted along their coasts, reducing damage

to inland human structures.

An example of this is southeast Asia which holds over 41% of the world’s total

mangroves, with Bangladesh holding approximately 24.6% of the worldwide mangrove

coverage (Carter et al. 2015). This makes the coastline of Bangladesh a largely diverse

ecosystem providing valuable habitat and ecosystem services. The Bangladesh

Government consider the primary value of the forests as a form of natural storm control

that dense mangrove forest can provide. Since the 1960s, the Bangladeshi government

has been directly responsible and a primary care giver of mangrove forests along the

coasts in order to create a “greenbelt” to protect and preserve property and

communities along the shoreline (Carter et al. 2015). However, mangrove protection

and valuation has often been overlooked.

Over a third of the worldwide mangrove forest, salt marsh, and seagrass beds

have been lost because of various natural and anthropogenic impacts these habitats

face (Mcleod et al.  2011). Chief among these impacts is the threat of urbanization and

habitat modification for coastal development by humans. Anthropogenic activities like

dredging, drainage, and diking seek to stabilize coastal shoreline for infrastructure

development at the cost of the natural coastal processes that govern these ecosystems.

These destructive activities have slowed in recent years because of the recognition

potential role mangroves can have in climate change (Mcleod et al. 2011). This has

helped extensively to keep diversity and fish populations up.  With the unique

interaction’s seagrass beds have with mangrove forest in close proximity of each other,
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a loss of one has the high probability of a die off event at the other (Mcleod et al. 2011,

Fourqurean et al. 2012, Larvey et al. 2013).

1.1.2 Sessile Community
Sessile communities are found throughout the world growing on any hard

substrate within the water column. While community structure on hard substrate like

the rocky intertidal zone and subtidal rocky bottoms (e.g. kelp beds) are well studied,

less is known about ‘biogenic’ plant hard substrate as habitat for various organism. In

particular, mangrove prop roots provide a stable structure for species to attach to

including corals (Rogers and Miller 2001). The Caribbean is home to hundreds of

different sessile species ranging from micro and macroalgae to sponges, mollusks,

tunicates, and corals. The fouling community found within the mangrove forest is a

contributing factor towards the coastal biodiversity and why these forests are counted

as some of the most diverse in the world.

The mangrove forests and epibiont communities represent a fundamental niche

within tropical environments but they are also some of the most imperiled. These

habitats suffer heavily form anthropogenic impacts like run-off (e.g., oil, soil, sewage),

sediment disturbances, and deforestation (Diaz et al. 2004, Linton et al. 2003).

Mangroves are also influenced by tidal currents that highly influence larval delivery of

sessile species and thus community richness (Ellison et al. 1996). With such potential of

damage and outside stressors to these systems, the relative health of these forests can

be of great concern to local economies and ecology. The root structures are home to

some of the most diverse ecological habitats in the world and if these forests face

destruction, the Caribbean islands could face a substantial drop in diversity.

1.2 Rhizophora mangle, The Red Mangrove: Proproots and Mortality
The Red Mangroves’ unique root structures provide surfaces where sessile

organisms can settle and become established, thereby increasing the diversity of life

among these roots. The system also provides a valuable and safe habitat for epibionts

(algae, sponges, oysters) to grow. The roots also provide a food source to the local
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wildlife in the form of bacteria found growing on the roots on the trees (Perry 1988).

Not only do these roots provide a space for epibionts to grow, the trees also have a

highly symbiotic relationship with the various organisms found growing on them. An

interesting relationship the mangroves have are with sponges. Mangrove micro-

branchlets grow into the sponge to facilitate nutrient transport, forming a tree/sponge

symbiosis. The micro-branchlets provide nutrient highways for the symbiosis to take

place.  Passive carbon leaks from the roots and is absorbed by the sponges, while the

sponges transfer ammonium to the rootlets, along with providing a physical barrier

blocking harmful borrowing organisms (Ellison et al. 1996).

Red mangrove forests are on the outermost ocean side of coastlines often times

making the red mangrove the first natural structure hurricanes encounter when they

make landfall. The trees are put under an enormous amount of stress from the storm

event’s brunt force. Although these trees have the unique ability to survive in this

particular environment, they also face some of the highest mortality rates (36-85%) of

any tropical tree species (4-39%) (Baldwin et al. 2001, Sherman, et al. 2001).

The Caribbean is subject to a large number of hurricanes each year which have

the potential to greatly harm the local ecology. Between the years of 1899 and 1987

there were approximately 5 to 9 hurricanes per decade (Sherman et al. 2001).  St. John

suffered two major hurricanes in the recent past including Hurricane Hugo (1989) and

Hurricane Marilyn (1995). Both caused catastrophic damage to the island and the

mangrove forest on the coastlines. The Great Lameshur mangrove forest was greatly

damaged by the storm, leaving only 34 red mangroves in the now dammed forest

(Devine and Blondeau 2004). Leaving much of the damaged forests’ ecology also

damaged or dead. More recently, Hurricanes Irma and Maria (2017) also hit St. John

and the wider Caribbean causing wide-spread damage in the region.
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2.0 Study Sites

Three coastal mangrove forests on St. John, USVI were investigated to assess

their prop root fouling community (Figure 1). Two sites, Great Lameshur and Hurricane

Hole, were sampled multiple years, while Coral Bay was only sampled once. Coral Bay

unfortunately was only sampled once do to time constraints during 2016 and the

presence of a thunderstorm the day it was scheduled to be sampled in 2017.

The sites are within close proximity to each other. Hurricane Hole (HH) was used

as the ‘reference’ due to its protected status and pristine nature. Great Lameshur Bay

(GL) was greatly impacted by Hurricane Hugo, which wiped out a portion of the forest

while Coral Bay (CB) is continually impacted by human activities (Figure 2).

Figure 1. Map of Study Sites. Great Lameshur (GL) Hurricane Hole (HH) Coral Bay
(CB)
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Figure 2. Satellite image of Coral Bay St. John, USVI

2.1 Hurricane Hole
Located on the island is a protected national monument and more importantly a

natural and relatively untouched mangrove forest, protected from all human activities.

The site is commonly called Hurricane Hole due to its topography and natural

geography. It is recessed behind several mountainous regions shielding it from major

storms from almost all directions. The site’s unique natural shielding was recognized by

the United States Government, which declared it a National Park to preserve the

shielding and use it as a storm refuge site for boats during hurricanes (National Parks

System).

This study site was used as the reference and basis for comparison against the

other two locations because of its highly protected habitats. This site is minimally

impacted by both natural and human activities.

2.2 Great Lameshur
Great Lameshur (GL) is located on the central southeast side of St. John. It is

directly exposed on the south and open to destructive hurricane forces. When Hurricane

Hugo (1989) impacted St. John, the storm created a sediment wall along the tidal

entrance to Great Lameshur Bay mangrove forest. This tidal wall cut off tidal inflow,

while also exposing it to extreme temperatures and salinities. The tidal recharge that

was blocked caused catastrophic damage to the forest leading to the widespread
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degradation and massive negative impacts to aquatic organism within (Bologna 2014).

This created highly anoxic conditions in the forest, leading to a mass die off of

mangroves and organisms within the tidal forest. While Hurricane Marilyn (1995)

caused major damage to the island, it was also responsible for washing out some of the

sediment wall retuning minimum tidal flow to the forest. This minimum flow allowed for

an extremely slow recovery to begin. It was not until the hurricane season in 2010,

including Hurricane Earl, that the sediment wall was fully demolished, retuning full flow

to the forest.

2.3 Coral Bay
Coral Bay is a site heavily impacted by human infrastructure and tourism on a

daily basis (Figure 2). Coral Bay is near a major tourist area and is frequently subject to

human activities including dumping, boat repair, and fishing. With the frequency of

potentially harmful runoff associated with human activities the more sensitive species

may not be able to survive. Coral Bay does have some exposure from the south-east and

has been negatively impacted by hurricanes in the past.

3.0 Research Objectives
The focus of this study has two objectives to assess the potential recovery of the

mangrove forest in Great Lameshur Bay. By comparing the fouling communities found

on the prop roots of Rhizophora mangle at the hurricane and human impacted sites

against the pristine site.  Secondly, an analysis of historical satellite images to measure

the progression and recovery of the mangrove forest via tree top cover analysis.

4.0 Methodology

4.1 Fouling Community Assessment
Using underwater photographic images taken at each site, the species growing

on the roots were identified to lowest possible taxon. A GoPro® hero 4 Plus was used in

order to video the roots; screen shots were then taken from the video. Representative

images are provided in Appendix A. Once the stills were taken the species were

identified then compiled into a presence/absence species chart for each bay. This
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shows the species richness across each of the three bays, how unique each site was, and

the species that were common between sites.

A species accumulation curve was used on a site per year basis to determine

species representation at the study sites. The photos were analyzed, and total species

identified were summed. Using the Go Pro editing software, the stills were sharpened

and touched up to allow for a better image quality and identification of the species in

question.  The species within an image were identified by using the most easily

recognized subjects first, as well as previous root comparisons of the species to properly

identify the subject. New species found in the image were first categorized into sponge,

algae, coral or other, then guides like the Smithsonian species database, the Sponge

Guide, and a number of taxa books were used to narrow down the species to the lowest

possible taxa. Once a significant portion of the root images was sampled, they were

plotted into a species accumulation curve. This was used to determine completeness of

image analysis. Completion of species identification and image analysis occurred when

no new species were being observed in the images and there was observed a plateau of

the total number of species identified.

Once these curves were deemed complete, the species were compiled into a

Venn diagram and given color codes. Each color represented a different taxa group:

Algae Green

Arthropoda Brown

Cnidarians Red

Porifera Yellow

Annelida Blue

Mollusca Purple

Chordata Tan

To assess the temporal recovery of the GL fouling community, a cluster analysis

(Bray Curtis Similarity) was conducted in Primer ® and compared using the species
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richness found between GL and HH among years. The results were then plotted to

assess similarities in species richness and relatedness.

4.2 Mangrove Forest Recovery
To determine the progression of mangrove canopy changes occurring, image

analysis was conducted using Google Earth Pro’s image analysis function.  Historical

satellite images were obtained, and the spatial coverage of the mangrove calculated

based on the presence of observable mangrove tree cover (Figure 3, Appendix B). 2002

was used as the baseline to evaluate initial unvegetated cover and determine the forest

potential after the series of damaging hurricanes.  This date was chosen because this

was prior to some limited restoration efforts that took place (Devine and Blondeau

2004).  Surrounding the unvegetated salt pan in the middle exist surviving mangrove

trees including red, white, and black mangroves.  Devine and Blondeau (2004) identified

and plotted surviving trees and they found only 34 surviving red mangrove trees, but

numerous black and white mangroves surviving in the periphery of the salt pan.

Subsequent images were georeferenced and overlain on the base 2002 cover images.

Images were collected from the available database and include November 2006, August

2009, February 2013, July 2014, January 2015, December 2016, and August 2017 (Figure

3).

Photo interpretation of each image was conducted, and the tree canopy cover

was then delineated on the image.  Delineated polygons of canopy cover were plotted

and analyzed for area via the polygon function to show changes in canopy cover

throughout the years. The polygons were converted to square meters and all polygons

were summed to determine total area and the total perimeter of polygons.  In this

manner, data regarding both canopy cover and perimeter of the recovering patches

were obtained for each image.  Post image analysis also calculated the Perimeter to

Area (P:A) ratio as a metric to evaluate patch coalescence from each image.  It was

expected that as patch forests sections grew, they would coalesce and expand, leading

to an increase in area over perimeter, thus causing the P:A ratios to begin to decline.

When the mangroves first began to grow the P:A ratio was increasing as many small
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patch islands formed before eventually merging together to form a conglomerate with a

lower P:A ratio then that of the patch islands. A regression analysis was conducted to

assess the relationship and rate of recovery of canopy cover compared to time.

5.0 Results

All species that were identified from images are tabulated in Appendix C for

reference. Each species was given a number designated and grouped by taxonomic

phyla. Species that could not be identified due to image clarity or insufficient detail to

specifically identify were grouped at the end of each section with species type (e.g.

unidentified sponge) in the taxonomic grouping. A total of 60 taxa was identified from

photographic images. The greatest number of taxa identified were observed in the

Figure 3. Changes in canopy cover of Great Lameshur Bay over time.
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sponge group, with 29 individual taxa identified. The coral class was found to have 11

species and the algae class a total of 13 species. Two species of mollusks were identified

as well as one species of Hydrozoa, Polychaeta, and Tunicata. The photoimagery was

then used to create species-image curves (Figures 4, 5, 6). Images were analyzed for

species present until a plateau was encountered where no new taxa were added to the

site total.  After the plateau, another 10-20 images were analyzed to ensure

completeness of the data set. Great Lameshur species curves maxed out at about 50

images, but substantially more taxa were identified in 2016 and 2017 compared to 2015

(Figure 4).  For Hurricane Hole, the species curve plateaued at about 70 images with

similar taxa richness among all years ranging from 26-30 taxa identified (Figure 5).  Coral

Bay was only sampled in 2015 and it plateaued after 12 images with only 5 taxa

identified (Figure 6).

Figure 4. GL Species Accumulation Curve, all years. 7 species found in 2015. 16 found in

2016. 17 found in 2017.
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Figure 5. HH Species Accumulation Curve, all years. 29 species found in 2015. 31 species

found in both 2016, 2017. All years sampled to 100 roots

Figure 6. CB Species Accumulation, 2015. Only sampled once do to time constraints.

5.1 2015 Community Assessment

Within the first year of the study there was a total of 31 identifiable species, with

only a single species of hydroid, Sertvlarella cylindritheca (#26) found across all sites

(Figure 7). Hurricane Hole and Coral Bay were found to share one species of brown

algae, Dictyota mertensii (#6). Hurricane Hole had the most species observed with 23
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individual taxa. The flat tree oyster, Isognomon alatus (#58) was shared between

Hurricane Hole and Great Lameshur. Great Lameshur was found to have 3 species

unique to its location including Caulerpa racemosa (#3), Stelletta kallitetilla (#30), and

Holopsamma helwigi (#34). Coral Bay had the lowest number of species identified and

observed in imagery. With only one species, an unidentified orange encrusting sponge,

found to be unique to the site, two other species, Bryopsis pennata var. secunda and

Tedania ignis, were shared with Great Lameshur, and one shared with Hurricane Hole,

along with the hydroid found at all sites.

Figure 7. 2015 species comparison. Species 26 was found at all sites.

5.2 2016 Community Assessment
In the 2016 sampling year, 39 species were identified across all sites. Hurricane

Hole was found to again hold the most species with 23 unique species and 7 shared with
Great Lameshur. Great Lameshur was found to contain a total of 9 unique taxa. Of the 7
species shared, 3 were sponges, two algae, one coral, and one oyster. The same species
of mollusk I. alatus (#58) was observed in both sites again.
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Figure 8. 2016 species comparison. Numbers 3,11,15,43,44,47,58 were shared at all

sites. The majority of species were found at HH.

5.3 2017 Community Assessment
Thirty-eight species were found in the 2017 data, sponges were shown to be the

most common species in all images taken. Hurricane Hole was observed to have 21

unique species and eight species were found to be unique to Great Lameshur, one less

than the 2016 data set. The shared species count increased by two this year climbing

from 7 to 9. Again I. alatus was shared between both sites, along with the additional

green oyster, Lophia frons (#59).

Figure 9. 2017 Species comparison Eight species shared, 3 algae, 1
coral, 1 sponge, 2 mollusks, 1 hydroid and 1 sea squirt
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5.4 Hurricane Hole vs. Great Lameshur all years
All three study years for Hurricane Hole and Great Lameshur were compiled into

a single analysis of all taxa identified (Figure 10). Hurricane Hole was found to have 28

unique taxa, but Great Lameshur only had 8 unique taxa. Twenty-two species were

found to be shared across both sites, and the majority of these were sponges and algae

with 8 and 7 individual species found respectively. Both species of mollusks were

observed at the two sites during multiple years of the study. Corals were noticeably

lacking in all three years with 3 shared between the two sites and only one found

exclusively in Great Lameshur.

Figure 10. All years HH vs GL. 22 species were found to be shared. Algae and sponges

made the majority of the shared species. Only three corals were shared.
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5.5 Cluster Analysis
The cluster analysis shows the similarity of the various sites in relation to each

other (Figure 11). What is evident in this analysis is the distinct differences the

community structure of Great Lameshur 2015, as compared to the other sampling

events. It is clear that the community structure of Hurricane Hole is similar among all

years, but the high levels of shared similarities of Great Lameshur 2016 and 2017 show

them clustering next to the Hurricane Hole communities.  This indicates that as the

recovery of the prop-root community progresses, it is looking more similar to the

pristine mangrove community.

5.6 Mangrove Forest Recovery
The initial assessment of the potential for recovery indicated a total area of

24,324 square meters were unvegetated (Figure 3).  In 2006, 6044 m2 was calculated as

growing within this unvegetated region (Figure 12; Table 1).  In the following image

year, there was a decrease in cover to 5651 m2.  However, in all subsequent years an

increase in canopy cover occurred leading to a significant regression between year and

canopy cover (F1,5 = 26.8, P < 0.003, R2 = 0.84; Figure 12).

Figure 11. Cluster analysis of similarity between Great Lameshur and Hurricane Hole.
The x-axis represents site-year. Y-axis represents level of similarity
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The forest recovery was assessed using the satellite images analyzed (Figure 3).

The Perimeter to Area ratio started at 0.18, rose to 0.21, before beginning to decline

and finally ending at 0.11 in 2017 (Figure 13). The initial increase in P:A ratio was the

result of successful recruitment of new trees into the unvegetated region of the salt

pan. This caused multiple independent “islands” of mangroves to begin to grow and

expand. After February of 2013, the P:A ratio began to decrease as these “islands”

began to coalesce into larger conglomerates of forest and finally into a singular unit in

August of 2017. Starting in 2013, the average forest growth was between 1500-2000m2

per year excluding the 2015-2016-time frame (Table 1). During this period, the average

precipitation for the first half of 2015 was slightly lower than the normal expected

(Figure 14). The rainfall peaks also were not to the extent that occurred in previous or

post years following the 2015-2016 sample year.

Figure 12. Linear regression between year of observation and canopy area
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Figure 13. Perimeter to Area Ratios for sample collections. The initial rise in 2013 relates
to new tree recruitment into the forest and the subsequent drop reflects coalescence

. Figure 14. Coral Bay historical rain data July '14-July '17
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6.0 Discussion
Hurricane Hole (HH) is a pristine environment and its high diversity of species

could be attributed to the relatively untouched habitat, because it is a part of the

National Parks System and a National Monument. With little societal impact, it can be

reasonably inferred that there is little to no human disturbance or runoff from the

surroundings into the site. Thus, allowing for more sensitive species to thrive. Hurricane

Holes natural land formation also shields it from heavy wave and current movements

allowing more physically sensitive epibiota to settle on the root structures. This is in line

with Ellison et al. (1996) findings that the lower the water currents and turbidity, the

higher the richness.

Great Lameshur (GL) was expected to have a lower species richness with the site

being in a state of recovery, which is reflected in the cluster analysis where 2015

showed a high dissimilarity score (Figure 11). The waters remained highly turbid, with

frequent flushing events related to tidal changes, limiting the ability of epibiota

settlement onto the prop root structure reflecting the findings of Ellison et al. (1996).

With the recovery of the forest, the turbidity should drop and allow the successful

recruitment of more photosensitive species.

This was the case in 2015 since only 7 species were found with 3 of the species

being unique. A noticeable difference was found in the 2016 and 2017 data, when the

number of species found jumped considerably from 7 to 16 then 17 for the respective

Date Area (square meters) Perimeter (meters) P:A Ratio Percent Potiental
2002 (Potental) 24324 947

Nov-06 6044.7 1132.6 0.187370755 24.85076468
Aug-09 5651 1071.5 0.189612458 23.23219865
Feb-13 7707.6 1639.2 0.212673206 31.6872225
Jul-14 9377 1321 0.140876613 38.55040289

Jan-15 11424 1516.6 0.132755602 46.96595955
Dec-16 11628 1471.6 0.126556588 47.8046374
Aug-17 13277 1517.7 0.114310462 54.58395001

Table 1. GL mangrove growth values
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years (Figure 3). This large jump indicates a very successful recruitment year following

2015 sampling period. With the site being a part of the National Park, the recovery

began to show signs of similarity to Hurricane Hole. With the increase of only one

additional species found in 2017 compared to 2016 it could indicate that the forest

reached a temporary carrying capacity. As the forest continues recovering and tidal flow

is restored, the number of species should increase as well, since more nutrients,

resources, and larvae are brought into the system.

While outside the scope of the study, the various sponge species found in Great

Lameshur indicates the recovery rates of the forest are potentially being supplemented

by the sponge/mangrove mutualism Ellison et al. (1996) established. As the mangroves

continue to recover, sponge species will continually grow onto the proproot structure.

As these sponges cover the proproots, the likelihood that microbranchlets will grow into

the sponge to facilitate nutrient transport will also increase. Which will increase the

overall health of the trees and forest. This positive feedback cycle should accelerate the

growth of the mangroves, thus helping the forest to recover faster. This in turn will

allow other species such as corals, oysters or other epibiota to settle sooner than if the

forest’s prop roots were spongeless.

Coralline algae often precede coral settlement and when found, indicates a

successful recovery process for more sensitive species. Corals are naturally sensitive to

water temperature and water quality. The presence of corals at Great Lameshur

provides a greater insight that the location is in a much better state than during the

2015 sampling period. This is also reflected in the remote sensing data showing the

presence of green space covering the southern half of the swampland (Figure 3).

Figure 9 portrays a more complete picture of the state of Great Lameshur. All the

species found in the three-year study were compiled into one comparison which shows

that Great Lameshur, while a long way away, is slowly becoming increasingly similar to

Hurricane Hole. Both sites have a total of 22 species shared between them, which is

greater than the unique species found at either of the two sites separately. With Great
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Lameshur’s relative isolation and difficulty in reaching the bay by land it should slowly

take on more species found in Hurricane Hole. As the forest continues to recover, the

unique species found in Hurricane Hole should start to dwindle and the number of

shared species should start to increase.

The most surprising results were found during the remote sensing objective of

this study. With the short term of the in-field study, the remote sensing data provided a

viable back drop to show forest recovery at the community level. 2002 showed an

almost 24500 square meter dead zone, however, 11 years later in 2013 the dead zone is

seemingly diminished with 7706.6 square meters covered in trees which is roughly 32%

of the total area. Then again in 2017 almost 55% of the initial 24324 square meters is

covered in dense tree top cover. The northern part of the swampland still shows

considerable unvegetated regions, but the southern section near the mouth of the inlet

shows profound growth, with that alone being 10,449 square meters of treetop. The

treetops, especially during the 2015 and onward, began to lose their definition and

instead became a coalescence of green. The Devine and Blondeau (2004) study only

found a total of 34 surviving red mangroves, but this number has greatly increased in

the last 13 years. The noticeable outlier is the 2015-2016 growth period (Table 1), in

which the forest only saw 204 m2 of growth. This low growth could be attributed to the

low rain levels seen during the typical wet season (April to October, Figure 14).

Rhizophora mangles’ peak growth is during the wet season, the low rain values during

this time indicate that the mangroves have missed their yearly peak growth period, thus

leading to a low growth rate. The rainfall during this time did not follow the standard

peak previous years had and may have caused the growth of the mangroves to stunt

during this drier time period.

The recovery of an ecosystem is always a complex and time-consuming action.

Great Lameshur still has many years to go before it can be said to be recovered. This

being said, in accordance with the finding of Baldwin et al. (2001), which found that the

rate of recovery was related to the amount of free ground exposed to light for saplings

recruitment. With a large amount of exposed surface still to be regrown, the forest
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should see an increase in growth as more nutrients become available as the recovery

process continues for the forest. The complexity of a mangrove swampland and its

associated biotic and abiotic functions take time to properly equilibrate and recover. As

the northern dead zone continues to shrink with the trees continual encroaching on the

zone the water quality, temperature and available nutrients released into the habitat

should also increase thus allowing for an increase in successful recruitment of new

epibiont species. As the years progress there should be an ever-increasing success rate

of recruitment and growth.

Great Lameshur as evidence by the 2017 satellite image still has room for the

mangroves to grow into, this should thus lead to a faster and more successful

recruitment of epibiota. With the similarity of GL 2016, 2017 to HH 2015-2017 it should

be expected that the species found at Great Lameshur are also found at Hurricane Hole.

As Great Lameshur continues to recovery and grow the similarity scores for future years

should also be expected to increase. Great Lameshur is well on its way to become

similar to the pristine Hurricane Hole site as Great Lameshur recovers do to its protect

and isolated nature. The similarity jump between 2015 and 2016 along with the satellite

images showing massive tree growth through the years since the sea wall broke bodes

well for Great Lameshur’s potential recovery and return to a productive and pristine

ecosystem.
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