Montclair State University Montclair State University Digital Commons

Sustainability Seminar Series

Sustainability Seminar Series, 2019

Apr 23rd, 4:00 PM - 5:00 PM

The Ellis Island Effect: Invasive Species in the Mid-Atlantic

Paul A.X. Bologna Montclair State University, bolognap@montclair.edu

Follow this and additional works at: https://digitalcommons.montclair.edu/sustainability-seminar

Part of the Environmental Sciences Commons, and the Marine Biology Commons

Bologna, Paul A.X., "The Ellis Island Effect: Invasive Species in the Mid-Atlantic" (2019). *Sustainability Seminar Series*. 11.

https://digitalcommons.montclair.edu/sustainability-seminar/2019/spring2019/11

This Open Access is brought to you for free and open access by the Conferences, Symposia and Events at Montclair State University Digital Commons. It has been accepted for inclusion in Sustainability Seminar Series by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.

Ellis Island Effect: Invasive Hydrozoans in the Mid-Atlantic and other Jelly Stories

Paul Bologna

Montclair State University

Acknowledgements

- Jack Gaynor, Rob Meredith
- Dena Restaino
- countless students

- NJ Department of Environmental Protection
- Barnegat Bay Partnership
- Save Barnegat Bay
- Jenkinson's Aquarium
- Clean Ocean Action
- Numerous Volunteers
- NJ Jellyspotters on Facebook

The "New" Jersey Shore

Background on 'Jellyfish' Species

- We have Scyphozoans, Siphonophores, Hydrozoans, and Comb Jellies
- True Jellyfish, Hydrozoans, and Siphonophores have Stinging Cells
- Comb Jellies

- All are Vicious and Voracious Predators
 - Fish and Fish Larvae
 - Crab Larvae
 - Clam Larvae

Biology 101: Life History of Jellyfish

Houston, we don't have a jellyfish problem, we have a polyp problem

Strobilating Polyps (left side)

http://jellieszone.com/scyphomedusae/

True Jellyfish

- Sea Nettle
- Moon Jellyfish
- Lion's Mane
- Mushroom Jelly
- Aequora
- Box Jellyfish

Siphonophores aka Portuguese Man-of-War

Colonial Organism: Cloned individuals work together to make the whole

Comb Jellies (Ctenophores)

- Some are Bioluminescent
- Sea Walnuts (Mnemiopsis)
- Sea Gooseberry

Global Picture: Rise of the Jellies

Why should we care? Blooms have always existed: Life History

Human Exacerbation of Blooms

- Degraded Water Quality (O₂, Nutrients)
- Overfishing (Predatory Release)
- Shoreline Modification
 - loss of coastal wetlands
 - Increased polyp habitat

Research Questions Community Structure Changes

 Communities often defined by dominant Organisms (Sea Nettles, Chrysaora chesapeakei)

• Community Structure Impacted by disturbances (Man and God)

• Resistance and Resilience determine community succession or shifts to 'Alternate (Stable) States'

Land Use Changes in Barnegat Bay

Man-Made Alterations: Nutrients, Water Quality, Structure

1. 11. Aug

Shoreline Modification

Lagoon Communities

- Restricted Tidal Flow
- Elevated Storm Water Run-off
- Hard Substrates
 Docks, Bulkheads, etc...
- Replacing toxic materials with 'green' building materials
 - Increases Settlement Habitat with limited 'competition'
- Jellyfish polyps win by default

Research Objectives

• Characterize Gelatinous Zooplankton Community

- No Previous Data
- Focus on Sea Nettles
- Assess Trophic Linkages

Determine the Impact of Hurricane Sandy

Methodology

- Monthly Plankton Tows May-September, 2012-2014
- 16 Sites Distributed in the Bay
- Enumeration of *Mnemiopsis leidyi* in field

 Remaining taxa preserved in 95% EtOH

 Laboratory Identification and Enumeration

What Role might Sea Nettles Play? Chesapeake Bay Nettles are top GZ predators, Trophic Cascade

(Purcell & Decker, Limnol. Oceanogr., 50(1), 2005, 376-387)

2012: Strong Top Down Impacts: No Trophic Cascade

Hurricane Sandy – October 29, 2012

(NASA, US Coast Guard, US Air Force)

National Hurricane Center

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjvsZD0tPPMAhVKPz4KHX6cDtsQjB0lBg&url= http%3A%2F%2Flandsat.gsfc.nasa.gov%2F%3Fp%3D11752&bvm=bv.122676328,d.cWw&psig=AFQjCNGPLPb7FREF7T6Y67mfKPR3T2Ps3w&ust=14642033 26510758

Did Sandy Change Community Structure?

Chrysaora chesapeakei Density

Mnemiopsis leidyi Density

Sea Nettles have little impact post Sandy

Mnemiopsis leidyi Density

2014 Conundrum

Change in Other Jelly Densities

Defining Community Species

Year ▲ 2012

2013

2014

•

Hurricane Sandy Impacts

- Destroyed *C. chesapeakei* Polyp Habitat
 Docks, bulkheads, etc...
- **Density Declines in C.** chesapeakei
- Gelatinous Diversity Increased

• Pelagic Community Structure Changed

Bologna, et al. 2018. Stochastic event alters gelatinous zooplankton community structure: impacts of Hurricane Sandy in a Mid-Atlantic estuary. Mar. Ecol. Prog. Ser. 591: 217-227.

Changes in Jellyfish Research Directions

Symposium

Conference Interactions led to new research directions
 Sth International Jellyfish Bloom

- Fisherman found one

New Kid on the Block

Clinging Jellyfish

- Invasive, Non-Native Hydrozoan
- Pacific Native, but strong presence in Mediterranean
- First NJ Report - Manasquan River
- Small
- Highly Venomous
- Live in Vegetation

Findings to Date

• DNA confirmation of the Clinging Jellyfish

- Gaynor, J., Bologna, P., Restaino, D., Barry, C. 2016. First Occurrence of the invasive hydrozoan *Gonionemus vertens* (Cnidaria: Hydrozoa) in New Jersey, USA. BioInvasions Records 5: 233–237
- Confirmed Sting Requiring Hospitalization
 - 2 Days on Morphine Drip
- Active recruitment to our JADs

Discoveries

- Clinging Jellyfish Glow in the Dark!
- (Fluorescent under blue light)

Good News-Bad News

Sea Nettles Eat Clinging Jellyfish

Sea Nettle Diet

- Strong Top-Down Impacts (Bologna et al. 2017)
- Actively feed in vegetation (seagrass and macroalgae)
- Actively feed ON the benthos, tentacle dragging (benthic-pelagic coupling)
- Widely varied diet (pelagic and benthic) confirmed through molecular analyses (Meredith, Gaynor, Bologna (2016) Diet Assessment of the Atlantic Sea Nettle *Chrysaora quinquecirrha* in Barnegat Bay, New Jersey using Next Generation Sequencing. Mol. Ecol. 25(24):6248-6266)

Seeing is Believing

Fluorescence Might allow us to understand Cnidarian digestion

Hooray for Sea Nettles!!! Despite 5 years of trying to eradicate them

Invasion leads to New Questions

- Regional Distributions (CT and MA)
- Invasion origins (Population Genetics)
- Trophic Interactions
- Recruitment Dynamics
- What Else is out there?

Ellis Island Effect: Invasive Hydrozoans

National Park Service

Promise of the United States

"Give me your tired, your poor, Your huddled masses yearning to breathe free, The wretched refuse of your teeming shore. Send these, the homeless, tempest-tost to me, I lift my lamp beside the golden door!"

"The New Colossus" – Емма Lazarus 1883

http://www.cglearn.it/mysite/wp-content/uploads/2012/06/ellis.jpg

https://goodolewoody.files.wordpress.com/2016/09/cmq In6qucaakmg5.jpg?w=474

Human Mass Migrations

Map Copyright © Philip's, a Division of Octopus Publishing Group Ltd. Source: Philip's Atlas of World History

Human Mass Migrations

THE NEW IMMIGRATION, 1861-1920 Northwestern Europe (mostly Ireland, Germany, and England) Central and Eastern Europe (mostly Poland, Russia, and Hungary) Southern Europe (mostly Italy and Greece)

Source: Historical Statistics of the United States

Mediterranean Connection

- >24 Million Immigrants 1800s through Early 1900s
- 12 Million Pass through Ellis Island

The second se		
1880-193	30	2 Million
Italy	4,600,000	
Austro-Hungarian Empire	4,000,000	
Russian Empire	3,300,000	
German Empire	2,800,000	Ton Prove
Britain	2,300,000	1 Million
Canada	2,300,000	
Ireland	1,700,000	0 10
Sweden	1,100,000	In III III
	V	100,000

https://assets.libertyellisfoundation.org/cms/editor/wseix_img_grphs1880.jpg

Invasion Pathways

- Ship Hulls and Fouling Organisms
 - Wooden ships then steel
- Ballast (solid and water)
- Fishing and Plastic debris
- Canals (Panama, Suez)
- Aquaculture
- Accidental Release

 lion fish

Invasion Identification

- Big Organisms Easy
 Visual Spotting at a Distance!
- Small and Cryptic Species?

- Alternative Approaches
 Settling Plates
 - Fluorescence

-Molecular Approaches

Molecular Approaches

- Sequencing of Unknowns
 - Targeting identified individuals
- Bar Coding Approaches
 Shot-gun
- Predator find the prey
 - Diet Analyses

Invasive #1 Gonionemus vertens

'Clinging Jellyfish' **Native Range: Pacific (Mediterranean) First Identified in NJ in 2016 Highly Venomous Excellent source of Media Buzz!**

A22

A First-Time Tourist Has Arriv

By TATIANA SCHLOSSBERG

When Paul A. X. Bologna heard that a local fisherman had brought a dime-size jellyfish to a New Jersey aquarium, he had a hunch that it might be a Gonionemus vertens, or clinging jellyfish.

So Dr. Bologna, a biologist and ecologist at Montclair State University, brought the animal back to his lab. There he extracted, analyzed and sequenced its DNA, and that it was indeed the

Oceanographic Institution.

The population has fluctuated over time, Dr. Carman said, possibly after a "wasting disease" infected the local eelgrass population, causing much of the grass to die off and leaving the clinging jellyfish without enough habitat.

But Dr. Carman, who has studied these jellyfish since the first sting on the East Coast was reported in 1990, said they had never totally disappeared from the waund New England

THE NEW YORK TIMES, SATURDAY, JUNE 18, 2016

. A First-Time Tourist Has Arrived in New Jersey. Fortunately, It Is Not a Fan of the Beach.

By TATIANA SCHLOSSBERG

When Paul A. X. Bologna heard that a local fisherman had brought a dime-size jellyfish to a New Jersey aquarium, he had a hunch that it might be a Gonionemus vertens, or clinging jellyfish.

So Dr. Bologna, a biologist and ecologist at Montclair State University, brought the animal back to his lab. There he extracted, analyzed and sequenced its DNA, and determined that it was indeed the clinging jellyfish, spotted in New Jersey for the first time.

While he was testing the DNA, he heard that a swimmer had been stung in the Shrewsbury River and that more jellyfish had been found in a third location, raising the prospect that there could be a sizable population.

"I've worked in eelgrass beds," the animals' preferred habitat, "for about 15 years, and I've never seen them," Dr. Bologna said. "But they're so small, maybe I just overlooked them."

While these particular jellyfish mostly live in the Pacific Ocean, they have been found in the Atlantic Ocean since 1894, when they were discovered near Woods Hole, Mass., according to Mary Carman, an ecologist and researcher at the Woods Hole elsewhere - were relatively

Oceanographic Institution The population has fluctuated over time, Dr. Carman said, possibly after a "wasting disease" in-

fected the local eelgrass population, causing much of the grass to die off and leaving the clinging jellyfish without enough habitat. But Dr. Carman, who has studied these jellyfish since the first

sting on the East Coast was reported in 1990, said they had never totally disappeared from the water around New England. It was only after 1990 that they

popped up regularly, leading Dr. Carman to believe that a second wave of jellyfish was introduced to this part of the world, this one with a higher level of toxicity than the first population.

Dr. Carman and Dr. Bologna don't have a definitive answer to how the jellyfish got to the East Coast in first place. Maybe they arrived in the water used for ships' ballasts, or as polyps attached to barnacles on ships' hulls; in shellfish imports, or perhaps they drifted across the Arctic

Ocean. Dr. Carman said that clinging jellyfish from Japan and Russia were known to have powerful stings, but that those from the northeast Pacific - California and

A clinging jellyfish, which is about the size of a dime, has turned up in New Jersey.

harmless

Toxic or not, New Jersey is virgin territory for the animal, which prefers relatively sheltered water, said. unmoved by winds, wave and

tides, with plenty of eelgrass. likely to be in places where most who works with Dr. Carman, said Dr. Carman said they are unpeople swim: open coastline, most of the people who get hurt

are eelgrass researchers, includsandy beaches, places with ing Dr. Carman, who was stung on waves. "Not very many people the lip in 2013 while looking for choose to swim in eelgrass," she clinging jellyfish in eelgrass. She described the pain as "like

But some people cannot avoid being stabbed with five hypoderit: Annette Govindarajan, a remic needles at once." search associate at Woods Hole Dr. Carman and Dr. Govindarajan, who are among a relatively

small number of jellyfish researchers, said there were no definitive explanations for seemingly growing jellyfish populations and the spread of many species beyond their traditional habitats

"Jellyfish blooms seem to be enabled by warmer temperatures," Dr. Carman said. But beyond that one of their big research question is whether climate change has enabled the spread of this and other species of jellyfish.

Some effects of human activity such as ocean acidification, could also have an impact on jellyfish habitats and populations, but Dr. Govindarajan said that remains a mystery. However, both researchers said that overfishing of populations that feed on jellyfish was not the cause of range expan-sion or of population growth in this case.

While most recreational swim mers at beaches in New Jersey and northward are unlikely to ge stung by this particular ocea creature, all of the scientist stressed that its sting can be pa ticularly painful, which is why a pearances often make the news "There are many different rea

tions to the sting," Dr. Carm said. "But it was so painful the won't forget it anytime soon."

Well Established in NJ **Serious Public Health Problem**

Evaluation of Old Settling Plates

- Extensive Settling Plate Data from 2014
- Re-evaluated looking for *G. vertens*
- No G. vertens, but.... Unknown Polyps
- Lots of Nudibranchs

Polyps: Let the DNA tell the Story

- Isolate individual polyps
- DNA extraction
- Amplification with Cnidarian Primers
- Sequence Alignment
- Analyze against GenBank for Matches

Results: Invasive #2 Moerisia sp.

Location	GenBank Accession #	Species Identified	MG575535 Match	Homology	MG575536 Match	Homology
Brazil	KT266626*	Moerisia inkermanica	99%	573/575	99%	571/573
California	EU876555	Moerisia sp.	99%	573/575	99%	571/573
California	KX355402	Moerisia sp.	100%	568/568	99%	565/596
California	AY512534	Moerisia sp.	99%	511/512	99%	506/508
China**	KF962500*	Moerisia inkermanica	99%	496/500	99%	491/496
Virginia	TBD	Moerisia sp.	100%	567/567	99%	562/563

Poorly Studied Unresolved Taxonomy *Non-Native Origins* Mediterranean Origin Pathway

Results: Invasive #3 Aequorea sp.

- Polyps Identified 2014, Medusa identified in Plankton tows in 2017
- Sequencing Data
 - Closest Match is *A. australis* (Pacific)
 - New Invasive or Undescribed Species

Species in Genbank	Accession #	Location	Locus	% Match	Homology
Aequorea Australis	JQ716017	China	16S	96%	533/555
Aequorea Australis	JQ716015	China	16S	96%	533/555
Aequorea Australis	JQ716013	China	16S	96%	533/555
Aequorea Australis	JQ716016	China	16S	96%	532/555
Aequorea sp.	KY363940	England	16S	90%	483/539
Aequorea coerulescens	KT266599*	Japan	16S	90%	495/550
Aequorea Victoria	EU305469*	California	16S	89%	455/506
Aequorea sp.	KT982731	Thialand	16S	89%	483/540
Aequorea aequorea (forskalea)	AY512518**	Massachusetts	165	89%	481/538

Invasive #4: Bougainvillia triestina

- Adult medusa identified in Plankton tows in 2017
- Sequencing Data didn't match Regional Knowns
- **Mediterranean Species**

	Poorly Studied	Species in Genbank	Accession #	Location	Locus	% Match Bougainvillia sp.	Homology
		Bougainvillia triestina	KJ660344	Croatia	16S	96%	545/570
		Bougainvillia triestina	KJ660345	Croatia	16S	96%	494/515
		Bougainvillia fulva	EU305470*	Eastern Pacific, USA	16S	90%	514/568
1		Bougainvillia britannica	AM183127	United Kingdom	16S	88%	497/567
m	arıne ecology	Bougainvillia britannica	MF000551	Norwary	165	88%	497/567

Marine Ecology, ISSN 0173-9565

ORIGINAL ARTICLE

The case of Bougainvillia triestina Hartlaub 1911 (Hydrozoa, Cnidaria): a 100-year-long struggle for recognition

Mirna Batistić & Rade Garić

Institute for Marine and Coastal Research, University of Dubrovnik, Dubrovnik, Croatia

Predators Tell the Tale

- Nudibranch kleptocnidae
 - Nudibranchs feed on cnidarians
 - Steal or sequester cnidoblasts

- Translocate them intact for defense
- 'Retain' Cnidarian DNA for an extended period
- Field Collected Nudibranchs from Settling Plates
- Extract DNA, Amplify with Cnidarian Primers
- Sequence Analysis

Molecular Matches

Observed Cnidarians	Molecular Identified Species	Homology	Matching Accession #	GenBank Accession #
Hydroids	Tenellia adspersa	99%	KY128876	SUB3591702
Hydroids	Obelia bidentata	99%	KX665313	SUB3592536
Hydroids	Obelia bidentata	99%	KX665313	SUB3592971
Hydroids	Bosellia sp.	87%	HQ616834	SUB3593142
Hydroids	Ercolania sp.	87%	KM204242	SUB3593268
C. quinquecirrha Hydroids	C. quinquecirrha Moerisia inkermanica	100% > 100%	KY610694 & GU300724 KT266626 & EU87655	SUB3593396 SUB3593308
C. quinquecirrha Hydroids	Moerisia inkermanica	> 100%	KT266626 & EU87655	SUB3593330
Hydroids	Obelia bidentata	98%	KX665311	SUB3593348
Hydroids	Obelia bidentata	99%	KX665313	SUB3593350
Hydroids	Obelia bidentata	99%	KX665313.1	SUB3593371
Hydroids	Tenellia adspersa	99%	KY128875.1	SUB3593374
Hydroids	Obelia bidentata	99%	KX664313.1	SUB3593373

Nudibranch Genera ~ Lateral Gene Transfer

Unresolved Unknowns

\$50 Will Buy you an Answer

