
Montclair State University
Montclair State University Digital Commons
Department of Mathematical Sciences Faculty
Scholarship and Creative Works Department of Mathematical Sciences

6-2004

Multi-scale continuum mechanics: from global
bifurcations to noise induced high-dimensional
chaos
Ira B. Schwartz
Naval Research Laboratory

David S. Morgan
Naval Research Laboratory

Lora Billings
Montclair State University, billingsl@montclair.edu

Ying-Cheng Lai
Arizona State University

Follow this and additional works at: https://digitalcommons.montclair.edu/mathsci-facpubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the Department of Mathematical Sciences at Montclair State University Digital Commons. It
has been accepted for inclusion in Department of Mathematical Sciences Faculty Scholarship and Creative Works by an authorized administrator of
Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.

MSU Digital Commons Citation
Schwartz, I. B., Morgan, D. S., Billings, L., & Lai, Y. C. (2004). Multi-scale continuum mechanics: from global bifurcations to noise
induced high-dimensional chaos. Chaos, 14(2), 373-386. doi:10.1063/1.1651691

Published Citation
Schwartz, I. B., Morgan, D. S., Billings, L., & Lai, Y. C. (2004). Multi-scale continuum mechanics: from global bifurcations to noise
induced high-dimensional chaos. Chaos, 14(2), 373-386. doi:10.1063/1.1651691

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Montclair State University Digital Commons

https://core.ac.uk/display/234622848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.montclair.edu?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu


Multi-scale continuum mechanics: From global bifurcations to noise
induced high-dimensional chaos

Ira B. Schwartza) and David S. Morgan
Naval Research Laboratory, Plasma Physics Division, Nonlinear Dynamics System Section, Code 6792,
Washington, DC 20375

Lora Billings
Department of Mathematical Sciences, Montclair State University, Upper Montclair, New Jersey 07043

Ying-Cheng Lai
Department of Mathematics and Statistics, Department of Electrical Engineering, Arizona State University,
Tempe, Arizona 85287

~Received 30 September 2003; accepted 13 January 2004; published online 21 May 2004!

Many mechanical systems consist of continuum mechanical structures, having either linear or
nonlinear elasticity or geometry, coupled to nonlinear oscillators. In this paper, we consider the class
of linear continua coupled to mechanical pendula. In such mechanical systems, there often exist
several natural time scales determined by the physics of the problem. Using a time scale splitting,
we analyze a prototypical structural–mechanical system consisting of a planar nonlinear pendulum
coupled to a flexible rod made of linear viscoelastic material. In this system both low-dimensional
and high-dimensional chaos is observed. The low-dimensional chaos appears in the limit of small
coupling between the continua and oscillator, where the natural frequency of the primary mode of
the rod is much greater than the natural frequency of the pendulum. In this case, the motion resides
on a slow manifold. As the coupling is increased, global motion moves off of the slow manifold and
high-dimensional chaos is observed. We present a numerical bifurcation analysis of the resulting
system illustrating the mechanism for the onset of high-dimensional chaos. Constrained invariant
sets are computed to reveal a process from low-dimensional to high-dimensional transitions.
Applications will be to both deterministic and stochastic bifurcations. Practical implications of the
bifurcation from low-dimensional to high-dimensional chaos for detection of damage as well as
global effects of noise will also be discussed. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1651691#

Transition to chaos has been a fundamental problem in
nonlinear dynamics. The well known routes to chaos,
which include the period-doubling bifurcation route, the
intermittency route, the quasiperiodic route, and the cri-
sis route, are for transition to low-dimensional chaotic
attractors with one positive Lyapunov exponent. Transi-
tions to high-dimensional chaotic attractors with multiple
positive Lyapunov exponents have begun to be addressed.
Here we present a class of physical systems consisting of
linear continuum mechanical structures coupled to non-
linear oscillators. These systems arise naturally in many
important engineering and defense applications. Math-
ematically, such a system is typically described by a set of
coupled partial and ordinary differential equations,
which is generally not amenable to analysis. However, if
the system exhibits intrinsically distinct time scales, ap-
proximations can be made which mathematically reduce
the coupled system to a set of ordinary differential equa-
tions. Dynamically, this is equivalent to decomposing the
motions into those having slow and fast time scales, al-
lowing for numerical and physical analyses. If the cou-
pling between the continuum component and the nonlin-

ear oscillator is small, the dynamics can be regarded as
being confined to a slow, approximately invariant mani-
fold exhibiting low-dimensional chaos. Motions away
from the slow manifold are typically fast in time, are
high-dimensionally chaotic, and they become important
when the coupling is large or when there is noise present.
The system thus represents a paradigm for investigating
fundamental phenomena in nonlinear and stochastic dy-
namics such as the transition to high-dimensional chaos
and noise-induced high-dimensional chaotic attractors.
Here we shall demonstrate that this is so.

I. INTRODUCTION

In many mechanical structures of significance, such as
ships, aircraft, and space vehicles, there arise problems in
multi-scale dynamics due to various physical factors.2–5 First
and foremost is that many of the structures we come to de-
pend upon are composed of many sub-structures covering a
wide range of sizes,6 as in aircraft carriers or the space sta-
tion. Second, several orders of magnitude in flexibility may
be present, such as a tether attached to a satellite,7 or differ-
ent beam lengths in a large truss.8 Such differences in spatiala!Electronic mail: schwartz@nlschaos.nrl.navy.mil
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scales have recently led to a number of new multi-scale nu-
merical modeling techniques, such as those applied to the
finite element method.1

As a result of such a wide range of sizes and stiffness
arising from coupled structures of differing elasticity, one
expects that there should exist a range of corresponding dy-
namical responses in frequency. Therefore, incorporating the
relevant physics together in a complex model will generate
multi-scale dynamics. That is, there is a set of dynamics
which may be complicated~such as high-dimensional
chaos!, but has definitive multi-scale structure. An excellent
example of such a model is the class of driven coupled con-
tinuum mechanical structures which may be used to explore
nonlinear vibrations in mechanics.

In analyzing the dynamics of coupled continuum me-
chanical models, one must consider them as spatio-temporal
systems which may support a range of dynamical time
scales. Excellent examples of multi-scale behavior have been
studied in the flexible spherical pendulum,9 the dynamics of
a flexible beam-oscillator system,10 and a flexible rod–
pendulum system.11 These examples demonstrate the idea
that in addition to a temporal splitting between fast and slow
time scales, there also corresponds a geometric splitting.
Multi-scale behavior in mechanics is convenient since the
model in many instances may be decomposed into a global
singular perturbation problem.12 Based on a well-developed
theory, one may construct rescaled systems for which the
dynamics, under suitable hypotheses, may reside on an in-
variant manifold.13 Physically, this might occur if one struc-
ture is almost perfectly rigid~fast time scale! and attached to
a flexible structure~slow time scale!. An excellent example
is the class of ‘‘fast–slow’’ continuum systems which con-
sists of ‘‘soft’’ structures coupled to ‘‘stiff’’ structures.

This class of ‘‘soft–stiff’’ engineering structures can
have very complicated dynamics. Since the stiff part of the
problem may be considered an approximation to a perfectly
rigid body, it is reasonable to assume that part of the com-
plexity originates within the soft, flexible structure. The geo-
metric splitting yields invariant manifolds which may in-
clude chaos within the soft structure.14 On the other hand, for
critical parameter choices, the dynamics may leave the mani-
fold, and sample the rest of the phase space, generating a
dimension changing bifurcation which includes both fast and
slow time scales.14

Since multi-scale engineering structures may have a di-
mension changing bifurcation, techniques for statistically
quantifying the dynamics in space are needed. One such
powerful method is that of the method of snapshots, based on
the proper orthogonal decomposition~POD!, or Karhunen–
Loeve ~KL ! techniques.15,16 First introduced to handle fluid
dynamics, these methods have been successful in quantifying
the dynamics in fluid–structure interactions,17 spatio-
temporal feedback control,18 nonstationary flow transition
problems,19 and aerodynamics foils.20 They have been used
to quantify a dimension change bifurcation explicitly in a
soft–stiff system operating near a resonant condition. In
quantifying the dynamics of a spatio-temporal system, the
KL technique is a powerful tool to describe the modal struc-
ture, not only analytically but computationally as well. In

contrast, if one wishes to compute dynamical dimension,
such as Lyapunov dimension,21 the linear variational equa-
tions need to be solved along the trajectory, which is prohibi-
tively expensive even for a modest system of ordinary dif-
ferential equations~ODEs!.

Although the KL methods are useful for quantifying a
dimension change in dynamics, they do not necessarily ex-
plain the underlying cause of the bifurcation. In particular,
when we think of a dimension bifurcation, we think of a
change in dimension, abrupt or continuous, as a parameter is
changed. Normally, the parameter is changed deterministi-
cally, resulting in a change in bifurcation structure. This may
be explained as sufficiently sampling parts of an attractor off
of an invariant manifold. Such bursting is typically observed
to be chaotic, which arises from an underlying deterministic
chaotic saddle.22 However, another cause of dimension
changing chaos may be stochastic. That is, if sufficient noise
is added to a low-dimensional attractor, it may generate a
high-dimensional noise induced attractor with a new positive
Lyapunov exponent. Noise induced chaos, when produced
along with a dimension changing bifurcation, could cause
multi-scale behavior in continuum mechanics. Associated
with noise induced chaos is the idea of unstable dimension
variability ~UDV!.

Unstable dimension variability is the changing of the
number of local unstable directions along a typical trajectory.
Mathematically, it can be described in terms of how a system
violates the properties of hyperbolicity. This nonhyperbolic-
ity has been shown to be fundamental to chaotic dynamics,
particularly for the problem of shadowing of numerical tra-
jectories in higher dimensions.23–30 In Ref. 31, we reported
on noise induced chaos in a preliminary mechanics example.
There, noise was used to excite a positive Lyapunov expo-
nent.

In this paper, we report on the status of dimension
changing bifurcations in both deterministic and stochastic
mechanical systems. As such, some of the material is neces-
sarily review. The paper is laid out as follows: In Sec. II, the
full model of a rod–pendulum system is derived as a nonlin-
ear coupled PDE–ODE system. A Galerkin projection is
done to put the model in terms of an infinite system of
ODE’s, and then a finite dimensional model is extracted to
study the dynamics. In Sec. III, the bifurcation structure is
presented for the deterministic systems derived in Sec. II.
Evidence of UDV is presented in the continuation diagrams.
Section III C explores dimension change bifurcations based
on KL methods, as well as Lyapunov spectra. Section IV
explores the effects of noise on the dynamics.

II. DYNAMICAL CONTINUUM MECHANICS

In general, the problems we consider here model linear
continua coupled to nonlinear oscillators. That is, the prob-
lem class is that of linear PDE’s which are coupled to one or
more nonlinear oscillators represented by ODE’s. Such
linear–nonlinear coupled systems are ubiquitous in many ap-
plications, and are observed to exhibit nonlinear vibrations in
experiments.10 In this section, we restrict ourselves to models
of linear elastica in one spatial dimension. Such examples
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include cantilevered beams and extensible rods. In general, if
we let W(j,t) denote a measure of displacement as a func-
tion of space~j! and time (t), and let¸m(j,t) be a forcing
function, then the general equations of motion may be rep-
resented as

LmW~j,t !5¸m~j,t !,
~1!

d2u

dt2
1@11G~W,tt!#sinu1h

du

dt
50,

plus the appropriate boundary conditions. In Eq.~1!, u de-
notes the angular position of an attached pendulum at a free
end of the elastica. The termG(W,tt) is the additional accel-
eration imposed on the pendulum from the structure. Since
there is an external driving body force on the structure, the
function G(W,tt) will also contain a time varying source,
which will in general depend on another oscillator, such as a
mechanical shaker or periodic electric potential.

The differential operator,Lm , is assumed to be linear,
and depends on a parameter which is a measure of spectral
splitting of the relevant time scales. For a cantilevered beam,
it has the form

LmW5m2k1
2W,tttt1W,jjjj12zbmW,tjjj , ~2!

while for an extensible rod~detailed below!

LmW5m2W,tt2W,jj12z rmW,tjj . ~3!

Normally, the external drive is decoupled from the rest of the
structure. That is, it is assumed that the external drive is
one-way coupled to the structure. In this paper, we allow the
frequency dependence of the drive to depend weakly on the
dynamics of the structure itself.

A. Full PDE–ODE system

In formulating the dynamics of such a mutually coupled
system, we follow Refs. 13 and 22 in formulating in detail a
system based on Eq.~3!. We consider a specific mechanical
system consisting of a vertically positioned viscoelastic lin-
ear rod of densityr r , with cross-sectionAr and lengthLr ,
with a pendulum of massM p and arm lengthLp coupled at
the bottom of the rod and where the rod is forced from the
top harmonically with frequencyV and magnitudea.13 The
rod obeys the Kelvin–Voigt stress–strain relation32 and Er

and Cr denote the modulus of elasticity and the viscosity
coefficient.Cp is the coefficient of viscosity~per unit length!
of the pendulum andg is the gravitational constant of accel-
eration. The pendulum is restricted to a plane, and rotational
motion is possible. The system is modeled by the following
equations:

M pLpü1M p@g2 ẍA2üB#sin~u!1CpLpu̇50,

Arr r ü~x,t !2ArEru9~x,t !2ArCru̇9~x,t !

2Arr r~g2 ẍA!50, ~4!

where ˙ [ ]/]t, and8[ ]/]x, with boundary conditions

u~x50,t !50, ArEr

]u

]x U
x5Lr

5ArEr

]uB

]x
5Tp cos~u!,

and where

Tp5M pLpu̇21M p~g2 ẍA2üB!cos~u!,

denotes the tension acting along the rigid arm of the pendu-
lum. The variableu(x,t) denotes the displacement field of
the uncoupled rod with respect to the undeformed configu-
ration at equilibrium, relative to the pointA, while uB de-
notes the relative position of the coupling endB of the rod
with respect to pointA. See Fig. 1 for a schematic of the rod
and pendulum system.

We further suppose that the drive atA, given by the
function xA(t) in Eq. ~4!, is such that it comes from another
oscillator. We suppose that the oscillator is weakly coupled
to the pendulum through its frequency. Specifically, we
model the drive oscillator by

Ḟ15F11V~11SP~ u̇~x,t !!!F22F1~F1
21F2

2!

[F1~F1 ,F2 ,S,V!,

Ḟ252V~11SP~ u̇~x,t !!!F11F22F2~F1
21F2

2!

[F2~F1 ,F2 ,S,V!, ~5!

where P is a projection onto a Fourier mode~see below!,
and uSu!1 is the coupling term that modulates the fre-
quency. Notice that whenS50, the solution of Eq.~5! con-
sists of sines and cosines of frequencyv given the appropri-
ate initial conditions. In terms of the solutions to Eq.~5!,
note thatxA(t)5F2(t,S).

Equations~4! and~5! are nondimensionalized by the fol-
lowing variable rescalings:

j5
x

Lr
, t5vpt,

XA5
xA

Lp
, U5

u

Lp
, UB5

uB

Lp
,

and parameter rescalings

m5
vp

v1
, mm5

v1

vm
5

1

2m21
, b5

M p

Arr rLr
,

FIG. 1. Rod–pendulum configuration.
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zp5
1

2vp

Cp

M p
, z r5

1

2v1

p2Cr

4Lr
2r r

,

where

vp5A g

Lp
, vm5

p~2m21!

Lr
AEr

r r
, m51,2,...,`,

are the natural frequency of the uncoupled pendulum and the
spectrum of natural frequencies of the uncoupled flexible
rod, respectively, whilezp andz r denote their damping fac-
tors.

Using the parameter rescalings, and setting time deriva-
tives equal to zero, the stable and unstable static equilibrium
configurations of the coupled rod and pendulum system are
given by (uc ,Û) and (uS6

,Û), where

uc50, uS6
56p,

Û5
m2p2

2
@2~11b!j2j2#.

The normalized equations are thus

ü1@12V̈B~t!2ẌA~t!#sin~u!12zpu̇50,

m2p2V̈~j,t!2V9~j,t!28z rmV̇9~j,t!52m2p2ẌA~t!,

V~j50,t!50, V8~j51,t!52m2bp2@12T cos~u!#,
~6!

where

V~j,t!5U~j,t!2Û~j!, 0<j<1, 2`,t,1`,

and note that we redefinė[ ]/]t and 85 ]/]j for the re-
mainder of the paper.

B. Projection onto a finite model

In carrying out our analysis, we will consider a reduction
of the ODE–PDE system in Eq.~6!. This reduction is ob-
tained by performing a modal expansion of the rod equation,
where the displacementV is expanded asV(j,t)
5(m51

` hm(t)fm(j). This results in an infinite system of
coupled oscillators,

ü52F11(
j 51

`

~21! j 11ḧ j2ẌA~t!Gsin~u!22zpu̇,

Lm~u!ḧ j52
hm

4h2hm
2 12z r

ḣm

mmm
2

2~21!m112b@u̇2 cos~u!2sin2~u!#

2F4mm

p
1~21!m112b cos2~u!G ẌA~t!, ~7!

equivalent to Eq.~4!, whereLm(u) is the infinite linear op-
erator

Lm~u![(
j 51

`

@dm j1~21!m1 j2b cos2~u!#.

See Ref. 22 for the details of this transformation.

Finally, consider the finite set of ordinary differential
equations obtained from Eq.~7! by truncating to the firstN
rod modes and applying the additional rescalings$C1 ,C2%
5$u,u̇% and$m2mm

2 Z2m21 ,mmm
2 Z2m%5$hm ,ḣm%, obtaining

Ċ15C2 ,

Ċ252F12(
j 51

N

~21! j 11f N~C,Z!2aC4Gsin~C1!

12zpC2 ,

Ċ35F1~C3 ,C4 ,S,V!,
~8!

Ċ45F2~C3 ,C4 ,S,V!,

mŻ2m215Z2m ,

mmm
2 Ż2m5 f N~C,Z!, m51,2,. . . ,N,

where

f N~C,Z!5Lm,N
21 ~C1!F2

1

4
Z2m2112z rZ2m

2~21!m112b@C2
2 cos~C1!2sin2~C1!#

2F4mm

p
1~21!m112b cos2~C1!GaC4G ,

C3 , C4 are drive variables as defined in Eq.~5!, and
Lm,N

21 (u) is the inverse of theN3N truncation of operator
Lm(u). F1 and F2 are given by the right-hand sides of Eq.
~5!. Note that Eq.~8! is an autonomous system, and the cy-
clic variables,C3 andC4 are introduced to account for the
periodic forcing, which has periodV when the coupling pa-
rameterS50. For this paper, unless otherwise noted, we
consider the truncated system obtained by takingN51. We
also considered the system in Eq.~8! with N52 and N
510 and found qualitatively similar dynamics. Notice that
the termsZ2m21 correspond to the rod displacement ampli-
tudes, while the even indexed termsZ2m are the rod velocity
mode amplitudes. The functionf N(C,Z) is similar to the one
defined in Ref. 13 in the case whereS50, and the derivation
may be found there.

The primary parameter governing the coupling between
the rod and pendulum is the ratio of the natural frequency of
the pendulum to the frequency of the first rod mode,m
[vp /v1 . In the limit v1→`, the rod is perfectly rigid,m
→0, and the system reduces to a forced and damped pendu-
lum. For 0,m!1 sufficiently small, global singular pertur-
bation theory predicts that system motion is constrained to a
slow manifold, and the~fast! linear rod-modes are slaved to
the slow pendulum motion.12 For nonzeroa ~the amplitude
of the periodic forcing! the slow manifold is a nonstationary
~periodically oscillating! two-dimensional surface.

For our study, we set the number of modes in the struc-
ture to be unity, and consider the following reduced system:
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Ċ15C2 ,

Ċ25~pC2~22zp24bzp cos2~C1!1b sin~2C1!C2!

2sin~C1!~4aC414abp cos2~C1!C4

1p~112b1Z112z rZ21aC4!!!/~pd!,

Ċ35C3~12~C3
21C4

2!!1V~11sC2!C4 ,
~9!

Ċ45C4~12~C3
21C4

2!!2V~11sC2!C3 ,

Ż15Z2 /m,

Ż252~2bp22bp cos~C1!C2
21pZ112pz rZ2

14aC412bp cos2~C1!~211aC4!!/~mpd!,

where d5112b cos(C1). In Eq. ~9!, C1 and C2 are the
pendulum position and velocity,C3 and C4 are the drive
oscillator variables, andZ1 andZ2 are the rod mode position
and velocity. Notice that the singular perturbation parameter
denotes the rod variables to have a fast time scale compared
to the pendulum and drive. Also, the frequency of the drive
oscillator is a function of the pendulum momentum, which is
a feedback term. The system in Eq.~9! is, therefore, fully
coupled, which is a generalization of the more ideal case of
having a perfectly isolated drive.

III. BIFURCATION STRUCTURE OF THE
DETERMINISTIC SYSTEM

We now consider the deterministic one rod mode model
obtained in Sec. II. It is useful to first consider the determin-
istic model, without any added noise. The underlying dy-
namical structures of the deterministic system will determine
in what way additive noise manifests itself in the dynamics.
While Eq.~9! is much less complex than the original PDE, it
still exhibits a wide variety of complicated behaviors. In par-
ticular, when the amplitudea of the forcing is sufficiently
large, solutions of Eq.~9! are chaotic, and such solutions
with both one and two positive Lyapunov exponents have
been observed. In addition to the forcing amplitudea, the
behavior of solutions of Eq.~9! is dramatically affected by
the value of the coupling parameterm.

Since Eq.~9! is singularly perturbed for 0,m!1, we
will obtain a description of the slow dynamics by closely
following the geometric approach adopted in Ref.
22. The slow manifold approximation, $Z1 ,Z2%
5Hm(C1 ,C2 ,C3 ,C4) is obtained for Eq.~9! ~with s50),
using the method of Ref. 12. The slow manifold~given by
the graph ofHm) is a submanifold in phase space on which
the slow dynamics reside, and which relates the rod motion
to the pendulum motion and periodic forcing. Whenm is
sufficiently small, the dynamics of Eq.~9! can then be ap-
proximated by the reduced system:

Ċ15C2 ,

Ċ25~pC2~22zp24bzp cos2~C1!1b sin~2C1!C2!

2sin~C1!~4aC414abp cos2~C1!C4

1p~112b1Hm~• !12z rHm~• !1aC4!!!/~pd!,
~10!

Ċ35C3~12~C3
21C4

2!!1V~11sC2!C4 ,

Ċ45C4~12~C3
21C4

2!!2V~11sC2!C3 .

It is important to note that the above approximation is
valid only for m sufficiently small. In particular, it has been
noticed that whenm is increased, the dynamics of the full
one rod–mode system given by Eq.~9! no longer remains on
the slow manifold, but exhibits a bursting characteristic. This
bursting is not directly observed in the system variables
themselves, but rather when observing the variable defined
by D5A(Z12Hm,1(•))21(Z22Hm,2(•))2, where Hm,i(•)
denotes thei th component ofHm . The variableD measures
the distance of the solution of the rod components of the full
problem to the slow manifold. Form sufficiently small, only
small burstsD<O(m) are observed. However, asm is in-
creased, the amplitude of bursts quickly increases.

Examining the variableD1[Z12Hm,1(•) gives the dif-
ference between the actual rod displacement and the slaved
rod displacement as calculated using the slow manifold ap-
proximation. Asm increases so thatD is O(1) in amplitude,
D1 has the appearance of a relaxation oscillation. That is, a
large excursion can be observed away from the slow mani-
fold approximation with succeeding bursts decaying in am-
plitude toward the slow manifold, and another large burst
may occur before the solution has reached the slow mani-
fold.

For smallm, solutions of Eq.~10! agree well with solu-
tions of the full system modeled by Eq.~9!. This ceases to be
the case asm is increased, and nontrivial fast dynamics de-
velop. We will consider two particular choices of the cou-
pling parameter, to illustrate the nontrivial fast dynamics
which develop. In the next subsection we examine the dy-
namics of Eq.~9! when the coupling is relatively small:m
50.086 875. For this value ofm, system motion is no longer
confined to the slow manifold. Instead bursting off the slow
manifold is observed. We will then examine the dynamics of
Eq. ~9! for the relatively large value ofm50.5025 in the
following subsection. Near this value ofm there is an internal
2:1 resonance, and the observed bursting is much greater in
amplitude. For the simulations presented in the remainder of
this section, we setb51, z r5zp50.01, s50.0001, andV
51.9527 unless otherwise stated.

A. Lyapunov exponents and attractor bifurcation
structure: The singularly perturbed case

Recall that asm→0, there ceases to be any nontrivial
rod motion whatsoever, and Eq.~9! reduces to a forced and
damped pendulum. Increasingm amounts to increasing the
flexibility of the rod, and nontrivial rod motions independent
of the pendulum motion are observed. For the simulations of
this subsection, we setm50.086 875, and varya, while the
other parameters are as stated in the introduction of this sec-
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tion above. We choose this value form because it is large
enough that there is significant motion on fast time scales,
but small enough that our slow manifold approximation will
be reasonably accurate.

We consider first the attractor bifurcation structure of Eq.
~9!. In particular, we will use the bursting variableD1 as a
function of a. We examine the Poincare´ map defined by
strobing the flow wheneverC350 andC451. For a suffi-
ciently small (D150) the pendulum is stationary and only
periodic motions on the fast manifold are observed. Asa
increases through 0.17, the pendulum transitions to periodic
motion, and the resulting periodic orbit slaves the system to
the slow manifold. Fora'1.29, there is the sudden onset of
chaos. See Fig. 2.

To further elucidate the bifurcation structure of the one
mode model, we utilized the bifurcation continuation soft-
ware AUTO 97,33 using a as our continuation parameter. We
started the continuation calculation using a periodic orbit we
calculated numerically fora50.01. For this value ofa, we
found the stable periodic orbit to consist of a motionless
pendulum and an oscillating rod mode. Physically, this cor-
responds to the pendulum hanging straight down, with the
only motion consisting of deformations of the rod with the
same period as the periodic forcing. There is a secondary
branch which is born in a saddle-node bifurcation ata
'0.044. The saddle branch meets the first branch of nodes at
a period doubling bifurcation, while the upper branch of
nodes ends at a torus bifurcation ata'1.29. This agrees
closely with what is observed in the attractor bifurcation dia-
gram. See Fig. 3.

We additionally computed the Lyapunov exponents of
the one rod mode model, Eq.~9!, shown in Fig. 4. The most
notable feature of the Lyapunov spectrum form50.086 875

is that fora&1.75 chaotic orbits have one positive Lyapunov
exponent, while fora*1.75, chaotic orbits have two posi-
tive Lyapunov exponents, and the transition from one to two
positive Lyapunov exponents is smooth. This implies that as
the forcing amplitudea is increased, the chaotic attractor
increases in dimension.

Finally, we used the constrained invariant manifold
~CIM! method exposited in Ref. 22 to compute the approxi-
mation of the stable manifold of the chaotic saddle con-
strained to the slow manifold. Briefly, the method works by
finding those initial conditions on the slow manifold which
remain within e1 of the slow manifold to timeT1 under
evolution of Eq.~9!. Figure 5 shows the projection of the
approximated manifold onto the pendulum variablesC1 and
C2 . This set gives an indication as to the structure of the

FIG. 2. The attractor bifurcation diagram form50.086 875 ands
50.0001, showing the rod displacementD1[Z12Hm(C1 ,C2 ,C3 ,C4) as
a function of the forcing amplitudea. There is a stable periodic orbit for
a&1.30.

FIG. 3. The continuation diagram.. The lower branch consists of a solution
in which the pendulum does not swing and only rod motion is present, while
the upper branch corresponds to nontrivial periodic motion of both the pen-
dulum and the rod. Solid dots denote a stable periodic orbit while open dots
denote an unstable periodic orbit. The upper stable branch exists fora
P(0.044,1.29). Asa increases through 1.29, stability of the periodic orbit is
lost, closely corresponding with the behavior seen in Fig. 2.

FIG. 4. The Lyapunov spectrum form50.086 875. The most negative
Lyapunov exponent is not shown.
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invariants constrained to the slow manifold. The CIM
method parameters used wereT158.0 ande150.1.

B. Lyapunov exponents and attractor bifurcation
structure: The near resonance case

We next increasem to 0.5025. For this value of the cou-
pling, there is an internal 2:1 resonance in the system.

As in the previous subsection, we consider the attractor
bifurcation structure of Eq.~9!, measuring the bursting vari-
ableD1 as a function ofa. We again use the Poincare´ map
given by strobing the flow wheneverC350 and C451.
Sincem is relatively large, we do not expect the slow mani-
fold approximationHm(•) to be very accurate. Indeed fora
small, we observe thatD1 is no longer zero, but the slow
manifold approximation indicates the solution lies anO(1)
distance from the slow manifold. However, we still expect
that the observed stable periodic motions are slow. Fora
'0.88, there is the sudden onset of chaos, and the solutions
of Eq. ~9! move far from the slow manifold approximation,
as shown in Fig. 6.

Using a as our continuation parameter, we started the
continuation calculation using a periodic orbit we calculated
numerically fora50.01~see Fig. 7!. For this value ofa, we
again find the stable periodic orbit to consist of a motionless
pendulum and an oscillating rod mode. There is a secondary
branch which is born in a saddle-node bifurcation ata
'0.044. The saddle branch meets the first branch of nodes at
a period doubling bifurcation, while the upper branch of
nodes ends at a torus bifurcation ata'0.27. This agrees
closely with what is observed in the attractor bifurcation dia-
gram, as shown in Fig. 6.

Finally, we examine the Lyapunov spectrum of Eq.~9!
near resonance shown in Fig. 8. The most notable feature in
this case, is the sudden transition from a stable periodic orbit
to hyperchaos. In fact, in numerical studies on a mesh ofm
values of width 0.021 875 fromm50.086 875 to m
50.5025, we did not observe a smooth transition from one
to two positive Lyapunov exponents for anym.0.086 875.

Rather, we observed an apparent discontinous change in the
distribution of Lyapunov exponents, similar to the behavior
observed in Ref. 34 where the sudden transition to hypercha-
otic behavior is observed in the same model withs50, that
is, without feedback to the drive. The transition to hyper-
chaos occurs neara'0.88, which agrees well with the ter-
mination of the lowest stable branch of nodes~see Fig. 7!.

We again apply the CIM method to Eq.~9!, this time for
m50.5025, as shown in Fig. 9. Since the system is in reso-
nance and we are using the slow manifold approximation at
the edge of its applicability, we set the thresholde15150,

FIG. 5. The stable manifold of the chaotic saddle, constrained to the slow
manifold, calculated using the CIM method and projected onto the pendu-
lum subspace (C1 ,C2). The parameters used werem50.086 875 anda
51.2, whileb, s, z r , andzp are as noted in the text.

FIG. 6. The attractor bifurcation diagram form50.5025 ands50.0001,
showing the rod displacementD1 as a function of the forcing amplitudea.
A stable periodic orbit is observed fora&0.88.

FIG. 7. The continuation diagram. The lower branch consists of a solution
in which the pendulum does not swing and only rod motion is present while
the upper branches corresponds to nontrivial periodic motion of both the
pendulum and the rod. Solid dots denote a stable periodic orbit while open
dots denote an unstable periodic orbit. Note that the lowest stable branch
pictured ends in a saddle-node bifurcation~label 4! at a'0.88, correspond-
ing to the point in the attractor bifurcation diagram~Fig. 6! where a chaotic
solution is first seen.
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while keepingT158. The large value fore1 may be justi-
fied by the fact that the burst extrema observed inD1 are
now much larger in amplitude. There is clearly an interesting
level of structure in the resulting set, though just how this set
should be interpreted remains an open question.

C. Dimension changing bifurcations

In order to examine the fidelity of the one rod mode
model, we examine the same model, but this time truncating
the rod expansion at 16 modes. We find that while the main
attractor bifurcations occur for smaller values of the forcing
amplitudea, the bifurcation structure has a similar qualita-
tive appearance to the one mode resonant case. Due to the
expense of calculating the slow manifold approximation, in
Fig. 10 we plot the first position rod mode against the forcing

amplitude a. The behavior of the solutions is similar for
what we observe in the one mode resonant case. There is a
periodic orbit that abruptly transitions to a chaotic solution
neara50.32.

We again ranAUTO on the 16 mode model as shown in
Fig. 11. The saddle structure is somewhat different from that
of the one mode resonant case shown in Fig. 7, but some of
the essential features are still observed. In particular, the
lower-most stable branch terminates in a saddle-node bifur-
cation neara50.3, close to the value fora at which we
observe the first chaotic motion, as seen in Fig. 10.

FIG. 9. The stable manifold approximation of the chaotic saddle, con-
strained to the slow manifold, and projected onto the pendulum subspace
(C1 ,C2), calculated using the CIM method. The parameters used werem
50.5025 anda50.7, whileb, s, z r , andzp are as noted in the text.

FIG. 10. The attractor bifurcation diagram form50.5025 ands50.0001
for the 16 rod mode model, showing the rod displacement as a function of
the forcing amplitudea. A stable periodic orbit is observed fora&0.32.

FIG. 11. The continuation diagram computed usingAUTO. The lower branch
consists of a solution in which the pendulum does not swing and only rod
motion is present while the upper branches corresponds to nontrivial peri-
odic motion of both the pendulum and the rod. Solid dots denote a stable
periodic orbit while open dots denote an unstable periodic orbit. Note that
the lowest stable branch pictured ends in a saddle-node bifurcation~label 4!
at a'0.3, corresponding to the point in the attractor bifurcation diagram
~Fig. 10! where a chaotic solution is first seen.

FIG. 8. The Lyapunov spectrum form50.5025. The most negative
Lyapunov exponent is not shown.
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It is expensive to calculate the Lyapunov exponents for
this system, since for a system ofN equations, one is re-
quired to integrate theN differential equations, plusN2

variational equations in order to approximate the Lyapunov
exponents. For the 16 mode truncation, we instead compute
the KL dimension of the attractor as shown in Fig. 12.
Briefly, the KL decomposition gives the optimal way to com-
pute an orthogonal linear expansion, in an energy sense.
Thus, the first mode in a KL expansion will contain the
maximal energy possible for a linear mode, the second will
contain the second-most energy possible, and so on. Then, a
definition for KL dimension is the minimal number of KL
modes required to satisfy some~large! energy threshold.
Briefly, we describe how to compute the KL dimension, and
the reader should see Ref. 13 for details.

We consider the system given by Eq.~8!, and define the
field to be the vector of continuous functions of time defined
by

U~ t !5@C1 ,C2 ,C3 ,C4 ,Z1 ,Z2 ,...,Z2N21 ,Z2N#T~ t !.
~11!

Computing the KL modes is based on a method which maxi-
mizes the variance and minimizes the covariance. For two
time sampling (tm ,tn), we define thenm entry of the corre-
lation matrix as

Cnm5
1

NM
UT~ tn!U~ tm!. ~12!

M is the number of time snapshots, and the indicesn,m
51,2,...,M .

The ‘‘energy’’ of the system is quantified by measuring
the number of active modes, which is done by gleaning in-
formation from the spectrum of the correlation matrixC, i.e.,
by solving the eigenvalue problem

CAk5lkAk . ~13!

The sum of thelk is the total energy of the system, and the
sum is used to normalize the spectrum. That way, we can
choose a threshold, say 99%, and pick those modes that are
in the sum. We can then define a KL dimension of the dy-
namics that consists of those modes that make up 99% of the
energy.

For a series of values ofa, we computed the number of
KL modes required to capture 99% of the system energy. We
find that asa increases into the chaotic regime, the number
of modes needed to capture the system energy increases dra-
matically. This implies that the underlying chaotic solutions
are high dimensional.

IV. NOISE INDUCED CHAOS

In the previous sections, deterministic bifurcations were
considered in which both low and high dimensional dynam-
ics were observed. However, in many real engineering sys-
tems of interest, noise plays a definitive role with far reach-
ing consequences, as seen in Refs. 35–37. In fact, it is
possible to generate chaos using additive noise in mechani-
cally driven systems, as seen in the example of driven sto-
chastic mechanics presented in Ref. 31. In this section, we
wish to take the liberty to quantify how noise induced chaos
is related to a novel mathematical quantity related to the
unstable dimensionality of the system. Once the dynamical
systems are sufficiently high dimensional, it will be seen
how noise interacts with unstable spaces to produce positive
Lyapunov exponents. Since flexible continuum mechanical
systems produce high dimensional dynamics, the role of
noise will be seen to be play a prominent role in bifurcation
theory.

A. Unstable dimension variability associated with
noise-induced chaos and scaling law of Lyapunov
exponents

1. Noise-induced unstable dimension variability

An interesting phenomenon associated with noise-
induced chaos is that unstable dimension variability arises as
soon as the attractor becomes chaotic. Unstable dimension
variability means that, along a typical trajectory, the number
of local unstable directions can change. This is the type of
nonhyperbolicity that has been shown to be fundamental to
chaotic dynamics, particularly for the problem of shadowing
of numerical trajectories in high dimensions.23–30 Math-
ematically, unstable dimension variability can be described
in terms of the notion of hyperbolicity~or nonhyperbolicity!.

Consider a chaotic set from anN-dimensional map. The
set is hyperbolic if the following three conditions are met:38

~1! At each point in the set the tangent space can be split into
an expanding subspace and a contracting subspace. Dis-
tances in the expanding~contracting! subspace grow~shrink!
exponentially in time;~2! the angle between the stable and
the unstable subspaces is bounded away from zero;~3! the
expanding subspace evolves into the expanding one along a
typical trajectory and the same is true for the contracting
subspace. Violation of condition~2! leads to nonhyperbolic-
ity with tangencies, which occurs commonly in low-
dimensional chaotic systems with only one unstable direc-
tion. Nonhyperbolicity with unstable dimension variability is

FIG. 12. The number of KL modes required to capture 99% of the system
energy, as a function of forcing amplitudea.
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caused by the violation of condition~3!, which occurs in
systems with more than one unstable direction, i.e., high-
dimensional chaotic systems. In high dimensions, commonly
there are systems that violate both conditions~2! and ~3!.

We can argue that when noise induces a chaotic attractor,
unstable dimension variability arises immediately. Consider
the common situation where there are two coexisting dy-
namical invariant sets with distinct unstable dimensions. For
instance, in the simplest case of a one-dimensional map, in a
periodic window an attracting periodic orbit with zero un-
stable dimensions coexists with a chaotic saddle with un-
stable dimension one. Besides periodic windows, another
situation is where there is a periodic attractor and several
isolated saddle periodic orbits. The stable and unstable mani-
folds of these orbits are close to each other and are about to
form homoclinic or heteroclinic intersections. The presence
of noise can materialize the intersections, creating a chaotic
set, the so-calledstochastic chaotic saddle.39,40

For any periodic point on the attractor, under additive
noise of amplitudeD a trajectory can be found in a ball of
radiusD. If D is small so that the ball does not intersect the
stable manifold of the chaotic saddle, the final attractor of the
system will simply be a fattened version of the original pe-
riodic attractor. This is so because a random initial condition
leads to a trajectory that is confined in the vicinity of the
periodic attractor, although there can be transient chaos ini-
tially, in the sense that the trajectory may move toward the
chaotic saddle along its stable manifold, wander near the
saddle for a finite amount of time, and leave it along its
unstable manifold. Assume that forD5Dc , the noisy ball
begins to intersect the stable manifold of the chaotic saddle.
For D.Dc , there is a nonzero probability that a trajectory in
the vicinity of the original periodic attractor is kicked out of
the noisy ball and moves toward the chaotic saddle along its
stable manifold. Due to the nonattracting nature of the cha-
otic saddle, the trajectory can stay in its vicinity for only a
finite amount of time before leaving along its unstable mani-
fold and then, enter the noisy ball at the original periodic
attractor again, and so on. ForD*Dc , the probability for the
trajectory to leave the noisy ball of the original periodic at-
tractor is small. Thus, an intermittent behavior can be ex-
pected where the trajectory spends long stretches of time
near the periodic attractor, with occasional bursts out of it
wandering near the chaotic saddle.

A consequence of the noise-induced intermittent behav-
ior is that there is generally unstable dimension variability
associated with a continuous trajectory. Under noise, both the
chaotic saddle and the original periodic attractor belong to a
single, connected dynamical invariant set. Since, in the ab-
sence of noise, periodic orbits on the chaotic saddle are all
unstable and the attractor is a stable periodic orbit, noise-
induced intermittency means that a trajectory moves in re-
gions containing periodic orbits with distinct unstable dimen-
sions. A feature that distinguishes this type of unstable
dimension variability with that in the literature23–30 is that
here, the subsets with different unstable dimensions are lo-
cated in distinct regions of the phase space, whereas in high-
dimensional chaotic systems such as the kicked double
rotor,23,24 unstable periodic orbits in these subsets tend to

mix with each other densely in the phase space.
At a fundamental level, the appearance of unstable di-

mension variability implies the disappearance of the neutral
direction of the flow. Consider a three-dimensional flow in a
periodic window, where the periodic attractor contains no
unstable direction and the chaotic saddle possesses one un-
stable dimension. The role of noise, when it is sufficiently
large (D.Dc), is to link these two dynamical invariant sets
with distinct unstable dimensions. Now examine the local
eigenplanes that contain the neutral direction of the flow as-
sociated with the periodic attractor and the chaotic saddle. In
the local eigenplane at the periodic attractor, there is a stable
direction and a neutral direction. Consider an eigenvector in
the neutral direction. In the eigenplane of a point in the cha-
otic saddle, there is an unstable direction and a neutral direc-
tion. When a trajectory is driven by noise from the periodic
attractor to the chaotic saddle along its stable manifold, the
eigenvector can lie anywhere in the local eigenplane of the
corresponding point in the chaotic saddle. After a time, the
vector will be aligned in the unstable direction, due to the
expanding dynamics of the chaotic saddle. Distances along
the neutral direction of the original periodic attractor can no
longer be preserved. This feature of a noisy chaotic attractor
is fundamentally different from that of a deterministic cha-
otic attractor, where a neutral direction always exists. Thus
we see that unstable dimension variability plays a fundamen-
tal role in shaping the topology of the noisy chaotic flow.

2. Scaling law of Lyapunov exponents

We shall argue that for noise-induced chaos, the largest
Lyapunov exponent of the attractor obeys a universal alge-
braic scaling law:

l1~D !;~D2Dc!
a, for D*Dc , ~14!

where the scaling exponenta depends on system details.
Consider an (N11)-dimensional flow in a periodic window.
In the absence of noise, the chaotic saddle hasKu positive,
one zero, andKs negative Lyapunov exponents (Ku1Ks

5N) which can be ordered as follows:

lKu

S1>lKu21
S1 >¯l1

S1.0

5lS0.2l1
S2>...>2lKs21

S2 >2lKs

S2 . ~15!

The periodic attractor has one zero andN negative expo-
nents, as follows:

05lP0.2l1
P2.¯2lN

P2 . ~16!

For D,Dc , an asymptotic trajectory is confined in the
neighborhood of the periodic attractor, so the largest
Lyapunov exponent of the noisy attractor is simplyl1

5lP050. For D*Dc ~after the transition to chaos!, l1 is
approximately given by

l1' f P~D !lP01 f S~D !lKu

S15 f S~D !lKu

S1 , ~17!

wheref P(D) and f S(D) are the probabilities that a trajectory
stays near the original periodic attractor and the chaotic
saddle, respectively. Because of the averaging effect of noise,
we expect the dependence on noise of the largest Lyapunov
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exponentlKu

S1 of the original chaotic saddle to be weak. Thus

the main dependence ofl1 on noise comes fromf S(D), the
frequency of visit to the chaotic saddle, which is determined
by the measure of its stable manifold in the noisy ball of the
periodic attractor.

Consider anN-dimensional Poincare´ map corresponding
to the (N11)-dimensional flow. For a ball of radiuse, the
natural measure of the stable manifold contained within is
proportional to

eds5~eN!ds /N,

whereeN is proportional to the volume of the ball andds is
the information dimension of the stable manifold of the cha-
otic saddle. Using the Kaplan–Yorke conjecture21 for chaotic
saddles,41 ds is given by

ds5Ks1J1
HS2~l1

S11...1lJ
S1!

lJ11
S1 , ~18!

whereJ is an integer determined by

l1
S11...1lJ

S11lJ11
S1 >HS>l1

S11...1lJ
S1 , ~19!

andHS is the forward entropy of the chaotic saddle:

HS5(
i 51

Ku

l i
S12

1

t
. ~20!

Here t is the average lifetime of the chaotic saddle on the
Poincare´ map.~As a practical matter,t is in the unit ofT, the
average time that a typical trajectory crosses the Poincare´
section.! For D*Dc , the volume of the noisy ball in which
the stable manifold of the chaotic saddle lies is proportional
to: (DN2Dc

N). We thus have

l1;~DN2Dc
N!ds /N;~D2Dc!

a,

which is the scaling law~14! with the algebraic scaling ex-
ponent given by

a5
1

N FKs1J1
HS2~l1

S11...1lJ
S1!

lJ11
S1 G . ~21!

Numerical support for the scaling law can be found in Refs.
31 and 42.

B. Noise induced bifurcation and chaos in mechanics

We continue with two examples of how small, additive
noise induces chaos and unstable dimension variability in
this mechanical system. In particular, we study the transition
to stochastic chaos when we add stochastic perturbations of
the form

dy

dt
5F~y,p!1Dj~ t !,

whereF is the deterministic vector field of the mechanical
system defined in Eq.~9!, p represents the vector of param-
eters, andDj(t) is the additive Gaussian white noise with
standard deviationD. Note thatj(t) is an six-dimensional
vector whose components are independent Gaussian random
variables of zero mean and scaled variance. Explicitly, the
noise is scaled in each component so that it does not domi-

nate components with smaller magnitudes. We find the ap-
proximate range of each variable when it is in its steady state
and then scale the standard deviation of the noise by those
factors so that it effects each component equally. Noise is not
added to the components representing the drive@C3 andC4

in Eq. ~9!#, so those variances are set to zero. We use the
standard second-order Milshtein method,43 to integrate the
stochastic differential equations. We also integrate the Jaco-
bian and calculate the Floquet multipliers to find the
Lyapunov exponents based on time averaging. By fixing the
parameters of Eq.~9!, we examine the dynamics of the me-
chanical random dynamical system as the noise amplitude is
increased from zero.

First, we study the system with small coupling using the
parametersm50.086 875 anda51.8. With no noise, the
dominant behavior of the system is a chaotic attractor on the
slow manifold characterized by one positive Lyapunov expo-
nent. As expected with an autonomous flow, the second larg-
est exponent is the null Lyapunov exponent, which repre-
sents the neutral direction associated with the flow. The four
remaining Lyapunov exponents are negative. Adding noise to
the system excites a nearby high dimensional chaotic saddle
off the slow manifold and the potential number of unstable
~dynamical! dimensions is increased from one to two. Nu-
merically, we observe that increasing the standard deviation
of the noise (D) increases the third Lyapunov exponent, the
largest negative exponent, in a continuous manner. When the
third exponent is close to crossing zero, the null exponent
increases away from zero, leaving no zero valued Lyapunov
exponent within a small window. Define the beginning of
this transitionDc . This fundamentally disturbs the noisy
flow, resulting in two positive Lyapunov exponents and the
third largest exponent approaching the zero value from the
negative side. See Fig. 13~a! for a graph of this transition.
We approximate the algebraic scaling of the Lyapunov expo-
nent with a least squares fit asa51.5143, having a maxi-
mum error of 0.5786, as shown in Fig. 13~b!.

Due to the small coupling parameter, the deterministic
system motion is constrained to a slow manifold, which is a
four-dimensional surface. The chaotic attractor resides on
this surface, but random trajectories experience on–off inter-
mittency, which is characterized by a bursting behavior off
the surface. This is common for chaotic attractors having
periodic orbits with unstable eigenvectors transverse to the
attractor. As an orbit approaches the attractor, it sometimes
lands near one of these repellors, which ejects it from the
neighborhood of the attractor. Then, the trajectory visits the
chaotic saddle off the slow manifold for a period of time
until it begins its approach back to the attractor once again.
Measuring the distance of a trajectory off the slow manifold
reveals the frequency of this process, and an average bursting
rate can be calculated. When noise is added to the system,
the bursting rate increases with the standard deviation of the
noise. This is expected since the noise facilitates the process
of a trajectory landing near a repellor. If we track the Euclid-
ean distance of the trajectory in the first two components
from the slow manifold, we can set a threshold to define
bursting rates. By recording the fraction of iterates in a long
trajectory as a function of the standard deviation of the noise,
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we see a change in behavior at the same critical valueDc ,
where the number of positive Lyapunov exponents increase.
See Fig. 14. The data follow exponential growth, and using a
least squares fit, we can fit line to the natural log of the data
with slope 11.6296, which has a maximum error of 0.2148,
as shown in Fig. 14.

Another quantity that we can measure is the interspike
interval. This is the time between bursts away from the slow
manifold. Recording the interspike intervals along a random
trajectory also indicates how noise increases the frequency of
transients on the chaotic saddle. We calculate the interspike
interval using the same threshold as the burst rate. Because
the distance measurement does not have a pattern in time or
amplitude, it is difficult to define the beginning and end of an
individual burst. Therefore, we define the beginning of each
burst as the time when the distance increases above the burst
threshold. The interspike intervals are the intervals between
these times. Consider the sequence of interspike intervals for
a random trajectory using the parametersm50.086 875,a
51.8, andD50.25. The histogram of interspike interval
~ISI! sequence follows a semilog scaling law. The slope of
the least squares fit is20.1275 with a maximum error of
1.9619, as shown in Fig. 15.

At larger coupling parameters, the dominant behavior of
the system is a periodic attractor. Therefore, with no noise,
all the Lyapunov exponents are negative except for the null
exponent. The addition of noise emulates chaotic behavior,
which is observed by the bifurcation in the Lyapunov expo-
nents from zero to two local unstable directions. We use the
parametersm50.5025 anda50.65 as an example in Fig.
16. Notice that the two largest exponents increase in a con-

tinuous manner above zero and the third largest approaches
zero from the negative side in Fig. 17~a!. This is a new type
of transition to noise induced chaos. The largest Lyapunov
exponent follows an algebraic scaling similar to the one
shown in the small coupling case. We useDc50.002 938,
which results in a linear fit with slope 1.4973 and maximum
error of 0.8087. The second largest exponent also follows an
algebraic scaling, but it increases from a negative value.
Therefore, we must translate the Lyapunov exponent by that
negative value so we can use the natural log. We use the
value of the Lyapunov exponent atDc , calledLc , and find
ln(L2Lc) as we increaseD from Dc . This results in a linear
fit with slope 1.5090 and maximum error of 0.8198. Note the
similarity in this scaling to that of the maximum Lyapunov
exponent. Graphs of each of these fits are shown in Fig.

FIG. 14. For the noisy system using the parametersm50.086 875 anda
51.8, ~a! the bursting rate, and~b! algebraic scaling of the bursting rate.
The solid line in indicates the slope.

FIG. 15. The interspike interval statistics for the parametersm
50.086 875,a51.8, andD50.25.

FIG. 13. For the noisy system in the small coupling case,~a! the second and
third Lyapunov exponents versusD about the transition, and~b! algebraic
scaling of the second largest Lyapunov exponent withD2Dc . The solid
line in indicates the theoretical slopea.
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17~b!. Because this example uses a large coupling parameter,
the dynamics are not dominated by the slow manifold and
we cannot compute bursting statistics similar to the previous
example.

V. CONCLUSIONS

We have explored a class of linear continuum mechani-
cal systems coupled to a nonlinear oscillator from a dynami-
cal systems point of view. In previous work, such systems
were ideally driven from an outside source. In the model
presented here, we considered a more general case where the
frequency of the driver is slightly perturbed by the momen-
tum change of the mechanical system to which it is con-
nected. We have derived an ODE–PDE system describing
the physics, and then showed how to construct the modal
decomposition into an infinite set of ODE’s. A truncated

model was then derived for analysis, in which the system
was described as a slow–fast time scale system, which could
be analyzed using singular perturbation theory.

The deterministic system was analyzed for its bifurca-
tion structure, which included routes to chaos, as well as
torus bifurcations. However, one of the interesting bifurca-
tions observed was that of a dimension changing bifurcation.
When the singular parameter~m! was small, one could ob-
serve chaos constrained in a neighbor of an underlying in-
variant manifold. However, increasing a parameter, such as
amplitude a drive term in Eq.~9!, would cause the dynamics
to burst off the manifold into the ambient space. Accompa-
nying sufficient bursting was the appearance of an additional
Lyapunov exponent, signaling a change in dynamical dimen-
sion.

Since the invariant slow manifold is an unstable object at
appropriate parameters, constraining the dynamics to the
manifold reveals a chaotic saddle structure. Such a structure
is important when examining both deterministic and stochas-
tic bifurcations from low to high dimensions.

One important aspect of the noise induced bifurcation
was quantifying the relationship of the change in Lyapunov
exponents with respect to the standard deviation of the noise.
Here we used the unstable dimension variability of the sys-
tem to show explicitly in a mechanical system that the expo-
nent obeys a universal scaling law. It is a remarkable fact that
the scaling actually persists over a wide range of noise am-
plitudes. It is also an interesting observation that the change
is continuous, even when the deterministic changes from pe-
riodic to hyper-chaotic behavior are discontinuous.

Several areas of inquiry are suggested by the current
study. First, recent work has shown that sudden changes may
occur as a dimension changing bifurcation when mechanical
systems of sufficient complexity are operated near resonance.
Since we observe such changes in simple prototypical sys-
tems, as we do here, it appears that many other systems may
exhibit the same nonlinear vibrations. If so, novel controls
may be designed based on the invariant manifold theory.
Moreover, such control may be used to spread energy into
higher heat dissipative modes, or other governing devices,
making energy transfer from one part of a structure to an-
other more efficient and directed.

On the other hand, since additive noise modifies the dy-
namics and its dimension continuously, it may be used a
better probe for nondestructive evaluation. By comparing the
pristine system to later use, one may use time series tests for
nonstationarity to explore controlled frequency responses by
adding noise.

Other areas of interest include nonlinear elasticity, dif-
ferent boundary conditions, such as clamping, and higher
dimensional structures, such as trusses.
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FIG. 16. The Lyapunov exponents of the noisy system. This is the large
coupling case using the parametersm50.5025 anda50.65.

FIG. 17. These graphs use the noisy system with large coupling parameters:
m50.5025 anda50.65. ~a! A close up of the three largest Lyapunov ex-
ponents near the transition to stochastic chaos.~b! The algebraic scaling for
the two largest Lyapunov exponents. The largest exponent is shown in black
and the data are plotted ln(L) vs ln(D2Dc). The second largest is in gray and
the data are plotted ln(L2Lc) vs ln(D2Dc). Both linear fits have slope close
to 1.5.
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