View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Montclair State University Digital Commons

Montclair State University
Montclair State University Digital Commons

Department of Mathematical Sciences Faculty

Department of Mathematical Sci
Scholarship and Creative Works cpartment o Mathematical sclences

8-21-2008

Thermally activated sw1tch1ng in the presence of
non-Gaussian noise

Lora Billings
Montclair State University, billingsl@montclair.edu

Mark Dykman
Michigan State University

Ira Schwartz
US Naval Research Labratory

Follow this and additional works at: https://digitalcommons.montclair.edu/mathsci-facpubs

Part of the Thermodynamics Commons

MSU Digital Commons Citation

Billings, Lora; Dykman, Mark; and Schwartz, Ira, "Thermally activated switching in the presence of non-Gaussian noise" (2008).
Department of Mathematical Sciences Faculty Scholarship and Creative Works. 13.
https://digitalcommons.montclair.edu/mathsci-facpubs/13

Published Citation

Billings, L., Dykman, M. L, & Schwartz, L. B. (2008). Thermally activated switching in the presence of non-Gaussian noise. Phys Rev E
Stat Nonlin Soft Matter Phys, 78(S Pt 1), 051122. doi:10.1103/PhysRevE.78.051122

This Article is brought to you for free and open access by the Department of Mathematical Sciences at Montclair State University Digital Commons. It
has been accepted for inclusion in Department of Mathematical Sciences Faculty Scholarship and Creative Works by an authorized administrator of

Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.


https://core.ac.uk/display/234622846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.montclair.edu?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/248?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/mathsci-facpubs/13?utm_source=digitalcommons.montclair.edu%2Fmathsci-facpubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu

PHYSICAL REVIEW E 78, 051122 (2008)

Thermally activated switching in the presence of non-Gaussian noise
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2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
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Washington, DC 20375, USA
(Received 21 August 2008; published 24 November 2008)

We study the effect of a non-Gaussian noise on interstate switching activated primarily by Gaussian noise.
Even weak non-Gaussian noise can strongly change the switching rate. The effect is determined by all mo-
ments of the noise distribution. It is expressed in a closed form in terms of the noise characteristic functional.
The analytical results are compared with the results of simulations for an overdamped system driven by white
Gaussian noise and a Poisson noise. Switching induced by a purely Poisson noise is also discussed.

DOI: 10.1103/PhysRevE.78.051122

Much progress has been made recently in the studies of
switching between coexisting stable states, primarily because
switching can be now investigated for a large variety of well-
controlled microscopic and mesoscopic systems ranging
from trapped electrons and atoms to Josephson junctions and
to nanomechanical and micromechanical oscillators [1-10].
Fluctuations in these systems are usually due to thermal or
externally applied Gaussian noise. However, as the systems
become smaller, an increasingly important role may be
played also by non-Gaussian noise. It may come, for ex-
ample, from one or a few two-state fluctuators hopping at
random between the states; the fluctuator noise may be often
described as a telegraph noise [11].

The switching probability is sensitive to a non-Gaussian
noise. This sensitivity attracted much attention after it was
proposed [12] to use switching in Josephson junctions to
measure the full counting statistics in electronic circuits
[13,14]. Several theoretical [15-18] and experimental
[19,20] papers on measuring the third moment of the current
distribution from the switching rates were presented recently,
and different theoretical approaches were compared in Refs.
[21,22].

In this paper we study switching induced by Gaussian
noise in the presence of an additional non-Gaussian noise.
Even where the latter has a smaller intensity than the Gauss-
ian noise, its effect on the switching rate may be exponen-
tially strong. We show that it can be described in a simple
form in terms of the noise characteristic functional, thus ac-
counting for all moments of the noise distribution. The ana-
Iytical results are compared with simulations for an over-
damped system driven by white Gaussian noise and a
Poisson noise. We also consider switching induced by a Pois-
son noise alone; here, the result for the rate may be qualita-
tively different from that in the weakly non-Gaussian noise
approximation.

The potentially strong effect of an extra modulation,
whether random or regular, on the rate of Gaussian noise
induced switching can be understood from the well-
established picture of the switching dynamics. Switching
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events result from large rare noise outbursts. For Gaussian
noise, the switching rate is Wocexp(—R/D), where R is the
activation energy and D is the noise intensity [23]. Even
though switching happens at random, the system trajectories
followed in switching form a narrow tube in the space of
dynamical variables q=(g;,q,,...) centered at the most
probable (optimal) switching path q(#), as observed in a
recent experiment [24].

One can think of the effect of an additional modulation in
terms of a generalized work done by the modulation on the
system moving along q,(#) [25,26]. This work changes the
activation barrier. The change SR is proportional to the
modulation amplitude. Therefore, the overall change of the
switching rate «exp(—JR/D) depends on the modulation am-
plitude exponentially. The switching rate gives the probabil-
ity current from the occupied state [27]. It is an observable
quantity. As such, it must be averaged over realizations of the
modulation, if the modulation is random, i.e., for random
modulation one must average exp(—JR/D).

Since OR is linear in the characteristic amplitude of ran-
dom modulation, the ratio 6R/D does not have to be small
even where the modulation intensity, which is quadratic in
the amplitude, is smaller than D. However, the distribution of
non-Gaussian modulation may decay slower than Gaussian
on the tail. To determine whether the effect of a non-
Gaussian noise on switching may be regarded as a perturba-
tion one must compare the probabilities of appropriate large
fluctuations induced by the Gaussian and non-Gaussian
noises, taking into account all moments of the distribution.

We study switching for a system described by the Lange-
vin equation

q=Kl(q) +£(r) + &@1). (1)

We assume that, in the absence of noise, the system has a
stable stationary state q, and a saddle point qg on the bound-
ary of the basin of attraction to q4, with K(q,)=K(qg)=0.
Switching from the stable state is due to the forces f(¢) and
&(r), which are the Gaussian and non-Gaussian noises, re-
spectively. We separate them, since physically they often
come from different sources. It is convenient to characterize
f(r) by its probability density functional Pyf(7)]
=exp(-Ry/D),
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'Rf[f(t)]=ifdtdt'f(t)j:(t—t')f(t'), (2)

where F(t—1')/2D is the inverse of the pair correlator of £(z).
The characteristic noise intensity D is small, so that the
switching rate W<t;1 ,t:,l, where ¢, is the relaxation time of
the system and ¢, is the noise correlation time. The non-
Gaussian noise is more conveniently described for our pur-
pose by the characteristic functional

73§[k]=<exp(i f dtk(t)f(t)>>§, (3)

where (- --); means averaging over &(r).

We first consider the case where the intensity of the non-
Gaussian noise & is smaller than D. We will disregard cor-
rections proportional to this intensity, but the ratio of the
characteristic amplitude g, of & to D will not be assumed
small. The switching rate can be written as

W= C(exp(- R[&]/D));.

R[E&]= min(Rf+ i J dik()[q-K-1£(r) — g(r)]) , @)

where prefactor C weakly depends on g,,D. The minimum is
taken over trajectories f(z),q(¢),k(r) that satisfy boundary
conditions f(7),k(z) — 0 for r— =0, q,_,_.— Q4 Q00— qs-
This formulation was proposed in the weak-noise limit
[28,29] for a time-periodic &(r), in which case g, 5 are also
periodic and there is no averaging over & The variational
problem (4) describes coupled optimal trajectories
fopt(1) s Qopt(1)  Kopi(7), with £,,(r) being the most probable
noise realization that brings the system to the saddle on the
basin boundary of the initially occupied state.

It is known from variational calculus that, to first order in
&, the effect of &(r) on R can be calculated along the optimal
trajectory unperturbed by &(z). Such a trajectory is an instan-
ton. Its typical duration is ~max(z,,7.). It is translation in-
variant with respect to time and can be centered at any time
to. The time-translation symmetry (degeneracy) requires spe-
cial care when using perturbation theory. In particular, a pe-
riodic in time &(¢) lifts the degeneracy by fixing 7, (modulo
the period) so as to minimize R[&] and maximize the rate W
[25].

If &(z) is a stationary noise, the switching rate W is inde-
pendent of time. In this case one can think not of the adjust-
ment of the instanton center 7, to &(), but, equivalently, of
the adjustment of &(r) to 7, so as to maximize the overall
probability of switching. This adjustment provides the major
contribution to the value of W when the averaging over re-
alizations of &(r) is performed in Eq. (4) using a solution
with a given ¢.

From Egs. (3) and (4) one obtains a simple expression for
the switching rate,

w=wOAy, A, =PlixD], (5)

where W is the switching rate in the absence of non-
Gaussian noise. The factor A, describes the effect of non-
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Gaussian noise. It is expressed in a closed form in terms of
the noise characteristic functional calculated for function
x(7) =—ikf)%)[(t), where kf)%)[(t) is the solution of the variational
problem (4) for £=0. The real function x(¢) is the logarith-
mic susceptibility which describes the linear response of
In W to a perturbation [25,26,30]. The structure of Eq. (5)
resembles that of the expression for a large fluctuation prob-
ability in a birth-death system with non-Gaussian modulation
of reaction rates [31].

From Eq. (5), the effect of a non-Gaussian noise on the
switching rate is determined by the ratio of the noise ampli-
tude to the Gaussian noise intensity D. Equation (5) applies
to both underdamped and overdamped systems. Examples of
calculating k(()%{ can be found in Refs. [25,26,30], and papers
cited therein.

As an illustration we will consider the case of a one-
component S-correlated Poisson noise &(1)=g2,8(t—1,) with
mean pulse frequency v. Using the explicit form of the noise
characteristic functional [32], we obtain

Aswzexp<_ VJ dt{] _exp[_ X(t)g/D]})7 (6)

where () is the corresponding component of the logarith-
mic susceptibility. If |g|[/D<1, InAg, is a series in g/D.
The coefficients in this series describe the effects of the
moments of the Poisson noise on the switching rate. In the
opposite case, |g|//D>1 (but the Poisson noise intensity
vg?<D), if gx(r) becomes negative, then InAg,
~ 27D/ gx(t,)]"* exp[-x(t,)g/ D] where t,, is the instant
where —gx(¢) is maximal. If gx(1)=0 for all ¢ and |g|/D
> 1, the major contribution to A, comes from the region of
small |x(¢)|. If gx(¢) is small only for |t| — o, where it decays
exponentially with |¢|, then In Ay, vt, In(|g|/D), to leading
order in g/D.

The Poisson noise distribution does not fall off as steeply
as the Gaussian. This imposes a limitation on the range of
g/D where Poisson noise may be treated as a perturbation
and the above theory applies. To see the far-tail effect we
consider switching due to a purely Poisson noise, where f
=0 in the equation of motion (1). We will use the method of
optimal fluctuation, as for some other types of non-Gaussian
noise [33].

The switching rate is determined, to logarithmic accuracy,
by the integral over trajectories k(z),q(r) of the functional
(exp{—i [dik(t)[q—-K-&(1)[})¢ [34]. We consider a zero-
mean noise, &(r)— &(1)—(&),K—K+(& and assume that
q4,(g are also appropriately shifted. The formulation is more
compact if different components of the Poisson noise are
independent short pulses with areas g=(g;,...,gy) and av-
erage frequencies v=(v,,...,v)). Of interest for switching
are trajectories that approach the saddle point [28]. In the
spirit of the method of optimal fluctuation, for small |g| and
for |V|St:1 the integral over trajectories q(7),k(s) can be
calculated by steepest descent. This gives

W=C"exp(-Rp), Rp=min fdt(ikq—H),

051122-2
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H(q,ik) = - X vj(1 +igjk;— %) + ikK(q).  (7)
J

The variational problem (7) determines the optimal switch-
ing trajectory qgy(1),Kop(2). It starts at t— - at q—q,.k
—0 and goes to q—qs,k—0 for t— . On this trajectory
H=0. As in systems driven by white Gaussian noise [23], the
optimal trajectory is a Hamiltonian trajectory of an auxiliary
system with coordinate q, momentum ik, and Hamiltonian
H. A similar formulation, but in different terms and with
extra assumptions, was developed for fluctuations in electric
circuits [17,22,35]. In our approach the noise is characterized
by average pulse frequencies v; and, independently, by pulse
areas g; (g;=0); the approach can be immediately general-
ized to a noise with a finite correlation time.

The switching exponent in Eq. (7) is Rp>1 for small |g|.
However, in contrast to the case of Gaussian noise, Rp is not
proportional to the reciprocal noise intensity E,-v,-g? nor does
it scale like reciprocal noise amplitude |g|~!, although R|g|
often slowly varies with |g|.

An explicit dependence of the switching rate on the Pois-
son noise parameters can be found for a one-variable over-
damped system with equation of motion

q=-U'(q) +f(1) + &1). (8)

Here, U(q) is the effective potential. The stationary states g4
and gg correspond to the minimum and the barrier top of
U(g).

If f(z) is white Gaussian noise, {(f(¢)f(¢'))=2D&(t—t"), and
the Poisson noise is weak, the Poisson-noise induced factor
in the switching rate A, is described by Eq. (6) with x(r)
=—101)/12=~4{(1) and with ¢0=U"(4%).

In the opposite case where switching is due to purely
Poisson noise, i.e., /=0 in Eq. (8), H can be reduced to the
same form as in Ref. [35]. From Eq. (7),

Rp= équ dgk(q), k=In{l+[xU'(¢)/gv]}. (9)

qaa

Here, g, and g are the shifted extrema of the potential given
by equation U’(q)=gv. From Eq. (9), Rp~rpIn(rp/vt,),
with rp=(Gs—qu)/ g

A qualitative feature of unipolar (pulses of one sign) Pois-
son noise is that, for an overdamped system, it causes
switching only provided the noise pulses push the system
from the stable state towards the saddle. In this case rp>0.
There is no switching for pulses of the opposite sign. The
“one-sidedness” of fluctuations in overdamped systems has
other manifestations, which includes the work fluctuation
distribution [36]. On the other hand, we expect that an un-
derdamped system should be able to switch for Poisson
pulses of any sign, in which case there should be a critical
value of damping for which switching from the state is pos-
sible for a given sign of g. Equations (7) and (9) apply if
rp,rpl vt,>1.

As a cause of switching, a Poisson noise is effectively
weaker than a Gaussian noise only if the switching exponent
Rp is larger than the switching exponent for the Gaussian
noise, which for white noise is AU/D with AU=U(gqys)

PHYSICAL REVIEW E 78, 051122 (2008)
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FIG. 1. Poisson noise induced change of the switching exponent
for an overdamped Brownian particle in potential (10). The dimen-
sionless Poisson noise frequency is »=0.5. The data of numerical
simulations are shown with circles and squares for the cases where
in escape the particle moves along and opposite to Poisson pulses,
respectively. The solid curves show Eq. (6) for these cases, and the
dashed curves show the approximation adopted in Refs. [16-18]
where only three moments of Poisson noise are taken into account.

—U(q,) [27]. The condition Rp>AU/D also effectively lim-
its the range of applicability of Eq. (6). We see that
InA, becomes large provided —x(r,)g/D>1. An order
of magnitude estimate shows that —x(z,)g/D
~(AU/ D)R;1 In(rp/vt,), and therefore from Eq. (9) the
large In A, asymptotics applies provided In(rp/ vt,) > 1. This
condition is compatible with —x(z,)g/D>1 only for very
small D.

We now apply the above results to an overdamped system

(8) with a double-well potential

Ug) =—-¢*12 + ¢4, (10)
which has been extensively studied in the context of white-
noise driven systems. In the absence of Poisson noise, the
escape rate in this case is W(0)=(\s‘§/ m)exp(—1/4D), and the
logarithmic susceptibility for escape from the negative-g
well (g,=—1) is x(1)=—exp(t/2)(2 cosh 1)~ [x(¢) has oppo-
site sign for switching from g,=1].

In Fig. 1 we present results of Monte Carlo simulations of
switching of an overdamped Brownian particle described by
Egs. (8) and (10). They are compared with prediction (6) and
the approximation where only terms up to g* are kept in Eq.
(6). The Poisson noise intensity vg?<<D in the whole range
of studied g/D. For g/D=1 the effect of Poisson noise is
small and comes, primarily, to the change of the activation
barrier, AU— AU *+ vg, and the effective noise intensity, D
—D+vg? For larger g/D=3 the switching exponent
changes significantly, as expected.

For switching in the direction opposite to Poisson noise
pulses, where In W/ W® <0, the numerics agree well with
Eq. (6). This is to be expected since the far tail of Poisson
noise distribution is immaterial here; for g/D =5 the results
differ noticeably from the three-moments approximation. For
switching along the pulses, because of the far-tail effect, with
increasing g Poisson noise quickly becomes as important as
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FIG. 2. Switching exponent Rp=—In W for an overdamped par-
ticle in a potential (10) [7,=1/2] driven by a Poisson noise with
dimensionless mean frequency v=0.5 and pulse area g. Squares
show the results of Monte Carlo simulations and the solid line is the
asymptotic theory (9).

white noise for chosen D. Therefore, the perturbation theory
fails and the dependence of the switching exponent on g is
much weaker than the exponential dependence expected
from Eq. (6).

Numerical simulations of the switching rate for purely
Poisson noise are shown in Fig. 2. There is good agreement

PHYSICAL REVIEW E 78, 051122 (2008)

between the data and the asymptotic theory (9) for small g.
In this range Rpg slowly varies with g.

In conclusion, we have considered switching in systems
simultaneously driven by a Gaussian and a non-Gaussian
noise. Even where the non-Gaussian noise has intensity
smaller than that of the Gaussian, it may strongly change the
switching rate. The effect is determined by the ratio of the
non-Gaussian noise amplitude to the Gaussian noise inten-
sity. It is described by the characteristic functional of the
non-Gaussian noise calculated for a function determined by
the system dynamics without this noise. A non-Gaussian tail
of the noise distribution may strongly modify the switching
rate even for a small noise intensity. We demonstrate this
effect using Poisson noise as an example. Analytical results
and Monte Carlo simulations show agreement in the appro-
priate parameter regions.
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