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A B S T R A C T

Within many biomes, the cause of phylogeographic structure remains unknown even across regions throughout
North America, including within the biodiverse Chihuahuan Desert. For example, little is known about popu-
lation structure or the timing of diversification of Chihuahuan endemics. This is due largely to the lack of
population genomic studies within this region. We generated ultra-conserved element data for the gray-banded
kingsnake (Lampropeltis alterna) to investigate lineage divergence and historical demography across the
Chihuahuan Desert. We found three unique lineages corresponding to the Trans-Pecos and Mapimian biogeo-
graphic regions of the Chihuahuan Desert, and a distinct population in the Sierra Madre Occidental. Using
several mutation rates to calibrate the timing of divergence among these lineages, we show that lineage di-
vergence likely occurred during the Pleistocene, which indicates that careful consideration needs to be used
when applying mutation rates to ultra-conserved elements. We suggest that biogeographic provinces within the
Chihuahuan Desert may have served as allopatric refugia during climatic fluctuations of the Quaternary. This
work serves as an important template for further testing biogeographic hypotheses within the region.

1. Introduction

Population structure and ultimately speciation are influenced by
historical events, landscape features, and biotic influences. In many
cases, shared processes affect the population structure of many dis-
parate taxa (Carnaval et al., 2009; Gehara et al., 2017), demonstrating
that common large-scale features of biomes often have unique effects on
gene flow. While processes related to lineage formation within tempe-
rate biomes have been dissected for many plant and animal species
(Soltis et al., 2006; Shafer et al., 2010), other regions remain largely
unexplored, and therefore, important features of lineage divergence,
such as timing of divergence and the basic drivers of diversification,
remain unknown.

Although the Chihuahuan Desert is the largest warm desert in North
America and is both ecologically diverse and species rich (Hernández
et al., 2001; Olson and Dinerstein, 2002), few studies have examined

processes that structure populations of endemic taxa in this region.
Broad-scale phylogoeographic patterns across arid North America have
demonstrated the distinctiveness of this region’s biodiversity from ad-
jacent arid biomes (e.g., Zink et al., 2001; Riddle and Hafner, 2006;
Myers et al., 2017). The Chihuahuan Desert has been delineated into
three biogeographic subprovinces (Trans-Pecos, Mapimian, and Sal-
adan; Fig. 1), based on shared species distributions (Morafka, 1977).
Population genetic structure in several taxa is congruent with these
subprovinces (e.g., Scheinvar et al., 2017), which also largely corre-
spond to the Trans-Pecos, Coahuilan, and Zacatecan subregions deli-
neated by Hafner and Riddle (2005). Studies investigating the origins of
population structure of Chihuahuan Desert taxa have produced dates
that range broadly from the late Neogene to the Quaternary (e.g., Sosa
et al., 2009; Bryson et al., 2012; Castellanos-Morales et al., 2016; Loera
et al., 2017), suggesting that species are likely responding to unique
features of this biome. For example, divergences that date to the
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Quaternary are usually associated with glacial and climatic cycles
(Ayoub and Riechert, 2004; Jaeger et al., 2005; Wilson and Pitts, 2012;
Loera et al., 2017) and post-Pleistocene colonization from southern
refugia (Wells and Hunziker, 1976; Wells, 1977). Neogene divergences
appear to be linked to orogenic events that promoted the expansion of
arid habitats in western North America (Wilson and Pitts, 2010; Wood
et al., 2013) resulting in geographic population structure predating
Quaternary climatic oscillations (Van Devender and Burgess, 1985; Van
Devender, 1990; Steadman et al., 1994; Thompson and Anderson, 2000;
Metcalfe, 2006).

Snakes in temperate North America have provided important ex-
amples of how populations are structured given climate and habitat
changes as well as ancient geographic features (Burbrink and Castoe,
2009). In particular, kingsnakes in the genus Lampropeltis present strong
phylogeographic structure consistent with geography and ecological
gradients across many habitat types and have diversified during the
major climate cycles of the Pleistocene (e.g., Pyron and Burbrink, 2009;
Burbrink et al., 2011; Myers et al., 2013; Ruane et al., 2014; McKelvy
and Burbrink, 2017). As an endemic Chihuahuan Desert taxon, the
gray-banded kingsnake (L. alterna) is distributed across the mountai-
nous regions of the Trans-Pecos and Mapimian subprovinces of the
Chihuahuan Desert, inhabiting a range of habitats from xeric desert
scrub to subhumid wooded uplands (Fig. 1; Garstka, 1982; Bryson et al.,
2007; Hansen and Salmon, 2017). While this taxon is polymorphic in
color and pattern (Fig. 1), nothing is known of its population genetic
structure or historical demography. Previous mitochondrial DNA
(mtDNA) gene-tree analyses have demonstrated that L. alterna is poly-
phyletic with respect to L. mexicana and L. gentilis (Bryson et al., 2007).

This polyphyly is the result of mitochondrial introgression from L.
gentilis into L. alterna and not deep coalescence of the mtDNA genome
(Ruane et al., 2014). Despite this mitochondrial introgression, nuclear
DNA suggest little to no gene flow between L. alterna and L. gentilis, and
support L. alterna as a distinct genetic cluster that is not sister to L.
gentilis in species-tree analyses (Burbrink and Gehara, 2018; Ruane
et al., 2014), further demonstrating that mitochondrial introgression is
the result of historical rather than contemporary processes. Although L.
alterna was not the focus of these previous studies, it was demonstrated
that understanding processes related to divergence and historical de-
mography requires information from many loci, and that the mtDNA
genome will be largely uninformative for population level studies of L.
alterna.

To better understand processes of lineage divergence in L. alterna
and historical demographics in the Chihuahuan Desert, we use se-
quence capture to generate a genomic dataset of ultra-conserved ele-
ment loci. With these data, we assess spatial genetic diversity, asking if
predefined biogeographic areas within the Chihuahuan Desert show
genetically distinct populations. We then use several mutation rates and
secondary calibrations to estimate the timing of diversification to assess
the importance of geologic events of the Neogene versus Quaternary
climatic cycles in driving lineage divergence.

2. Methods and materials

2.1. Sampling, library prep, and sequencing

We sampled 19 L. alterna from across its distribution in the US and

Fig. 1. Sampling localities of Lampropeltis alterna included within this study. Colors of each symbol denote population membership. Outlined in green and shaded in
tan is the approximate distribution of the Chihuahuan Desert, divided into the three subprovinces of Morafka (1977); TP = Trans-Pecos, M = Mapimian; and
S = Saladan. Around the map are images illustrating phenotypic variation found within L. alterna. Additional locality info and collection numbers are listed in the
Supporting information.
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several regions of Mexico (Fig. 1, Supplemental Materials). Samples
were included from both the Trans-Pecos and Mapimian subprovinces
of the Chihuahuan Desert as well as the only known population from
the lower eastern foothills of the Sierra Madre Occidental. Although
these tissue samples span the entire known distribution of L. alterna, we
were unable to obtain samples from a few regions in Mexico. We in-
cluded L. zonata as an outgroup taxon because it is the sister group to L.
alterna (Chen et al., 2017). We extracted genomic DNA from tissues and
shed skins using Qiagen DNeasy Blood and Tissue Kits (Qiagen Inc.).
Extractions were quantified using a Qubit 2.0 fluorometer (Life Tech-
nologies, Inc.) and sent to RAPiD Genomics (Gainesville, FL, USA) for
ultraconserved element (UCE) sequence capture and sequencing. Each
pool was enriched using a set of 5472 custom-designed probes (MY-
baits, MYcroarray, Inc.) targeting 5060 UCE loci (Faircloth et al., 2012)
following an open-source protocol (available at www.ultraconserved.
org). Pooled libraries were sent to the University of Florida ICBR Fa-
cility for 100 bp paired-end sequencing on an Illumina HiSeq 3000.
Using dual-indexed barcodes, multiple clean-ups and quality control
steps, the amount of reads that mapped to impossible index combina-
tions was very low (average index hopping rate = 0.2%), alleviating
concerns raised in Sinha et al. (2017).

2.2. UCE assembly and alignment

To reduce the possibility that the reads from more diverged samples
either would not map or would map incorrectly, we assembled UCEs
from each sample independently using a modified version of the Phyluce
pipeline (Faircloth, 2015). Briefly, we first used the VelvetOptimiser
wrapper to de novo assemble each sample with Velvet (v.1.2.1; Zerbino
and Birney, 2008). Our lower hash value was set to 65 and our upper
value to 75. The optimization function used for Velvet’s coverage cutoff
was set to the total number of base pairs in all contigs (‘tbp’). All other
parameters were set to the default. After de novo assembly, we used the
Phyluce scripts ‘phyluce_assembly_get_match_counts’ and ‘phylu-
ce_assembly_get_fastas_from_match_counts’ to match each sample’s con-
tigs to the reference probes. Next, we used the Burrows-Wheeler Aligner
(BWA; v. 0.7.12; Li and Durbin, 2009) to map the reads to the de novo
assembled contigs (each sample being unique). After mapping, PCR du-
plicates were removed with Picard Tools (v.1.119; https://
broadinstitute.github.io/picard/). Then we used The Genome Analysis
Toolkit (GATK; v3.6-0; McKenna et al., 2010) to call, realign, and mask
indels, call and annotate snps, and perform read-backed phasing, all in
accordance with the standard Phyluce pipeline. A phased, sample-spe-
cific FASTA was created using ‘add_phased_snps_to_seqs_filter.py’ from
the seqcap_pop pipeline (Harvey et al., 2016). Lastly, we combined all
samples into multi-FASTAs (one per UCE) using a custom Perl script.
These were aligned using MUSCLE (v3.8.31; Edgar, 2004) with default
settings, then trimmed with a custom Perl script such that there were no
missing sites at the ends of alignments. Custom scripts used in preparing
our data for analysis are available upon request from the authors.

From these aligned and trimmed UCE series, two data sets were
constructed and used for downstream analyses. The first was a complete
matrix of UCE loci that were represented in all L. alterna and L. zonata
samples and therefore had no missing data (this data set will be referred
to as the ‘complete dataset’ throughout). In the second dataset, loci
were conditioned on being present in the outgroup taxon (L. zonata)
and allowed for missing data within the L. alterna samples (hereafter,
‘relaxed dataset’).

2.3. Population structure and isolation by distance

Using the complete dataset of UCE loci, a single, random nucleotide
polymorphism (SNP) was extracted from each UCE for use in popula-
tion structure analyses. Two complementary methods that do not make
explicit assumptions about HW equilibrium or linkage disequilibrium
(McVean, 2009) were used to determine the number of genetic clusters

and assign individuals to clusters. The first was the find.clusters func-
tion of the adegenet R package (Jombart, 2008); this method consists of
running successive K-means clustering with increasing numbers of K,
after transforming the data using PCA. For each number of K, a statis-
tical measure of goodness of fit defined as Bayesian information cri-
terion (BIC), is computed to find the optimal K value. These results were
visualized with the DAPC function of adegenet. Second, we implemented
sNMF (Frichot et al., 2014) of the LEA R package (Frichot and François,
2015). This method estimates admixture coefficients via sparse non-
negative matrix factorization algorithms, and produces admixture
coefficient outputs. For this method, the number of K is statistically
defined by cross-entropy scores. Here we tested K values ranging from 1
to 5 with 100 repetitions each.

We also assessed relationships among each sampled individual by
concatenating the complete dataset and estimating a phylogenetic tree
in RAxML v 8.2.10 (Stamatakis, 2006). This analysis assumes bifurca-
tion, which may not be biologically realistic for population level sam-
pling, especially for phased data. However, it is likely a useful ex-
ploratory tool to test for clustering of individuals (Harrington et al.,
2017). We performed a rapid bootstrapping analysis, rooting the tree
with L. zonata and using the GTR GAMMA model of sequence evolution.

Isolation-by-distance (IBD) is a common feature of spatial genetic
variation within species and can confound population structuring
analyses (Meirmans, 2012). We therefore tested for IBD using re-
dundancy analyses, a constrained ordination method (Legendre and
Fortin, 2010) using modified R scripts from Myers et al. (2017). We
chose to implement redundancy analyses because this method tests for
associations between genetic divergence and geographic distances
while circumventing statistical problems that can arise from distance
measures using Mantel tests (Kierepka and Latch, 2015). A genetic
distance matrix was generated using a random SNP per UCE locus from
the complete dataset using the dist.genpop function of adegenet. This
genetic distance matrix was used as a response variable, where latitude
and longitude between sampled localities (19 unique localities) were
the explanatory variables. We also conducted this analysis within two
of the populations inferred from the above population structuring
analyses (11 and 6 unique localities; note that the third population
contained two individuals with the same locality data, not enough for
tests of correlation). This analysis computes an r2 value and uses
ANOVA to assess significance in a pattern of IBD.

2.4. Species tree inference

To explicitly test whether the genetic clusters determined by DAPC
and sNMF represented independently evolving lineages that should be
used for demographic inference and to infer the topology of a species
tree, we implemented Bayesian Phylogenetics and Phylogeography
v.3.3 (BPP; Yang and Rannala, 2010, 2014). This method uses the
multispecies coalescent model to infer species trees in a Bayesian fra-
mework, accounting for incomplete lineage sorting and gene-tree spe-
cies-tree conflict (Yang and Rannala, 2010; Rannala and Yang, 2013).
In this analysis, we used the complete dataset, including the outgroup
taxon (L. zonata), and ran the joint unguided species delimitation and
species tree inference. Both population size (θ) and root divergence
time of the species tree (τ0) were assigned gamma distribution priors
G(α, β). We implemented three combinations of priors: large ancestral
population size with deep divergence time, θ ∼ G(1, 10) and τ0 ∼ G(1,
10); small ancestral population size and shallow divergences, θ ∼ G(2,
2000) and τ0 ∼ G(2, 2000); and large ancestral population sizes and
recent divergences, θ ∼ G(1, 10) and τ0 ∼ G(2, 2000). We ran two in-
dependent analyses for each set of priors for 500,000 generations, after
a burn-in period of 10,000 generations, and a sampling frequency of
one every five generations.
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2.5. Demographic history and parameter estimation

To estimate the demographic history of this taxon, we used the full
likelihood approach implemented in G-PhoCS (Gronau et al., 2011). G-
PhoCS uses the multi-species coalescent to estimate divergence times
and effective population sizes (Ne) from multilocus sequence data and
models gene flow between populations given user-defined migration
bands (Gronau et al., 2011). Gamma distributions G(α, β) were used to
specify prior distributions on theta (θ = 4Neμ, where μ is the mutation
per nucleotide site per generation), τ (species divergence time, TDIV =
τ/μ), and msx (the proportion of individuals in population x that arrive
via migration from population s per generation). We ran G-PhoCS
analyses under two different priors (τ – θ [1, 300] and [1, 30]) that
represented both shallow and deep phylogeographic divergences and
smaller and larger Ne (Oswald et al., 2017). Each of these prior settings
was run twice to ensure consistency among runs. For this analysis, we
used the larger, relaxed dataset of UCEs that included the outgroup
taxon, L. zonata. The topology was fixed given the results of the con-
catenated RAxML and the unguided species tree estimation of BPP. Two
migration bands were specified, with gene flow allowed between the
Trans-Pecos and Mapimian populations, and between the Mapimian
and Durango populations. Each analysis was run for 1,000,000 gen-
erations, sampling every 500 iterations, we checked for convergence in
the MCMC runs in Tracer v1.6 (Rambaut et al., 2014).

A mutation rate or secondary calibration is required to convert the
parameter estimates into time before present and effective population
sizes. However, mutation rates are often imprecisely estimated, un-
known for most non-model organisms, and unknown for loci that are
commonly the targets of sequence capture probes like UCEs (Oswald
et al., 2016). Therefore, we used two different rates that have recently
been applied to population genomic studies of snakes that used RADseq
data (7.26 × 10−9 mutations/site/generation assuming a generation
length of 3.3 years from Harrington et al., 2017; 2.5 × 10−8 mutations/
site/generation assuming ∼5.0 years/generation from Sovic et al.,
2016; Gibbs et al., 2018). These mutation rates were estimated from
mammals and lizards (Nachman and Crowell, 2000; Kumar and
Subramanian, 2002; Gottscho et al., 2014) respectively, and neither of
these rates are based on UCEs, which may have lower rates of sub-
stitution (Katzman et al., 2007). Therefore, we also used previous di-
vergence time estimates from coalescent based analyses between L.
alterna and L. zonata to fix the root of these analyses, allowing us to
estimate average UCE mutation rates, which were then used to estimate
divergence times within L. alterna (3.1 mya, Ruane et al., 2014;
3.31 mya Chen et al., 2017).

3. Results

3.1. Sampling and UCE data sets

From the 19 individual L. alterna specimens sampled, a total of 403
UCE loci were recovered in the complete data matrix where missing
data were not allowed. Alternatively, 2339 loci were recovered in the
data matrix when missing individuals across loci were permitted, which
also included the outgroup taxon L. zonata.

3.2. Population structure

Both DAPC and sNMF supported the presence of three genetic
clusters with the same sample membership, across the distribution of L.
alterna (Fig. 2; Supplemental Materials). These results corresponded to
a population in the Trans-Pecos province of Texas and New Mexico
(Trans-Pecos population), a population in northeastern Mexico corre-
sponding to the Mapimian region (Mapimian population), and a po-
pulation from the Sierra Madre Occidental of western Durango (Dur-
ango population). In the supplemental materials we provided Q-matrix
bar plots from sNMF for each K-value from 2 to 5. Results from the

concatenated maximum likelihood tree recovered three lineages, which
corresponded to the populations identified in both genetic clustering
analyses (Supplemental Materials). Redundancy analyses demonstrated
that geographic distance was a strong predictor of genetic distances
between sampling localities across the distribution of this taxon (ad-
justed r2 = 0.45, p-value < 0.001). IBD was also significant within the
Trans-Pecos population (adjusted r2 = 0.13, p-value < 0.01), but not
within the Mapimian population (adjusted r2 = 0.13, p-value > 0.1).

3.3. Species tree inference and demographic history

BPP analyses supported all three genetic clusters within L. alterna as
distinct lineages. These results were consistent among different prior
combinations used and replicate runs across these priors (Table 1). The
topology of the species tree was less well supported. However, most
analyses recovered the relationships to be L. zonata sister to a mono-
phyletic L. alterna clade consisting of the Durango population, which
was sister to the Trans-Pecos, Mapimian group (posterior probability of
0.74 across all combinations of priors; Table 1).

Parameter estimates of τ and θ from G-PhoCS analyses were robust
to both priors used and results were consistent across replicate runs.
Rates of migration were low, estimated at ∼0.1 migrant per generation
between all populations in which migration bands were inferred.
However, we note that it has been demonstrated that posterior esti-
mates of migration rates inferred by G-PhoCS are sensitive to prior
distributions (Gronau et al., 2011; Smith et al., 2014), therefore we
interpreted this parameter estimate with care. The use of mutation rate
greatly influenced the inferred divergence times and effective popula-
tion sizes (Table 2). For example, the two rates previously used in snake
phylogeography studies differed by an order of magnitude, and sug-
gested divergence times between L. zonata and L. alterna at 43,300 ya
(mutation rate of 7.62 × 10−9; Harrington et al., 2017) and 13,200 ya
(mutation rate of 2.5 × 10−8; Sovic et al., 2016). When fixing this di-
vergence time based on previously published studies (see methods), we
estimated the average UCE mutation rate to be 1.06 × 10−10 (from
divergence times in Ruane et al., 2014) and 9.97 × 10−11 (from di-
vergence times in Chen et al., 2017). These rates estimated the diver-
gence time between Trans Pecos and Mapimian populations at 1.41 mya
and 1.5 mya respectively, and between the western Durango and all
other populations at 2.42 mya and 2.58 mya respectively (Table 2).
Estimated effective population sizes were similarly affected, where
point estimates differ by orders of magnitude based on assumed mu-
tation rates, which also differed by an order of magnitude (Table 2).

4. Discussion

Our results show that Lampropeltis alterna is composed of three
distinct geographic lineages within the Chihuahuan Desert. Two of
these divergent lineages have geographic distributions restricted to
biogeographic provinces within the Chihuahuan Desert, specifically the
northern Trans-Pecos region and the central Mapimian province
(Fig. 1). The timing of divergence events between these lineages oc-
curred within the Pleistocene (1.41–1.5 mya and 2.42–2.58 mya;
Table 2) when applying secondary calibrations, suggesting that climatic
oscillations that characterized this time period may have been im-
portant in structuring genetic diversity within this taxon. All three
lineages are supported as being distinct using molecular species deli-
mitation methods (Table 1). These populations have diverged within
well-defined biogeographic regions (Fig. 1) that are separated by the
Rio Grande and Rio Conchos, suggesting these rivers may have been
important drivers of phylogeographic diversification within the Chi-
huahuan Desert during the Pleistocene. In addition, geographic dis-
tance is an important variable in explaining genetic diversity across the
distribution of gray-banded kingsnakes.

Divergence with gene flow is common, even in groups that have
diverged long ago or that are ecologically very different (Niemiller
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et al., 2008; Ellegren et al., 2012; Leaché et al., 2013). Here we show
little gene flow among gray-banded kingsnake lineages that diverged in
the late Quaternary. This suggests that these lineages are reproductively
isolated and likely formed in allopatry. Analyzing additional genomic
data is necessary to test realistic models of geographic speciation (Yang
et al., 2017). Under a model of strict allopatry, it is expected that genes
responsible for the evolution of reproductive isolation will have the
same divergence as non-functional regions of the genome, whereas
under a model of speciation with gene flow, the divergences of these
speciation genes will predate the divergence of the rest of the genome
(Ting et al., 2001; Yang et al., 2017).

Population genetic structure in L. alterna corresponds to distinct
Chihuahuan Desert biogeographic provinces. Our results suggest that
the climatic fluctuations of the Quaternary were important in struc-
turing genetic diversity and therefore these biogeographic provinces
may have acted as Pleistocene refugia. This geographic pattern of ge-
netic structure has been observed in another Chihuahuan endemic,
Agave lechuguilla (Scheinvar et al., 2017). Within Agave lechuguilla,
however, the estimated timing of lineage divergence at 4.4 mya pre-
dates our divergence-time estimates within the gray-banded kingsnake
(Table 2). This suggests that while similar spatial patterns of divergence
may be observed in both plants and animals of the Chihuahuan Desert,
the timing and causes of divergence may be different. Alternatively,
differences in divergence dates between kingsnake populations and
Agave populations could also be due to estimating time using sequence
data given variance in molecular clocks among lineages or the influence
of secondary calibrations (Graur and Martin, 2004; Schenk, 2016).
Future studies could focus on whether similar community-wide patterns
and timing of divergence within this desert exist.

We estimated divergence times using both previously published
mutation rate estimates (Nachman and Crowell, 2000; Kumar and
Subramanian, 2002; Gottscho et al., 2014) and secondary calibrations
(Ruane et al., 2014; Chen et al., 2017). These previously published rates
were likely too fast for substitutions from UCE loci given that the timing
of divergence between L. alterna and L. zonata has been estimated nu-
merous times at > 3 mya based on both fossil-calibrated phylogenomic
and multi-locus species tree estimates (Chen et al., 2017; Ruane et al.,
2014), which is two orders of magnitude greater than times inferred
using RADseq mutation rates (Table 2). Because of this, we are more
confident in the parameter estimates based on the secondary calibra-
tions (based on Ruane et al., 2014; Chen et al., 2017, note that the
posterior probabilities of parameter estimates for these two calibrations
broadly overlap and therefore are statistically indistinguishable;
Table 2), placing divergence times within the Pleistocene. Because the
discrepancies between our estimates are large, we advocate exploring
several mutation rates or calibrations to better understand potential
error around divergence times and effective population sizes. It is im-
portant for studies to use several different rates for the same data set
and present all estimates to better illustrate uncertainty in divergence
time estimates (herein; Myers et al., 2017).

Implementing a multispecies coalescent model to test competing
species delimitation hypotheses strongly supports the presence of three
distinct lineages within L. alterna. Although our genomic samples span
the known geographic distribution of L. alterna (Hansen and Salmon,
2017), it remains unknown if the inferred genetic clusters are geo-
graphically isolated. For example, no L. alterna samples exist from
central Coahuila and eastern Durango. Although L. alterna has not been
found in central Coahuila north of the Cuatrociénegas Basin or from

Fig. 2. Results from population structure analyses of Lampropletis alterna. Left, admixture proportions for each individual sample inferred from sNMF, numbers along
the x-axis correspond to the numbered localities in Fig. 1. Right, scatterplot of DAPC demonstrating the three distinct genetic clusters.

Table 1
Results from species tree inference and species delimitation of Lampropeltis alterna from BPP under three different sets of priors.

Priors Best tree topology Posterior probability for tree Species delimitation

θ ∼ G(2, 2000), τ0 ∼ G(2, 2000) (zonata, (Durango, (Trans-Pecos,
Mapimian)))

0.99 (zonata, (Durango, (Trans-Pecos, Mapimian)‘#1.0’) ‘#1.0’)
‘#1.0’

θ ∼ G(1, 10), τ0 ∼ G(2, 2000) ((Durango, zonata), (Trans-Pecos,
Mapimian))

0.54 ((Durango, zonata) ‘#1.0’, (Trans-Pecos, Mapimian) ‘#1.0’)
‘#1.0’

θ ∼ G(1, 10), τ0 ∼ G(1, 10) (zonata, (Durango, (Trans-Pecos,
Mapimian)))

0.69 (zonata, (Durango, (Trans-Pecos, Mapimian) ‘#0.99’) ‘#1.0’)
‘#1.0’
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Coahuila and eastern Durango, suitable habitat does exist (Fig. 1). Our
data exhibit strong patterns of isolation-by-distance, which is pervasive
across vertebrates (Wang et al., 2013; Pelletier and Carstens, 2018) and
can confound defining population structure with genomic data alone
(Meirmans, 2012; Bradburd et al., 2018). Simulations have shown that
the processes that give rise to a pattern of IBD (e.g., limited dispersal or
philopatry) can result in speciation in the absence of natural selection,
geographic barriers to gene flow, or ecological gradients (Hoelzer et al.,
2008; Baptestini et al., 2013). Although our genetic data support the
existence of three reproductively isolated lineages of L. alterna, we re-
frain from suggesting taxonomic changes. If there are intermediate
populations and the signal of IBD is consistent across the species dis-
tribution, then it remains possible that these inferences are the result of
arbitrarily dissected clinal variation. Finding divergent lineages of L.
alterna, while perhaps not unexpected given the high levels of cursorily
cryptic diversity within other Lampropeltis species complexes (Pyron
and Burbrink, 2009; Burbrink et al., 2011; Myers et al., 2013; Ruane
et al., 2014; McKelvy and Burbrink, 2017), underscores how little
species-level diversity has been documented to date.

The work presented here demonstrates that biogeographic pro-
vinces within the Chihuahuan Desert harbor genetically distinct popu-
lations of L. alterna. These lineages diversified during the Pleistocene, a
period of extreme climatic fluctuations. This suggests that the Trans-
Pecos and Mapimian regions would have served as allopatric refugia
during periods of glacial maxima. It is likely that additional phyloge-
nomic studies of endemic species within the Chihuahuan Desert will
show similar patterns of population structure with divergence times
within the Quaternary.
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