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Abstract 

Global Climate Models (GCMs) are increasingly becoming useful tools for predicting 

future climatic changes. These GCMs typically employ large spatial scales while municipalities 

may experience varied impacts at the local level. By downscaling and bias-correcting GCM 

outputs, more accurate predictions concerning specific regions can be made. The Multivariate 

Adaptive Constructed Analogs (MACA) models provide daily precipitation and temperature 

information for point localities by modifying coarse resolution data from GCMs to a higher spatial 

resolution. In this study, trends in climate extremes over the Passaic River Basin (PRB) between 

1981-2005 are estimated based on three MACA models (bcc-csm1-1m, CCSM4, and MRI-

CGCM3). The historical trends obtained from the MACA models are validated using an 

observational dataset and further corrected for bias, and then projected trends for 2051-2075 

relative to the 1981-2005 investigated. 

The models are united in their expectations of a decrease in very cold nights, ranging from 

-0.05% to -0.25%. Warm nights show slightly less agreement; while bcc-csm1-1m and MRI-

CGCM3 see an increase ranging from 0.05% to 0.18%, CCSM4 sees a decrease of 0.075% for 

RCP 8.5. Consecutive dry days decrease by up to 3 days between CCSM4 and MRI-CGCM3, 

whereas bcc-csm1-1m only shows an increase in CDD for scenario RCP 8.5. Rainy days also 

increase per model from 1-3 days except for bcc-csm1-1m, which sees a decrease by 1 day. The 

95th percentile of (or extreme) precipitation also sees almost universal increase ranging from 25% 

to 80% except for MRI-CGCM3, which projects a slight decrease of the extreme at only -5%. 

This analysis presents a unique opportunity to glimpse at the projected changes in the PRB 

with regards to the impacts of climate change. 
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Introduction 

 

Climatic patterns are expected to drastically change across the globe during this century. 

1983-2012 was the hottest 30-year period in the northern hemisphere in the last 1400 years with 

this trend continuing to present day (IPCC , 2013). The Northeastern United States is expected to 

experience significant impacts from climate change with predictions of longer summers, warmer 

winters, more temperature extremes in the winter and summer, as well as increased occurrence of 

droughts despite expectations of more frequent, heavier wet-weather events (Karl, et al., 2009). 

The magnitude of these predicted changes can vary greatly, even for neighboring townships. 

Therefore, although scientists can predict the effects of climate change on large areas using Global 

Climate Models (GCMs), impacts may differ on the local level (NASA, 2018), in which case 

Regional Climate Models (RCMs) may be beneficial. 

Global Climate Models (GCMs) are very useful tools for predicting climate. They can 

predict the changes in climate variables including minimum temperature, maximum temperature, 

precipitation, relative and specific humidity, wind speed, and solar radiation. They can also 

determine the changes in these variables based on several greenhouse gas concentration scenarios. 

These scenarios, known as the Representation Concentration Pathways (RCP), predict the impact 

of climate change under four main scenarios: RCPs 2.6, 4.5, 6, and 8.5. RCP2.6 represents the 

“best case” and most unlikely path in which greenhouse gases (GHGs) emissions are heavily 

regulated and decline after 2020, while RCP8.5 represents a scenario on the other side of the 

spectrum, in which emissions continue unregulated and rise until 2100. RCPs 4.5 and 6 represent 

more moderate scenarios, or “stabilization pathways,” with radiative forcing of 4.5 W/m2 and 6 

W/m2 respectively. In these situations, emissions reach a peak during the middle of the century 

before balancing out (IPCC Climate Report, 2007).  
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GCMs provide information on several climatic variables, but they do not often provide 

accurate data at horizontal scales smaller than 5 kilometers (Kim, et al., 2016). In order to make 

these large-scale and coarse datasets more accurate, Regional Climate Models (RCMs) such as the 

Multivariate Adaptive Constructed Analogs (MACA) model perform downscaling and bias-

correction under different emissions scenarios for historical and future projections. Downscaling 

refers to the process of using large-resolution data to fit a finer scale resolution. However, with 

downscaling comes some amount of uncertainty. To deal with the pre-existing bias and consequent 

uncertainty from downscaling, researchers also employ bias correction. Bias correction involves 

adjusting data output through statistical analysis. By downscaling and bias-correcting climate data 

from GCMs, more accurate projections concerning specific localities can be made. 

The Passaic River Basin (PRB) provides an interesting study site. Because of the 

concentrated population, the pervious area in the PRB, particularly in the areas closer to New York 

City, has decreased (Rutgers University Center for Remote Sensing and Spatial Analysis, 2009). 

A largely impervious surface area indicates increased tendency for flooding as stormwater enters 

waterbodies more quickly with more intensive destructive force. Decreased permeability also 

suggests an increased impact of the “heat island” effect. The heat island effect refers to the 

phenomenon that occurs after vegetated areas are replaced by grey infrastructure. The previously 

vegetated areas experience the impact of lower albedo; instead of reflecting solar radiation, dark 

concrete can absorb anywhere from 60 to 95% of the solar energy reaching it, therefore generating 

more heat for the surrounding area (Environmental Protection Agency, 2012). In urban regions, 

this effect can increase grey surface temperature by 50-90ºF (27-50ºC) during the day and up to 

22ºF (12ºC) at night (Environmental Protection Agency, 2017). Therefore, further bias correction 
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of raw data is necessary to include the impact of grey infrastructure on local temperatures (among 

other sources of inaccuracy).  

This thesis investigates the usefulness of applying MACA data to predict the impacts of 

climate change in the whole of the PRB under emission scenarios RCP 4.5 and RCP 8.5 after 

performing further bias correction. The study looks at several ways in which the PRB will 

experience precipitation and temperature changes. Identifying future changes in the PRB with 

respect to the coldest nights, warmest nights, consecutive dry days, rainy days in which 

precipitation exceeds 10 mm, the 95th percentile of precipitation, and the yearly maximum 

consecutive 5-day precipitation can be useful to planners and policy makers to help communities 

increase their resilience against climate change.  

1.1 Literature Review 

 

1.1.1 Model Appraisal 

 

Multivariate Adaptive Constructed Analogs (MACA) 

 

Before collecting raw data from MACA, model validation was key; why would MACA be 

a better model to provide data over the other available Regional Climate Models (RCMs)? Several 

other RCMs also offer statistically downscaled climate data. For example, the Bias-Correction 

Spatial Disaggregation (BCSD), Bias-Correction/Constructed Analogue (BCCA), and Bias-

Correction/Climate Imprint (BCCI) all provide daily precipitation, minimum and maximum 

temperature simulations through statistical downscaling. In one comparison of the aforementioned 

models over the entirety of South Korea, MACA delivers the best overall statistical results for 

historical temperature and precipitation (Eum, et al., 2017). Though other studies find MACA to 

be less accurate in their respective study areas, the error found did not prove to be enough of a 

deterrent to look towards other models (Demirel & Moradkhani, 2016).  
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Ultimately, MACA proves to be a preferable RCM to provide daily historical and future 

climate output for several reasons. It preserves climatic trends from GCM data using a 31-year 

smoothing window, bias-corrects precipitation and temperature data, and uses a reduced set of 

analog patterns while including information from older analogs (Mote, et al., 2015). Perhaps the 

greatest strength of the MACA model lies in its ability to spatially downscale data from observed 

data rather than to use interpolation. Additionally, MACA is able to relate separate variables 

together to produce better results; by downscaling temperature with precipitation, MACA obtains 

better results for historical snowfall amounts. These factors all qualify MACA as a preferred 

climate downscaling model.  

Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

 

 Ten locations in the PRB were chosen to represent the overall impact of climate change in 

the study area. These locations were chosen based on available rain gauges; however, despite 

choosing locations with rain gauges assigned by the USGS, only 3 out of 10 locations had usable 

historical precipitation data that overlapped with the chosen time frame of January 1981 to 

December 2005. Furthermore, there was almost no temperature data for these locations. Therefore, 

it was necessary to find an accurate model that could produce observed precipitation and 

temperature values to compare to the historical MACA data.  

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) model 

developed at Oregon State University provides historical data for several variables at chosen 

spatial and temporal resolutions. PRISM provides daily temperature and precipitation data at 800-

m and 4-km resolutions and therefore matches well to the 4-km resolution MACA data. Studies 

comparing PRISM to other gridded network models also found PRISM to be highly reliable, with 

other models overestimating precipitation in areas with vastly varied topographies (Kim, et al., 
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2017). The mean average error (MAE, %) and the bias (%), as calculated below, provided a 

statistical basis on which the datasets could be compared: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1    (1) 

where n represents the count of data points, y is the observed data point, and x is the model value, 

and: 

𝐵𝑖𝑎𝑠 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑀𝑜𝑑𝑒𝑙

𝑀𝑜𝑑𝑒𝑙
 𝑥 100  (2) 

Compared with two different observation datasets, another study found a maximum of 5.25% 

MAE and a maximum bias of 1.5%, therefore validating the PRISM dataset for the study (Daly, 

et al., 2017).  

1.1.2 Bias Correction  

 

Generated data from climate models benefit from further bias-correction, regardless of the 

bias-correction embedded in the model code. Because of the bias that may come from inaccuracies 

in the original GCMs—equations that cannot possibly universally accurately cover the Earth’s 

surface, models that cannot fully capture everyday physics—model data must be corrected for 

higher statistical correlation. Quantile mapping is perhaps the most commonly used method of bias 

correction.  

A cumulative distribution function (CDF) can better relate model data to observed data. 

The CDF, or the cumulative distribution of a dataset, can be extremely helpful in data analysis. 

The x-value of a cumulative distribution function graph shows the quantity of the data being 

measured—in this study, millimeters of precipitation—while the y-value on the CDF plot 

represents the percentage of data that has a value smaller than or equal to the corresponding x 

value (Data Camp, 2016). Because the y-value is the accumulation of data points at the 

corresponding x-value, the y-value will never reach more than 1 (or 100%). CDFs represent the 
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area underneath the probability distribution curve; therefore, if f(t) represents the probability 

density function, the CDF F(t) can be represented as: 

𝐹(𝑡) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞
  (3) 

Using this equation, we can then bias-correct using a transfer function: 

𝑥𝑚(𝑡) = 𝐹𝑂
−1[𝐹𝑚{𝑥𝑀(𝑡)}]  (4) 

where 𝑥𝑚(𝑡) is the bias-corrected data, 𝑥𝑚(𝑡) represents the model data, 𝐹𝑂
−1 is the inverse of the 

observed CDF and 𝐹𝑚 is the model CDF (Eum, et al., 2017). This formula helps shift the modeled 

values to more closely match the observed values based on the cumulative probability of 

occurrence. This method, called quantile mapping, is extremely sophisticated and suggests that 

when the model CDFs more closely match the observed—in that they have similar distribution 

curves—the values and resulting analysis have higher credibility.  Comparing the CDFs of 

observed and model data can be helpful in proving the reliability of employed correction methods.  

Another useful method of historical data correction is the linear scaling correction factor 

method, which differs between precipitation and temperature. For precipitation, corrections were 

made by a multiplicative factor consisting of the ratio between observed and model values applied 

to daily observed values: 

𝑐 =  
∑ 𝑃𝑖

𝑜𝑏𝑠𝑛
𝑖=1

∑ 𝑃𝑖
𝑚𝑜𝑑𝑒𝑙𝑛

𝑖=1

  (5) 

 

𝑃𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

= 𝑐 ∗ 𝑃𝑖𝑗
𝑚𝑜𝑑𝑒𝑙 (6) 

 

where c is the correction factor, 𝑃𝑖
𝑜𝑏𝑠 is the mean monthly observed precipitation, 𝑃𝑖

𝑚𝑜𝑑𝑒𝑙 is the 

monthly mean of the model value of precipitation, and 𝑃𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

 is a daily timeseries value for the 

corrected model data (Hempel, et al., 2013). This method, although simple, is useful in correcting 
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precipitation data. In using the correction factor, a monthly mean over the baseline period is 

calculated and applied to daily values (Chen, et al., 2013).  

 The temperature, however, is corrected in a slightly different way. While precipitation is 

corrected by more complex functions due to higher GCM error in capturing precipitation, 

temperature bias correction is calculated through additive correction because of the simpler 

patterns in temperature fluctuations: 

𝐶 =
1

𝑛
(∑ 𝑇𝑖

𝑜𝑏𝑠𝑛
𝑖=1 − ∑ 𝑇𝑖

𝑚𝑜𝑑𝑒𝑙𝑛
𝑖=1 )  (7) 

𝑇𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

= 𝐶 + 𝑇𝑖𝑗
𝑚𝑜𝑑𝑒𝑙  (8) 

where C is the correction factor, n is the total number of days in the defined time period, 𝑇𝑖
𝑜𝑏𝑠 is 

the observed temperature at day i, 𝑇𝑖
𝑚𝑜𝑑𝑒𝑙 is the modeled output temperature at day i, and 𝑇𝑖𝑗̃

𝑚𝑜𝑑𝑒𝑙
 

is the corrected temperature at day i in month j (Hempel, et al., 2013).  

Finally, the future values must also be corrected for potential bias. In this study, we will 

apply the correction factors to daily model output for the time period 2051-2075. 

1.1.3 Climatology Indices 

 

Climatology indices can be extremely helpful in identifying the ways climate is expected 

to change with regards to global warming. Several studies analyze changes in their respective study 

areas by identifying several key climate indices. Marengo et al. look at very cold nights, very warm 

nights, consecutive dry days, maximum 5-day precipitation, extreme rainfall, and wet days as part 

of their analysis of changes in climate extremes for South Africa (Marengo, et al., 2009).  In their 

study, Marengo et al. use other RCMs to compare climate extremes from a baseline period of 1961-

1990 against the projected extreme from 2071-2100.  Thibeault & Seth employ comparable 

methods of comparison of similar climate extremes between a baseline period of 1981-2010 and 
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projected future trends from 2041-2070, informing our methods of climatology analysis (Thibeault 

& Seth, 2004). 

The Northeastern part of the United States is already prone to cold streaks, heatwaves, 

heavy precipitation, flooding events, and droughts (Thibeault & Seth, 2014). Heatwaves, 

combined with heavy humidity characteristics of the PRB, can lead to dangerous situations for 

human health and wellbeing as well as for implemented infrastructure. Cold streaks can do equal 

amounts of damage; by investigating the predicted change in extreme temperature lows compared 

with historical lows, warming trends can be verified. Therefore, predictions of future changes in 

extreme temperature and precipitation events will serve as a backbone of decision support for 

creation of policy to increase community resilience. 

The goal of this study is to employ state-of-the-science methods and data to analyze 

potential future changes in several climate extreme indices for the PRB, including:  

(1) very cold nights (TN10p), where the percentage of time in a year when daily minimum 

temperature falls below the 10th percentile of the daily temperature of the reference period 

and future period;  

(2) very warm nights (TN90p) that are above the 90th percentile of minimum temperature;  

(3) consecutive dry days (CDD), in which the annual maximum number of consecutive 

days when daily precipitation falls less than 1 mm;  

(4) maximum 5-day precipitation (R5xday), the maximum consecutive total precipitation 

within a 5-day window within a defined amount of time;  

(5) amount of days in which precipitation is over 10 mm (R10); and 

(6) extreme precipitation (R95P), the annual total precipitation in which precipitation is 

above the 95th percentile of the defined time period’s daily distribution.   



 9 

It is important to note that these climate indices are not determined by a universal standard because 

of the variations in climate across the globe. The results in Section 3 pertain only to the PRB and 

cannot necessarily be extended to the larger New Jersey or northeastern US region without further 

analysis.  

 

1.2 Study Area 

 

The PRB encompasses and drains approximately 935 square miles of land largely in New 

Jersey and partially in southern New York State (see Figure 1). The area was heavily influenced 

by the Wisconsin Ice sheet, which melted about 11,000 years ago (Passaic River Basin, 2016).  

Nestled in the basin is the Passaic River, which empties out into the Newark Bay at 80 miles (129 

kilometers) from the source. The river has played an important role in development within the 

basin in the last few centuries. Thousands of people settled along the Passaic River in the late 

1700s with the successful silk industry inviting laborers and business-minded people alike to the 

area. Additionally, because a majority of the PRB is also considered to be part of metropolitan 

New York City, the PRB has become an attractive location for commuters. The steady increase in 

population since the 1700s has led to the PRB being one of the most densely populated regions in 

the most densely populated state.  

The area in which the rain gauges are located comprises a subwatershed in the PRB. The 

elevation in this area ranges from 91 feet to 1462 feet—a slight difference from the larger PRB, 

which ranges from 21 to 1480 feet. The highest values correspond to the Highlands. The PRB is 

particularly vulnerable to climate extremes such as floods and heat waves. Expected global 

warming-induced changes in climate extremes into the future are therefore of particular concern 

for PRB. Detailed analysis of potential future changes in climate extremes for PRB using state-

of-the-art climate model projections is still lacking; therefore, this study hypothesizes that the 
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application of new high-resolution climate data will provide better information on plausible 

future changes in extremes.   

This area is also of particular importance because of the water that the Highlands 

provides to New Jersey residents. The Highlands provide nearly 66% of New Jersey residents 

with clean drinking water. Therefore, looking at the impact of climate change on this area is of 

great importance for future generations. 

 

Figure 1-The Passaic River Basin, located between New Jersey and New York State 

For this study, ten (10) locations were determined as reasonable points of interest (see  
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Figure 2 below) due to the available rain gauges and precipitation data at the chosen 

locations. The available historical precipitation data came from the USGS.   

 

 

 

 

 

Figure 2 - Locations of chosen stations in the PRB study site watershed 

2. Data and Methods  

Several models were used in collecting and processing data for this study. The following 

section details the steps used in this study (see Figure 3 – Steps taken to make a climate impact 

assessment for the PRB). 

 

 
Figure 3 – Steps taken to make a climate impact assessment for the PRB  

 

2.1 Models  

 

2.1.1 The PRISM Model 

  

Input location data to MACA 
and PRISM

Bias-Correct historical MACA 
against PRISM data (1981-2005) 

Apply bias-correction to future 
dataset (2051-2075)

Climate Impact Assessment
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 The PRISM model was created by a team of researchers under the Northwest Alliance for 

Computational Science and Engineering (NACSE) at Oregon State University. PRISM provides 

daily and monthly estimates of precipitation (measured as the total daily or monthly amount of 

rainfall and melted snow), minimum temperature, maximum temperature, mean dew point, 

minimum mean dew point, minimum vapor pressure deficit, and maximum vapor pressure deficit 

(PRISM, 2016). These datasets are freely available at http://www.prism.oregonstate.edu/. 

 PRISM offers data for the aforementioned variables ranging from 1895 to present day. For 

the “historical” data, monthly values are offered from 1895 to 1980, whereas daily and monthly 

data for more recent years are available from 1981 to present day. These recent time series data 

are formulated used climatologically-aided interpolation (CAI). CAI uses 30-year averages to 

determine the spatial pattern of a chosen point location or specified area by using an algorithm to 

create a relationship between elevation, climate, and station data for individual grid cells. It has 

also recently incorporated proximity to coastlines, complexity of local terrain, and potential for 

temperature inversions to its algorithm (Daly & Bryant, 2013). PRISM performs climate-elevation 

regressions using a complex network of stations and a layered algorithm to produce climate data 

for the conterminous United States.   

 PRISM data is available in several formats, but for the purposes of the study, data was 

obtained in the form of a comma-separated value (.csv) worksheet to be read in Excel (for point 

locations) and band interleaved line (.bil), to be extracted in GIS or other available software. Daily 

values for precipitation and temperatures from January 1, 1981 until December 31st, 2005 were 

chosen in order to match the time series available from MACA (see Section 2.1.2 – The MACA 

Model). Downloaded data provided metric units to also match the time series from MACA in order 

to ensure the maximum preservation of raw data.  



 13 

2.1.2 The MACA model 

 

The MACA model (Abatzouglou, 2013) was developed at the University of Idaho. This 

model uses statistical downscaling instead of dynamic downscaling.  Dynamic downscaling 

requires the use of high-resolution climate models at the regional level to produce data, with an 

observational or lower-resolution climate data as a “boundary condition” (National Center for 

Atmospheric Research, 2018). MACA developers, on the other hand, used statistical downscaling 

to create an algorithm relating local climate variables (precipitation, temperature, humidity, etc.) 

to each other and then to existing global climate model data.  

 The MACA process is lengthy, requiring several steps to produce the final output. First, a 

“training” or observational dataset for each variable is determined. For the METDATA used in 

this study, a training period of daily data from the NASA North American Land Data Assimilation 

System (NLDAS-2) for the time period of 1979-2012 was used. The datasets are then interpolated 

to a 1º x 1º grid from larger resolution grids, after which point they undergo “epoch adjustment” 

and are adjusted to predict seasonal and yearly trends. Bias-correction of the training dataset is 

performed using monthly PRISM values for temperature, precipitation, and humidity. Output is 

validated against several other weather station data sources (MACA, 2013).  

MACA then takes data from the GCMs to compare to the training dataset. These GCMs 

are coordinated by the Coupled Model Inter-Comparison Model 5 (CMIP5) and provide metadata 

to climatologists worldwide and is a significant, trusted source of data; the United Nations released 

a report on the expected impacts of climate change by heavily relying on the information provided 

by the CMIP5 GCM datasets. MACA utilizes 20 of the GCMs to run because of various 

incompatibilities with the excluded models.   
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A cumulative distribution function plot for the GCM and training data is created for each 

grid and through use of equidistant quantile mapping of the future GCM data, adjustments are 

made with quantile differences in the CDFs preserved. These adjustments are the bias-correction 

of the data (see Figure 4 – Bias Correction of GCM data in MACA (Abatzouglou, 2013)). 

 
Figure 4 – Bias Correction of GCM data in MACA (Abatzouglou, 2013) 

After the data is corrected, the statistical distribution of the GCM matches the statistical 

distribution from the training dataset and the spatial resolution of the output data will also match 

the resolution of the training set. After some more fine-tuning and minor bias-correction, the data 

are ready. It is important to note that although the statistical distribution of the model more closely 

matches the statistical distribution of the training dataset, MACA is not intended to be used as a 

hindcast of historic weather. Therefore, observational data from 1990 does not exactly correlate to 

the MACA data from 1990.  

 For purposes of this study, three GCMs were chosen to provide historical and future climate 

data: (1) bcc-csm1-1m, (2) MRI-CGCM3, and (3) CCSM4 (see Table 1 – GCM Models used in 

this study). These models represent 3 of 30 ranked GCMs, all of which have significantly differing 

normalized error score. The normalized error comes from 18 performance analytics for a study 

area in the Pacific Northwest. The most accurate, in which the normalized error score is closest to 

0, is CCSM4, which is ranked as the 3rd most accurate model in terms of normalized error. Bcc-
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csm1-1m falls next at 13 and MRI-CGCM3 ranks 27 (Rupp, et al., 2013). With such a wide range 

of performance, this study can obtain a fuller understanding of possible future climatic changes. 

Model Center Country Resolution 

bcc-csm1-1m Beijing Climate 

Center 

China 1.12º x 1.12º 

CCSM4 National Center of 

Atmospheric 

Research 

USA 1.25º x 0.94º 

MRI-CGCM3 Meteorological 

Research Institute  

Japan 1.1º x 1.1º 

Table 1 – GCM Models used in this study 
 

2.1.3 R Statistical Software 

 

 This study uses R Statistical Software, a program maintained by the R Foundation for 

Statistical Computing. Two software packages were installed for use in this study. 

Qmap version 1.0-4, a package created by Lukas Gudmundssen at the Institute of 

Atmosphere and Climate Science in Zürich, was used to determine quantile mapping for bias-

correction of downloaded data. Qmap offers several methods of bias-correction. Because the 

function “qmapDIST” most closely fit the quantile mapping correction methods used in the 

literature (see Section 1.1.2 Bias Correction), qmapDIST was chosen as the best approach towards 

bias correction of the model data. QmapDist creates a function in which the inverse CDF of the 

observed dataset—or the corresponding quantile function from the observed dataset—becomes a 

function of the model CDF at a daily data point, x: 

 

𝑥𝑚(𝑡) = 𝐹𝑂
−1[𝐹𝑚{𝑥𝑀(𝑡)}] 

 

Qmap consists of two primary steps: fitqmapDIST and doQmapDIST. FitqmapDIST is the 

command used to relate observed and modelled time series data, while doQmapDIST transforms 

the model data using the transformation algorithm from fitQmapDIST (Gudmundssen, 2016). 
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These functions were key in producing daily time series for the quantile mapping method of data 

correction. 

 The second R package referenced in this study is the RClimDex package. RClimDex is a 

package created by a team of researchers at the Climate Change Research Centre (CCRC) at the 

University of New South Wales (UNSW). RClimDex is programmed to identify 27 climate indices 

(see Table 2 – List of possible climate indices available from the RClimDex program to be 

calculated in R) (ClimDEX, 2013).  

Notation Name Definition 

FD Frost Days 

Annual count of days where the minimum temperature (TN) is less than 0ºC 

TNij is daily min temp on day i, year j 

TNij < 0ºC 

SU Summer Days 
Annual count of days where maximum (TX) temperature is greater than 25ºC 

TXij is the daily max temp on day i, year j 

TXij > 25ºC 

ID Icing Days 
Annual count of days where maximum temperature is less than 0ºC 

TXij < 0ºC 

TR Tropical Nights 
Annual count of days where minimum temperature is greater than 20ºC 

TNij > 20ºC 

GSL 
Growing Season 

Length 

Annual count of first span of at least 6 days with daily mean temperature (TG) greater than 5ºC and 

span of 6 days after July 1st where TG is less than 5ºC 

TGij > 5ºC 

After July 1: TGij < 5ºC 

TXX 

Monthly Max 

Value of Daily 

Max Temp 

Daily maximum temperatures in month k, period j 

TXxkj=max(TXxkj) 

TNX 
Monthly max value 

of daily min temp 

Daily minimum temperatures in month k, period j 

TNxkj=max(TNxkj) 

TXn 
Monthly min value 

of daily max temp 

Daily maximum temperatures in month k, period j 

TXnkj=min(TXnkj) 

TNn 
Monthly min value 

of daily min temp 

Daily minimum temperatures in month k, period j 

TNnkj=min(TNnkj) 

TN10p 

Percentage of days 
when TN < 

10th percentile  

TNin10 is the calendar day where the 10th percentile is centered on a 5-day window for the base 
period 1961-1990 

TNij < TNin10 

TX10p 

Percentage of days 

when TX < 

10th percentile 

TXin10 be the calendar day 10th percentile centered on a 5-day window for the base period 1961-1990 

TXij < TXin10 

TN90p 

Percentage of days 

when TN > 

90th percentile 

TNin90 be the calendar day 90th percentile centred on a 5-day window for the base period 1961-1990 

TNij > TNin90 

TX90p 

Percentage of days 

when TX > 
90th percentile  

TXin90 be the calendar day 90th percentile centred on a 5-day window for the base period 1961-1990 

TXij > TXin90 

WSDI 
Warm spell 

duration index 

Annual count of days with at least 6 consecutive days when TX > 90 th percentile 

TXij > TXin90 

CSDI 
Cold spell duration 

index 

Annual count of days with at least 6 consecutive days when TN < 10 th percentile 

TNij < TNin10 

DTR Daily temp range Monthly mean difference between TX and TN 

Rx1day 
Monthly maximum 
1-day precipitation 

Let RRij be the daily precipitation amount on day i in period j. The maximum 1-day value for 

period j are: 

Rx1dayj = max (RRij) 

Rx5day 

Monthly max 

consecutive 5-day 

precip 

Let RRkj be the precipitation amount for the 5-day interval ending k, period j. Then maximum 5-day 

values for period j are: 

Rx5dayj = max (RRkj) 



 17 

SDII 
Simple precip 
intensity index 

The daily precipitation amount on wet days, w (RR ≥ 1mm) in period j. If Wrepresents number of wet 

days in j, then: 

SDII = (⅀RRwj)/W 

R10mm 
Annual count of 

days when PRCP≥ 

10mm 

Let RRij be the daily precipitation amount on day i in period j. Count the number of days where: 

RRij ≥ 10mm 

R20mm 
Annual count of 

days when PRCP≥ 

20mm 

Let RRij be the daily precipitation amount on day i in period j. Count the number of days where: 
RRij ≥ 20mm 

Rnnmm 
Annual count of 

days when PRCP≥ 

nnmm 

nn is a user defined threshold: Let RRij be the daily precipitation amount on day i in period j. Count 
the number of days where: 

RRij ≥ nnmm 

CDD 
Maximum length 

of dry spell 

Let RRij be the daily precipitation amount on day iin period j. Count the largest number of 

consecutive days where: 

RRij < 1mm 

CWD 
Maximum length 

of wet spell 

Let RRij be the daily precipitation amount on day iin period j. Count the largest number of 

consecutive days where: 

RRij ≥ 1mm 

R95pTOT 
Annual total PRCP 

when RR > 95p 

Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1.0mm) in period i and 

let RRwn95 be the 95th percentile of precipitation on wet days in the 1961-1990 period. 
If W represents the number of wet days in the period, then 

R95pj = ⅀RRwj, where RRwj,> RRwn95, 

R99pTOT 
Annual total PRCP 

when RR > 99p 

Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1.0mm) in period i and 

let RRwn99 be the 99th percentile of precipitation on wet days in the 1961-1990 period. 
If W represents the number of wet days in the period, then: 

R99pj = ⅀RRwj, where RRwj,> RRwn99 

PRCPTOT 
Annual total 

precipitation in wet 

days 

Let RRij be the daily precipitation amount on day i in period j. If i represents the number of days in j, 
then 

PRCPTOTj = ⅀RRij, 
Table 2 – List of possible climate indices available from the RClimDex program to be calculated in R 

2.2 Correction Factor 

 

One method of historical bias-correction explored in this study is the correction factor 

method. The correction factor method uses a simple, linear approach toward correction of daily 

climate data. For this study, daily corrected values are calculated for the baseline period per model 

by using the equations:  

𝑐 =  

1
𝑛

∑ 𝑃𝑖
𝑜𝑏𝑠𝑛

𝑖=1

1
𝑛

∑ 𝑃𝑖
𝑚𝑜𝑑𝑒𝑙𝑛

𝑖=1

 

 

𝑃𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

= 𝑐 ∗ 𝑃𝑖𝑗
𝑚𝑜𝑑𝑒𝑙 

 

where c is the correction factor, 𝑃𝑖
𝑜𝑏𝑠 is the mean monthly observed precipitation, 𝑃𝑖

𝑚𝑜𝑑𝑒𝑙 is the 

monthly mean of the model value of precipitation, and 𝑃𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

 is a daily timeseries value for the 

corrected model data.  
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 The temperature, however, is corrected in a slightly different way because of the simpler 

patterns in temperature fluctuations. While precipitation is corrected by a multiplicative factor, the 

temperature correction factor is calculated through additive methodology: 

𝐶 =
1

𝑛
(∑ 𝑇𝑖

𝑜𝑏𝑠

𝑛

𝑖=1

− ∑ 𝑇𝑖
𝑚𝑜𝑑𝑒𝑙

𝑛

𝑖=1

) 

𝑇𝑖𝑗̃
𝑚𝑜𝑑𝑒𝑙

= 𝐶 + 𝑇𝑖𝑗
𝑚𝑜𝑑𝑒𝑙 

where C is the correction factor, n is the total number of days in the defined time period, 𝑇𝑖
𝑜𝑏𝑠 is 

the observed temperature at day i, 𝑇𝑖
𝑚𝑜𝑑𝑒𝑙 is the modeled output temperature at day i, and 𝑇𝑖𝑗̃

𝑚𝑜𝑑𝑒𝑙
 

is the corrected temperature at day i in month j.  

The correlation coefficient R, coefficient of determination R2, root mean square error 

RMSE, and the CDFs were calculated for statistical analysis of the data. 

3. Results and Discussion 

 

3.1 Historical Data Analysis 

 

After downloading data from MACA and PRISM, the first step in the analysis was to 

validate the PRISM data. Historical observed precipitation data from the USGS was only available 

for 3 locations. Full precipitation comparisons were available for (FID 14) Greenwood Lake and 

(FID 20) Wanaque Raymond Dam while a partial comparison (Jan 2002 – Dec 2005) was available 

for (FID 18) Ringwood. Correlations and RMSE were calculated to determine the similarity 

between for daily PRISM and USGS/NOAA time series data (See Table 3 - R, R2, and Root Mean 

Square Error values for the PRISM model values and the observed data.). Because PRISM had an 

R2 range from 0.83-0.99 with the available observed data, and because there was not enough 

precipitation or temperature data from the USGS—the original designated resource for observed 

values—PRISM served as a solution to provide observational values. 
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Table 3 - R, R2, and Root Mean Square Error values for the PRISM model values and the observed data.  

The next step involved inspecting the daily time series values for precipitation, minimum 

temperature, and maximum temperature for each location (1981-2005) in MACA using bcc-csm1-

1m, MRI-CGCM3, and CCSM4. However, looking at the daily values provided little clarity (see  

Table 4 – Calculated statistics (R, R2, and Root Mean Square Error values) for the different 

locations chosen. Highlighted values show the best R2 values (closest to 1).) towards the 

correlation between the different models and as such, the data was converted to average monthly 

values for easier viewing and understanding (see Figure 4 on next page). 

There is a high correlation between the models for minimum and maximum values for 

temperature. Precipitation, however, shows large variations in value, with no single MACA model 

showing determination correlation (R2) greater than 0.0083 with respect to PRISM values.  

For temperature predictions, MRI-CGCM3 consistently shows the highest correlation while 

CCSM4 shows marginally better R2 values in precipitation predictions. In all aspects, bcc-csm1-

1m proves to be the least accurate compared to the PRISM model.  

Because the correlation between the values produced by the three MACA models and 

PRISM were so low, data was re-downloaded for each location. The units were double-checked to 

ensure compatibility, confirmed that MACA and PRISM had the same 4-kilometer resolution, and, 

as per the MACA website recommendation, which recommended against using only 1 or 2 models 

(MACA, 2013), increased the number of models number to 9 and the correlation values were still 

consistently low (see Figure 6).    



 20 

 

 

 
 

Table 4 – Calculated statistics (R, R2, and Root Mean Square Error values) for the different locations chosen. Highlighted values 

show the best R2 values (closest to 1).  
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Table 5– Statistics of monthly precipitation between 8 MACA models and PRISM for precipitation at Bloomingdale, 1981-2005. 

Highlighted value represents value closest to 1. 

 

One study, evaluation and downscaling of CMIP5 climate simulations for the Southeast 

US by Mote et. Al (2015), previously referenced in Section 1.1, found that of 41 CMIP5 Global 

Climate Models (GCM)—including CCSM4, bcc-csm1-1m, and MRI-CGCM3—bcc-csm1-1m 

were consistently high in error, earning a high normalized error score of 0.9/1.0 and placing at 40 

of 41 GCMs (Mote, et al., 2015). In the same report, CCSM4 earned the highest score at 18/41 

with a normalized error score of approximately 0.3. Despite other authors finding the error of 

CCSM4 to be quite low, this study found CCSM4 to have extremely low correlation.  

Mote, et al. (2015) also found that another MACA model from the 41 ranked GCM models, 

CNRM-CM5, ranked at 8th in terms of normalized error score. We correlated the output from this 

model against the PRISM. 

 
Table 6 – Correlation of MACA model CNRM-CM5 with PRISM in Bloomingdale 
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Though the R2 value (Bloomingdale) is still quite low, there is a 191% increase in accuracy 

compared to the lowest value from the first attempt, which was the bcc-csm1-1m value of 6.23e-

5. The CNRM-CM5 model provides the closest R2 value to 1. 

In a different study focusing on the Colombia River Basin (CRB) located mostly in 

Washington State, Idaho, and Oregon (partially in Canada, Montana, and Wyoming), researchers 

used MACA to look at precipitation seasonality and timing (Demirel & Moradkhani, 2015). Based 

on their research, which showed positive benefits in using MACA, we tested our MACA models 

on a location in the CRB. To easily access information, we decided on Portland, Oregon, and tested 

the coordinates of the Hayden Island Rain Gauge on bcc-csm1-1m, CCSM4, and MRI-CGCM3 

(see Table 7 – Statistics for the Hayden Island Rain Gauge). We also checked if the interpolated 

values for Prism made any difference in comparison to the non-interpolated values, as our original 

values were non-interpolated. 

 

 
 

 
 

 
Table 7 – Statistics for the Hayden Island Rain Gauge 

 

In comparison to the results from the Passaic River Basin, precipitation R2 values were 

97% more accurate—despite still only being 0.325 at the highest value. R2 values for minimum 



 23 

and maximum temperature were lower; for the Passaic River Basin, temperature R2 values 

averaged 0.93 whereas CRB R2 values averaged 0.84 for minimum temperature and 0.89 for 

maximum temperature.  

There was an insignificant difference between the interpolated and non-interpolated 

PRISM values in Portland; however, the slight difference warranted a venture into re-downloading 

original PRISM values for the Passaic River Basin. We downloaded interpolated values for 

Bloomingdale (see Table 8 – Statistics for the interpolated PRISM values against bcc-csm1-1m, 

MRI-CGCM3, and CCSM4). 

 

 
Table 8 – Statistics for the interpolated PRISM values against bcc-csm1-1m, MRI-CGCM3, and CCSM4 

 

With the R2 values still significantly low, the interpolated values showed no distinct 

improvement versus non-interpolated. 

3.2 Bias Correcting Historical Data  

 

 Because of the low correlation between the models and the PRISM precipitation values, it 

was imperative to bias-correct the data and determine whether or not the bias-correction methods 

chosen were effective.  

3.2.1 Precipitation 

 

 The first method used in precipitation correction was the correction factor method.  By 

taking the ratio of the monthly average PRISM to MACA precipitation and applying it to daily 

values within that month, precipitation values could be corrected in a simple, linear way. However, 

these linear corrections did not provide any significant improvement (see Table 9 – Daily 

Corrected Correlations).  
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Table 9 – Daily Corrected Correlations  

Comparing these values to the uncorrected, there is little improvement in the precipitation 

correlation coefficient: 

Table 10 – Correlation between raw MACA and corrected MACA precipitation 

The percent change in correlation ranges from 8% to nearly 13,000%. Despite the enormous range 

in correlation percent change, the correlation coefficients themselves still remain incredibly low. 

As mentioned in Section 2.1.2, the MACA model is not intended to serve as a weather hindcast, 

likely partially explaining the low correlation in precipitation values. The correlation coefficient 

and coefficient of determination are not the only ways of validating data; therefore, another method 

of data verification was explored. 

 Several programs in R offer statistical analysis, but the qmap package specifically bias-

corrects precipitation data. Qmap uses quantile mapping to bias-correct model output. However, 

the correlation between the bias-correction from qmap and PRISM is even lower than the 

correlations between the raw output and the correction factor (CF) data and PRISM (see Table 11).  
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Table 11 – Correlations between raw bcc-csm1-1m, CF corrected bcc-csm1-1m, and qmap-corrected bcc-csm1-1m data to 

PRISM 

Surprisingly, the correlation between PRISM and the qmap-corrected data was not just low but 

showed even less of a direct relationship between the datasets. Another approach towards 

validation was then required.  

After seeing the low correlation coefficients, looking at the overall distribution became the 

next step in attempting to validate the results. At this point, it became important to look at the CDF 

of the models in comparison to each other and how they fit against PRISM (see Figure 5 – CDFs 

of each MACA model against PRISM). Though it is difficult to immediately identify whether 

MRI-CGCM3 or CCSM4 is more accurate, there is a clear distinction between PRISM and bcc-

csm1-1m, which generally overestimates precipitation. 

 

Figure 5 – CDFs of each MACA model against PRISM 
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CDFs of PRISM, CF MACA, raw MACA, and qmap MACA were then plotted and 

compared to each other for a fuller understanding of the cumulative distribution of data (see Figure 

6 – CDFs of the raw data and corrected data against PRISM).  
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Figure 6 – CDFs of the raw data and corrected data against PRISM 

From the CDFs in each model, it is clearly seen that though the distribution of the data 

corrected by the qmap package has a slightly different curve, the distribution of the raw and CF 

MACA data are almost exact replicas of each other. Also noteworthy is the improved CDF of the 

corrected MACA model to the raw model. Though the differences are slight between the respective 

models, the distribution of the correction-factor corrected CDF most closely matches that of the 

PRISM model.  

Having seen the CDF of the corrected data as closer to the observed than the original, it 

was then decided to look at a snapshot of seasonal precipitation. New Jersey tends to experience 

more precipitation in the summer months of June, July, and August (JJA); therefore, comparing 

the precipitation from summer months to December, January, and February (DJF) seemed the next 

logical step to validate accuracy. In comparing the raw average precipitation for JJA and DJF 

against the corrected values for the respective months, there is a clear distinction between the two 

graphs (see Figure 7 – Comparison of seasonal average precipitation for winter and summer 

months). Raw model precipitation in particular shows disagreements between the models by month 
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for the winter months, whereas the summer months show more cohesive, united results. The 

models in general overestimate precipitation in comparison to the PRISM values. This may 

perhaps be attributed to the difficulty that GCMs have in capturing smaller, localized storm fronts.  

 

 

 

Figure 7 – Comparison of seasonal average precipitation for winter and summer months with correlations 

After correction, the monthly averages not only tend to match PRISM much more 

significantly, but they agree more amongst themselves. Looking at the corrected average 
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precipitation, the summer months are nearly identical to PRISM and the correlation coefficient 

reflects this, with values averaging 0.98. This is a drastic increase from the correlation coefficients 

for the 1981-2005 daily time series, which saw values as low as 0.000016. Therefore, although the 

daily time series for 25 years may not be significantly accurate, the accuracy at the monthly scale 

proves that MACA can be accurate in predicting seasonal-scale climate shifts.  

3.2.2 Temperature 

 

Temperature is not corrected through a multiplicative method. Instead, bias correction is 

performed through additive measures. Interestingly, although bias-correction helped improve 

precipitation, temperature bias-correction executed through the linear additive method actually 

decreased the correlation coefficient in a several cases (see Error! Reference source not found.).  

 

 

Table 12 - Statistics of corrected and uncorrected Tmin and Tmax 

Because the correlations were either made worse or not significantly improved, the additive 

method was not considered a reliable method of temperature bias-correction. At correlations on 

average of 0.8, the daily time series for temperature was still statistically significant. Looking at 

the DJF and JJA seasonal averages also helped confirm that no further correction was necessary. 

The correlation between PRISM and the models for the summer and winter months was 0.99 for 
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both, Tmin and Tmax.  As with precipitation, MACA performs better on the monthly scale over 

the daily. Despite the slightly lower correlation with daily temperature, raw MACA temperature 

values are considered satisfactory for the purposes of this study.  

  

                                  

Figure 8 – Tmin, Tmax monthly comparison with correlation coefficient 

3.2.3 Future 4.5 and 8.5 RCP 

 

 Based on the results from the historical data, it was decided while temperature would not 

be further corrected, the daily precipitation values in RCPs 4.5 and 8.5 would be corrected using 

the same correction factors per location by month as their historical counterparts. 

3.3 Climatology  

 

3.3.1 Historic Temperature  

 

3.3.1.1 TN10p 

 

Very cold nights, TN10p, represent the bottom 10th percentile of nightly temperatures. By 

looking at the historic trends in TN10p, a general established pattern can be compared to the future 

trends. Figure 9 shows the anomalies in the TN10p; by looking at the total difference from the 

average TN10p per year, a general trend can be defined. The trend of cold nights decreases from 
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1981 to 2005. Though the models disagree about exactly when the percentage cold nights 

decrease—PRISM, bcc-csm1-1m, and CCSM4 all mark this general downward trend turning point 

around 1994—they all show a decrease in total percentage of very cold nights.  

 

 
Figure 9 –Anomalies in coldest nights  

3.3.1.2 TN90p 

  

Very warm nights, TN90p, represent the 90th percentile of minimum temperatures. Figure 

10 showing TN90p shows an overall increase in the anomalies for the warmest nights. Though 

there are a few dips in the moving average through the years, which may be partially attributed to 

the El Niño/La Niña phenomenon (Yun, et al., 2016), the overall trend shows an increase in 

percentage of days in which the minimum temperature is greater than 90% of total temperatures.  
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Figure 10 –Anomalies in the warmest nights 

3.3.2 Precipitation and Droughts 

 

3.3.2.1 CDD  

 

 Consecutive dry days (CDD) are the maximum count of days in which the precipitation is 

less than 1 mm. bcc-csm1-1m predicts a low number of consecutive dry days because of the 

overestimating of precipitation, which was clear in the cumulative distribution chart.  The raw 

CDD anomalies seem to disagree about the maximum amount of dry days. The raw CCSM4 data, 

for example, predicts lower than average CDD until 1988, at which point the CDD skyrockets to 

nearly 28 days higher than the average. Bcc-csm1-1m predicts a similar pattern of lower than 

average CDD until 1993, after which point it continues to decrease until 2002. PRISM predicts 

wetter years from 1989 to 1998, after which point the dry days increase above the average. Despite 

the corrections made to daily data, it did not significantly impact the overall anomalies. 
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Figure 11 – Anomalies for raw consecutive dry days (CDD)  

 
Figure 12 - Anomalies for bias-corrected consecutive dry days 

The trends between the different models were also interesting to use as a source of 

comparison. The trend in consecutive dry days from CCSM4 most closely matches the PRISM 

trendline at a negative slope, while the trend line for bcc-csm1-1m is nearly neutral (see Figure 
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13). Surprisingly, the consecutive dry day trendline for MRI-CGCM3 shows that it is the only 

model amongst the other climate models to show a historical increase in CDD. Therefore, PRISM 

and CCSM4 agree that the average amount of days that consecutively have less than 1 mm of 

precipitation per year decrease over time; that is, the consecutive dry days decrease from 1981-

2005.  

As with the anomalies, the trend line for the corrected CDD is minimally impacted by the 

daily corrections (see Figure 14). 

 
Figure 13 - CDD trends using raw data 
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Figure 14- CDD trends using corrected data 

 

3.3.2.2 R10 

   

  The count of days in which precipitation exceeds 10 mm is an extremely useful climatic 

index. If the amount of days in which 10 mm of precipitation falls increases, then it will 

consequently impact the indices accounting for extreme precipitation and maximum consecutive 

precipitation. Knowing the amount of rain or snow fall and the days over which the precipitation 

may occur affects several involved stakeholders in the general PRB community, such as those who 

live or otherwise maintain businesses in flood zones, architects and engineers, and agriculture 

specialists whose crop may be endangered.  

 The anomalies between the corrected and raw R10 are mostly mirrors of each other, with 

some differences by year. In 1985, for example, the raw CCSM4 model predicts 10 days less than 

the 1981-2005 average, whereas the corrected CCSM4 model predicts 7 days less than the baseline 
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average. Therefore, although the total amount by year may differ, the total running average 

trendline is not majorly affected. All models show a positive trend in R10.  

 
Figure 15 – Anomalies for raw wet days 

 
Figure 16 - Anomalies for corrected wet days  
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Figure 17 - R10 trends using raw data 

 
Figure 18 - R10 trends using corrected data 

3.3.2.3 R95p 

 

 Extreme rainfall, R95p, represents the 95th percentile of precipitation. This information is 

incredibly important to analyze because heavy precipitation can lead to flooding, damaged 
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infrastructure, and loss of life. For R95p, the extremes in PRISM most closely match those of 

CCSM4. MRI-CGCM3 and bcc-csm1-1m both have extreme precipitation predictions on lower 

scales, whereas CCSM4 and PRISM have high precipitation values close to 300 mm above the 

average and low values near 200 below the average.  

 
Figure 19 – Anomalies for raw extreme precipitation 
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Figure 20 - Anomalies for corrected extreme precipitation 

 The trends are also varied amongst the different models. PRISM and the raw MRI-CGCM3 

both show a decrease in the amount of precipitation in the 95th percentile, whereas bcc-csm1-1m 

and CCSM4 show an overall increasing trend. In this circumstance, the corrected data for CCSM4 

makes a large difference. The trend line for the raw R95p CCSM4 data is at a significantly greater 

positive slope than the corrected data, which is closer to a more even 0 slope. In this instance, 

correction works well; even though the slope remains positive compared the negative PRISM 

slope, corrections allow for drastic changes in data to more closely match the observed.  
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Figure 21- R95p trends using raw data 

 
Figure 22- R95p trends using corrected data 

3.3.2.4 R5xday 

 

 The yearly maximum consecutive 5-day precipitation, Rx5day, is the final climate marker 

analyzed in this study. Although the models disagree with the amount of yearly precipitation, there 
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is a correlation of 0.44 between the Rx5day for bcc-csm1-1m and PRISM. Compared to the others, 

which have correlations of -0.01 and -0.005 between CCSM4 and MRI-CGCM3 respectively, it is 

a significantly better relationship.  

 
Figure 23- Anomalies for raw consecutive maximum 5-day precipitation 
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Figure 24 - Anomalies for bias-corrected consecutive maximum 5-day precipitation 

Although bcc-csm1-1m and PRISM have a better correlation than those of PRISM against 

the other models, the trend lines show that PRISM, CCSM4, and MRI-CGCM3 all have positive 

trends in heavy precipitation (see Figure 25 and Figure 26). Bcc-csm1-1m is the only model with 

an overall negative trend.  

 
Figure 25 - Rx5day trends using raw data 
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Figure 26 - Rx5day trends using corrected data 

3.4 Future Changes in Extreme Climate Indices to the PRB 

  

 Having looked at the observed and the historical model output and validating the ability of 

the chosen models to provide reasonable data, future raw and corrected climate data were then run 

through RClimDex in R to determine the potential changes in climate extremes under RCP 4.5 and 

RCP 8.5 for 2051-2075 relative to 1981-2005.  

3.4.1 Temperature  

 

3.4.1.1 TN10p 

 

The models vary in output for the predicted cold nights. The models all agree that the 

amount of very cold nights will decrease, but at different rates dependent on the scenario used.  

These differences are shown very distinctly in Figure 27. CCSM4 and bcc-csm1-1m both agree 

that in scenario 4.5, there will be a decrease of about 0.1%, whereas scenario 4.5 for MRI-CGCM3 

predicts a negative change of nearly 0.25%. Interestingly, both bcc-csm1-1m and MRI-CGCM3 
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both project that in RCP 8.5—the scenario in which emissions are widely unregulated—the TN10p 

will decrease to almost half of the respective predictions in RCP 4.5.  

 
 

Figure 27 – Changes in TN10p  

 

3.4.1.2 TN90p 

 

 The model output for change in TN90p is overall somewhat more in line with expectations 

for change in the PRB. Theoretically, RCP 8.5 should have a larger increase in the amount of warm 

nights; however, bcc-csm1-1m interestingly predicts that in both scenarios, there will be an 

approximate 0.25% increase in warm nights. CCSM4 presents an outlier and predicts that scenario 

8.5 will have an overall decrease in warm nights. MRI-CGCM3 represents the expected outcome 

with RCP 8.5 showing a drastic increase in the warm nights over RCP 4.5. Despite the variations, 

5 out of 6 future scenarios agree that there will be an increase in warm nights. 
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Figure 28 – Change in TN90p  

 

3.4.2 Precipitation  

 

3.4.2.1 CDD 

 

Unsurprisingly, the distribution of consecutive dry days shows that the models predict 

varying outcomes for total change in CDD. Bcc-csm1-1m shows the 50th percentile between the 

scenarios remains approximately the same, with the upper quartile shifting higher for RCP 8.5 (see 

Figure 29 and Figure 30). The lower quartile also extends lower for scenario 8.5, so the total range 

of CDD is wider than the other scenarios. Bcc-csm1-1m is the only model that conforms to 

available literature that predicts that New Jersey and the mid-Atlantic states are predicted to see 

more frequent droughts despite heavier and more frequent precipitation. The other models show a 

decrease in CDD in comparison to their historical counterparts. 
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 Corrections in precipitation data largely affect MRI-CGCM3, where both scenarios see 

shifts in their overall CDD. The corrected RCP 4.5 CDD 75th percentile decreases while the 50th 

percentile increases. For the corrected RCP 8.5 CDD, the median distributions equal out slightly.  

 

 
Figure 29 – Raw CDD for the three models in emissions scenarios 4.5 and 8.5 

 

 
Figure 30 - Corrected CDD for the three models in emissions scenarios 4.5 and 8.5 

While looking at the actual expected change between the average CDD relative to the 

historical CDD, MRI-CGCM3 and corrected CCSM4 show unexpected results (see Figure 31). 

MRI-CGCM3 shows an overall decrease in CDD in RCPs 4.5 and 8.5, whereas bcc-csm1-1m 8.5 

shows an increase in overall consecutive dry days. Raw data from CCSM4 shows no change 
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between RCP 8.5 and the historical value for CDD, while the corrected version of the data shows 

a decrease in CDD.  

 
Figure 31 – Changes in CDD 

 

3.4.2.2 R10 

 

 The differences in the distribution of days in which precipitation amounts to over 10 mm 

(R10) data between the 3 models do not drastically differ. CCSM4 shows that the 50th percentile 

of R10 days differs by approximately 2 days, but the maximum amount of days is approximately 

the same between the historic and future scenarios. Bcc-csm1-1m shows the most difference in 

distribution of data, with the full range of historic raw data extending from 30-55 days, RCP 4.5 

ranging from 21-50 days, and RCP 8.5 ranging from 23-60 days. CCSM4 shows all climate 

scenarios with the same maximum value, while minimum values range from 22-26 and for 8.5 and 

4.5 respectively. The lower and upper quartile of data from MRI-CGCM3 increase only slightly 

between the historic and emissions scenarios, with only the extremes shifting slightly. The 

corrected data distribution only slightly changes from the raw (see Figure 33).  
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Figure 32 - Raw R10 for the three models in emissions scenarios 4.5 and 8.5 

 
Figure 33 – Corrected R10 for the three models in emissions scenarios 4.5 and 8.5 

 

Examining the total change between the future average compared to the historical average 

R10, the models agree that there is an expected increase in total days in which the precipitation 

falls over 10 mm in RCP 8.5 (see Figure 34). However, RCP 4.5 has mixed output. Bcc-csm1-1m 

shows a decrease in precipitation in comparison to the baseline time period for RCP 4.5, CCSM4 

shows an increase of only 1-1.5 days, and MRI-CGCM3 shows a decrease for the raw data and an 

increase for the corrected data.   
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Figure 34 – Change between future average R10 relative to average historical R10 

 

The historic plots in Figure 35 show average precipitation amounts for the winter and 

summer months. Though there are differences between the models, with the overestimation of 

bcc-csm1-1m summer precipitation clear, most of the PRB (outlined in red) shows summer 

precipitation to fall between 3-5 mm. 

Winter months show average precipitation to historically be between 2 and 4 mm. 

However, when looking at the average expected R10 from RCP 8.5, the models heavily disagree 

(see Figure 36). Bcc-csm1-1m shows the full range of values available, while MRI-CGCM3 is 

only slightly more varied, with a range from 10-70 days per year.  
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Figure 35 – Average historical (1981-2005) summer and winter precipitation (mm) from observed (PRISM) and MACA models. 

The orange areas represent precipitation amounts ranging from 2-3 mm; yellow areas represent precipitation amounts ranging 

from 3-4 mm; the green areas represent precipitation amounts ranging from 4-5 mm. 
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Figure 36 - Projected changes in heavy wet-weather days in which precipitation is greater than 10 mm (R10) in RCP 8.5 

CCSM4, on the other hand, shows the whole PRB to experience more than 70 days in which 

precipitation is greater than 10 mm.  

 

3.4.2.3 R95p 

 

 The expected change between the historic average R95p and the historic R95p is relatively 

united amongst the models. In RCP 8.5, each of the models anticipate a minimum of 30 mm of 

intense precipitation, with a maximum of nearly 80 mm. RCP 4.5 sees a slightly more varied 
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distribution of data, but all models except MRI-CGCM3 see an increase in average R95p. In most 

of these climate scenarios, the amount of intense precipitation will increase significantly (see 

Figure 37). 

 
 

Figure 37 – Changes in R95p  

 

3.4.4.4 Rx5day 

 

 The monthly maximum 5-day precipitation addresses the frequency of precipitation 

whereas the other climate indices related to precipitation address the absence of precipitation or 

the amount. The models agree in RCP 8.5 that the maximum 5-day precipitation amount will 

increase, with values of precipitation ranging from 20 mm to approximately 48 mm. As with the 

R95p, bcc-csm1-1m and CCSM4 also agree—albeit bcc-csm1-1m predicts nearly 4 times the 

intensity of CCSM4—that the Rx5day will increase in scenario 4.5, while MRI-CGCM3 predicts 

decreases in the frequency of consecutive rainy days. 
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Figure 38 – Changes in Rx5day 

Plotting seasonal changes over the PRB provides more in-depth analysis. Figure 39 shows 

that plotting the average Rx5day provides further insight to the expected changes in the PRB for 

scenario RCP 8.5. Bcc-csm1-1m shows a gradient of change with average precipitation decreasing 

by 10 towards the east. All the models seem to agree that the areas further east will experience 

lower extreme rainfall than the western regions. Bcc-csm1-1m and MRI-CGCM3 both expect the 

easternmost regions along the border of the PRB will experience less amounts of total average 

precipitation in the 2051-2075. These two models also show no total increase or decrease in parts 

of the eastern half of the PRB. CCSM4, on the other hand, shows a total average increase of 

approximately 120 mm over the basin area.  
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Figure 39 – Projected trends of maximum consecutive 5-day precipitation in emissions scenario RCP 8.5 

4. Discussion 

 

While performing bias-correction of the precipitation data, we found that MACA 

simulations improved better with the linear correction factor than the more sophisticated quantile 

mapping. The interpretation of the CDF graphs showed a significant difference between the two 

methods and therefore the correction factor method was a preferred method of validation. MACA 

is not a hindcasting RCM; therefore, although the daily correlations were still insignificant, 
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seasonal statistical analysis showed significantly improved accuracy. Because of this 

improvement, we believe that MACA sufficed for longer time scales and gave us confidence in 

MACA’s ability to diagnose long-term climate extremes. This validation of the simulated climate 

for the baseline 1981-2005 time period allowed for bias-correction for the future projections for 

2051-2075.  

While looking at the results for the climatic extremes, we expected precipitation and 

temperature extreme indices calculated amongst the models to universally agree that RCP 4.5 

would show less extreme results while RCP 8.5 would show more dramatic differences. However, 

our initial hypotheses were proven false. For the 10th percentile of cold nights, the models agree 

that there will less extremely cold days, but RCP 8.5 for bcc-csm1-1m and MRI-CGCM3 shows 

less of a decrease than RCP 4.5. The models generally also see an increase in the days per year 

that will experience warmer nights, except in the case of CCSM4 RCP 8.5, which sees a decrease 

in the 90th percentile of warm nights. Given that there is an overall increase in wet days, extreme 

precipitation, and consecutive precipitation, we hypothesize that this impact on temperature is 

perhaps is due to increased precipitation and associated cloudiness. The increase of rainfall seen 

by decreased consecutive dry days and the other extreme precipitation indices is most likely due 

to decreased longwave cooling at nights—therefore, there would be a reduced amount of very cool 

nights and an increase in warm nights.  

This study heavily emphasizes the importance of using downscaled GCM climate data to 

determine the potential impacts of climate change on localities. Figures 36 and 39 both emphasize 

the potential differences in climate extremes for the PRB. Visualizing the differences in wet days 

and the differences in heavy precipitation amounts is helpful in delivering detailed climate change 

analysis. The rainy days are heavily varied within the boundary of the PRB; bcc-csm1-1m shows 
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changes ranging from a decrease of 20 days to an increase of 60-70 days, CCSM4 sees an increase 

70 days for the whole basin, while MRI-CGCM3 sees an increase of anywhere from 10 to 70 days. 

The usefulness of using an RCM can be seen again with the range of differences in the consecutive 

wet days—the differences amongst the areas in the PRB are defined and clear. Bcc-csm1-m and 

MRI-CGCM3 see that there is a decrease in the amount of rain the further east you go whereas 

CCSM4 overall just sees an increase of 130 mm. These differences would not be possible to map 

without downscaling and bias correcting GCM data. 

Knowing the trend for cold nights can also be helpful for healthcare professionals, urban 

planners, industry, the vulnerable populations, and other involved stakeholders. The increase in 

amount and frequency of wet days and can be especially helpful for urban planners who need to 

know how to design adaptable infrastructure to protect against flooding, growth of invasive 

species, or other prospective infrastructure failures. Knowing about the potential increase in very 

warm nights can also be particularly helpful for those in the healthcare industry, who can advise 

the general population about issues such as spreading diseases from ticks, mosquitoes, and other 

similar disease-carrying insects. Being armed with this information can also be incredibly helpful 

for the vulnerable populations, such as the very young, very old, homeless, or those in urban areas 

without access to cooling.  

 Future work can extend in different directions. Firstly, incorporating more of the 20 

available downscaled, bias-corrected MACA models would help create a fuller, more 

comprehensive understanding of the potential impacts of climate change on the PRB. A 

sustainability assessment could also be done with the data to help ensure that as the PRB 

experiences changes, the population experiences socially equitable, economically sustainable, and 

environmentally sound decision making to increase community resilience. Urban planners and 
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engineers could also use the available projections to incorporate green infrastructure to their plans, 

creating a more sustainable PRB. Ultimately, downscaled, bias-corrected GCM data can prove to 

be very helpful for smaller regions. 

5. Potential Sources of Error 

 

There may have been several sources of error in the MACA dataset. The developers of 

MACA note potential uncertainty arising from climate sensitivity and difficulty in incorporating 

unpredictable human and political actions into the model. GCMs themselves also have difficulty 

making predictions for smaller-level storm fronts. There is also concern that the model does not 

take the impact of the heat island effect into account; therefore, the model may show better results 

in more vegetated areas rather than heavily industrialized areas such as New Jersey. 

6. Conclusion 

 

The purpose of this study is to identify the ways in which climate change would affect the 

Passaic River basin by using the MACA model. Many regional climate models (RCMs) like 

MACA take information from Global Climate models and downscale and bias-correct the data 

through their own algorithms. When we bias-corrected the data against another model, using 

PRISM as the observational dataset, the correlations did not significantly improve the correlation 

coefficient for either precipitation or temperature. When the linear method of using a correction 

factor did not drastically improve the correlation, R2, and RMSE, a more sophisticated approach 

of correction was implemented, in which quantile mapping transformed the MACA data. However, 

while analyzing the CDFs from the raw, linear corrected, and quantile mapped MACA data, the 

CDF of the quantile-mapping corrected data significantly differed from that of the observed 

dataset. Because the cumulative distribution of the raw and corrected data so closely matched the 

observed distribution, it was considered a reasonable dataset to use to determine assess future 
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changes in climate extremes. For temperature, bias-correction sometimes actually made the 

correlation coefficient worse and therefore, further temperature bias-correction beyond the 

MACA-implemented measures were not performed. Ultimately, MACA downscaled and bias-

corrected CMIP5 climate projections seem to suffice for detailed analysis of climate impacts at 

monthly or longer time periods.  

Using the data to analyze future climatology patterns provided interesting results. The 

disagreement between the models for the different radiative forcing scenarios was surprising. The 

changes in extremes were not always larger for stronger radiative forcing changes. The decrease 

in climate extremes for RCP 8.5 is most probably due to the increase in cloudiness from the 

projected increases in amount and frequency of precipitation. The increase in both precipitation 

days over 10 mm and the annual precipitation days in which the precipitation exceeded the 95th 

percentile was expected given the expectations for New Jersey as a whole to experience higher 

amounts of precipitation (EPA, 2016). While the results from the models analyzed vary 

considerably, this study underscores the usefulness of employing downscaled and bias corrected 

climate projections for investigating plausible future changes at the basin scale.   

Scientifically sound information concerning information on climate extremes is of great 

value for formulating policies to adapt to the change in climate. Policies can be implemented at 

local level to help improve community resilience. Urban planners as well as agricultural and 

healthcare professionals can benefit from credible projections in changes in climate extremes. 
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