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Abstract

Global Climate Models (GCMs) are increasingly becoming useful tools for predicting
future climatic changes. These GCMs typically employ large spatial scales while municipalities
may experience varied impacts at the local level. By downscaling and bias-correcting GCM
outputs, more accurate predictions concerning specific regions can be made. The Multivariate
Adaptive Constructed Analogs (MACA) models provide daily precipitation and temperature
information for point localities by modifying coarse resolution data from GCMs to a higher spatial
resolution. In this study, trends in climate extremes over the Passaic River Basin (PRB) between
1981-2005 are estimated based on three MACA models (bcc-csml-1m, CCSM4, and MRI-
CGCM3). The historical trends obtained from the MACA models are validated using an
observational dataset and further corrected for bias, and then projected trends for 2051-2075
relative to the 1981-2005 investigated.

The models are united in their expectations of a decrease in very cold nights, ranging from
-0.05% to -0.25%. Warm nights show slightly less agreement; while bcc-csm1-1m and MRI-
CGCMS see an increase ranging from 0.05% to 0.18%, CCSM4 sees a decrease of 0.075% for
RCP 8.5. Consecutive dry days decrease by up to 3 days between CCSM4 and MRI-CGCM3,
whereas bcc-csm1-1m only shows an increase in CDD for scenario RCP 8.5. Rainy days also
increase per model from 1-3 days except for bcc-csm1-1m, which sees a decrease by 1 day. The
95t percentile of (or extreme) precipitation also sees almost universal increase ranging from 25%
to 80% except for MRI-CGCM3, which projects a slight decrease of the extreme at only -5%.

This analysis presents a unique opportunity to glimpse at the projected changes in the PRB

with regards to the impacts of climate change.
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Introduction

Climatic patterns are expected to drastically change across the globe during this century.
1983-2012 was the hottest 30-year period in the northern hemisphere in the last 1400 years with
this trend continuing to present day (IPCC , 2013). The Northeastern United States is expected to
experience significant impacts from climate change with predictions of longer summers, warmer
winters, more temperature extremes in the winter and summer, as well as increased occurrence of
droughts despite expectations of more frequent, heavier wet-weather events (Karl, et al., 2009).
The magnitude of these predicted changes can vary greatly, even for neighboring townships.
Therefore, although scientists can predict the effects of climate change on large areas using Global
Climate Models (GCMs), impacts may differ on the local level (NASA, 2018), in which case
Regional Climate Models (RCMs) may be beneficial.

Global Climate Models (GCMs) are very useful tools for predicting climate. They can
predict the changes in climate variables including minimum temperature, maximum temperature,
precipitation, relative and specific humidity, wind speed, and solar radiation. They can also
determine the changes in these variables based on several greenhouse gas concentration scenarios.
These scenarios, known as the Representation Concentration Pathways (RCP), predict the impact
of climate change under four main scenarios: RCPs 2.6, 4.5, 6, and 8.5. RCP2.6 represents the
“best case” and most unlikely path in which greenhouse gases (GHGs) emissions are heavily
regulated and decline after 2020, while RCP8.5 represents a scenario on the other side of the
spectrum, in which emissions continue unregulated and rise until 2100. RCPs 4.5 and 6 represent
more moderate scenarios, or “stabilization pathways,” with radiative forcing of 4.5 W/m? and 6
W/m? respectively. In these situations, emissions reach a peak during the middle of the century

before balancing out (IPCC Climate Report, 2007).



GCMs provide information on several climatic variables, but they do not often provide
accurate data at horizontal scales smaller than 5 kilometers (Kim, et al., 2016). In order to make
these large-scale and coarse datasets more accurate, Regional Climate Models (RCMs) such as the
Multivariate Adaptive Constructed Analogs (MACA) model perform downscaling and bias-
correction under different emissions scenarios for historical and future projections. Downscaling
refers to the process of using large-resolution data to fit a finer scale resolution. However, with
downscaling comes some amount of uncertainty. To deal with the pre-existing bias and consequent
uncertainty from downscaling, researchers also employ bias correction. Bias correction involves
adjusting data output through statistical analysis. By downscaling and bias-correcting climate data
from GCMs, more accurate projections concerning specific localities can be made.

The Passaic River Basin (PRB) provides an interesting study site. Because of the
concentrated population, the pervious area in the PRB, particularly in the areas closer to New York
City, has decreased (Rutgers University Center for Remote Sensing and Spatial Analysis, 2009).
A largely impervious surface area indicates increased tendency for flooding as stormwater enters
waterbodies more quickly with more intensive destructive force. Decreased permeability also
suggests an increased impact of the “heat island” effect. The heat island effect refers to the
phenomenon that occurs after vegetated areas are replaced by grey infrastructure. The previously
vegetated areas experience the impact of lower albedo; instead of reflecting solar radiation, dark
concrete can absorb anywhere from 60 to 95% of the solar energy reaching it, therefore generating
more heat for the surrounding area (Environmental Protection Agency, 2012). In urban regions,
this effect can increase grey surface temperature by 50-90°F (27-50°C) during the day and up to

22°F (12°C) at night (Environmental Protection Agency, 2017). Therefore, further bias correction



of raw data is necessary to include the impact of grey infrastructure on local temperatures (among
other sources of inaccuracy).

This thesis investigates the usefulness of applying MACA data to predict the impacts of
climate change in the whole of the PRB under emission scenarios RCP 4.5 and RCP 8.5 after
performing further bias correction. The study looks at several ways in which the PRB will
experience precipitation and temperature changes. ldentifying future changes in the PRB with
respect to the coldest nights, warmest nights, consecutive dry days, rainy days in which
precipitation exceeds 10 mm, the 95" percentile of precipitation, and the yearly maximum
consecutive 5-day precipitation can be useful to planners and policy makers to help communities
increase their resilience against climate change.

1.1 Literature Review

1.1.1 Model Appraisal

Multivariate Adaptive Constructed Analogs (MACA)

Before collecting raw data from MACA, model validation was key; why would MACA be
a better model to provide data over the other available Regional Climate Models (RCMs)? Several
other RCMs also offer statistically downscaled climate data. For example, the Bias-Correction
Spatial Disaggregation (BCSD), Bias-Correction/Constructed Analogue (BCCA), and Bias-
Correction/Climate Imprint (BCCI) all provide daily precipitation, minimum and maximum
temperature simulations through statistical downscaling. In one comparison of the aforementioned
models over the entirety of South Korea, MACA delivers the best overall statistical results for
historical temperature and precipitation (Eum, et al., 2017). Though other studies find MACA to
be less accurate in their respective study areas, the error found did not prove to be enough of a

deterrent to look towards other models (Demirel & Moradkhani, 2016).



Ultimately, MACA proves to be a preferable RCM to provide daily historical and future
climate output for several reasons. It preserves climatic trends from GCM data using a 31-year
smoothing window, bias-corrects precipitation and temperature data, and uses a reduced set of
analog patterns while including information from older analogs (Mote, et al., 2015). Perhaps the
greatest strength of the MACA model lies in its ability to spatially downscale data from observed
data rather than to use interpolation. Additionally, MACA is able to relate separate variables
together to produce better results; by downscaling temperature with precipitation, MACA obtains
better results for historical snowfall amounts. These factors all qualify MACA as a preferred

climate downscaling model.

Parameter-elevation Regressions on Independent Slopes Model (PRISM)

Ten locations in the PRB were chosen to represent the overall impact of climate change in
the study area. These locations were chosen based on available rain gauges; however, despite
choosing locations with rain gauges assigned by the USGS, only 3 out of 10 locations had usable
historical precipitation data that overlapped with the chosen time frame of January 1981 to
December 2005. Furthermore, there was almost no temperature data for these locations. Therefore,
it was necessary to find an accurate model that could produce observed precipitation and
temperature values to compare to the historical MACA data.

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) model
developed at Oregon State University provides historical data for several variables at chosen
spatial and temporal resolutions. PRISM provides daily temperature and precipitation data at 800-
m and 4-km resolutions and therefore matches well to the 4-km resolution MACA data. Studies
comparing PRISM to other gridded network models also found PRISM to be highly reliable, with

other models overestimating precipitation in areas with vastly varied topographies (Kim, et al.,



2017). The mean average error (MAE, %) and the bias (%), as calculated below, provided a

statistical basis on which the datasets could be compared:
1
MAE = n i=1 lyi — xi 1)

where n represents the count of data points, y is the observed data point, and x is the model value,

and:

. Observed—Model
Bias = ——  x 100 (2)
Model

Compared with two different observation datasets, another study found a maximum of 5.25%
MAE and a maximum bias of 1.5%, therefore validating the PRISM dataset for the study (Daly,
etal., 2017).
1.1.2 Bias Correction

Generated data from climate models benefit from further bias-correction, regardless of the
bias-correction embedded in the model code. Because of the bias that may come from inaccuracies
in the original GCMs—equations that cannot possibly universally accurately cover the Earth’s
surface, models that cannot fully capture everyday physics—model data must be corrected for
higher statistical correlation. Quantile mapping is perhaps the most commonly used method of bias
correction.

A cumulative distribution function (CDF) can better relate model data to observed data.
The CDF, or the cumulative distribution of a dataset, can be extremely helpful in data analysis.
The x-value of a cumulative distribution function graph shows the quantity of the data being
measured—in this study, millimeters of precipitation—while the y-value on the CDF plot
represents the percentage of data that has a value smaller than or equal to the corresponding x
value (Data Camp, 2016). Because the y-value is the accumulation of data points at the

corresponding x-value, the y-value will never reach more than 1 (or 100%). CDFs represent the



area underneath the probability distribution curve; therefore, if f(t) represents the probability

density function, the CDF F(t) can be represented as:

F&) = J', f®dt (3)
Using this equation, we can then bias-correct using a transfer function:
Zm(8) = Fo ' [Fplxn (3] (4)

where %, (t) is the bias-corrected data, x,,, (t) represents the model data, F;? is the inverse of the
observed CDF and F,, is the model CDF (Eum, et al., 2017). This formula helps shift the modeled
values to more closely match the observed values based on the cumulative probability of
occurrence. This method, called quantile mapping, is extremely sophisticated and suggests that
when the model CDFs more closely match the observed—in that they have similar distribution
curves—the values and resulting analysis have higher credibility. Comparing the CDFs of
observed and model data can be helpful in proving the reliability of employed correction methods.

Another useful method of historical data correction is the linear scaling correction factor
method, which differs between precipitation and temperature. For precipitation, corrections were
made by a multiplicative factor consisting of the ratio between observed and model values applied

to daily observed values:

n  pobs

Cc = i=1710 (5)

n model
i=1 P

—model
— model
P, =c* Pjj (6)

where ¢ is the correction factor, P??S is the mean monthly observed precipitation, P/*°%¢! is the

monthly mean of the model value of precipitation, and E;moael is a daily timeseries value for the

corrected model data (Hempel, et al., 2013). This method, although simple, is useful in correcting



precipitation data. In using the correction factor, a monthly mean over the baseline period is
calculated and applied to daily values (Chen, et al., 2013).

The temperature, however, is corrected in a slightly different way. While precipitation is
corrected by more complex functions due to higher GCM error in capturing precipitation,
temperature bias correction is calculated through additive correction because of the simpler
patterns in temperature fluctuations:

C == (T TP = N, T (7)

—~—model

T, =C+ T{}wdel (8)

where C is the correction factor, n is the total number of days in the defined time period, TS is

the observed temperature at day i, /"¢ is the modeled output temperature at day i, and T;mwel

is the corrected temperature at day i in month j (Hempel, et al., 2013).
Finally, the future values must also be corrected for potential bias. In this study, we will

apply the correction factors to daily model output for the time period 2051-2075.

1.1.3 Climatology Indices

Climatology indices can be extremely helpful in identifying the ways climate is expected
to change with regards to global warming. Several studies analyze changes in their respective study
areas by identifying several key climate indices. Marengo et al. look at very cold nights, very warm
nights, consecutive dry days, maximum 5-day precipitation, extreme rainfall, and wet days as part
of their analysis of changes in climate extremes for South Africa (Marengo, et al., 2009). In their
study, Marengo et al. use other RCMs to compare climate extremes from a baseline period of 1961-
1990 against the projected extreme from 2071-2100. Thibeault & Seth employ comparable

methods of comparison of similar climate extremes between a baseline period of 1981-2010 and



projected future trends from 2041-2070, informing our methods of climatology analysis (Thibeault
& Seth, 2004).

The Northeastern part of the United States is already prone to cold streaks, heatwaves,
heavy precipitation, flooding events, and droughts (Thibeault & Seth, 2014). Heatwaves,
combined with heavy humidity characteristics of the PRB, can lead to dangerous situations for
human health and wellbeing as well as for implemented infrastructure. Cold streaks can do equal
amounts of damage; by investigating the predicted change in extreme temperature lows compared
with historical lows, warming trends can be verified. Therefore, predictions of future changes in
extreme temperature and precipitation events will serve as a backbone of decision support for
creation of policy to increase community resilience.

The goal of this study is to employ state-of-the-science methods and data to analyze
potential future changes in several climate extreme indices for the PRB, including:

(1) very cold nights (TN10p), where the percentage of time in a year when daily minimum

temperature falls below the 10" percentile of the daily temperature of the reference period

and future period;

(2) very warm nights (TN90p) that are above the 90" percentile of minimum temperature;

(3) consecutive dry days (CDD), in which the annual maximum number of consecutive

days when daily precipitation falls less than 1 mm;

(4) maximum 5-day precipitation (R5xday), the maximum consecutive total precipitation

within a 5-day window within a defined amount of time;

(5) amount of days in which precipitation is over 10 mm (R10); and

(6) extreme precipitation (R95P), the annual total precipitation in which precipitation is

above the 95™" percentile of the defined time period’s daily distribution.



It is important to note that these climate indices are not determined by a universal standard because
of the variations in climate across the globe. The results in Section 3 pertain only to the PRB and
cannot necessarily be extended to the larger New Jersey or northeastern US region without further

analysis.

1.2 Study Area

The PRB encompasses and drains approximately 935 square miles of land largely in New
Jersey and partially in southern New York State (see Figure 1). The area was heavily influenced
by the Wisconsin Ice sheet, which melted about 11,000 years ago (Passaic River Basin, 2016).
Nestled in the basin is the Passaic River, which empties out into the Newark Bay at 80 miles (129
kilometers) from the source. The river has played an important role in development within the
basin in the last few centuries. Thousands of people settled along the Passaic River in the late
1700s with the successful silk industry inviting laborers and business-minded people alike to the
area. Additionally, because a majority of the PRB is also considered to be part of metropolitan
New York City, the PRB has become an attractive location for commuters. The steady increase in
population since the 1700s has led to the PRB being one of the most densely populated regions in
the most densely populated state.

The area in which the rain gauges are located comprises a subwatershed in the PRB. The
elevation in this area ranges from 91 feet to 1462 feet—a slight difference from the larger PRB,
which ranges from 21 to 1480 feet. The highest values correspond to the Highlands. The PRB is
particularly vulnerable to climate extremes such as floods and heat waves. Expected global
warming-induced changes in climate extremes into the future are therefore of particular concern
for PRB. Detailed analysis of potential future changes in climate extremes for PRB using state-

of-the-art climate model projections is still lacking; therefore, this study hypothesizes that the



application of new high-resolution climate data will provide better information on plausible

future changes in extremes.
This area is also of particular importance because of the water that the Highlands

provides to New Jersey residents. The Highlands provide nearly 66% of New Jersey residents

with clean drinking water. Therefore, looking at the impact of climate change on this area is of

great importance for future generations.
Passaic River Basin
|

/ Legend
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; * Rain Gauges
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Figure 1-The Passaic River Basin, located between New Jersey and New York State
For this study, ten (10) locations were determined as reasonable points of interest (see
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Figure 2 below) due to the available rain gauges and precipitation data at the chosen

locations. The available historical precipitation data came from the USGS.

FID Stations Lon Lat Start End
12 BLOOMINGDALE 0.7 S5E, NJ US -74.3289 41.0202 11/30/14 0:00 &/4/17 0:00
14 GREENWOOD LAKE, NJ US -74.32444 4113861  1/1/410:00 3/31/0% 0:00
16 RINGWOOD 1.0 ENE, NJ US -74.2575 41,1107 5/30/09 0:00 7/9/11 0:00
17 RINGWOOD 3.0 S5E, NJ US -74.2571 41,0653 7/10/110:00 &/2/17 0:00
18 RINGWOOD, NJ US -74.2683 41.0917  1/1/02 0:00 5/30/13 0:00
15 WANAQUE 0.6 5, N US -74.2892 41,0351  7/1/100:00 7/16/14 0:00
20 WANAQUE RAYMOND DAM, NJ US -74.2933 41.0444  8/1/450:00 &/1/17 0:00
21 WEST MILFORD TWP 2.5 55E, NJ US -74.368 41.0735  9/4/100:00 &/3/17 0:00
22 WEST MILFORD TWP 3.2 NE, NJ US -74.3536 41.141 4/27/100:00 &/16/13 0:00
23 WEST MILFORD TWP 5.5 NE, NJ US -74.3293 411705 1/3/100:00 1/28/13 0:00

Figure 2 - Locations of chosen stations in the PRB study site watershed

2. Data and Methods
Several models were used in collecting and processing data for this study. The following
section details the steps used in this study (see Figure 3 — Steps taken to make a climate impact

assessment for the PRB).

Input location data to MACA
and PRISM

Bias-Correct historical MACA

against PRISM data (1981-2005)

Apply bias-correction to future
dataset (2051-2075)

Climate Impact Assessment

Figure 3 — Steps taken to make a climate impact assessment for the PRB

2.1 Models

2.1.1 The PRISM Model
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The PRISM model was created by a team of researchers under the Northwest Alliance for
Computational Science and Engineering (NACSE) at Oregon State University. PRISM provides
daily and monthly estimates of precipitation (measured as the total daily or monthly amount of
rainfall and melted snow), minimum temperature, maximum temperature, mean dew point,
minimum mean dew point, minimum vapor pressure deficit, and maximum vapor pressure deficit
(PRISM, 2016). These datasets are freely available at http://www.prism.oregonstate.edu/.

PRISM offers data for the aforementioned variables ranging from 1895 to present day. For
the “historical” data, monthly values are offered from 1895 to 1980, whereas daily and monthly
data for more recent years are available from 1981 to present day. These recent time series data
are formulated used climatologically-aided interpolation (CAI). CAl uses 30-year averages to
determine the spatial pattern of a chosen point location or specified area by using an algorithm to
create a relationship between elevation, climate, and station data for individual grid cells. It has
also recently incorporated proximity to coastlines, complexity of local terrain, and potential for
temperature inversions to its algorithm (Daly & Bryant, 2013). PRISM performs climate-elevation
regressions using a complex network of stations and a layered algorithm to produce climate data
for the conterminous United States.

PRISM data is available in several formats, but for the purposes of the study, data was
obtained in the form of a comma-separated value (.csv) worksheet to be read in Excel (for point
locations) and band interleaved line (.bil), to be extracted in GIS or other available software. Daily
values for precipitation and temperatures from January 1, 1981 until December 31%, 2005 were
chosen in order to match the time series available from MACA (see Section 2.1.2 — The MACA
Model). Downloaded data provided metric units to also match the time series from MACA in order

to ensure the maximum preservation of raw data.
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2.1.2 The MACA model

The MACA model (Abatzouglou, 2013) was developed at the University of Idaho. This
model uses statistical downscaling instead of dynamic downscaling. Dynamic downscaling
requires the use of high-resolution climate models at the regional level to produce data, with an
observational or lower-resolution climate data as a “boundary condition” (National Center for
Atmospheric Research, 2018). MACA developers, on the other hand, used statistical downscaling
to create an algorithm relating local climate variables (precipitation, temperature, humidity, etc.)
to each other and then to existing global climate model data.

The MACA process is lengthy, requiring several steps to produce the final output. First, a
“training” or observational dataset for each variable is determined. For the METDATA used in
this study, a training period of daily data from the NASA North American Land Data Assimilation
System (NLDAS-2) for the time period of 1979-2012 was used. The datasets are then interpolated
to a 1° x 1° grid from larger resolution grids, after which point they undergo “epoch adjustment”
and are adjusted to predict seasonal and yearly trends. Bias-correction of the training dataset is
performed using monthly PRISM values for temperature, precipitation, and humidity. Output is
validated against several other weather station data sources (MACA, 2013).

MACA then takes data from the GCMs to compare to the training dataset. These GCMs
are coordinated by the Coupled Model Inter-Comparison Model 5 (CMIP5) and provide metadata
to climatologists worldwide and is a significant, trusted source of data; the United Nations released
a report on the expected impacts of climate change by heavily relying on the information provided
by the CMIP5 GCM datasets. MACA utilizes 20 of the GCMs to run because of various

incompatibilities with the excluded models.
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A cumulative distribution function plot for the GCM and training data is created for each
grid and through use of equidistant quantile mapping of the future GCM data, adjustments are
made with quantile differences in the CDFs preserved. These adjustments are the bias-correction

of the data (see Figure 4 — Bias Correction of GCM data in MACA (Abatzouglou, 2013)).

/'//' —08S ‘,7‘7 "l|—oBS /
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Raw GCM After Epoch After Bias
Data Adjustment Correction

Figure 4 — Bias Correction of GCM data in MACA (Abatzouglou, 2013)

After the data is corrected, the statistical distribution of the GCM matches the statistical
distribution from the training dataset and the spatial resolution of the output data will also match
the resolution of the training set. After some more fine-tuning and minor bias-correction, the data
are ready. It is important to note that although the statistical distribution of the model more closely
matches the statistical distribution of the training dataset, MACA is not intended to be used as a
hindcast of historic weather. Therefore, observational data from 1990 does not exactly correlate to
the MACA data from 1990.

For purposes of this study, three GCMs were chosen to provide historical and future climate
data: (1) bcc-csml-1m, (2) MRI-CGCM3, and (3) CCSM4 (see Table 1 — GCM Models used in
this study). These models represent 3 of 30 ranked GCMs, all of which have significantly differing
normalized error score. The normalized error comes from 18 performance analytics for a study
area in the Pacific Northwest. The most accurate, in which the normalized error score is closest to

0, is CCSM4, which is ranked as the 3" most accurate model in terms of normalized error. Bcc-
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csml-1m falls next at 13 and MRI-CGCM3 ranks 27 (Rupp, et al., 2013). With such a wide range

of performance, this study can obtain a fuller understanding of possible future climatic changes.

Model Center Country Resolution

bcec-csm1-1m Beijing Climate China 1.12°x 1.12°
Center
CCsM4 National Center of USA 1.25° x 0.94°
Atmospheric
Research
MRI-CGCM3 Meteorological Japan 1.1°x 1.1°
Research Institute

Table 1 — GCM Models used in this study

2.1.3 R Statistical Software

This study uses R Statistical Software, a program maintained by the R Foundation for
Statistical Computing. Two software packages were installed for use in this study.

Qmap version 1.0-4, a package created by Lukas Gudmundssen at the Institute of
Atmosphere and Climate Science in Zurich, was used to determine quantile mapping for bias-
correction of downloaded data. Qmap offers several methods of bias-correction. Because the
function “qmapDIST” most closely fit the quantile mapping correction methods used in the
literature (see Section 1.1.2 Bias Correction), qmapDIST was chosen as the best approach towards
bias correction of the model data. QmapDist creates a function in which the inverse CDF of the
observed dataset—or the corresponding quantile function from the observed dataset—becomes a

function of the model CDF at a daily data point, x:

J’C\m(t) = Fo_l[Fm{xM (t)}]
Qmap consists of two primary steps: fitgmapDIST and doQmapDIST. FitgmapDIST is the
command used to relate observed and modelled time series data, while doQmapDIST transforms

the model data using the transformation algorithm from fitQmapDIST (Gudmundssen, 2016).
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These functions were key in producing daily time series for the quantile mapping method of data
correction.

The second R package referenced in this study is the RClimDex package. RClimDex is a
package created by a team of researchers at the Climate Change Research Centre (CCRC) at the
University of New South Wales (UNSW). RClimDex is programmed to identify 27 climate indices

(see Table 2 — List of possible climate indices available from the RClimDex program to be

calculated in R) (ClimDEX, 2013).

Notation Name Definition
Annual count of days where the minimum temperature (TN) is less than 0°C
FD Frost Days TN;j is daily min temp on day i, year j
TNii < 0°C
Annual count of days where maximum (TX) temperature is greater than 25°C
SU Summer Days TXjj is the daily max temp on day i, year j
TXi > 25°C
1 1 0y
D Icing Days Annual count of days where ;n)?“xn< m(t)xog temperature is less than 0°C
ini 1 0,
TR Tropical Nights Annual count of days where rT_]I_llr\wllum:r;OtoeCmperature is greater than 20°C
1]
Annual count of first span of at least 6 days with daily mean temperature (TG) greater than 5°C and
GSL Growing Season span of 6 days after July 1 where TG is less than 5°C
Length TG;; > 5°C
After July 1: TG;; < 5°C
X \I}/I(I)nthly Max Daily maximum temperatures in month k, period j
X alue of Daily T =max(TXouq)
Max Temp M M
™ Monthly max value Daily minimum temperatures in month k, period j
X of daily min temp TNy=max(TNy;)
X Monthly min value Daily maximum temperatures in month k, period j
" of daily max temp TXng=min(TX)
™ Monthly min value Daily minimum temperatures in month k, period j
" of daily min temp TNni=min(TNpg)
Percentage of days TNi,10 is the calendar day where the 10™ percentile is centered on a 5-day window for the base
TN10p when TN < period 1961-1990
10" percentile TN;i < TN, 10
FERIEETEGS DTCEYS TXin10 be the calendar day 10'" percentile centered on a 5-day window for the base period 1961-1990
TX10p when TX < TX: < TX: 10
10" percentile 0 "
TNYO Percentage of days TN;:90 be the calendar day 90™" percentile centred on a 5-day window for the base period 1961-1990
P when TN > TN; > TN;,90
90" percentile U "
FergErEGe Oideys TXi:90 be the calendar day 90" percentile centred on a 5-day window for the base period 1961-1990
TX90p when TX > TX: > TX-90
90" percentile . i
WSDI Warm spell Annual count of days with at least 6 consecutive days when TX > 90" percentile
duration index TXij > TXin90
CSDI Cold spell duration Annual count of days with at least 6 consecutive days when TN < 10" percentile
index TNii < TN;y10
DTR Daily temp range Monthly mean difference between TX and TN
. Monthly maximum Let RR;; be the daily precipitation amoun;eorri]o(éajyalrér_] period j. The maximum 1-day value for
1-day precipitation Rx1day; = max (RRy)
Monthly max Let RRy; be the precipitation amount for the 5-day interval ending , period j. Then maximum 5-day
Rx5day consecutive 5-day values for period j are:
precip Rx5day; = max (RRy)
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. . The daily precipitation amount on wet days, w (RR > 1mm) in period j. If Wrepresents number of wet
Simple precip P .
SDII e e days in j, then:
Y SDII = (SRRu)/W
Annual count of . A . S .
R10mM days when PRCP> Let RR;; be the daily precipitation amount on day i in period j. Count the number of days where:
RRjj > 10mm
10mm
Annual count of - R . Lo ]
R20mm days when PRCP> Let RR;; be the daily precipitation amount on day i in period j. Count the number of days where:
RRij > 20mm
20mm
Annual count of nn is a user defined threshold: Let RR;; be the daily precipitation amount on day i in period j. Count
Rnnmm days when PRCP> the number of days where:
nnmm RR;jj > nnmm
Maximum length Let RR;; be the daily precipitation amount_on day iin perl.od j. Count the largest number of
CDD of drv sell consecutive days where:
ysp RRy; < 1mm
Maximum length Let RR;; be the daily precipitation amount_on day iin perl_od j. Count the largest number of
CWD of wet spell consecutive days where:
p RRii 2 1mm
Let RRy; be the daily precipitation amount on a wet day w (RR > 1.0mm) in period i and
RI50TOT Annual total PRCP let RRy95 be the 95 percentile of precipitation on wet days in the 1961-1990 period.
P when RR > 95p If W represents the number of wet days in the period, then
R95p; = YRRwj, where RRwj,> RRwn95,
Let RRy; be the daily precipitation amount on a wet day w (RR > 1.0mm) in period i and
RY9HTOT Annual total PRCP let RR,,+99 be the 99'" percentile of precipitation on wet days in the 1961-1990 period.
P when RR > 99p If W represents the number of wet days in the period, then:
R99p; = ¥RRwj, where RRwj,> RRwn99
Annual total Let RR;; be the daily precipitation amount on day i in period j. If i represents the number of days in j,
PRCPTOT precipitation in wet then
days PRCPTOT; = YRRy,

Table 2 — List of possible climate indices available from the RClimDex program to be calculated in R

2.2 Correction Factor

One method of historical bias-correction explored in this study is the correction factor

method. The correction factor method uses a simple, linear approach toward correction of daily

climate data. For this study, daily corrected values are calculated for the baseline period per model

by using the equations:

1y, pobs
n =141
c =
1 n Pmodel
n 1=1"1
—~model _ model
F, =cxPy

where c is the correction factor, P??S is the mean monthly observed precipitation, P/*°%¢! js the

T —model . . . .
monthly mean of the model value of precipitation, and Pumo “isa daily timeseries value for the

corrected model data.
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The temperature, however, is corrected in a slightly different way because of the simpler
patterns in temperature fluctuations. While precipitation is corrected by a multiplicative factor, the

temperature correction factor is calculated through additive methodology:

1 n n
C== obs __ Z model
~ () TeP - ) Tl
i=1 i=1

~—model

T,

— model
y =C+T]

where C is the correction factor, n is the total number of days in the defined time period, T°%S is

~—model

the observed temperature at day i, T;"°?¢" is the modeled output temperature at day i, and T;,
is the corrected temperature at day i in month j.
The correlation coefficient R, coefficient of determination R?, root mean square error

RMSE, and the CDFs were calculated for statistical analysis of the data.

3. Results and Discussion

3.1 Historical Data Analysis

After downloading data from MACA and PRISM, the first step in the analysis was to
validate the PRISM data. Historical observed precipitation data from the USGS was only available
for 3 locations. Full precipitation comparisons were available for (FID 14) Greenwood Lake and
(FID 20) Wanaque Raymond Dam while a partial comparison (Jan 2002 — Dec 2005) was available
for (FID 18) Ringwood. Correlations and RMSE were calculated to determine the similarity
between for daily PRISM and USGS/NOAA time series data (See Table 3 - R, R2, and Root Mean
Square Error values for the PRISM model values and the observed data.). Because PRISM had an
R? range from 0.83-0.99 with the available observed data, and because there was not enough
precipitation or temperature data from the USGS—the original designated resource for observed

values—PRISM served as a solution to provide observational values.
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Statistics

Location PRISM vs NOAA
r rd RMISE
14 Greenwood Lake 09952145  0.99045190 0.012179%6
18 Ringwood 059152671  0.83771395 0.0313515
20 Wanaque Raymond Dam | 09133208 0.83415457  0.0361998

Table 3 - R, R?, and Root Mean Square Error values for the PRISM model values and the observed data.

The next step involved inspecting the daily time series values for precipitation, minimum
temperature, and maximum temperature for each location (1981-2005) in MACA using bcc-csm1-
1m, MRI-CGCM3, and CCSM4. However, looking at the daily values provided little clarity (see

Table 4 — Calculated statistics (R, R2, and Root Mean Square Error values) for the different
locations chosen. Highlighted values show the best R2 values (closest to 1).) towards the
correlation between the different models and as such, the data was converted to average monthly
values for easier viewing and understanding (see Figure 4 on next page).

There is a high correlation between the models for minimum and maximum values for
temperature. Precipitation, however, shows large variations in value, with no single MACA model
showing determination correlation (R?) greater than 0.0083 with respect to PRISM values.

For temperature predictions, MRI-CGCM3 consistently shows the highest correlation while
CCSM4 shows marginally better R? values in precipitation predictions. In all aspects, bcc-csmi-
1m proves to be the least accurate compared to the PRISM model.

Because the correlation between the values produced by the three MACA models and
PRISM were so low, data was re-downloaded for each location. The units were double-checked to
ensure compatibility, confirmed that MACA and PRISM had the same 4-kilometer resolution, and,
as per the MACA website recommendation, which recommended against using only 1 or 2 models
(MACA, 2013), increased the number of models number to 9 and the correlation values were still

consistently low (see Figure 6).
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Precipitation Statistics
Location BCC ws Prism MR vs Prism CCSM4 vs Prism

r r2 RMISE r r2 RMISE r r2 RMSE
12 Bloomingdale -0.0078953 0.0000623 | 0.1052651 | 0.0377433  0.0014246 0.0957545 | -0.0413468 0.0017056 0.1051409
14 Greenwood Lake 0.0045273  0.0000205| 0.1096358 | 0.0280330 0.0007858 0.1011030 | -0.0914016 O0.0083543 0.11232564
16 Ringwood 1.0 ENE 0.0220498 0.0004862 0.0468249 00021926 0.0975641 | -0.0633439 0.0040125 0.1073260
17 Ringwood 3.0 S5E 0.01359878 0.0001557 | 0.1052242 | 0.04555%66 0.0020750  0.0968216 | -0.0626746 0.0035281 0.1073657
18 Ringwood 0.0058316 0.0000340| 0.1056735 | 0.0465887  0.002207% 0.0965857 | -0.0564177 0.0031830 0.1060237
159 Wanagque 0.6 5 -0.0121913 0.00014856  0.10626%6 | 00401288 0.0016103 0.0958600 | -0.0359703 0.001293%  0.1048827
20 Wanague Raymond Dam | -0.0056172 00000316 0.1057353 | 0.0379404 0.0014355 0.0965097 | -0.0371205 0.0013779 0.1054443%
21 West Milford Twp 2.5 S5E | -0.0106110 | 0.0001126 0.1098460 | 0.01445591 0.0002102 01011768 | -0.0704495 0.0045631 0.1104478
22 West Milford Twp 3.2 NE | 0.0035132 00000123 01106574 | 0.0267016 | 0.0007130 0.1015744 | -0.0843010 0.0071067 0.1124062
23 West Milford Twp 5.5 NE | -0.0001662 0.0000000 0.11025944 | 0.0300870 | 0.0009052 0.1011672 | -0.0864577 0.0074745 0.1124217

Tmin Statistics
lecation bec-csml-1m CCsSh4g MRI-CGEM3

r R2 RMSE r R2 RMSE r R2 RMSE
Bloomingdale 0.8047245 0.64758152 6.00304217| 0.80321088 0.64514772 599379891 ( 0.80699555 0.65124182 5.88031498
Greenwood Lake 0.80351295 0.64563305 6.05813039| 0.80196522 0.64314821 6.05475582| 0.8057863 0.64929156 5.92578459
Ringwood 1.0 0.80666714 0.65071188 5.9455331| 0.80510715 0.64819752 5.94023737| 0.80903027 0.654529938 5.82456029
Ringwood 3.0 0.80753049 0.6521055 5.98866252| 0.80580478 0.64932135 5.98965064| 0.80946334 0.6552309 5.86406571
Ringwood 0.8074032 065189993 5.99325953| 0.80582919 0.64936068 599123541 0.80048531 0.65526647 5.86554786
Wanague 0.6 0.8080627 065296533 5.84940721| 0.80602272 0.64967263 5.848232( 0.80949176 0.6552769 5.76933306
Wanague Raymond Dam | 0.80838342 065348376 5.84820869| 0.8063792 0.65024741  5.84391381( 0.80983106 0.65582635 5.77020127
W Milford 2.5 0.80121949 0.64195267 6.20284431| 0.79959719 0.63935567 6.20451294| 0.80336245 0.64539122 6.05530595
W Milford 3.2 0.80351101 0.64562994 6.00859581| 0.80204849 0.64328177 6.00107739| 0.80579841 0.64931107 5.88496121
W Milford 5.5 0.8047245 064758152 6.00304217| 0.80321088 0.64514772 599379891 0.80699555  0.65124182 5.88031498

Tmax Statistics
location bec-csml-1m CCSM4 MRI-CGCM3

r R2 RMSE r R2 RMSE r R2 RMSE
Bloomingdale 0.79944338 063910971 6.58983921| 0.70586835 0.63340642 6.63262978| 0.80502786  0.64806986 6.44356599
Greenwood Lake 0.80007418 0.6401187 6.59876692| 0.79672544 0.63477143 6.63679674| 0.8054719  0.64878498 6£.45041295
Ringwood 1.0 0.80045856 064073391 6£.59425474) 0.79690364 0.63505541 6.63913035| 0.80561494 | 0.64901543 6.44658468
Ringwood 3.0 0.79959032 063934468 6.60722344| 0.79597092 0.63356971 6.65441241| 0.80490888 0.64787831 6£.45479076
Ringwood 0.79954365 063927006 6.61790217| 0.70602147 0.63365018 6.66472875| 0.80483041 0.647752 6.46070853
Wanague 0.6 0.79824569 063719618 6.61240617| 0.70476235 0.6316472 6.65345137| 0.80391852 | 0.64628499 6.46677241
‘Wanague Raymond Dam | 0.79891275 0.63826158 6.60361061( 0.79544451 0.63273197 6.6406597) 0.80438992 0.64704314 6.46816916
W Milford 2.5 0.80172086 064275633 6.59239771| 0.709827725 0.63724657 6.62477339| 0.80704654 | 0.65132412 6.46084215
W Milford 3.2 0.80071764 064114874 6.59049141) 0.79741695 0.63587379 6.62248866| 0.80604715) 0.64971201 6.45185035
W Milford 5.5 0.8026919 0.64431429 6.58163137| 0.79935259  0.63896457 6.61362209( 0.80768557 0.65235597 6.44867912

Table 4 — Calculated statistics (R, R?, and Root Mean Square Error values) for the different locations chosen. Highlighted values
show the best R? values (closest to 1).
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r -0.007895344

BCC-CSM1-1m r2 6.234E-05

0.037743309

MRI-CGCM3 r2 1.4245E-03

-0.041346770

CCsmMa r2 1.7096E-03

0.091165507

bee-csml-1 r2 8.3111E-03
Stats

0.088645513

BMLU-ESM r2 7.8580E-03

0.12785951

CanESM2 r2 1.6348E-02

0.075748131

MIROC-ESM r2 5.7378E-03

r -0.059358204

MIROC-ESM-CHEM r2 3.5234E-03

Table 5- Statistics of monthly precipitation between 8 MACA models and PRISM for precipitation at Bloomingdale, 1981-2005.
Highlighted value represents value closest to 1.

One study, evaluation and downscaling of CMIP5 climate simulations for the Southeast
US by Mote et. Al (2015), previously referenced in Section 1.1, found that of 41 CMIP5 Global
Climate Models (GCM)—including CCSM4, bcc-csm1-1m, and MRI-CGCM3—bcc-csml1-1m
were consistently high in error, earning a high normalized error score of 0.9/1.0 and placing at 40
of 41 GCMs (Mote, et al., 2015). In the same report, CCSM4 earned the highest score at 18/41
with a normalized error score of approximately 0.3. Despite other authors finding the error of
CCSM4 to be quite low, this study found CCSM4 to have extremely low correlation.

Mote, et al. (2015) also found that another MACA model from the 41 ranked GCM models,
CNRM-CMS5, ranked at 8th in terms of normalized error score. We correlated the output from this

model against the PRISM.

r 0.1094454 24
CHNRM-CM5 r2 0.011979176

Table 6 — Correlation of MACA model CNRM-CM5 with PRISM in Bloomingdale
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Though the R? value (Bloomingdale) is still quite low, there is a 191% increase in accuracy
compared to the lowest value from the first attempt, which was the bcc-csm1-1m value of 6.23e-
5. The CNRM-CM5 model provides the closest R? value to 1.

In a different study focusing on the Colombia River Basin (CRB) located mostly in
Washington State, Idaho, and Oregon (partially in Canada, Montana, and Wyoming), researchers
used MACA to look at precipitation seasonality and timing (Demirel & Moradkhani, 2015). Based
on their research, which showed positive benefits in using MACA, we tested our MACA models
on a location in the CRB. To easily access information, we decided on Portland, Oregon, and tested
the coordinates of the Hayden Island Rain Gauge on bcc-csm1-1m, CCSM4, and MRI-CGCM3
(see Table 7 — Statistics for the Hayden Island Rain Gauge). We also checked if the interpolated
values for Prism made any difference in comparison to the non-interpolated values, as our original

values were non-interpolated.

Precipitation Statistics

BCC ws Prism MRl vs Prism CCSMA vs Prism Prism Interpolated vs Prism

Location r r2 RMSE r r2 RMSE r r2 RMSE r r2 RMSE

General Portland 0.5591487 0.3126472 2.2851453 0.5853684 0.3426562 2.2092171
Portland - Hayden Island Rain
Gauge, Interpolated
Portland - Hayden Island Rain

Gauge, Not Interpolated

0.5578179 03111608 23123879

0.5365202 0.2882833 20751414 | 0.5709477 03255813 15851022 | 0.5536782 0.30655%6 2.0488011

0.5355751  0.2868407  2.0704472 | 0.5536476 03065257 20417461 | 0.5706363 0.3256258 15787345 | 09955153 0.9998387 0.0382525

Tmin Statistics

BCLC ws Prism MRI vs Prism CCSMA ws Prism Prism Interpolated vs Prism
Location r r2 RMSE r r2 RIMISE r r2 RMISE r r2 RMSE
General Portland 09141553 0.B356872 43640253 | 0.9158287 08387422 41473507 | 0.9028279 0.8150082 4.4378160
Portland - Hayden Island Rain
Gauge, Interpolated 0.9168271  0.8405720 3.5206406 | 09042245 0.8176227 3.3809365 | 0.9042245 0.8176227 3.6862388
Portland - Hayden Island Rain
Gauge, Not Interpolated 0.9164840  0.8399425  3.5135032 | 09172341 0.8413184 3.3739651 | 0.9038764 0.8165525 36802646 [ 09995919 09995838 0.0444375
Trnax Stats
BCC vs Prism MRI vs Prism CCSMA vs Prism Prism Interpolated vs Prism
Location r r2 RMSE r r2 RMSE r r2 RIMISE r r2 RMISE
General Portland 09447246 0.8925047  4.1784124 | 0.9473587 0.8974885 4.0356165 | 0.9480225 08987466 4.0047352
Portland - Hayden Island Rain
Gauge, Interpolated 09447565 0.8925645 42135067 0.9480354 08987710 4.0245327( 0.9473454 0.8574633 4.0432142
Portland - Hayden Island Rain
Gauge, Not Interpolated 0.9447764 0.8926025 4.2119510) 0.9473270 0.8974285 4.0447542| 0.0481283 0.8982472 4.0212331) 0.9999572 0.9999%44 0.0371948

Table 7 — Statistics for the Hayden Island Rain Gauge

In comparison to the results from the Passaic River Basin, precipitation R? values were

97% more accurate—despite still only being 0.325 at the highest value. R? values for minimum
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and maximum temperature were lower; for the Passaic River Basin, temperature R? values
averaged 0.93 whereas CRB R? values averaged 0.84 for minimum temperature and 0.89 for
maximum temperature.

There was an insignificant difference between the interpolated and non-interpolated
PRISM values in Portland; however, the slight difference warranted a venture into re-downloading
original PRISM values for the Passaic River Basin. We downloaded interpolated values for
Bloomingdale (see Table 8 — Statistics for the interpolated PRISM values against bcc-csm1-1m,

MRI-CGCM3, and CCSM4).

Stats
BCC ws Interpolated Prism MBI vs Interpolated Prism CCSMA ws Interpolated Prism
r ra RMSE r ra RMSE r ra RMSE
00087606  0.0000767 26760948 | 00342519 00011732 24332190 | -0.0394837 0.0015580 2.6693973
Table 8 — Statistics for the interpolated PRISM values against bcc-csm1-1m, MRI-CGCM3, and CCSM4

With the R? values still significantly low, the interpolated values showed no distinct
improvement versus non-interpolated.

3.2 Bias Correcting Historical Data

Because of the low correlation between the models and the PRISM precipitation values, it
was imperative to bias-correct the data and determine whether or not the bias-correction methods

chosen were effective.

3.2.1 Precipitation

The first method used in precipitation correction was the correction factor method. By
taking the ratio of the monthly average PRISM to MACA precipitation and applying it to daily
values within that month, precipitation values could be corrected in a simple, linear way. However,
these linear corrections did not provide any significant improvement (see Table 9 — Daily

Corrected Correlations).
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DAILY CF Corrected Maca and PRISM Correlations

R R2
Location PRISM v bec-csml-1m PRISM v CCSM4  PRISM v MRI-CGCM3 |PRISM v bec-csmil-1m PRISM v CCSME PRISM v MRI-CGCM3
Bloomingdale 0.017190051  -0.016836623 -0.013210881 0.000295498  0.000283472 0.000174527
Greenwood Lake 0.020551929  -0.019782585 -0.011526613 0.000422382 0.000391351 0.000132863
Ringwood 1.0 0.023557933  -0.015825998 -0.011340434 0.000554976  0.000250462 0.000128605
Ringwood 3.0 0.02033071  -0.018362264 -0.018362264 0.000413338  0.000337173 0.000337173
Ringwood 0.020378278  -0.017342248 -0.013409128 0.000415274 0.000300754 0.000179805
Wanague 0.6 5 0.013774404  -0.016928988 -0.018018741 0.000189734 0.000286591 0.000324675
Wanague Raymond Dam 0.020128192 -0.004112498 -0.01169786 0.000405144 1.69126E-05 0.00013684
W Milford 2.5 SSE 0.017522988  -0.019166587 -0.013183437 0.000307055 0.000367358 0.000173803
W Milford 3.2 NE 0.021137605  -0.019979091 -0.011572626 0.000446798 0.000399164 0.000133926
W Milford 5.5 NE 0022204562 -0.018224861 -0.011460412 0.000493043 0.000332146 0.000131341

Table 9 — Daily Corrected Correlations

Comparing these values to the uncorrected, there is little improvement in the precipitation

correlation coefficient:

Correlations between raw and correction-factor MACA precipitation

Raw CF
Location PRISM v boec-csm1-1m PRISM v CCSM4 PRISM v MRI-CGCM3 |PRISM v boc-csm1-1m PRISM v CCSME  PRISM v MRI-CGCM3
Bloomingdale -0.007895344  -0.041346779 0.037743309 0.017190051  -0.016836623 -0.013210881
Greenwood Lake 0.004527278 -0.09140164 0.028032977 0.020551929  -0.019782585 -0.011526613
Ringwood 1.0 0.022049835 -0.063343943 0.046824866 0.023557933  -0.015825998 -0.011340434
Ringwood 3.0 0.013987827 -0.062674619 0.045596558 0.02033071  -0.018362264 -0.018362264
Ringwood 0.005831563 -0.056417696 0.046988655 0.020378278  -0.017342248 -0.013409128
Wanague 0.6 5 -0.012191279  -0.035970264 0.040128752 0.013774404  -0.016928988 -0.018018741
Wanague Raymond Dam -0.005617157  -0.037120478 0.037940448 0.020128192  -0.004112498 -0.01169786
W Milford 2.5 S5E -0.010610954  -0.070449475 0.014499061 0.017522988  -0.019166587 -0.013183437
W Milford 3.2 NE 0.003513159 |  -0.084300957 0.026701608 0.021137605  -0.019979091 -0.011572626
W Milford 5.5 NE -0.000166232  -0.086457721 0.030086976 0.022204562  -0.018224861 -0.011460412

Table 10 — Correlation between raw MACA and corrected MACA precipitation

The percent change in correlation ranges from 8% to nearly 13,000%. Despite the enormous range
in correlation percent change, the correlation coefficients themselves still remain incredibly low.
As mentioned in Section 2.1.2, the MACA model is not intended to serve as a weather hindcast,
likely partially explaining the low correlation in precipitation values. The correlation coefficient
and coefficient of determination are not the only ways of validating data; therefore, another method
of data verification was explored.

Several programs in R offer statistical analysis, but the gmap package specifically bias-
corrects precipitation data. Qmap uses quantile mapping to bias-correct model output. However,
the correlation between the bias-correction from gmap and PRISM is even lower than the

correlations between the raw output and the correction factor (CF) data and PRISM (see Table 11).
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R
Prisrm, raw_bec |Prism, CF_bcoc |Prism, R
-0.022724068( -0.022724068| -0.0189301

Table 11 — Correlations between raw bcc-csm1-1m, CF corrected bee-csm1-1m, and gmap-corrected bee-csml-1m data to
PRISM

Surprisingly, the correlation between PRISM and the gmap-corrected data was not just low but
showed even less of a direct relationship between the datasets. Another approach towards
validation was then required.

After seeing the low correlation coefficients, looking at the overall distribution became the
next step in attempting to validate the results. At this point, it became important to look at the CDF
of the models in comparison to each other and how they fit against PRISM (see Figure 5 — CDFs
of each MACA model against PRISM). Though it is difficult to immediately identify whether
MRI-CGCM3 or CCSM4 is more accurate, there is a clear distinction between PRISM and bcc-

csml-1m, which generally overestimates precipitation.

1.20
All Raw Models, January 1981-2005
1.00 ° L4
o
0.80 P
(4
060 " @ PRISM
£
® ¢ BCC
0.40
«@XN CcCSM4
4 MRI
0.20 &
[ 8
0.00
0 1 2 3 4 5 6 7 8 9

Precipitation, mm

Figure 5 — CDFs of each MACA model against PRISM
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CDFs of PRISM, CF MACA, raw MACA, and gmap MACA were then plotted and
compared to each other for a fuller understanding of the cumulative distribution of data (see Figure

6 — CDFs of the raw data and corrected data against PRISM).
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MRI-CGCMS3 - January 1981-2005
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Figure 6 — CDFs of the raw data and corrected data against PRISM

From the CDFs in each model, it is clearly seen that though the distribution of the data
corrected by the gmap package has a slightly different curve, the distribution of the raw and CF
MACA data are almost exact replicas of each other. Also noteworthy is the improved CDF of the
corrected MACA model to the raw model. Though the differences are slight between the respective
models, the distribution of the correction-factor corrected CDF most closely matches that of the
PRISM model.

Having seen the CDF of the corrected data as closer to the observed than the original, it
was then decided to look at a snapshot of seasonal precipitation. New Jersey tends to experience
more precipitation in the summer months of June, July, and August (JJA); therefore, comparing
the precipitation from summer months to December, January, and February (DJF) seemed the next
logical step to validate accuracy. In comparing the raw average precipitation for JJA and DJF
against the corrected values for the respective months, there is a clear distinction between the two
graphs (see Figure 7 — Comparison of seasonal average precipitation for winter and summer

months). Raw model precipitation in particular shows disagreements between the models by month
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for the winter months, whereas the summer months show more cohesive, united results. The
models in general overestimate precipitation in comparison to the PRISM values. This may

perhaps be attributed to the difficulty that GCMs have in capturing smaller, localized storm fronts.
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Figure 7 — Comparison of seasonal average precipitation for winter and summer months with correlations

After correction, the monthly averages not only tend to match PRISM much more

significantly, but they agree more amongst themselves. Looking at the corrected average
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precipitation, the summer months are nearly identical to PRISM and the correlation coefficient
reflects this, with values averaging 0.98. This is a drastic increase from the correlation coefficients
for the 1981-2005 daily time series, which saw values as low as 0.000016. Therefore, although the
daily time series for 25 years may not be significantly accurate, the accuracy at the monthly scale
proves that MACA can be accurate in predicting seasonal-scale climate shifts.

3.2.2 Temperature

Temperature is not corrected through a multiplicative method. Instead, bias correction is
performed through additive measures. Interestingly, although bias-correction helped improve
precipitation, temperature bias-correction executed through the linear additive method actually

decreased the correlation coefficient in a several cases (see Error! Reference source not found.).

CF Tmax Statistics
location bee-csml-1m CCSM4 MRI-CGCM3
raw r CFr raw r CFr raw r CFr
Bloomingdale 0.79944338 0.70814605| 0.79586835  0.79500347| 0.80502786 0.B0565878
Ringwood 0.79954365 0.79922243| 0.79602147 | 0.79699000| 0.80483041 0.80630154
Wanague 0.6 0.79824569 0.7971977| 0.79476235| 0.79503192| 0.80391852 0.80478262
W Milford 2.5 0.80172086 0.70840216| 0.79827725  0.79621778| 0.80704654 0.80572789
W Milford 3.2 0.80071764 0.79857837| 0.79741695 | 0.79663436| 0.80604715 0.80587455
W Milford 5.5 0.8026919 0.80046134| 0.79935259 0.79848380( 0.80768557 0.80741758

Table 12 - Statistics of corrected and uncorrected Tmin and Tmax

Because the correlations were either made worse or not significantly improved, the additive
method was not considered a reliable method of temperature bias-correction. At correlations on
average of 0.8, the daily time series for temperature was still statistically significant. Looking at
the DJF and JJA seasonal averages also helped confirm that no further correction was necessary.

The correlation between PRISM and the models for the summer and winter months was 0.99 for
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both, Tmin and Tmax. As with precipitation, MACA performs better on the monthly scale over
the daily. Despite the slightly lower correlation with daily temperature, raw MACA temperature

values are considered satisfactory for the purposes of this study.
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Figure 8 — Tmin, Tmax monthly comparison with correlation coefficient

3.2.3 Future 4.5 and 8.5 RCP

Based on the results from the historical data, it was decided while temperature would not
be further corrected, the daily precipitation values in RCPs 4.5 and 8.5 would be corrected using
the same correction factors per location by month as their historical counterparts.

3.3 Climatology

3.3.1 Historic Temperature

3.3.1.1 TN10p

Very cold nights, TN10p, represent the bottom 10™ percentile of nightly temperatures. By
looking at the historic trends in TN10p, a general established pattern can be compared to the future
trends. Figure 9 shows the anomalies in the TN10p; by looking at the total difference from the

average TN10p per year, a general trend can be defined. The trend of cold nights decreases from
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1981 to 2005. Though the models disagree about exactly when the percentage cold nights

decrease—PRISM, bcc-csm1-1m, and CCSM4 all mark this general downward trend turning point

around 1994—they all show a decrease in total percentage of very cold nights.
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Figure 9 —Anomalies in coldest nights

3.3.1.2 TN9Op
Very warm nights, TN9Op, represent the 90™" percentile of minimum temperatures. Figure
10 showing TN90p shows an overall increase in the anomalies for the warmest nights. Though
there are a few dips in the moving average through the years, which may be partially attributed to
the EI Nifio/La Nifia phenomenon (Yun, et al., 2016), the overall trend shows an increase in

percentage of days in which the minimum temperature is greater than 90% of total temperatures.
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Figure 10 —Anomalies in the warmest nights

3.3.2 Precipitation and Droughts

3.3.2.1CDD

Consecutive dry days (CDD) are the maximum count of days in which the precipitation is
less than 1 mm. bcc-csml1-1m predicts a low number of consecutive dry days because of the
overestimating of precipitation, which was clear in the cumulative distribution chart. The raw
CDD anomalies seem to disagree about the maximum amount of dry days. The raw CCSM4 data,
for example, predicts lower than average CDD until 1988, at which point the CDD skyrockets to
nearly 28 days higher than the average. Bcc-csm1-1m predicts a similar pattern of lower than
average CDD until 1993, after which point it continues to decrease until 2002. PRISM predicts
wetter years from 1989 to 1998, after which point the dry days increase above the average. Despite

the corrections made to daily data, it did not significantly impact the overall anomalies.
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Figure 11 — Anomalies for raw consecutive dry days (CDD)

PRISM
3 3
2 2
kel kel
15 15
£ 10 2 10
= =
| |
------- | 1 I.
i} el e e el nas I aal ..I ...... ."I"."I ............ e i | Q nu=
I | 1
0 in
1581 1985 1885 1993 1907 2001 2005 1581
Corrected CC5M4
3 3
2 2
2 20
15
1y

day
[
=

1
——
-
_
—

day

1581 1985 1588 1993 1957 2001 2005 1581

Figure 12 - Anomalies for bias-corrected consecutive dry days
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The trends between the different models were also interesting to use as a source of

comparison. The trend in consecutive dry days from CCSM4 most closely matches the PRISM

trendline at a negative slope, while the trend line for bcc-csm1-1m is nearly neutral (see Figure
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13). Surprisingly, the consecutive dry day trendline for MRI-CGCM3 shows that it is the only
model amongst the other climate models to show a historical increase in CDD. Therefore, PRISM
and CCSM4 agree that the average amount of days that consecutively have less than 1 mm of
precipitation per year decrease over time; that is, the consecutive dry days decrease from 1981-
2005.

As with the anomalies, the trend line for the corrected CDD is minimally impacted by the

daily corrections (see Figure 14).
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Figure 13 - CDD trends using raw data
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Figure 14- CDD trends using corrected data

3.3.2.2R10

The count of days in which precipitation exceeds 10 mm is an extremely useful climatic

index. If the amount of days in which 10 mm of precipitation falls increases, then it will

consequently impact the indices accounting for extreme precipitation and maximum consecutive

precipitation. Knowing the amount of rain or snow fall and the days over which the precipitation

may occur affects several involved stakeholders in the general PRB community, such as those who

live or otherwise maintain businesses in flood zones, architects and engineers, and agriculture

specialists whose crop may be endangered.

The anomalies between the corrected and raw R10 are mostly mirrors of each other, with

some differences by year. In 1985, for example, the raw CCSM4 model predicts 10 days less than

the 1981-2005 average, whereas the corrected CCSM4 model predicts 7 days less than the baseline
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average. Therefore, although the total amount by year may differ, the total running average

trendline is not majorly affected. All models show a positive trend in R10.
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Figure 15 — Anomalies for raw wet days
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Figure 16 - Anomalies for corrected wet days
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Figure 17 - R10 trends using raw data
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Figure 18 - R10 trends using corrected data

3.3.2.3 R95p

Extreme rainfall, R95p, represents the 95 percentile of precipitation. This information is

incredibly important to analyze because heavy precipitation can lead to flooding, damaged



infrastructure, and loss of life. For R95p, the extremes in PRISM most closely match those of
CCSM4. MRI-CGCM3 and bcc-csm1-1m both have extreme precipitation predictions on lower
scales, whereas CCSM4 and PRISM have high precipitation values close to 300 mm above the

average and low values near 200 below the average.
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Figure 19 — Anomalies for raw extreme precipitation
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Figure 20 - Anomalies for corrected extreme precipitation

The trends are also varied amongst the different models. PRISM and the raw MRI-CGCM3
both show a decrease in the amount of precipitation in the 95™ percentile, whereas bcc-csm1-1m
and CCSM4 show an overall increasing trend. In this circumstance, the corrected data for CCSM4
makes a large difference. The trend line for the raw R95p CCSM4 data is at a significantly greater
positive slope than the corrected data, which is closer to a more even 0 slope. In this instance,
correction works well; even though the slope remains positive compared the negative PRISM

slope, corrections allow for drastic changes in data to more closely match the observed.
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Figure 21- R95p trends using raw data
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Figure 22- R95p trends using corrected data

3.3.2.4 R5xday
The yearly maximum consecutive 5-day precipitation, Rx5day, is the final climate marker

analyzed in this study. Although the models disagree with the amount of yearly precipitation, there
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is a correlation of 0.44 between the Rx5day for bcc-csm1-1m and PRISM. Compared to the others,

which have correlations of -0.01 and -0.005 between CCSM4 and MRI-CGCM3 respectively, it is

a significantly better relationship.
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Figure 23- Anomalies for raw consecutive maximum 5-day precipitation
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Figure 24 - Anomalies for bias-corrected consecutive maximum 5-day precipitation

Although bcc-csm1-1m and PRISM have a better correlation than those of PRISM against

the other models, the trend lines show that PRISM, CCSM4, and MRI-CGCM3 all have positive

trends in heavy precipitation (see Figure 25 and Figure 26). Bcc-csm1-1m is the only model with

an overall negative trend.

PRISM Raw bec-csml-1m
250 250
-
& E 200 FEm .
$ £ $ £
= E = E .
.

g CE =0 . . g CE = EN - L
3w . * @ . P TTITRL "R & r L L AL A, .. .

e | * T e m s e | o g T T e
OB | weereeesesaneaien - P - - Y8 e, *s -
k] 1m0 ] 1o ]
=& . . - L] =& L]
= E. - = -
=2 L] M E.E- L]

-~
= E 50 = E 50
2 2

a a

1580 1985 1880 1995 2000 2005 1580 1985 1880 1995 2000 2005

Raw CC5M4 Raw MRI-CGCM3
250 250

) )
] L] = E
s < . s < .
. [ . [
3E . . B8 .. .
gEW e gEW e
E E . g - 2 E AR -
] - gt = L] - °
Y E L. EELE S - - g [ T PR L -
= L L] = e Bowenanet -
EE | e - - =E | e - - -
=2 L =2 L
e g e g
e g S50 - e g S50 -
2 2

a a

1580 1985 1880 1995 2000 2005 1580 1985 1880 1995 2000 2005

Figure 25 - Rx5day trends using raw data
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Figure 26 - Rx5day trends using corrected data

3.4 Future Changes in Extreme Climate Indices to the PRB

Having looked at the observed and the historical model output and validating the ability of
the chosen models to provide reasonable data, future raw and corrected climate data were then run
through RClimDex in R to determine the potential changes in climate extremes under RCP 4.5 and
RCP 8.5 for 2051-2075 relative to 1981-2005.

3.4.1 Temperature

3.4.1.1 TN10p

The models vary in output for the predicted cold nights. The models all agree that the
amount of very cold nights will decrease, but at different rates dependent on the scenario used.
These differences are shown very distinctly in Figure 27. CCSM4 and bcc-csm1-1m both agree
that in scenario 4.5, there will be a decrease of about 0.1%, whereas scenario 4.5 for MRI-CGCM3

predicts a negative change of nearly 0.25%. Interestingly, both bcc-csm1-1m and MRI-CGCM3
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both project that in RCP 8.5—the scenario in which emissions are widely unregulated—the TN10p

will decrease to almost half of the respective predictions in RCP 4.5.

Changes in TN10p (2051-2075 minus 1981-2005)
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Figure 27 — Changes in TN10p

3.4.1.2 TN9Op

The model output for change in TN9O0p is overall somewhat more in line with expectations
for change in the PRB. Theoretically, RCP 8.5 should have a larger increase in the amount of warm
nights; however, bcc-csm1-1m interestingly predicts that in both scenarios, there will be an
approximate 0.25% increase in warm nights. CCSM4 presents an outlier and predicts that scenario
8.5 will have an overall decrease in warm nights. MRI-CGCM3 represents the expected outcome
with RCP 8.5 showing a drastic increase in the warm nights over RCP 4.5. Despite the variations,

5 out of 6 future scenarios agree that there will be an increase in warm nights.
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Changes in TN90p (2051-2075 minus 1981-2005)
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Figure 28 — Change in TN90p

3.4.2 Precipitation

3.4.2.1 CDD

Unsurprisingly, the distribution of consecutive dry days shows that the models predict
varying outcomes for total change in CDD. Bcc-csm1-1m shows the 50t percentile between the
scenarios remains approximately the same, with the upper quartile shifting higher for RCP 8.5 (see
Figure 29 and Figure 30). The lower quartile also extends lower for scenario 8.5, so the total range
of CDD is wider than the other scenarios. Bcc-csm1-1m is the only model that conforms to
available literature that predicts that New Jersey and the mid-Atlantic states are predicted to see
more frequent droughts despite heavier and more frequent precipitation. The other models show a

decrease in CDD in comparison to their historical counterparts.
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Corrections in precipitation data largely affect MRI-CGCM3, where both scenarios see

shifts in their overall CDD. The corrected RCP 4.5 CDD 75" percentile decreases while the 50t

percentile increases. For the corrected RCP 8.5 CDD, the median distributions equal out slightly.
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Figure 29 — Raw CDD for the three models in emissions scenarios 4.5 and 8.5
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Figure 30 - Corrected CDD for the three models in emissions scenarios 4.5 and 8.5

While looking at the actual expected change between the average CDD relative to the

historical CDD, MRI-CGCM3 and corrected CCSM4 show unexpected results (see Figure 31).

MRI-CGCMS3 shows an overall decrease in CDD in RCPs 4.5 and 8.5, whereas bcc-csm1-1m 8.5

shows an increase in overall consecutive dry days. Raw data from CCSM4 shows no change
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between RCP 8.5 and the historical value for CDD, while the corrected version of the data shows

a decrease in CDD.

Changes in CDD (2051-2075 minus 1981-2005)
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Figure 31 — Changes in CDD

3.4.2.2R10

The differences in the distribution of days in which precipitation amounts to over 10 mm
(R10) data between the 3 models do not drastically differ. CCSM4 shows that the 50t percentile
of R10 days differs by approximately 2 days, but the maximum amount of days is approximately
the same between the historic and future scenarios. Bcc-csm1-1m shows the most difference in
distribution of data, with the full range of historic raw data extending from 30-55 days, RCP 4.5
ranging from 21-50 days, and RCP 8.5 ranging from 23-60 days. CCSM4 shows all climate
scenarios with the same maximum value, while minimum values range from 22-26 and for 8.5 and
4.5 respectively. The lower and upper quartile of data from MRI-CGCM3 increase only slightly
between the historic and emissions scenarios, with only the extremes shifting slightly. The

corrected data distribution only slightly changes from the raw (see Figure 33).
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Figure 32 - Raw R10 for the three models in emissions scenarios 4.5 and 8.5
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Figure 33 — Corrected R10 for the three models in emissions scenarios 4.5 and 8.5

Examining the total change between the future average compared to the historical average
R10, the models agree that there is an expected increase in total days in which the precipitation
falls over 10 mm in RCP 8.5 (see Figure 34). However, RCP 4.5 has mixed output. Bcc-csm1-1m
shows a decrease in precipitation in comparison to the baseline time period for RCP 4.5, CCSM4

shows an increase of only 1-1.5 days, and MRI-CGCM3 shows a decrease for the raw data and an

increase for the corrected data.
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Changesin R10 (2051-2075 minus 1981-2005)
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Figure 34 — Change between future average R10 relative to average historical R10

The historic plots in Figure 35 show average precipitation amounts for the winter and
summer months. Though there are differences between the models, with the overestimation of
bce-csm1-1m summer precipitation clear, most of the PRB (outlined in red) shows summer
precipitation to fall between 3-5 mm.

Winter months show average precipitation to historically be between 2 and 4 mm.
However, when looking at the average expected R10 from RCP 8.5, the models heavily disagree
(see Figure 36). Bcc-csm1-1m shows the full range of values available, while MRI-CGCM3 is

only slightly more varied, with a range from 10-70 days per year.
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Figure 35 — Average historical (1981-2005) summer and winter precipitation (mm) from observed (PRISM) and MACA models.

The orange areas represent precipitation amounts ranging from 2-3 mm; yellow areas represent precipitation amounts ranging
from 3-4 mm; the green areas represent precipitation amounts ranging from 4-5 mm.
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Figure 36 - Projected changes in heavy wet-weather days in which precipitation is greater than 10 mm (R10) in RCP 8.5

CCSM4, on the other hand, shows the whole PRB to experience more than 70 days in which

precipitation is greater than 10 mm.

3.4.2.3 R95p
The expected change between the historic average R95p and the historic R95p is relatively
united amongst the models. In RCP 8.5, each of the models anticipate a minimum of 30 mm of

intense precipitation, with a maximum of nearly 80 mm. RCP 4.5 sees a slightly more varied
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distribution of data, but all models except MRI-CGCM3 see an increase in average R95p. In most
of these climate scenarios, the amount of intense precipitation will increase significantly (see

Figure 37).

Changes in R95p (2051-2075 minus 1981-2005)
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Figure 37 — Changes in R95p

3.4.4.4 Rx5day

The monthly maximum 5-day precipitation addresses the frequency of precipitation
whereas the other climate indices related to precipitation address the absence of precipitation or
the amount. The models agree in RCP 8.5 that the maximum 5-day precipitation amount will
increase, with values of precipitation ranging from 20 mm to approximately 48 mm. As with the
R95p, bcc-csml-1m and CCSM4 also agree—albeit bce-csml1-1m predicts nearly 4 times the
intensity of CCSM4—that the Rx5day will increase in scenario 4.5, while MRI-CGCM3 predicts

decreases in the frequency of consecutive rainy days.

52



Changes in Rx5day (2051-2075 minus 1981-2005)
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Figure 38 — Changes in Rx5day

Plotting seasonal changes over the PRB provides more in-depth analysis. Figure 39 shows
that plotting the average Rx5day provides further insight to the expected changes in the PRB for
scenario RCP 8.5. Bcc-csm1-1m shows a gradient of change with average precipitation decreasing
by 10 towards the east. All the models seem to agree that the areas further east will experience
lower extreme rainfall than the western regions. Bcc-csm1-1m and MRI-CGCM3 both expect the
easternmost regions along the border of the PRB will experience less amounts of total average
precipitation in the 2051-2075. These two models also show no total increase or decrease in parts
of the eastern half of the PRB. CCSM4, on the other hand, shows a total average increase of

approximately 120 mm over the basin area.
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Figure 39 — Projected trends of maximum consecutive 5-day precipitation in emissions scenario RCP 8.5
4. Discussion
While performing bias-correction of the precipitation data, we found that MACA
simulations improved better with the linear correction factor than the more sophisticated quantile
mapping. The interpretation of the CDF graphs showed a significant difference between the two
methods and therefore the correction factor method was a preferred method of validation. MACA

is not a hindcasting RCM; therefore, although the daily correlations were still insignificant,
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seasonal statistical analysis showed significantly improved accuracy. Because of this
improvement, we believe that MACA sufficed for longer time scales and gave us confidence in
MACA’s ability to diagnose long-term climate extremes. This validation of the simulated climate
for the baseline 1981-2005 time period allowed for bias-correction for the future projections for
2051-2075.

While looking at the results for the climatic extremes, we expected precipitation and
temperature extreme indices calculated amongst the models to universally agree that RCP 4.5
would show less extreme results while RCP 8.5 would show more dramatic differences. However,
our initial hypotheses were proven false. For the 10t percentile of cold nights, the models agree
that there will less extremely cold days, but RCP 8.5 for bcc-csm1-1m and MRI-CGCM3 shows
less of a decrease than RCP 4.5. The models generally also see an increase in the days per year
that will experience warmer nights, except in the case of CCSM4 RCP 8.5, which sees a decrease
in the 90" percentile of warm nights. Given that there is an overall increase in wet days, extreme
precipitation, and consecutive precipitation, we hypothesize that this impact on temperature is
perhaps is due to increased precipitation and associated cloudiness. The increase of rainfall seen
by decreased consecutive dry days and the other extreme precipitation indices is most likely due
to decreased longwave cooling at nights—therefore, there would be a reduced amount of very cool
nights and an increase in warm nights.

This study heavily emphasizes the importance of using downscaled GCM climate data to
determine the potential impacts of climate change on localities. Figures 36 and 39 both emphasize
the potential differences in climate extremes for the PRB. Visualizing the differences in wet days
and the differences in heavy precipitation amounts is helpful in delivering detailed climate change

analysis. The rainy days are heavily varied within the boundary of the PRB; bcc-csm1-1m shows
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changes ranging from a decrease of 20 days to an increase of 60-70 days, CCSM4 sees an increase
70 days for the whole basin, while MRI-CGCM3 sees an increase of anywhere from 10 to 70 days.
The usefulness of using an RCM can be seen again with the range of differences in the consecutive
wet days—the differences amongst the areas in the PRB are defined and clear. Bcc-csm1-m and
MRI-CGCM3 see that there is a decrease in the amount of rain the further east you go whereas
CCSM4 overall just sees an increase of 130 mm. These differences would not be possible to map
without downscaling and bias correcting GCM data.

Knowing the trend for cold nights can also be helpful for healthcare professionals, urban
planners, industry, the vulnerable populations, and other involved stakeholders. The increase in
amount and frequency of wet days and can be especially helpful for urban planners who need to
know how to design adaptable infrastructure to protect against flooding, growth of invasive
species, or other prospective infrastructure failures. Knowing about the potential increase in very
warm nights can also be particularly helpful for those in the healthcare industry, who can advise
the general population about issues such as spreading diseases from ticks, mosquitoes, and other
similar disease-carrying insects. Being armed with this information can also be incredibly helpful
for the vulnerable populations, such as the very young, very old, homeless, or those in urban areas
without access to cooling.

Future work can extend in different directions. Firstly, incorporating more of the 20
available downscaled, bias-corrected MACA models would help create a fuller, more
comprehensive understanding of the potential impacts of climate change on the PRB. A
sustainability assessment could also be done with the data to help ensure that as the PRB
experiences changes, the population experiences socially equitable, economically sustainable, and

environmentally sound decision making to increase community resilience. Urban planners and
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engineers could also use the available projections to incorporate green infrastructure to their plans,
creating a more sustainable PRB. Ultimately, downscaled, bias-corrected GCM data can prove to

be very helpful for smaller regions.

5. Potential Sources of Error
There may have been several sources of error in the MACA dataset. The developers of
MACA note potential uncertainty arising from climate sensitivity and difficulty in incorporating
unpredictable human and political actions into the model. GCMs themselves also have difficulty
making predictions for smaller-level storm fronts. There is also concern that the model does not
take the impact of the heat island effect into account; therefore, the model may show better results

in more vegetated areas rather than heavily industrialized areas such as New Jersey.

6. Conclusion

The purpose of this study is to identify the ways in which climate change would affect the
Passaic River basin by using the MACA model. Many regional climate models (RCMs) like
MACA take information from Global Climate models and downscale and bias-correct the data
through their own algorithms. When we bias-corrected the data against another model, using
PRISM as the observational dataset, the correlations did not significantly improve the correlation
coefficient for either precipitation or temperature. When the linear method of using a correction
factor did not drastically improve the correlation, R?, and RMSE, a more sophisticated approach
of correction was implemented, in which quantile mapping transformed the MACA data. However,
while analyzing the CDFs from the raw, linear corrected, and quantile mapped MACA data, the
CDF of the quantile-mapping corrected data significantly differed from that of the observed
dataset. Because the cumulative distribution of the raw and corrected data so closely matched the

observed distribution, it was considered a reasonable dataset to use to determine assess future
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changes in climate extremes. For temperature, bias-correction sometimes actually made the
correlation coefficient worse and therefore, further temperature bias-correction beyond the
MACA-implemented measures were not performed. Ultimately, MACA downscaled and bias-
corrected CMIP5 climate projections seem to suffice for detailed analysis of climate impacts at
monthly or longer time periods.

Using the data to analyze future climatology patterns provided interesting results. The
disagreement between the models for the different radiative forcing scenarios was surprising. The
changes in extremes were not always larger for stronger radiative forcing changes. The decrease
in climate extremes for RCP 8.5 is most probably due to the increase in cloudiness from the
projected increases in amount and frequency of precipitation. The increase in both precipitation
days over 10 mm and the annual precipitation days in which the precipitation exceeded the 95™
percentile was expected given the expectations for New Jersey as a whole to experience higher
amounts of precipitation (EPA, 2016). While the results from the models analyzed vary
considerably, this study underscores the usefulness of employing downscaled and bias corrected
climate projections for investigating plausible future changes at the basin scale.

Scientifically sound information concerning information on climate extremes is of great
value for formulating policies to adapt to the change in climate. Policies can be implemented at
local level to help improve community resilience. Urban planners as well as agricultural and

healthcare professionals can benefit from credible projections in changes in climate extremes.
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