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Abstract 

I have identified a novel pore-forming toxin (PFT) in the venom of the Sea Nettle 

(Chrysaora quinquicherra), a protein I have named Chrysaoralin. This protein is 

discharged from specialized organelles called cnidocysts (nematocysts) found 

primarily in the tentacles of this jellyfish.  Chrysaoralin was first identified by 

Nextgen sequencing (RNA-Seq) of libraries made from mRNA isolated from 

tentacles of mature medusa collected from Barnegat Bay, NJ.  The full-length of 

the Chrysaoralin gene is 1365 bp, encoding a protein of 454 AA (50.695 kD; pI = 

6.58). The SignalP 4.1 algorithm (http://www.cbs.dtu.dk/services/SignalP/) 

predicts a signal peptide of 22 AA. The mature protein (minus the putative signal 

peptide) is 432 AA (48.321 kD; pI = 6.58). This protein shows strong homology 

(66%) to a hemolytic lectin from the sea cucumber, Cucumaria echinata (Phylum 

Echinodermata). In support of this fact hemolytic activity was detected in the 

purified nematocyst preparations, which demonstrates sensitivity to both boiling 

and Proteinase K digestion, suggesting this activity is proteinaceous. The RNA-

Seq data was verified by generating PCR amplicons using 9 sets of primers that 

span the full gene. Genomic sequences from both Barnegat Bay and Chesapeake 

Bay Chrysaoralin were intron-less.  I also modified and subcloned the full-length 

Chrysaoralin gene into a pET SUMO expression vector and transformed into E. 

coli.  Future expression of this recombinant protein in E. coli may further the 

understanding of the physiological role of Chrysaoralin in human envenomations. 
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Introduction to Chrysaora quinquecirrha 

A common jellyfish found along the Atlantic and Gulf coasts of the United 

States is the cnidarian, Chrysaora quinquecirrha, commonly known as the Atlantic 

or Stinging Sea Nettle. C. quinquecirrha are found in waters of low to moderate 

salinity, mainly in estuaries, off the coast of the Atlantic, Indian, and western Pacific 

oceans (Figure 1; Mayer, 1910). In the United States, they are found seasonally, 

from July through August, in the Chesapeake Bay (Calder, 1972), which is the 

largest estuary in the United States bordering Maryland and Virginia.  In Barnegat 

Bay, NJ high reproductive potential of the C. quinquecirrha adults has been 

reported and establishment of polyp colonies in new habitats of Barnegat Bay 

could be detrimental to fisheries in the region (Bologna and Gaynor, 2013). 

Additionally, a sudden rise in jellyfish population can cause a significant impact on 

human activities and marine ecosystems (Bordeur et al., 2008). Therefore, a 

detailed understanding of the physical and biochemical features of this organism 

and its venom is much warranted, and will enable us to be better prepared during 

events of human envenomation. 

 As is characteristic with all Scyphozoans, sea nettles are radially 

symmetrical, diploblastic organisms consisting a dome shaped bell and long silky 

tentacles (Figure 2). The dome-shaped bell measures approximately 25 

centimeters in diameter and contains 8 scalloped, flower-petal shaped lobes with 

7 to 10 silk thread like tentacles lined with specialized stinging organelles called 

nematocysts that extend outwards from each lobe. These tentacles can grow up 

to 50 centimeters in length. Additionally, four long, ribbon-like oral arms or 
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Figure 1: Global distribution of Chrysaora quinquecirrha (shown in gold). Image source: Global 

biodiversity information facility (Url: https://demo.gbif.org/species/5185413). 

Figure 2.1 left: An adult Chrysaora quinquecirrha medusa. Image Credit: Dena Restaino. Figure 

2.2 right: Anatomy of a true jellyfish. Image credit: Zina Deretsky, National Science Foundation. 
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lappets extend outward from the middle of the jellyfish dome, which serve to bring 

food up to the mouth (Ford et al, 1997). 

 Chrysaora quinquecirrha exist in two distinct life stages: sessile polyp form 

and free-swimming medusa form (Figure 3), exhibiting an alternation of generation, 

and both stages are able to survive in waters of low salinity and low dissolved 

oxygen (Condon et al., 2001).  This tolerant adaptation, coupled with toxic venom, 

gives C. quinquecirrha an unparalleled advantage over other organisms for 

procurement of food and nutrients. Alternating between the polyp and medusa life 

stages, C. quinquecirrha are able to produce colonies that persist for extended 

lengths of time and survive in cold and hypoxic water that are unfavorable for other 

organisms in its habitat (Purcell, 1999; Purcell, 2001).  Specialized stinging cells 

capable of delivering potent venom are found in both polyp and medusa stages of 

C. quinquecirrha (Calder 1972b).  A combination of adaptive nature and toxic 

venom enable C. quinquecirrha to outcompete other organisms and cause 

massive seasonal blooms in the estuaries where they are found.  

 

Figure 3: The life cycle of scyphozoan sea jellies. Image credit: Zina Deretsky, National Science 

Foundation. 
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Nematocysts 

 The origin of cnidarians is dated to more than 750 million years ago, during 

the Ediacaran period (Technau and Steele, 2011).  Cnidarians derive their name 

from the stinging organelle called the nematocyst (or cnidocyst), common to more 

than 10,000 cnidarian species, which they primarily use for procurement of their 

prey.  Based on their morphology, nematocysts can be of 25 to 30 different types 

(Özbek, 2009).  The nematocysts exist in a variety of sizes ranging between 5 and 

100 µm, and shapes ranging from round to cylindrical (see Figure 4).  However, 

structurally all nematocysts contain a wall and a tubule that may be further 

enhanced with spines and appendices (Teragawa and Bode, 1995).  A 

mechanosensory apparatus called the cnidocil is present at the tip of the 

nematocyte (or cnidocyte), which is a critical structure during the discharge 

process (Figure 5). The nematocyst itself is tightly attached to the cytoplasm of the 

nematocyte by microtubules surrounding the outer capsule (Engel et al., 2002).  

When nematocysts are triggered to fire and their polar tubule is injected into the 

integument of a prey or a victim, a mixture of proteins, polypeptides and enzymes 

are released that modify cellular processes by disruption of ion channels, formation 

of membrane pores or through enzymatic mechanisms (Ponce et al., 2015).                                                               

 During envenomation events, nematocysts are discharged because of 

physical and/or chemical stimuli, however the discharge mechanism is not fully 

understood (Jouiaei et al., 2015). Nematocyst discharge is notable because it has 

been recorded to be one of the fastest biophysical events ever recorded  
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Figure 5: Nematocyst discharge mechanism. Image source: Pechenik, 2000. 

Figure 4.1 left: Nematocysts of different shapes and sizes under the microscope at 400X 

magnification. Figure 4.2 right: A discharged nematocyst. Image credit: John Gaynor.	
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(Holstein and Tardent, 1984; Fautin, 2009).  Early experiments on the nematocyst 

discharge by Holstein and Tardent (1984) recorded the discharge event to take 

only around 3 milliseconds. Nematocyst discharge is dependent on the inherent 

structural contractional energy of the microtubule scaffold of the nematocyst, 

fueled by the intramembranous charge and chemical flux, and finally triggered by 

a chemical and/or mechanical stimuli (Holstein and Tardent, 1984; Watson and 

Hessinger, 1988; Cannon and Wagner, 2003). Additionally, the diversity in 

nematocyst morphology in cnidarians, and even between organisms of the same 

species, can be attributed to phenotypic plasticity driven by their environmental 

forces.  Therefore, a careful look into the genome of these organisms and 

particularly a study of their toxins may provide us more insight about their feeding 

behavior and stinging mechanism. 

Cnidarian Venom  

 Cnidarians use a mixture of proteinaceous and non-proteinaceous toxin 

components that have evolved over the last several hundred million years to 

subdue their prey and to escape from their predators (Mariotini, 2014; Jouiaei et 

al., 2015). Understanding the composition and characteristics of cnidarian venom 

is essential because cnidarian venoms provide us with a repertoire of bioactive 

compounds with therapeutic promise against many human neurological, 

hematological, infectivological, and oncological maladies (Mariottini and Pane, 

2013). The compounds in cnidarian venom can be broadly categorized as 

enzymes, pore-forming toxins, and neurotoxins (Lee et al., 2011; Jouiaei et al., 
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2015).  These compounds can be further subcategorized into C-type lectins, 

phospholipase A2, potassium channel inhibitors, protease inhibitors, 

metalloproteases, hemolysins, and other toxins.  Acting singly or in conjunction, 

these toxins produce a myriad of localized and systemic effects (Frazao and 

Antunes, 2016; Ponce et al., 2016).  

 In general, most jellyfish from the genus Chrysaora (sea nettles) inflict 

stings that can cause injurious reactions in humans. Some common physiological 

effects include a burning sensation, blisters, skin redness, localized edema, 

headaches, cramps, and lachrymation (Newman-Martin, 2007; Cegolon et al., 

2013).  Based on clinical studies, the venom of C. quinquecirrha is seen to cause 

cessation of spontaneous beating of a primary culture of embryonic chick 

cardiocytes (Cobbs et al., 1983; Kelman et al., 1984).  C. quinquecirrha venom has 

also been seen to induce mitogenic activity.  It was able to produce nuclear 

alterations and dissolution of intercellular collagen in Chinese hamster ovary K-1 

cells (CHO K-1) (Neeman et al., 1980a, 1980b).  When tested against human 

hepatocytes, C. quinquecirrha venom caused an initial increase in metabolic 

activity, followed by a sharp decrease and cell death within minutes (Cao et al., 

1998). However, there are few studies regarding C. quinquecirrha venom. 

Although, hemolytic activity of C. quinquecirrha venom has been demonstrated 

and evaluated by Ponce et al. in 2015, there is no sequence data available for the 

venom proteins yet. 
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Pore-Forming Toxins 

 The presence of a plasma membrane is probably the fundamental 

difference between life and non-life.  When different biochemical components are 

surrounded within a membrane, not only does it define a boundary, but it also 

creates two different environments, each partitioned with completely different 

concentrations and chemical properties (Bischofberger et al., 2012).  A cell 

membrane is also the key target during intercellular conflicts.  It may be one reason 

why organisms from all kingdoms have evolved molecules that can alter 

membrane permeability and cause lysis of cells.   

 Pore-forming proteins are such membrane altering molecules and are 

frequently components of the toxin repertoire of many organisms in our biosphere.  

As the name implies, pore-forming proteins form a transmembrane pore in the cell 

membrane and disrupt the permeability barrier that quickly leads to cell death.  

Hemolytic activity has been demonstrated with C. quinquecirrha venom (Long-

Rowe and Burnett, 1994; Bloom et al., 2001; Lozanno, 2013) and it is predicted 

that the erythrocyte membrane is ruptured by a pore-forming mechanism of one of 

its peptide toxins.  

 Although pore-forming proteins are produced as simple water-soluble 

peptides, they transform into pore penetrating membrane proteins only when they 

reach their intended target (Parker and Feil, 2005).  Out of 300 protein toxins 

characterized to date, around 100 were responsible for disrupting the cell 

membrane by formation of some kind of pore (Feil et al., 2010).  Bacterial pore-

forming toxins are the best-characterized and also the largest class of pore-forming 
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proteins.  Bacterial pore-forming toxins are employed either to kill other bacteria 

(Lakey et al., 1994) or to affect their hosts in order to promote colonization and 

spread during pathogenesis (Bischofberger et al., 2012).  A comparison of pore-

forming proteins is summarized in Table 1. 

 Many eukaryotic organisms produce pore-forming proteins either for 

defense, or for procurement of food (Sousa et al., 1994; Tomita et al., 2004; Sher 

et al., 2005; Kafsack et al., 2009; Kristan et al., 2009) including protozoan parasites 

(PLP1 - perforin-like protein 1), fungi (pleurotolysin), sea anemones (equinatoxin 

II), hydra (hydralysin), or plants (enterolobin).  Vertebrates use pore-forming 

proteins to kill bacteria (complement membrane attack complex, MAC), to kill 

infected or malignant cells (perforin), or to permeabilize mitochondria in order to 

trigger apoptosis (members of the Bak family) (Bischofberger et al., 2012). 

Sometimes pore-forming proteins are seen to induce unintended consequences 

such as the proteins involved in neurodegenerative diseases.  For example, α-

synuclein or the ß-amyloid peptide of Alzheimer’s can assemble into pore-forming 

aggregates that are similar to pore-forming toxins (Kagan, 2012).  

 The dimensions of the pore, duration of pore formation, and localization of 

pore forming effect depend on multiple variables. These variables include 

concentration of the pore-forming peptide, pore diameter, amino acid residues that 

line the pore lumen, number of pores per cell, and stability of the pore 

(Bischofberger et al., 2012).  Among the different variables, the diameter and size 

of the pore varies greatly between different organisms with the pore lumens 

ranging between 10Å to 150Å (Feil et al., 2010).  Pore-forming toxins can be  
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Group Organism  Pore forming 
Protein 

Reference  Pdb ID AA 
Identity  

E value  Query 
Cover  

Bacteria  V. cholerae  Vibrio cholerae Olson and 
Gouaux, 2005 

1XEZ 40% 0.38 32% 

 A. hydrophila  Aerolysin  Abrami et al., 
2000 

5JZH 33% 0.49 19% 

 C. absonum Alpha-toxin  Clark et al., 
2003 

1OLP 9% 2.9 9% 

 B. anthracis  Protective Antigen 
PA 

Petosa et al., 
1997 

1ACC 35% 1.2 31% 

 C. perfringens  Perfringolysin O Feil et al., 2012 1M3I 25% 9.0 1% 

 L. 
monocytogenes  

Listeriolysin O  Koester et al., 
2014 

4CDB 50% 9.0 1% 

 S. intermedius  Intermedilysin  Polekhina et al., 
2005 

1S3R 50% 9.0 1% 

 V. cholerae  HlyA Linhartova et al., 
2010 

3O44 40% 0.34 32% 

 S. aureus staphylococcal 
alpha-hemolysin 
 

Song et al., 
1996 

7AHL 
 

23% 3.7 10% 

Hydra C. viridissima 
 

Hydralysin  Sher et al., 2005 N/A 27% 0.18 26% 

Sea 
Anemone 

A. equina 
 

Equinatoxin II Athanasiadis et 
al., 2001 

1IAZ 
 

39% 0.57 23% 

Mouse M. musculus Perforin Law et al., 2010 3NSJ 50% 2.7 15% 
Human H. sapiens C9 complement Dudkina et al., 

2016 
5FMW 26% 1.8 34% 

Plant E. 
contortisiliquum 

Enterolobin Fontes et al., 
1997 

N/A 35% 0.31 11% 

Fungi  P. ostreatus Pleurotolysin 
 

Lukoyanova et 
al., 2015 
Sakurai et al., 
2004 

4V2T 29% 1.9 17% 

Parasite T. gondii Perforin Yan et al., 2011 N/A 24% 4.7 16% 
Mollusc B. glabrata 

 
Biomphalysin Galinier et al., 

2013 
N/A 56% 2.0 12% 

Sea 
Cucumber 

C. echinata Hemolytic Lectin Uchida et al., 
2004 

1VCL 64% 0.0 100% 

 
Table 1: Representative pore-forming proteins. The table shows protein source, common names 
and  4-character unique Protein Data Bank (PDB) identifier of the protein entries in the database. The 
extent to which Chrysaoralin and other protein sequences share the same residues at the same 
positions in an alignment are listed as percent identity. The lower the E value, the more significant is 
the alignment. Query cover shows the percentage of Chrysaoralin sequence aligned to the protein 
sequences in GenBank.	
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categorized into two groups based on the structural feature they utilize to cross the 

cell membrane: either as an alpha helix (α-PFT) or as a ß-barrel (ß-PFT).  

 For instance, the alpha-pore forming toxins are predicted to form pores 

using their alpha helices.  Colicins, produced by E. coli, are a classic example of 

alpha pore-forming toxins (Cascales et al., 2007).  This category also includes 

Pseudomonas aeruginosa exotoxin A, some insecticidal delta-endotoxins (Cry), 

and diphtheria toxin (Allured et al., 1986; Lee et al., 1991; Choe et al., 1992).  Some 

apoptotic proteins of the Bcl-2 family have also been seen to possess structural 

similarity and form ion channels similar to other alpha pore-forming toxins (Feil et 

al., 2010). The Escherichia coli hemolysin E is a representative example of the 

alpha-pore forming toxin (Feil et al., 2010).  The crystal structure of this toxin in its 

water-soluble state is a predominantly helical molecule with its core formed by four 

helix bundles (Figure 6.1) (Wallace et al., 2000).  In another case, the crystal 

structure of the Pseudomonas aeruginosa exotoxin A contains six alpha-helical 

structures in its membrane translocation domain (Figure 6.2) (Wedekind et al., 

2001).  Details on alpha-pore forming toxins is available in a review by Iacovache 

et al. (2008). 

 The beta pore-forming toxins are the second major class of pore-forming 

toxins. This category of toxins attaches to the membrane of their intended target 

and form a beta-barrel upon insertion into the lipid bilayer.  This type of pore 

formation is seen in aerolysin, Clostridium septicum alpha-toxin, Staphylococcus 

alpha-hemolysin, anthrax protective antigen, Bacillus thuringiensis Cyt delta-

endotoxins, and cholesterol dependent cytolysis, among many others (Tweten et 
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al., 2001; Menestrina et al., 2003; Iacovache et al., 2008).  The membrane attack 

complex/perforin superfamily, which include proteins in the complement cascade 

of higher organisms such as C6, C7, C8-alpha, C8-beta, and C9 have also been 

seen to possess structural similarities to beta-pore-forming toxins (Hadders et al., 

2007).  The crystal structure of many of these pore forming toxins have been 

resolved. In some instances, the pore forming toxins from different organisms are 

structurally and functionally similar, although they possess no sequence 

homology. 

 Unlike the alpha-pore forming toxins, the domains of the beta-pore forming 

toxins do not perform distinct biological activity, are more diverse, and the 

translocation domain appear to be more cryptic (Feil et al., 2010).  One of the 

earliest crystal structure of the ß-pore forming toxins was of the Aeromonas 

hydrophila proaerolysin. Different from the previously determined structures of the 

Figure 6.1 (left): Hemolysin E (HlyE) is a pore-forming toxin of Escherichia coli, Salmonella typhi, 

and Shigella flexneri (Wallace et al., 2000). Figure 6.2 (right): Exotoxin A of Pseudomonas 

aeruginosa (Wedekind et al., 2001).	
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alpha-pore forming toxins, the proaerolysin predominantly contained beta-sheets 

(Figure 7.1) (Parker et al., 1994). 

 The crystal structure of another ß-pore forming toxin is that of the 

monomeric Staphylococcus aureus alpha-hemolysin (Figure 7.2).  This peptide is 

a water soluble 33 kDa component of the hemolysin hexamer/heptamer which is 

formed when the monomer oligomerizes upon binding to the target membrane 

surface (Song et al., 1996; Montoya and Gouaux, 2003).  The toxin upon 

oligomerization constitutes a distinct mushroom like shape with a cap, rim and 

stem domains (Kaneko and Kameo, 2004).  The stem makes up the 

transmembrane domain and is comprised of 14 ß-strands, formed from the 7 ß-

hairpins, where each hairpin is contributed from a single monomer.    The resulting 

Figure 7.1 (left): Aeromonas toxin proaerolysin predominantly contains beta-sheets that undergo a 

multi-step transformational change to form a transmembrane channel (Parker et al., 1994). Figure 7.2 

(right): Staphylococcus aureus alpha-hemolysin. The transmembrane domain responsible for cytolysis 

comprises the lower half of a 14-strand antiparallel beta barrel (Song et al., 1996).	
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structure is a ß-barrel or ß-can motif.  The alternating hydrophilic and hydrophobic 

residues in the hairpin assemble in such a way that the hydrophilic residues formed 

the lumen of the pore, while the hydrophobic residues communicated with the 

membrane to which it was bound (Song et al., 1996; Pédelacq et al., 1999).  Such 

a structure is not only stable in the lipid bilayer, but the hydrophilic pore interior 

facilities the movement of water, ions and small molecules between the cell interior 

and the outside world. 

 

Strategies of venom study 

 Study of venom components have interested scientists over the years and 

there have been significant changes in the way venom is studied.  Common 

strategies of venom study comprise cell based assays using different cell lines and 

tandem mass spectrometry of the crude venom (Ponce et al., 2015).  Some venom 

peptides that have been identified and studied in other venomous organisms are 

also constituents of the cnidarian venom repertoire (Frazao and Antunes, 2016).  

Indirect study of venom using deep sequencing of the mRNA transcriptome and in 

silico analyses of the venomous organism’s genome can reveal components that 

would otherwise go unnoticed using more traditional methods.  Polymerase chain 

reaction and DNA sequence analysis, which are common techniques in molecular 

biology, can be employed to study the venom gland components at their nucleotide 

level. 

 Although no transcriptome data is publicly available for Chrysaora 

quinquecirrha venom yet, a recent study identified a total of 163 proteins in the 
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venom proteome of Chrysaora fuscescens, a scyphozoan from the same family, 

using an integrated transcriptomic and proteomic approaches (Ponce et al., 2016).  

Of the total 163 proteins identified, 27 were classified as potential toxins.  The 

toxins were broadly categorized into 6 protein families namely proteinases, venom 

allergens, C-type lectins, pore-forming toxins, glycoside hydrolases, and enzyme 

inhibitors.  Some potential toxins comprising of proteinases, lipases, and 

deoxyribonuclease were identified in the transcriptome data, but not in the 

proteome data (Ponce et al., 2016).  All components were not identified using 

proteomic techniques because some components are likely present in the venom 

at very low concentrations.  This suggests that a venom gland transcriptomic 

analysis can offer a comprehensive solution in the identification of all protein 

content and toxin-like peptides in the venom glands.  The obvious problem with 

scyphozoans is that jellyfish do not have a centralized venom gland like other 

venomous organisms.  Their venom is partitioned into myriad small organelles 

distributed throughout their tentacles.  So, finding a localized cache of cells 

synthesizing and accumulating only venom components is impossible.  But by 

understanding how cnidocytes develop, and the developmental pathway of 

cnidocysts in these cells, might permit us to discern the import pathway and, thus, 

identify venom genes by a computational approach. 

 Availability of transcriptome data will enable creation of cDNA libraries 

which may enhance our ability to identify individual venom components.  Using 

DNA sequencing in conjunction with the bioinformatic approaches, functional 

linkages between fully sequenced genomes and their expressed protein products 
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can be established.  There is a great deal of data on the DNA sequences of many 

venomous organisms, therefore available sequence data could be used to answer 

our biological questions of interest. 

 

Research Objectives 

 Previous research has demonstrated that the venom of Chrysaora 

quinquecirrha contains a hemolytic protein capable of lysing erythrocytes, although 

the specific gene and protein have not been identified.  Accordingly, this research 

project has 3 specific objectives:  1.  Using data initially gleaned from an RNA-seq 

library generated from sea nettle tentacle RNA, to isolate and sequence the full 

length genomic clone of the hemolytic lectin gene of Chrysaora quinquecirrha; 2). 

to compare the sequence and structure of this gene and putative protein from 

populations isolated from both Barnegat Bay, NJ and Chesapeake Bay, MD; and 

3). to construct pET-SUMO plasmids containing both the full-length gene of this 

hemolytic lectin as well as a sub-domain encoding the pore-forming domain of the 

gene for future expression studies in E. coli. 
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Materials and Methods 

1. Chrysaora quinquecirrha Transcriptome by RNA-Seq Analysis 

1.1 Isolation of Total RNA from Chrysaora quinquecirrha.  

 Total RNA was isolated from the tentacles of a single medusa collected from 

the Cattus Island region of Barnegat Bay (collected August 10, 2013).  The jellyfish 

was transported back to the laboratory in Montclair, NJ and washed several times 

in sterile artificial seawater (19 ppt).  The individual was kept alive for 2 days to 

allow time for all gut contents to be expelled. It was then rinsed again with artificial 

seawater to remove any other (non-jellyfish) DNA/RNA. Tentacles were frozen in 

liquid nitrogen then ground to a fine powder with a homogenizer. Total RNA was 

isolated using the Qiagen RNAeasy Plus MicroKit (Cat No./ID: 74034) following 

the manufacturer’s instructions.  

 

1.2 Preparation of NGS Library  

 Library preparation was performed by GeneWiz, Inc. (South Plainfield, NJ) 

and included separating out poly A+ RNA (to eliminate or minimize the inclusion of 

rRNA and tRNA), construction of a cDNA (complementary DNA) library by reverse 

transcription, and shearing of cDNAs to produce fragments ranging from 100 to 

200 bp in length. Ends of dsDNA were repaired and adaptors ligated to ends to 

permit multiplexing of samples.  
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1.3 NGS Sequencing  

 DNA was sequenced on an Illumina HiSeq 2500 platform using 2 x 100 

paired ends. Approximately 380,000,000 reads were generated from this run from 

triplicate samples.  

 

1.4 Contig Assembly  

 Raw sequence data were processed by eliminating sequences with low 

quality scores, removal of adaptor sequences, and then assembling using CLC 

Workbench to generate a file of 87,600 contigs (JG01-CQTTotalRNA-

Contigs.fasta). The data were organized as a series of fasta files, with the first line 

indicating the contig number and the approximate coverage of the assembled 

sequence.  

 

1.5 BLAST Search  

 This file of assembled contigs was BLASTed against the nr database of 

Genbank (this is the complete Genbank collection of all known sequences) and 

the best hit (highest score match or lowest E or Expect value) was recorded in a 

second file (rna.nr.best.hit.complete.xlsx). Subsequently, these BLAST hits were 

cross-indexed to the UniProt Venom Database 

(http://www.uniprot.org/program/Toxins) to identify putative genes encoding 

venom proteins in Chrysaora quinquecirrha.  
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2. Genomic DNA analysis 

2.1 Sample Preparation  

 Adult sea nettle medusa were collected (from both the Tom’s River in 

Barnegat Bay, NJ and from St. Mary’s River in Chesapeake Bay, MD) and 

transported to the laboratory in 70% (v/v) ethanol for genomic DNA analysis. The 

tube was centrifuged at 13,200 rpm for 2 minutes and the supernatant was 

decanted. The jellyfish was then transferred to a petri dish and cut into pieces small 

enough to fit into a 1.5 mL centrifuge tube. These samples were spun in a Speed 

Vac until all visible solvent had been removed. The sample was then stored at -

80ºC. 

 

2.2 Extracting Jellyfish DNA  

2.2.1 Sample Homogenization in Buffer 

 CTAB (hexadecyltrimethylammonium bromide) isolation buffer with NaCl 

was used to isolate high molecular weight DNA from jellyfish using a modified 

Winnepennickx et al. 1993 protocol and as described by Gaynor et al., 2016.  

Typically, extractions were done in 1.5 mL Eppendorf tubes.  Jellyfish tissue was 

introduced into tubes containing 500 µL of CTAB isolation buffer and ground using 

separate micro pestles into a homogenous slurry. The tubes were incubated at 

60ºC for 60 minutes while mixing them occasionally by inverting the tubes. After 

incubation was completed, 0.5 mL of chloroform:isoamyl alcohol (24:1) mixture 

was added to each tube and gently mixed for 2 minutes by inverting the tubes.  
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2.2.2 Centrifugation and Washing  

 The tubes were centrifuged for 10 minutes at maximum speed (14,000 x g) 

in a micro centrifuge at 4 °C. The upper aqueous phase was transferred into new 

1.5 mL tube, while discarding the solid cellular debris. RNase A (1 µL of 10 mg/mL) 

was added to each tube containing the supernatant and incubated for 30 minutes 

at 37°C. Isopropanol (2/3 volume) was added to each tube, capped and gently 

inverted to mix. The tubes were allowed to sit at room temperature (20ºC) for 2 

hours. The tubes were then centrifuged for 15 minutes at 14,000 x g at 4 °C to 

pellet the DNA. The supernatant was carefully removed, followed by 2X washings 

of the pellet with 500 µL of 70% ethanol. Between the washes, the tubes were 

briefly re-centrifuged at 14,000 x g at 4 °C to pellet the DNA. After the second 

wash, the pellets were dried briefly (5 minutes, or depending on remaining liquid 

volume) in a Speed-Vac without heating.  

 

2.2.3 Resuspension of DNA 

 The DNA was resuspended in a minimum volume (50 µL) of TE (10 mM 

Tris-HCl, 1 mM EDTA, pH 8.0) buffer. Concentration and purity of the DNA were 

determined by UV absorption using a NanoDrop ND 1000.  An aliquot of the 

isolated DNA product (10 µL) was run on a 1.0% (w/v) agarose gel containing 

SYBR-Safe to check for quality and size of DNA. Isolated DNA was aliquoted into 

labeled 1.5 mL tubes and stored at -20 ºC. 
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3. PCR preparation and amplification of the Hemolytic lectin gene  

3.1 Primer Design  

The primers were designed to amplify the full-length and truncated versions of the 

hemolytic lectin gene from Chrysaora quinquecirrha. The region between the start 

and stop codon were selected for primer design. PrimerQuest Tool from the 

Integrated DNA Technologies (http://www.idtdna.com/PrimerQuest/Home/Index) 

was used to generate 9 sets of primers. When designing the primers, the melting 

temperature (Tm) of the primers were within 5°C of each other. During the design 

process, intra- and inter-primer homologies were avoided to prevent self-dimers or 

primer-dimer formation instead of annealing to the desired DNA sequences. The 

primers designed based on the RNA transcriptome data is listed in Figure 

10. Additionally, other primers used for sequence analysis are listed in Appendix 

B.  

 

3.2  PCR preparation 

 Choice-Taq™ DNA Polymerase manufactured by Denville Scientific Inc 

(Denville Scientific, Denville, NJ; http://www.denvillescientific.com) (10 µL) was 

pipetted into each labeled, sterile 200 µL polypropylene thin-wall PCR tubes. The 

Choice-Taq™ DNA Polymerase was supplied with 10X PCR reaction buffer, 

containing 15 mM MgCl2, 100 mM KCl, 80 mM (NH4)2SO4, 100 mM Tris-HCl, pH 

9.0, 0.5% NP-40. The buffer produced a final Mg2+ concentration of 1.5 mM.  To 

every reaction tube containing 10 µL Choice-Taq™, 1 µL each of forward and 

reverse primer (10 µM stocks), 1 µL of the DNA sample and 7 µL of sterile 
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deionized water was pipetted in to obtain a final reaction volume of 20 µL. See 

Appendix B for a complete list of primers used. In each run, a negative control 

(NTC, or no template control) received 8 µL of sterile deionized water, but no DNA.   

 

3.3 Cycling parameters 

 PCR tubes containing 20 µL of reaction mixture were inserted into the 

Applied Biosystems ProFlex™ 3 x 32-well PCR System thermocycler. Routinely, 

initial denaturation was carried out one time at 95ºC for 1 minute. Then, 

amplification cycles comprised denaturation, annealing and extension phases 

were run for 30 cycles at 94 ºC for 20 seconds, 55 ºC for 20 seconds, and 72ºC 

for 1 minute, respectively. After the 30 amplification cycles, a final extension was 

run at 72ºC for 10 minutes. The samples were held at 4ºC until they were removed 

from the thermocycler.  

 

4. Agarose Gel Electrophoresis 

4.1 Gel Preparation  

 Agarose gel electrophoresis was used as a standard method to assess both 

purity and size of amplicons generated by PCR. To prepare a 1.0% (w/v) agarose 

gel 0.40 g of agarose was mixed with 40 mL 1X TAE buffer (40 mM Tris - Acetate, 

1 mM EDTA) in a 250 mL Erlenmeyer flask. To avoid any spillage and over boiling, 

the agar was boiled in a microwave at low power (3) for 3 minutes and 15 seconds. 

It was ensured that the agar had fully dissolved to a clear solution. The solution 

was allowed to cool briefly. While the solution was still a liquid, 4 µL of Invitrogen™ 
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SYBR™ Safe DNA Gel Stain  (10,000X in DMSO, Invitrogen) was added to the 

flask and gently swirled avoiding any bubble formation. A casting tray with 10 well 

comb was readied in the gel box. The agar was gently poured into the casting tray 

and allowed to harden for about 15 minutes. When the gel hardened, the comb 

was firmly removed and oriented with the wells on anode. Then, the running buffer 

1X TAE was poured into the gel box until gel was submerged about 5 millimeters.   

 

4.2 Preparing Samples for Gel Electrophoresis 

 2 µL of 6X loading dye (0.25% (w/v) Bromophenol Blue, 0.25% (w/v) Xylene 

Cyanol, 30% (v/v) Glycerol) was pipetted into each labeled 1.5 mL Eppendorf tube. 

Of the 20 µL PCR reactions, only 10 µL of  PCR amplicon was pipetted into each 

tube and mixed with the loading dye (remaining sample was stored at –20ºC for 

subsequent DNA sequence analysis or cloning).  The mixture was centrifuged 

briefly. Ten µL of HiLo DNA ladder (HiLo DNA Ladder, Minnesota Molecular; 

http://www.mnmolecular.com) was pipetted into the end wells flanking the 

samples.  Each sample (12 µL) was carefully pipetted into individual wells. The gel 

box was covered and plugged into the power supply and run at 105 volts for 45 

minutes. Gel running time was adjusted based on the length of the PCR amplicon. 

 

4.3 Digital Gel Imaging  

 The gels were visualized in a Kodak Imager System (GL100) under blue 

light (470 nm).  Gel image was taken and saved on the Kodak 1D image analysis 
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software (v 3.6). The bands observed on the gel were compared with the HiLo 

DNA ladder to determine DNA length. 

 

5. Automated Sanger Dideoxy Sequencing 

 Amplicons deduced to be both clean (i.e., a single band) and of sufficient 

quantity (based on intensity of the band) were processed for DNA sequence 

analysis. If there was more than 1 µg of an amplicon in a lane, then that sample 

was diluted accordingly for DNA sequence analysis (typically between 10- and 

100-fold depending on intensity of the band). All dilutions were done with sterile 

deionized water. Samples submitted for sequencing contained 1 µL of amplicon 

(or diluted amplicon), 1 µL of forward or reverse primer (10 µM stock), and 8 µL of 

sterile deionized water. Samples were sequenced in both the forward and reverse 

directions.  Sequencing was performed using the BigDye Terminator Cycle 

Sequencing Kit Version 3.1 (Applied Biosystems Inc., Foster City, CA 94404; 

https://tools.thermofisher.com/content/sfs/manuals/cms_081527.pdf) following the 

manufacturer’s instructions with the exception that we routinely ran 1/16 reactions. 

Cleanup was performed using an EdgeBio Performa DTR Gel Filtration Cartridges 

(Gaithersburg, MD; https://www.edgebio.com). The samples were analyzed using 

an ABI3130 Genetic Analyzer from Applied Biosystems (Foster City, CA) using a 

36-cm column array and NANO POP7 polymer (MCLAB, South San Francisco, CA 

94080, NP7-100; http://www.mclab.com).  Sequence calls were made using the 

KB basecaller.   
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6. Analyzing DNA sequences 

 Sequence data was generated as ABI chromatogram files. The ABI file 

format is a binary file produced by ABI sequencer software. Macintosh compatible 

software applications 4Peaks (http://4peaks.en.softonic.com/mac) and Geneious 

(http://www.geneious.com/) were used to trim, assemble and view Sanger 

sequencing trace files, correct base calls and create consensus sequences.  All 

sequencing data generated locally was assembled both de novo and by comparing 

with a reference sequence generated by RNA transcriptome analysis. Sequences 

were searched against Genbank using the BLASTn algorithm.  BLAST2Seq 

algorithm was also used to produce alignments between overlapping sequences 

and to help resolve inconsistencies between forward and reverse sequencing 

reads. BLASTn searches, unless otherwise specified, were done using standard 

default values.  A match with an e (expect) value of < 10-4 was considered a match. 

 

7. Gene Alignment and Assembly 

 Sequencing data was analyzed both manually and with the help of 

Geneious sequence analysis software for de novo gene assembly.  For manual 

assembly, sequencing data was extracted from the chromatogram files and copied 

into a word processor. A short segment of the nucleotide was selected from a 

sequence and searched for relative abundance. Sequences with similarities were 

aligned to create a scaffold and other sequences were built around it by joining 

overlapping fragments. A consensus sequence generated by the manual 

assembly of the sequence data was aligned to the mRNA seq data for validation. 



 

 37 

The built-in Geneious assembler, Tadpole, SPAdes, Velvet, MIRA and CAP3 

assemblers available in the Geneious sequence analysis software were also used 

to validate the assembled sequences.  

 

8. Cloning into the pMiniT vector   

8.1 Ligation Reaction  

 NEB PCR Cloning Kit (NEB #E1202) was used to clone the full-length gene 

into the pMiniT vector. The insert DNA was mixed with 1 µL linearized vector and 

brought to a 5 µL volume by adding with sterile deionized water. Then 4 µL of 

Cloning Mix 1 and 1 µL of Cloning Mix 2 were added to the mixture and incubated 

at room temperature (25°C) for 15 minutes followed by incubation on ice for 2 

minutes. The ligation reaction (2 µL) was then mixed with 50 µL NEB 10-beta 

Competent E. coli (NEB #C3019) and incubated on ice for 20 minutes. The cells 

were then heat shocked at 42°C for 30 seconds and immediately transferred to 

ice, where they were incubated for 5 minutes. S.O.C (Super Optimal broth with 

Catabolite repression) medium (950 µL) was added to the transformants and 

incubated at 37ºC for an hour. The transformants (50 µL and 50 µL of a 1:10 

dilution) were spread on 37°C pre-warmed LB selection plate containing 100 

μg/mL ampicillin (LB-AMP) and incubated overnight at 37ºC.  

 

8.2 Insert Screening  

 Screening for inserts was carried out by colony PCR, restriction enzyme 

digestion, PCR and sequencing of the isolated plasmid DNA.  
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8.2.1 Colony PCR 

 Individual E. coli colonies were picked from the LB-AMP plates using a 

sterile inoculation loop and subcultured into new gridded LB-AMP plates. A loopful 

of colonies generated by overnight subculture was then introduced into a PCR tube 

containing 100 µL of 5% (w/v) Chelex prepared in 100 mM of Tris Buffer (pH 11). 

The tubes were vortexed briefly to mix the bacteria in Chelex and boiled in a heat 

block for 10 mins at 100 ºC. Tubes were spun at 13,200 rpm for 2 minutes. Twenty 

µL of the supernatant was removed and 1µL was used for colony PCR (using 1µL 

of pMiniT F and pMiniT R primers (see Appendix B)). Amplification was carried out 

using manufacturer's directions.  The PCR amplicons were electrophoresed on 

agarose gels (see Materials and Methods Section 4). Bands visible on the gel were 

screened and prepared for DNA sequencing analysis as explained in section 5 of 

Materials and Methods.  Sequence data was used to determine the direction and 

correct reading frame of the insert.  Colonies with positive inserts were sub-

cultured on fresh LB-AMP plates and stored in 4ºC for further use.  A glycerol stock 

of bacteria was also prepared for each clone by mixing 15µL glycerol and 85µL 

cells in broth for long term storage at -80ºC. Positive colonies were also grown in 

LB broth with 100 μg/mL ampicillin for mini-prep of the plasmid DNA (see Appendix 

C).  Plasmid DNA was extracted using the QIAGEN® Plasmid Purification kit 

(Catalog number: 12123) using the manufacturer’s protocol. The extracted plasmid 

was stored at -20ºC until further use.  
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9. Cloning into the pET SUMO expression vector 

9.1 Ligation Reaction 

 The Champion™ pET SUMO Expression System by Life Technologies 

(Catalog # K30001) was used for cloning and expression of our gene. A 1:1 molar 

ratio of vector: insert was recommended by the manufacturer for optimum ligation 

efficiency. One µL of PCR sample was determined to be optimal for ligation. In a 

200 µL tube, 10 µL ligation reaction was carried out with 1µL of the fresh PCR 

product, 1 µL of the 10X Ligation buffer, 2 µL of the 25 ng/µL pET SUMO vector, 

5 µL of deionized water and 1 µL of the 4.0 Weiss units T4 DNA Ligase. The 

reaction was incubated at room temperature (20ºC) for 30 minutes for the 

truncated (444 bp) insert and incubated overnight at 15ºC in a thermocycler for the 

full length (1299 bp) insert.  

 

9.2 Transforming One Shot® Mach1™-T1R Competent Cells 

 Before transformation was carried out, the S.O.C medium (Invitrogen, 

Catalog No. 15544-034) was equilibrated to room temperature. LB plates 

containing 50 µg/mL Kanamycin (LB-KAN) were warmed in an incubator at 37ºC. 

The One Shot® Mach1™-T1R Competent Cells were removed from -80ºC freezer 

and thawed on ice.  Each ligation product (2 µL) was pipetted into individual vials 

containing One Shot® Mach1™-T1R Competent E. coli (Invitrogen, Cat. No. 

C8620-03). The cells and ligation mixture were mixed by gently flicking the walls 

of the tube and incubated on ice for 15 minutes. A water bath at 42ºC was prepared 

to heat shock the cells for 30 seconds. Vials containing the cells were immediately 
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transferred to ice. Room temperature S.O.C medium (250 µL) was added to the 

tube containing cells. The tubes were tightly capped and horizontally shaken in a 

37ºC shaking incubator for 1 hour at 200 rpm. Two separate volumes, 100 µL and 

200 µL, of the transformants were aseptically spread on a pre-warmed LB-KAN 

plates and incubated overnight at 37ºC.  

 

9.3 Screening for Inserts 

 Screening for the correct insert was carried out by colony PCR, restriction 

enzyme digestion, PCR and sequencing of the isolated plasmid DNA (as described 

in section 8.2 of the Materials and Methods). Only those clones that contained an 

insert in the 5’ to 3’ direction and correct reading frames were sub-cultured into 

fresh LB-KAN plates and LB-KAN broth for plasmid mini-prep.  See Appendix C 

for the Alkaline Lysis plasmid mini-prep protocol.  

 

10. Transforming BL21(DE3) One Shot® Cells for Expression 

10.1 Ligation and Transformation  

 BL21(DE3) One Shot® cells (Invitrogen, Cat. No. C6000-03) were removed 

from -80ºC freezer and quickly thawed on ice.  The volume of the plasmid DNA 

was adjusted so the final concentration was 10 ng/µL. Plasmid DNA (1 µL) was 

added to each vial of BL21(DE3) One Shot® cells and stirred gently with the pipette 

tip. The mixture was incubated on ice for 30 minutes. The tubes containing the 

ligation mixture was then introduced to a 42ºC water bath to heat-shock the cells 

for 30 seconds. Tubes were then immediately transferred to ice. To the mixture, 
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250 µL of room temperature S.O.C. medium was added and incubated at 37°C for 

1 hour with shaking at 200 rpm.  

 The entire transformation reaction was added to 10 mL of LB broth 

containing 50 μg/mL Kanamycin. The culture was grown overnight at 37°C with 

shaking at 200 rpm. 

 

10.2 IPTG Induction and Sample Processing  

 An aliquot (500 µL) of the overnight culture was inoculated into 10 mL of LB 

broth containing 50 μg/mL kanamycin (in a 125-mL Erlenmeyer flask) and allowed 

to grow for two hours at 37°C with shaking at 200 rpm. The optical density (OD600 

) reading was taken at the end of the two hours. The sub-culture was then split into 

two 5 mL cultures. To one of the 5 mL cultures, IPTG was added to a final 

concentration of 1 mM to induce protein expression, while the other culture was 

left uninduced. From each culture, 500 µL aliquot was taken immediately and 

centrifuged at maximum speed (13,200 rpm) in a microcentrifuge for 1 minute. The 

supernatant was aspirated and the cell pellets were immediately frozen at -20°C. 

These were marked as the zero-time point samples. The remaining cultures were 

incubated continuously at 37°C with shaking at 200 rpm. Time points for each 

culture was taken every hour for 4 hours. For each time point, 500 µL of both the 

induced and uninduced cultures were taken and processed as described above. 
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10.3 Sample Analysis  

 A Mini-PROTEAN® TGX™ Precast Gel (4-15%), purchased from Bio-Rad 

Laboratories, Inc., was used to analyze the proteins in our expressed samples. 

Frozen zero-time point, induced and uninduced samples were thawed and 

resuspended in 80 µL of 1X Laemmli sample buffer (60 mM Tris-Cl pH 6.8, 2% 

SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) containing 

2-mercaptoethanol. Samples were boiled for 10 minutes in a water bath and 

centrifuged at 13,200 rpm for 2 minutes to remove any insoluble material. Precision 

Plus Protein™ Dual Color Standards (161-0374, Bio-Rad) (10 µL) and samples 

(10 µL) were loaded on an SDS-PAGE gel and electrophoresed in a 1X 

Tris/Glycine/SDS buffer for 50 minutes at 170V. Remaining samples were stored 

at -20ºC. Upon completion of electrophoresis, the gel was transferred to a tray 

containing destaining solution (40% methanol and 10% glacial acetic acid).  After 

the initial fixing of the gel for 2 minutes destaining solution was poured off, then the 

gel was stained with Coomassie Blue stain (0.1% Coomassie Brilliant Blue R-250, 

50% methanol and 10% glacial acetic acid) for 30 minutes on a rocking platform. 

The gel was destained with a de-staining solution containing methanol, water and 

glacial acetic acid for 3 hours on a rocking platform. The destaining solution was 

changed every 30 minutes.  The bands on the gel was visualized by placing the 

gel on a white light box and photographed for band size analysis.   
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Results 

 Analysis of an RNA-Seq library created from the tentacles of a mature 

Chrysaora quinquecirrha isolated from Barnegat Bay (Gaynor, Meredith, and 

Shchegolev, unpublished data) suggested the presence of a hemolytic lectin.  

Contig 22835 (out of 87,600 total contigs generated in this library), with an average 

coverage of 45.40X, had a strong match to the hemolytic lectin S-1 from 

Cucumaria echinata, a sea cucumber native to the Indo-Pacific ocean.  This match 

was generated using the BLASTX algorithm (Altschul et al., 1997), using the 

standard default settings, and demonstrated a 62.17% identity, an alignment 

length of 454 AA (292 matches, 168 mismatches) in one continuous reading frame, 

and an e (expect) value of 0 and a bit score of 573.  The annotated RNA-seq 

sequence is shown in Figure 8.   

 As can be seen in Figure 8, the contig is 1645 nt in length, and contains an 

ATG start codon at position 85, an in-frame TGA stop codon at position 1447, and 

a downstream polyadenylation consensus signal - AATAAA - or Proudfoot Box 

(Proudfoot and Brownlee, 1976), starting at position 1519.  The polyadenylated tail 

(which is 63 nts long in this contig) starts 57 nts downstream from the 3’ end of the 

polyadenylation consensus signal, consistent with reports from other eukaryotic 

genes (Chang et al., 2014).  The single open reading frame (ORF) in this contig 

predicts a protein with a length of 454 AA.   

 Bioinformatic analysis of the predicted protein using the SignalP algorithm 

demonstrates a potential signal peptide of 22 AA.  This program calculates three 

different scores (C-, S-, and Y-) to predict putative signal peptide and, in this case,  
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there was excellent agreement of the methods, indicating that the cleavage of the 

nascent protein likely occurs between the 22nd (alanine - A) and 23rd (glutamine 

  AAAGCAACTGAGTGCAGTGAAGCTGTAGCAGTTGCACATAGGCAAAAGCT 
  CGAAGAACGCTTGCAGAAGTTAAGGTTGATAAAACATGGATCAAATACGC 
  TTGATTGGTGTGATCGTTGTACTTTCGTCATTGTTTTTGCAATGCTCTGC 
  TCAAGTCCTGTGCACCAATCCGTTGGTAATTGGAGAGCTTCGAATCAAGA 
  AGTCAAGACAATGTGTTGACATTGATGGAAAAGACGGAGCTGGAAATGTG 
  CAGACACATGAATGTGAAGGAGATGACGATCAACAAATCATCCTATGTGG 
  TGATGGCACAATTCGCAACGAGGCTAGAAATTACTGCTTCACACCACGTG 
  GCAGTGGCAACGACAATGTTGAATCGTCAGCCTGTCAGCATTACCCAAGA 
  ATTCCTACAAGACAGAAGTGGAGACTTGGAAGGTCAAAGAAATTCTATGA 
  CATGGGAGGAATCTTACAGGAAGCAAGAGAAATCATCAACGTTGAATCAA 
  ATAGATGCCTTGATGTTAGTGGCTACGATGGAACTGGCAACATTGGCGTG 
  TATCATTGCGAAAACAAAGATGACCAGTACTTTTATTTCCGATCAAGAGG 
  AAAAGAAGTCGCTTTCGGGAGGCTCAGGAATGAGAAATCAAGTCAATGCC 
  TTGATGTCAGTGGGTATGATGGCAAAGGAAATGTACAAATGTACGACTGT 
  GAAGATAAGAAGGACCAATGGTTTAAATTTTATGAGAATGGAGAAGTCGT 
  CAATGAGCAGTCAAGACGTTGTTTGGACGTATCTGGCTATGATGGAACAG 
  GCAACATTGGTACATATTGCTGTGAAGACAAGCATGATCAGATGTGGTCT 
  CGACCATCTCAGCTTTGCAACGGCGAATCGTGTTCTTTTGTCAACAAAAA 
  ATCAGGCCAATGTCTGGATGTGTCAGGATACGATGGACGAGGCGGTGTGG 
  CTACCTATCATTGTGAAGGACTTGCTGATCAACGACTGAAATGGGTGACT 
  GACAAATGGACAGCTCCTAATGCTGTTTGGGTGATGGTTGGCTGCAATCA 
  AAACGGAAAGGTTTCTCAGTGGCTTTCCAACACTGTTTCATATTCATCTA 
  CAATTACACACACTGTCACTGTTGAAGTTGGTGCATCCATGGAAGCAGAT 
  CTTGTGTTTGCAAAAGCAACAGTGTCAACCAAAGTTTCTACATCACTTTC 
  AACTGCCTGGACCAAGAGCCAGAGTGGAACAACTCGTATCGTCTTCACCT 
  GTGAGTATTACGACAACCAGGAAGCATTTACAGGAGGATGCATGTGGCAG 
  CTTCGGGTCGACACCAAGCATGTCAACTCTGGCCGTCTACTTACATGGAG 
  TCCACAGATCACGAGGTGCACAACGTCAAACACCCAGCCAAGATGCCCAC 
  CGTTCACAAAATGTGTCGATAAGGCCTGTTCTCTTTGCCAAGAAATCTGA 
  CATTAATTGCTGCCGTTTCTCTTTCTTTTAACTGCTTGTTTTACTTTTGA 
  CTTTGATTAAACATGATTCAATAAAAATATCTGCTGTTGCTGCTACTTTA 
  ATAACAAATATAATTATTATTGATGAACTTGCAAAAAAAAAAAAAAAAAA 
  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Figure 8: Contig 22835 from RNA-Seq dataset. This sequence generated by the mRNA 
seq contains 1645 bases. Sequence in bold and underlined type-face are the forward and 
reverse primers. Initially identified sequence features are highlighted in green (start 
codon), red (stop codon) and blue (poly-A tail).  
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- Q) amino acids (Figure 9).  Thus, when cleaved this produces a mature protein 

of 438 AA with an N-terminus of Q instead of M. 

  

Contig 22835 was used as a scaffold to generate 9 unique sets of primers 

(Figure 10) using to the Primer Quest Tool 

(https://www.idtdna.com/Primerquest/Home/Index) of Integrated DNA Technologies 

(https://www.idtdna.com/site).  As seen in Figure 10, each primer was assigned a 

unique identifying letter, with start (5’) and end (3’) position indicated relative to the 

Figure 9: The SignalP 4.1 algorithm 
(http://www.cbs.dtu.dk/services/SignalP/) predicts a signal peptide of 22 
AA. 
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start codon (ATG) of the gene, plus the calculated Tm value (in ºC).  Forward and 

reverse primers can be distinguished by whether they had ascending or 

descending start and end positions relative to the ATG start codon.  Generally, the 

strategy used to verify the assembled RNA-Seq contig was to use multiple 

combinations of forward and reverse primers in PCR reactions to generate specific 

amplicons.  Agarose gel electrophoresis was used to verify that a clean amplicon 

of the expected size was generated.  Then the amplicon was subjected to Sanger 

dideoxy sequencing of both strands using the forward and reverse primers (same 

ones used to generate that specific amplicon), respectively.  These primers , taken 

together, bridged the full length of the ORF (minus the poly A tail). 

 All primers were mapped (Figure 11) to the full length gene using SnapGene 

Viewer (www.snapgene.com) and Geneious sequence alignment software 

(www.geneious.com).  The DNA sequence of the putative gene is annotated with 

restriction enzymes and primers at their respective binding sites.  As shown in 

Figure 11.1, primers M, C, K, O, E, I, HemoF, G, and A are forward primers (dark 

green arrows), while D, HemoR, B, H, F, L, N, P, and J are reverse primers (light 

green arrows).  A corresponding restriction map is seen in Figure 11.1 (restriction 

sites and positions in black) along with primer order and nucleotide positions (in 

purple). The Geneious software was was used to test various primer pairs against 

the putative gene to import a primer pair map (Figure 11.2). 

The various primer sets were used in combination to generate amplicons of 

various sizes that targeted different sections of the putative gene. All PCR 

reactions were verified by agarose gel electrophoresis to assess both amplicon 
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Figure 10: List of primers that span the full gene. These primers were generated to 
verify the RNA-Seq dataset. 

Primers based on the RNA Seq. Data _A of ATG is 1  

TUBE PRIMER SEQUENCE ID Start End Tm  ºC 
C1 CAAGACGTTGTTTGGACGTAT A 677 699 56.9 

C2 CCATTTGTCAGTCACCCATTT B 925 903 56.7 

C3 TCAAGTCCTGTGCACCAAT C 66 86 56.9 

C4 CAGTTCCATCGTAGCCACTAA D 452 430 57.5 

C5 TTCGCAACGAGGCTAGAAATT E 227 249 58.3 

C6 CAGGTGAAGACGATACGAGTT F 1167 114
5 

57.5 

C7 GGAGGCTCAGGAATGAGAA G 533 553 56.1 

C8 CCATCACCCAAACAGCATTA H 953 932 56.0 

C9 CGCAACGAGGCTAGAAATT I 229 249 56.0 

C10 ATCTTGGCTGGGTGTTT J 1310 129
2 

53.1 

C11 AAGTCCTGTGCACCAAT K 68 86 53.2 

C12 GCTTCCTGGTTGTCGTAAT L 1191 117
1 

55.2 

C13 ATTGGTGTGATCGTTGTACT M 19 40 54.7 

C14 CCTCCTGTAAATGCTTCCT N 1203 118
3 

54.1 

C15 AATCCGTTGGTAATTGGAGA O 82 103 54.3 

C16 AAGTAGACGGCCAGAGT P 1258 124
0 

54.1 

HemoF CCTGTCAGCATTACCCAAGAA HemoF 296 317 57.9 

HemoR CCTGTTCCATCATAGCCAGATAC HemoR 717 694 58.4 
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Figure 11.1 top: Primer map generated using Snapgene viewer. Figure 11.2 bottom: Potential PCR amplicons 
generated using Geneious sequence analysis software. Dark green represents forward primers and light 
green represents reverse primers. The primer map on the top image correspond to the amplicons on the 
bottom. 
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size and purity.  A representative gel image (Figure 12) shows amplicons of 

different sizes generated by combinations of forward and reverse primers.  Hi-

Lo™ DNA Markers were used to calculate amplicon size.  All amplicons that 

produced a clean band on an agarose gel were sequenced and edited, aligned 

and assembled into larger contigs using the Geneious R10 package. 

 As demonstrated in Figure 12, most of the PCR amplifications were clean 

and robust. Typically we would see small amounts of residual primers co-migrating 

Figure 12: A representative gel image that shows different primer sets and PCR 
amplicons of various sizes. In the above gel image, amplification is not seen with 
A/L, and HemoF/P primer sets. HemoF/HemoR and HemoF/H are no template 
controls.   
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with 50 to 100 bp markers.  But these were not generally an issue in subsequent 

Sanger sequencing reactions since large molar excess of forward or reverse 

primer was added to sequencing reactions that greatly reduced the impact of the 

competing primer. 

 Alignment of all sequenced amplicons produced a full-length assembly as 

seen graphically in Figure 13.  Each amplicon was sequenced (both forward and 

reverse strands) multiple times and there was sufficient overlap between 

amplicons to permit easy alignment and assembly.  Figure 14 also shows a similar 

alignment and assembly using just 3 long amplicons that span the entire coding 

region of the gene.  This process was repeated for amplicons generated from 

gDNA isolated from C. quinquecirrha from both the Barnegat Bay and Chesapeake 

Bay populations.  This permitted the generation of a consensus sequence for the 

gene from both populations.  These sequences were submitted to Genbank 

(https://www.ncbi.nlm.nih.gov) and are shown in Figures 15 (Barnegat Bay) and 

Figure 16 (Chesapeake Bay) below.  Since these represented the first known 

sequences for venom proteins from C. quinquecirrha, this hemolytic lectin was 

renamed Chrysaoralin. 

 A BLASTp (Altschul et al., 1997) search of these putative proteins reveals 

interesting homologies.  As seen in Figure 17, this generates Conserved Domain 

Database (CDD) hits to both Ricin superfamily and Ricin B lectin superfamily in the 

first half of the protein sequence  (Marchler-Bauer et al., 2012).  The homologies 

are significant with expect (e) values of 2.16 e-19.  In addition, putative sugar-

binding domains and Q-X-W motifs (Mancheno et al., 2010), both characteristic of 
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lectins and other sugar-binding proteins, are also found repeated several times in 

Chrysaoralin. 
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Barnegat Bay Chrysaoralin 

 

>KX656922.1 Chrysaora quinquecirrha chrysaoralin gene, complete cds 

ATGGATCAAATACGCTTGATTGGTGTGATCGTTGTACTTTCGTCATTGTTTTTGCAATGCTCTGCTCAAG 

TCCTGTGCACCAATCCGTTGGTAATTGGAGAGCTTCGAATCAAGAAGTCAAGACAATGTGTTGACATTGA 

TGGAAAAGACGGAGCTGGAAATGTGCAGACACATGAATGTGAAGGAGATGACGATCAACAAATCATCCTA 

TGTGGTGATGGCACAATTCGCAACGAGGCTAGAAATTACTGCTTCACACCACGTGGCAGTGGCAACGACA 

ATGTTGAATCGTCAGCCTGTCAGCATTACCCAAGAATTCCTACAAGACAGAAGTGGAGACTTGGAAGGTC 

AAAGAAATTCTATGACATGGGAGGAATCTTACAGGAAGCAAGAGAAATCATCAACGTTGAATCAAATAGA 

TGCCTTGATGTTAGTGGCTACGATGGAACTGGCAACATTGGCGTGTATCATTGCGAAAACAAAGATGACC 

AGTACTTTTATTTCCGATCAAGAGGAAAAGAAGTCGCTTTCGGGAGGCTCAGGAATGAGAAATCAAGTCA 

ATGCCTTGATGTCAGTGGGTATGATGGCAAAGGAAATGTACAAATGTACGACTGTGAAGATAAGAAGGAC 

CAATGGTTTAAATTTTATGAGAATGGAGAAGTCGTCAATGAGCAGTCAAGACGTTGTTTGGACGTATCTG 

GCTATGATGGAACAGGCAACATTGGTACATATTGCTGTGAAGACAAGCATGATCAGATGTGGTCTCGACC 

ATCTCAGCTTTGCAACGGCGAATCGTGTTCTTTTGTCAACAAAAAATCAGGCCAATGTCTGGATGTGTCA 

GGATACGATGGACGAGGCGGTGTGGCTACCTATCATTGTGAAGGACTTGCTGATCAACGACTGAAATGGG 

TGACTGACAAATGGACAGCTCCTAATGCTGTTTGGGTGATGGTTGGCTGCAATCAAAACGGAAAGGTTTC 

TCAGTGGCTTTCCAACACTGTTTCATATTCATCTACAATTACACACACTGTCACTGTTGAAGTTGGTGCA 

TCCATGGAAGCAGATCTTGTGTTTGCAAAAGCAACAGTGTCAACCAAAGTTTCTACATCACTTTCAACTG 

CCTGGACCAAGAGCCAGAGTGGAACAACTCGTATCGTCTTCACCTGTGAGTATTACGACAACCAGGAAGC 

ATTTACAGGAGGATGCATGTGGCAGCTTCGGGTCGACACCAAGCATGTCAACTCTGGCCGTCTACTTACA 

TGGAGTCCACAGATCACGAGGTGCACAACGTCAAACACCCAGCCAAGATGCCCACCGTTCACAAAATGTG 

TCGATAAGGCCTGTTCTCTTTGCCAAGAAATCTGA 

 

Info:/country="USA: Barnegat Bay, Metedeconk River, Brick, NJ" 

     /lat_lon="40.0502 N 74.1131 W" 

     /collection_date="10-Jul-2014" 

     /collected_by="John Gaynor" 

Assembly Method       :: CLC Genomics Workbench v. 7.5 

      Coverage        :: 45.4X 

Sequencing Technology :: Illumina 

        /codon_start=1 

                     /product="chrysaoralin" 

                     /protein_id="AOO35153.1" 

                     /translation="MDQIRLIGVIVVLSSLFLQCSAQVLCTNPLVIGELRIKKSRQCV 

                     DIDGKDGAGNVQTHECEGDDDQQIILCGDGTIRNEARNYCFTPRGSGNDNVESSACQH 

                     YPRIPTRQKWRLGRSKKFYDMGGILQEAREIINVESNRCLDVSGYDGTGNIGVYHCEN 

                     KDDQYFYFRSRGKEVAFGRLRNEKSSQCLDVSGYDGKGNVQMYDCEDKKDQWFKFYEN 

                     GEVVNEQSRRCLDVSGYDGTGNIGTYCCEDKHDQMWSRPSQLCNGESCSFVNKKSGQC 

                     LDVSGYDGRGGVATYHCEGLADQRLKWVTDKWTAPNAVWVMVGCNQNGKVSQWLSNTV 

                     SYSSTITHTVTVEVGASMEADLVFAKATVSTKVSTSLSTAWTKSQSGTTRIVFTCEYY 

                     DNQEAFTGGCMWQLRVDTKHVNSGRLLTWSPQITRCTTSNTQPRCPPFTKCVDKACSL 

                     CQEI" 
Figure 15: GenBank entry of Chrysaoralin gene from Chrysaora quinquecirrha captured from 
Metedeconk River, Barnegat Bay, NJ. Accession number of the gene is KX656922.1. 
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Chesapeake Bay Chrysaoralin  

 

>KX356909.1 Chrysaora quinquecirrha chrysaoralin gene, complete cds 

ATGGATCAAATACGCTTGATTGGTGTGGTCGTTGTACTTTCGTCATTGTTTTTGCAATGCTCTGCTCAAG 

TCCTGTGCACCAATCCGTTGGTAATTGGAGAGCTTCGAATCAAGAAGTCAAGACAATGTGTTGACATTGA 

TGGAAAAGACGGAGCTGGAAATGTGCAGACACATGAATGTGAAGGAGATGACGATCAACAAATCATCCTA 

TGTGGTGATGGCACAATTCGCAACGAGGCTAGAAATTACTGCTTCACACCACGTGGCAGTGGCAACGACA 

ATGTTGAATCGTCAGCCTGTCAGCATTACCCAAGAATTCCTGCAAGACAGAAGTGGAGACTTGGAAGGTC 

AAAGAAATTCTATGACATGGGAGGAATCTTACAGGAAGCAAGAGAAATCATCAACGTTGAATCAAATAGA 

TGCCTTGATGTTAGTGGCTACGATGGAACTGGCAACATTGGCGTGTATCATTGCGAAAACAAAGATGACC 

AGTACTTTTACTTCCGATCAAGAGGAAAAGAAGTGGCTTTCGGGAGGCTCAGGAATGAGAAGTCAAGTCA 

ATGTCTTGATGTCAGTGGGTATGATGGCAAAGGAAATGTACAAATGTACGACTGTGAAGATAAGAAGGAC 

CAATGGTTTAAATTTTATGAGAATGGAGAAGTCGTCAATGAGCAGTCAAGACGTTGTTTGGACGTATCTG 

GCTATGATGGAACAGGCAACATTGGTACATATTGCTGTGAAGACAAGCATGATCAGATGTGGTCTCGACC 

ATCTCAGCTTTGCAACGGCGAATCGTGTTCTTTTGTCAACAAAAAATCAGGCCAATGTCTGGATGTGTCA 

GGATACGATGGACGAGGCGGTGTGGCTACCTATCATTGTGAAGGACTTGCTGATCAACGACTGAAATGGG 

TGACTGACAAATGGACAGCTCCTAATGCTGTTTGGGTGATGGTTGGCTGCAATCAAAACGGAAAGGTTTC 

TCAGTGGCTTTCCAACACTGTTTCATATTCATCTACAATTACACACACTGTCACTGTTGAAGTTGGTGCA 

TCCATGGAAGCAGATCTTGTGTTTGCAAAAGCAACAGTGTCAACCAAAGTTTCTACATCACTTTCAACTG 

CCTGGACCAAGAGCCAGAGTGGAACAACTCGTATCGTCTTCACCTGTGAGTATTACGACAACCAGGAAGC 

ATTTACAGGAGGATGCATGTGGCAGCTTCGGGTCGACACCAAGCATGTCAACTCTGGCCGTCTACTTACA 

TGGAGTCCACAGATCACGAGGTGCACAACGTCAAACACCCAGCCAAGATGCCCACCGTTCACAAAATGTG 

TCGATAAGGCCTGTTCTCTTTGCCAAGAAATCTGA 

 

Info: /country="USA: Chesapeake Bay, St, Mary's River, MD" 

      /lat_lon="38.1326 N 76.4501 W" 

      /collection_date="10-Oct-2012" 

      /PCR_primers=“fwd_name: chrysf, fwd_seq:atggatcaaatacgcttgattggtg,  

       rev_name: cqr, rev_seq:gagaaacggcagcaattaatgtcag" 

 

Sequencing Technology :: Sanger dideoxy sequencing 

                     /codon_start=1 

                     /product="chrysaoralin" 

                     /protein_id="AOO35152.1" 

        /translation="MDQIRLIGVVVVLSSLFLQCSAQVLCTNPLVIGELRIKKSRQCV 

                     DIDGKDGAGNVQTHECEGDDDQQIILCGDGTIRNEARNYCFTPRGSGNDNVESSACQH 

                     YPRIPARQKWRLGRSKKFYDMGGILQEAREIINVESNRCLDVSGYDGTGNIGVYHCEN 

                     KDDQYFYFRSRGKEVAFGRLRNEKSSQCLDVSGYDGKGNVQMYDCEDKKDQWFKFYEN 

                     GEVVNEQSRRCLDVSGYDGTGNIGTYCCEDKHDQMWSRPSQLCNGESCSFVNKKSGQC 

                     LDVSGYDGRGGVATYHCEGLADQRLKWVTDKWTAPNAVWVMVGCNQNGKVSQWLSNTV 

                     SYSSTITHTVTVEVGASMEADLVFAKATVSTKVSTSLSTAWTKSQSGTTRIVFTCEYY 

                     DNQEAFTGGCMWQLRVDTKHVNSGRLLTWSPQITRCTTSNTQPRCPPFTKCVDKACSL 

                     CQEI” 

Figure 16: GenBank entry of Chrysaoralin gene from Chrysaora quinquecirrha captured 
from St. Mary’s River, Chesapeake Bay, NJ. Accession number of the gene is KX356909.1. 
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A search of Genbank using the BLASTp algorithm for protein homologies 

to the Chrysaoralin gene is shown in Figure 18.  Only the top 30 hits are listed.  

The best matches are to a family of hemolytic lectin proteins from the Sea 

Cucumber, Cucumaria echinata, with 62-64% amino acid identity.  The search 

results also show homologies to the hypothetical proteins from other Cnidarians 

such as Acropora millepora and Acropora digitifera, a branching stony coral and 

an acroporid coral, respectively.  The other BLAST hits show homology to  

Figure 17.1 top: A graphical representation of the BLASTp result of Chrysaora quinquecirrha 
Chrysaoralin gene detecting conserved domains with the Ricin and Ricin B lectin superfamilies, 
sugar binding sites, as well as the Q-x-W motifs. Figure 17.2 bottom: Distribution of the top 113 
BLAST hits.  
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Figure 18: BLASTp search result of Chrysaora quinquecirrha Chrysaoralin gene. Only top 30 hits are shown. 
First two hits are Chrysaoralin gene sequences. Chrysaoralin gene shows 66% amino acid identity with the 
hemolytic lectin gene from the sea cucumber, Cucumaria echinata.  
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hypothetical proteins from different bacterial species.   Curiously, after the 

hemolytic lectins from Cucumaria echinata and the unidentified proteins in corals, 

the homology drops precipitously.  The next closest matches are primarily 

unidentified proteins from prokaryotes which match in the 30% to 20% homology 

range (with e values between 10-8 and 10-7).  Although I have only demonstrated 

the BLASTp results here, a similar pattern is seen at the nucleotide level using the 

BLASTn algorithm (data not shown).  The lack of significant hits to Chrysaoralin 

from other cnidarians is both striking and surprising. 

 A comparison of the Chrysaoralin gene sequences isolated from two 

separate locations, Barnegat Bay in New Jersey and Chesapeake Bay in 

Maryland, was carried out using CLUSTAL Omega (Sievers et al., 2011), as seen 

in Figure 19. The comparison resulted in 6 single nucleotide polymorphisms 

(SNP’s). The differences were seen between 28 G, 322 G, 501 C, 525 G, 552 G, 

564 T of Chesapeake Bay Chrysaoralin and 28 A, 322 A, 501 T, 525 C, 552 A, 564 

C of Barnegat Bay Chrysaoralin.  However, these six nucleotide differences 

resulted in only two amino acid changes (10 Valine/Isoleucine and 108 

Alanine/Threonine) between the genes from two locations, as can be seen in 

Figure 20.  Thus, these two genes are 99.56% homologous at both the nucleotide 

and amino acid level. 

 A CLUSTAL Omega multiple sequence alignment of the Sea Cucumber 

Hemolytic Lectin, Chrysaoralin from Chesapeake Bay and Chrysaoralin from 

Barnegat Bay is shown in Figure 20.  In the figure, the region shaded in grey is the 

signal peptide, shading in blue is domain 1, green is domain 2, and red is domain  
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Figure 19: Comparison of Barnegat Bay and Chesapeake Bay Chrysaoralin sequences 
demonstrates a difference of six nucleotides. However, the difference result in only two 
changes in the amino acid sequences.  
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3.  Domains 1 and 2 are putative carbohydrate-binding domains and domain 3 is 

the putative pore-forming domain (PFD). Highlighted within the boxes are the two 

amino acid differences (V/I and A/T) seen between Chesapeake Bay Chrysaoralin 

and Barnegat Bay Chrysaoralin, and “TVTVEVGASM” and “SVKVSTLSTA” 

sequences of the two alpha helices found in domain 3 that are responsible for 

formation of the transmembrane beta-barrel during pore formation (Unno et al., 

2014).   

 

Figure 20: CLUSTAL multiple sequence alignment of the Sea Cucumber Hemolytic Lectin, Chrysoralin from 
Chesapeake Bay and Chrysaoralin from Barnegat Bay. Region shaded in grey is the signal peptide. 
Domain1 is shaded in blue, domain 2 in green and domain 3 in red. The two amino acid differences (V/I and 
A/T) between Chesapeake Bay Chrysaoralin and Barnegat Bay Chrysaoralin are highlighted. 
TVTVEVGASM and SVKVSTLSTA are sequences of the two alpha helices in domain 3 that are responsible 
for formation of the beta barrel.   
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In addition to the sequence alignments, a comparison of the secondary 

protein structure of the known protein structure of sea cucumber was carried out 

with the predicted secondary structure of the Chrysaoralin gene as demonstrated 

in Figure 21. The different domains in sea cucumber were characterized by Unno 

et al. in 2014, which was utilized as a scaffold for the 

Phyre2 (www.sbg.bio.ic.ac.uk/~phyre2 ) web-based software to model, predict and 

analyze the secondary and tertiary structure of Chrysaoralin.  This software 

predicted the folds in Chrsaoralin based on the amino acid homologies with the 

Figure 21: Secondary structure prediction of Chesapeake Bay Chrysaoralin protein using the 
Phyre2 web portal.  
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sea cucumber hemolytic lectin.  Phyre2 web tools was also used to build 3D 

models of the Chesapeake and Barnegat Bay Chrysaoralin, and sea cucumber 

hemolytic lectin as show in Figure 22. This software makes use of the predicted 

ligand binding sites and analyzes the effect of amino acid variants on the protein 

folding, thereby generating a confident 3D model of the protein structure. Based 

Figure 22.1 top: A Chrysaoralin protein monomer as predicted by the Phyre2 automatic fold recognition server. 
Phyre2 servers predict the three-dimensional structure of a protein sequence using homology modeling. Figure 
22.2 bottom: Comparison of the models of Chesapeake Bay Chrysaoralin protein, Hemolytic Lectin from Sea 
cucumber and Barnegat Bay Chrysaoralin protein. 
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on the 3D models generated by Phyre2 web tool, these three proteins look 

strikingly similar in their appearance.  

Geneious sequence analysis software was used to create an amino acid 

sequence alignment of the Chesapeake Bay Chrysaoralin and sea cucumber 

Hemolytic Lectin as shown in Figure 23. The important features of the two proteins 

are annotated on the bottom of the sequences. Highlighted in brown are metal ion 

binding sites in the following amino acid positions 45, 46, 48, 54, 55, 65, 94, 95, 

143, 146, 149, 150, 152, 153, 159, 163, 190, 191, 193, 199, 200, 210, 231, 232, 

234, 240, 241, 251, 278, 279, 281, 287, 288, 298, and 395. Highlighted in yellow 

are the Cysteine (C) residues and disulfide bonds between 26-71, 43-60, 84-100,  

141-158, 188-205, 229-246, 261-266, 276-293, 320-402, 389-428, 437-451, and 

443-448. Both metal ion binding sites and cysteine residues are conserved 

between Chrysaora quinquecirrha Chrysaoralin and  the Cucumaria echinata 

hemolytic lectin. The conserved Ricin B-type lectin domains are highlighted by a 

red arrow that extends from residues 40-114, 127-257, 273-305 in Chrysaoralin. 

These structural features are also demonstrated in the 3D protein model using the 

UCSF Chimera (Pettersen et al., 2004) software as seen in Figure 24.  
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 The Chrysaoralin gene (minus signal peptide, 1299 bases) was cloned into 

a pET SUMO vector (5643 bases) and the proof of cloning is shown in the agarose 

gel image in Figure 25. Lanes P12 and P15 were loaded with uncut plasmids, but 

no bands were observed. However, in the lanes that contained the Hind III 

Figure 24: Model of the Chrysaoralin protein using UCSF Chimera. Highlighted in yellow are the two alpha helical 
regions (342-354, 365-376) in domain 3 of the Chrysaoralin protein that are responsible for pore formation. 
Highlighted in pink are the cysteine residues that form disulfide bonds (26-71, 43-60, 84-100, 141-158, 188-205, 
229-246, 261-266, 276-293, 320-402, 389-428, 437-451, 443-448), in red are the metal ion binding sites (45, 46, 
48, 54, 55, 65, 94, 95, 143, 146, 149, 150, 152, 153, 159, 163, 190, 191, 193, 199, 200, 210, 231, 232, 234, 240, 
241, 251, 278, 279, 281, 287, 288, 298, 395), and in teal are the conserved ricin b lectin domains (40-114, 127-
257, 273-305).    
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restriction enzyme digested plasmids, bands are visible at the expected region of 

6941 bases.  

The section of pET SUMO vector containing Chrysaoralin gene is 

demonstrated in Figure 26.1. The SUMOF primer forward binding site is 

highlighted in pink, ChrysF primer binding site in blue, DO3F binding site in green, 

and the reverse complemented T7R primer binding site is highlighted in orange.  

Figure 25: Restriction digest analysis of plasmid DNA. After ligation of 
Chrysaoralin gene (1299 bp, minus signal peptide) into the pET SUMO vector 
(5642 bp), the presence of insert in plasmid was analyzed by performing a single 
cutter restriction digest of the pET SUMO vector using HindIII restriction enzyme. 
Correct size of band of the gene in vector (6941 bp) is observed in the gel above.  
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5'- AGA TTC TTG TAC GAC GGT ATT AGA ATT CAA GCT GAT CAG ACC 
CCT GAA GAT TTG GAC ATG GAG GAT AAC GAT ATT ATT GAG GCT CAC 
AGA GAA CAG ATT GGT GGT CAA GTC CTG TGC ACC AAT CCG TTG GTA 
ATT GGA GAG CTT CGA ATC AAG AAG TCA AGA CAA TGT GTT GAC ATT 
GAT GGA AAA GAC GGA GCT GGA AAT GTG CAG ACA CAT GAA TGT GAA 
GGA GAT GAC GAT CAA CAA ATC ATC CTA TGT GGT GAT GGC ACA ATT 
CGC AAC GAG GCT AGA AAT TAC TGC TTC ACA CCA CGT GGC AGT GGC 
AAC GAC AAT GTT GAA TCG TCA GCC TGT CAG CAT TAC CCA AGA ATT 
CCT GCA AGA CAG AAG TGG AGA CTT GGA AGG TCA AAG AAA TTC TAT 
GAC ATG GGA GGA ATC TTA CAG GAA GCA AGA GAA ATC ATC AAC GTT 
GAA TCA AAT AGA TGC CTT GAT GTT AGT GGC TAC GAT GGA ACT GGC 
AAC ATT GGC GTG TAT CAT TGC GAA AAC AAA GAT GAC CAG TAC TTT 
TAC TTC CGA TCA AGA GGA AAA GAA GTG GCT TTC GGG AGG CTC AGG 
AAT GAG AAG TCA AGT CAA TGT CTT GAT GTC AGT GGG TAT GAT GGC 
AAA GGA AAT GTA CAA ATG TAC GAC TGT GAA GAT AAG AAG GAC CAA 
TGG TTT AAA TTT TAT GAG AAT GGA GAA GTC GTC AAT GAG CAG TCA 
AGA CGT TGT TTG GAC GTA TCT GGC TAT GAT GGA ACA GGC AAC ATT 
GGT ACA TAT TGC TGT GAA GAC AAG CAT GAT CAG ATG TGG TCT CGA 
CCA TCT CAG CTT TGC AAC GGC GAA TCG TGT TCT TTT GTC AAC AAA 
AAA TCA GGC CAA TGT CTG GAT GTG TCA GGA TAC GAT GGA CGA GGC 
GGT GTG GCT ACC TAT CAT TGT GAA GGA CTT GCT GAT CAA CGA CTG 
AAA TGG GTG ACT GAC AAA TGG ACA GCT CCT AAT GCT GTT TGG GTG 
ATG GTT GGC TGC AAT CAA AAC GGA AAG GTT TCT CAG TGG CTT TCC 
AAC ACT GTT TCA TAT TCA TCT ACA ATT ACA CAC ACT GTC ACT GTT 
GAA GTT GGT GCA TCC ATG GAA GCA GAT CTT GTG TTT GCA AAA GCA 
ACA GTG TCA ACC AAA GTT TCT ACA TCA CTT TCA ACT GCC TGG ACC 
AAG AGC CAG AGT GGA ACA ACT CGT ATC GTC TTC ACC TGT GAG TAT 
TAC GAC AAC CAG GAA GCA TTT ACA GGA GGA TGC ATG TGG CAG CTT 
CGG GTC GAC ACC AAG CAT GTC AAC TCT GGC CGT CTA CTT ACA TGG 
AGT CCA CAG ATC ACG AGG TGC ACA ACG TCA AAC ACC CAG CCA AGA 
TGC CCA CCG TTC ACA AAA TGT GTC GAT AAG GCC TGT TCT CTT TGC 
CAA GAA ATC TGA AGA CAA GCT TAG GTA TTT ATT CGG CGC AAA GTG 
CGT CGG GTG ATG CTG CCA ACT TAG TCG AGC ACC ACC ACC ACC ACC 
ACT GAG ATC CGG CTG CTA ACA AAG CCC GAA AGG AAG CTG AGT TGG 
CTG CTG CCA CCG CTG AGC AAT AAC TA -3’ 

Figure 26.1 top: Chrysaoralin gene (minus signal peptide) in pET SUMO vector. 
Highlighted in pink is the SUMOF primer forward binding site, in blue is ChrysF binding 
site, in green is DO3F binding site, and in orange is the binding site for reverse 
complement of T7R primer. Highlighted in red is the stop codon. Figure 26.2 bottom: An 
electropherogram demonstrating the presence of Chrysaoralin gene (minus signal peptide) 
in the pET SUMO vector, in the correct reading frame and right direction (5’ to 3’).   
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Highlighted in red is the stop codon. The proof that the Chrysaoralin gene 

is correctly cloned into the pET SUMO vector is demonstrated by the 

electropherogram in Figure 26.2.  In the figure, a sequence alignment performed 

between the putative gene/vector sequence and the electropherogram of the 

sequencing of the amplicon generated by the colony PCR of E. coli containing the 

inserts is demonstrated.  The junction between vector and the gene, vector 

sequences AAT GGT GGT // Chrysaoralin sequences CAA GTC CTG, are in the 

correct reading frame and orientation. This translates to IGG amino acid in the 

vector and QVL in the gene, which demonstrates the successful cloning of the full-

length Chrysaoralin gene (minus the signal peptide) into the pET SUMO 

expression vector.  

 Full-length (minus signal peptide) and truncated version (only Domain 3) of 

the Chrysaoralin gene were successfully amplified from the pET SUMO vector as 

demonstrated in Figure 27. The amplicons of correct sizes, 1299 bases for full-

length gene and 444 bases for domain 3, are demonstrated in the agarose gel 

image in Figure 27.   

 A phylogenetic tree of 19 pore forming proteins from Table 1 created using 

the amino acid sequences of the pore-forming proteins as available on GenBank 

and Protein Database is demonstrated in Figure 28. The phylogenetic tree was 

generated using Jukes-Cantor genetic distance model, Blosum62 cost matrix and 

Neighbor-Joining method in Geneious sequence analysis software. Distance 

between the pore forming proteins (prokaryotic in black, eukaryotic in blue 
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typeface) were obtained by pairwise alignment of the sequences. The genus and 

common name of the pore forming protein is represented in the figure.  

 

 

 

 

 

 

 

Figure 27: Full length Chrysaoralin (2.1 FL and 2.3 FL) and truncated version (2.1 D3 
and 2.3 D3) of the gene in pET SUMO vector. Amplification of the gene was carried 
out using Colony PCR.  
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Figure 28: A phylogenetic tree of pore forming proteins from Table 1 constructed using Jukes-
Cantor genetic distance model and Neighbor-Joining method in Geneious sequence analysis 
software. Distance between the pore forming proteins (prokaryotic in black, eukaryotic in blue 
typeface) were obtained by pairwise alignment of the sequences. Blosum62 cost matrix was 
employed. The genus and common name of the pore forming protein is represented in the figure.  
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Discussion  

Chrysaoralin Gene Assembly 

 In the preliminary stages of my study, RNA sequencing (RNA-Seq) was 

used for rapid gene profiling and investigation of the transcriptome of Chrysaora 

quinquecirrha adult medusa captured from Barnegat Bay, NJ. The inquiry 

objectives were to investigate protein composition of Chrysaora quinquecirrha 

venom and identify specific biological function of its protein constituents. Proteins 

in the venom were traditionally identified and studied by raising antibodies in 

expression libraries and by other alternative methods such as Edman degradation. 

These days high-throughput “omics” methodologies that incorporates proteomics, 

transcriptomics and genomics have been the method of choice for identification 

and characterization of novel peptides in venom (Fox et al., 2008, Brahma et al., 

2015). This has led to a new term “venomics”, which is considered the proteomic 

characterization of venom proteomes. The significance of “omics" methodologies 

for venom research has been possible by the pace of genome sequencing projects 

and availability of fully sequenced genomes of organisms. However, overwhelming 

majority of organisms, including Chrysaora quinquecirrha, still contain 

unsequenced genomes. Therefore, my study attempts to fulfill this knowledge gap 

and embraces both experimental and in silico techniques such as PCR, Sanger 

DNA sequencing, RNA sequencing technology, and bioinformatics to identify and 

characterize a toxin peptide from Chrysaora quinquecirrha venom.  

 Transcriptome analysis for protein coding sequence detection has been 

used before for toxin identification in the scyphozoan jellyfish Chrysaora 
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fuscescens (Ponce et al., 2016), the cubozoan jellyfish Chironex 

fleckeri (Brinkman et al., 2015), and the scyphozoans Stomolophus meleagris (Li 

et al., 2014) and Cyanea capillata (Liu et al., 2015). A mRNA transcriptome reflects 

the genes that are being actively expressed at a given time and is considered one 

of the key tools in identifying candidate genes that may code for proteins with 

therapeutic potential (Li et al., 2014, Brinkman et al., 2015, Ponce et al., 2016). In 

my study, RNA extracted from tentacles of a single Sea Nettle captured from 

Barnegat Bay in NJ generated a total of 380,000,000 pairs of 100-base-length 

paired-end reads (data unpublished). The raw sequencing data was processed by 

eliminating sequences with low quality scores and removing adaptor sequences, 

and assembled using CLC Workbench to generate a file of 87,600 contigs. 

BLASTX search of all the contigs resulted in 30,817 significant hits to known 

proteins on GenBank. Contig 22,835 from the transcriptome data as shown in 

Figure 8 matched a hemolysin, hemolytic lectin, from Cucumaria echinata, a sea 

cucumber from the phylum Echinodermata. This protein is a calcium dependent 

and galactose-specific lectin that exhibits hemolytic and hemagglutinating 

activities (Uchida et al., 2004). Similarity of contig 22,835 with the sea cucumber 

hemolytic lectin protein warranted further investigation of the protein coded by the 

gene in contig 22,835.    

 The contig 22835 was processed through a signal peptide detecting 

algorithm SignalP 4.0. The SignalP 4.0 algorithm 

(http://www.cbs.dtu.dk/services/SignalP/) predicted a signal peptide of 22 AA  

(MDQIRLIGVIVVLSSLFLQCSA) (Figure 9 and Figure 20). The primary function of 
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the signal peptide is to translocate the protein downstream of the internal signal 

peptide (Coleman et al., 1985). The signal peptides direct the protein to 

the endoplasmic reticulum, where the protein matures before secretion (Duffaud 

et al., 1985).  

 Contig 22,835 was used as a scaffold to generate 9 sets of primers (Figure 

10) to verify the integrity of the contig assembly using PCR amplification, dideoxy 

Sanger sequencing and sequence analysis. These primers spanned the full length 

of the contig (minus the poly A tail). PCR amplification with the mixture of different 

primer sets from the list in figure 9 would allow to generate amplicons of 

permissible length for reliable sequencing. The primers were mapped against the 

Barnegat bay jellyfish mRNA transcriptome data using SnapGene viewer (Figure 

11.1) and Geneious sequencing analysis software (Figure 11.2) for an in silico 

analysis. These platforms enabled me to visualize and locate primers on the 

putative gene, and helped to design the amplification reactions. The RNA 

transcriptome was verified using the genomic DNA from Chrysaora quinquecirrha 

captured from Chesapeake Bay in Maryland. 

 Using jellyfish samples from two separate locations, Barnegat Bay and 

Chesapeake Bay, I intended to verify the transcriptome analysis and additionally 

investigate the presence of any variations in my gene of interest.  A pair-wise 

sequence alignment was carried out for all genomic sequencing data to look for 

any ambiguities within the forward and reverse (reverse-complemented) 

sequences from Chesapeake Bay Chrysaoralin. The genomic sequencing data 

was visualized using 4Peaks and Geneious sequencing analysis software for 
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preliminary sequence analysis. During this course, the forward and reverse 

sequences were lined up against each other so the complementary nucleotides 

generated a perfect match. The poor reads in the beginning and end of the 

sequence (approximately 50 nucleotides on both ends) were trimmed out before 

sequence alignments were made, because alignment of untrimmed sequences 

yielded unpredicted and unreliable results. The first 50 bases are of low quality 

because of uneven separation by electrophoresis and noise created by the 

unincorporated primers and primer dimer artifacts. Similarly, the last few bases at 

the end of the sequence are of low quality because of the reduced sequence 

strength, low availability of fragments towards the end of the sequencing reaction, 

and poor separation of fragments due to smaller relative differences in 

electrophoretic mobility (Brown, 2013). In some cases, the forward and reverse-

complemented sequences yielded subtle variations in more than one site. At least 

8 heterozygosities were detected in the full length Chrysaoralin gene from 

Chesapeake Bay at the following nucleotide positions 348, 416, 459, 561, 567, 

575, 600, and 660 (starting at ATG, A as 1). This could mean that there is presence 

of more than one copy of the Chrysaoralin gene in the organism’s genome. A 

consensus sequence was generated with the most frequently occurring 

nucleotides and the consensus sequence was submitted to GenBank. These 

variations were noted as ambiguities in the sequence. However, more sequencing 

data is required to reliably investigate any heterozygosities in the gene. 

 The consensus sequence generated from the assembly of multiple 

overlapping reads in both directions was used as the scaffold to generate a new 
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set of primers (ChrysF and CQR) that would result in the full length of the gene; 

nevertheless, the ABI sequencer is able to generate high quality reads of only 500-

700 bases. Considering this sequencing limitation, an additional inner primer set 

is needed to obtain an overlapping sequence to produce full length of the gene. 

The permutation of the 9 primer sets generated sufficient amplicons to span the 

full length of the gene (Figure 13) and my initial project to obtain full length of the 

gene was completed. The genomic sequence for the Chesapeake Bay 

chrysaoralin gene was assembled successfully and full coverage of the gene with 

as less as 3 sequence files is demonstrated in figure 14.  

 Based on the RNA-seq data in conjunction with the direct DNA sequencing 

of genomic DNA, the Chrysaoralin gene from both Barnegat Bay and Chesapeake 

Bay populations of Chrysaora quinquecirrha was found to be intronless. It is 

generally accepted that introns are common in eukaryotic genes, especially in 

multicellular eukaryotes.  The existence of introns within hemolytic genes in 

Cnidarians have been previously reported in the sea anemones Actineria villosa 

and Phyllodiscus semoni.  Both of these genes were identified to be highly toxic 

and to contain introns (Uechi et al., 2010).  A small number of venom peptide 

encoding genes from cone snails, scorpions, and sea anemones also contain an 

intron-exon architecture, however there are a few exceptions (Pineda et al., 2012). 

It is therefore, somewhat unusual, to find that my Chrysaoralin  toxin genes from 

sea nettles are intron-less. 

 There is evidence supporting the fact that rapidly regulated genes, such as 

the heat shock protein genes, lack introns (Jeffares et al., 2008).  Introns may delay 



 

 75 

regulatory responses and therefore some eukaryotic lineages lose their introns to 

rapidly synthesize proteins in response to various intracellular stresses. It is thus 

speculated that the presence of introns are selected against in genes whose 

proteins are required for rapid adjustments to cope with environmental difficulties.  

The evolution of Chrysaoralin gene sequence without any introns may have 

occurred to minimize the delay in transcript processing and to permit rapid 

translation. 

 

Comparison of the Barnegat Bay and Chesapeake Bay Chrysaoralin Genes 

  Chesapeake and Barnegat Bay Chrysaoralin gene sequences were aligned 

and compared using Geneious and CLUSTAL omega sequence alignment tools 

(Figure 19) to  examine any differences in the gene sequences. The Barnegat Bay 

Chrysaora quinquecirrha gene captured from Barnegat Bay, Metedeconk River in 

Brick, NJ was assembled using the CLC Genomics Workbench v.7.5 platform and  

submitted to GenBank (accession number (KX656922.1, Figure 15) after 

sequence analysis. The Chesapeake Bay Chrysaora quinquecirrha was captured 

from St. Mary’s River that flows into the Chesapeake Bay in Maryland. The 

Chesapeake Bay gene sequence was assembled de novo and verified using 

4Peaks and Geneious sequence analysis software, and then submitted to 

GenBank (accession number (KX356909.1, Figure 16).  

 Comparison of Barnegat Bay and Chesapeake Bay Chrysaoralin 

sequences resulted in a difference of 6 nucleotides. On the protein level, the 6 

nucleotide difference translated to difference of only 2 amino acids. The first amino 
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acid difference lies in the signal peptide region of the Chrysaoralin gene, which 

eventually gets cleaved off in the mature peptide. The signal peptide Valine (V, 

GTC) residue in Chesapeake Bay Chrysaoralin varies with the Isoleucine (I, ATC) 

residue in the Barnegat Bay Chrysaoralin. Another difference lies between Alanine 

(A, GCA) from Chesapeake Bay Chrysaoralin and Threonine (T, ACA) residue 

from Barnegat Bay Chrysaoralin in the carbohydrate binding domain of the 

Chrysaoralin gene. In both cases, the two amino acid variations have resulted from 

mutations in the first nucleotide of the codons that code for their respective amino 

acids.  

 The foundation of biodiversity lies in the genetic variation within species that 

result from one or more variations in their genetic composition. In this case, there 

were six nucleotides differences within a single gene from the two separate 

locations. Although yet to be proven, these differences may have been 

environmentally induced. A single mutation at a decisive location in a gene can 

have a significant effect. These variations have resulted in a difference of two 

amino acid residues, however, the effect of two amino acid residue variation on 

the functionality of the toxin was not investigated in this study.  

 The sequences of the Barnegat and Chesapeake bay Chrysaoralin were 

identical, except for the two aforementioned positions. The occurrence of the 

subtle variation in the gene sequence of the two locations may have been due to 

genetic adaptation to the different environmental conditions in Chesapeake and 

Barnegat Bays. However, the functional features of this polymorphism will be 
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known only upon expression of the gene and testing the effect of the protein using 

biological assays.     

 

Conserved Motifs in Chrysaoralin  

 Using the NCBI BLASTx tool that queries protein databases using 

translated nucleotides, I found that Chrysaoralin protein is 64% identical to a 

hemolytic lectin protein (CEL III) from the Sea Cucumber, Cucumaria echinata. In 

addition to the isolation, cloning, and characterization of the hemolytic CEL III 

protein, crystal structure of CEL III has also been determined by Uchida et al. 

(2004) at 1.7 Å resolution. The availability of CEL III crystal structure and a strong 

homology between Chrysaoralin and CEL III not only enhance our understanding 

on the structural and functional features of Chrysaoralin protein, but also help to 

elucidate its pore forming mechanism.   

 BLAST search of the Chrysaoralin sequence reveals some highly 

conserved sequence features in the N-terminal region, particularly to the B-chains 

of ricin (Figure 19.1, Figure 29). The Ricin-type beta-trefoil domains are 

Carbohydrate-binding domains formed from presumed gene triplication. The 

domain is found in a variety of molecules from a wide range of organisms serving 

diverse functions such as enzymatic activity, inhibitory toxicity and signal 

transduction (Uchida et al., 2004). Conserved domain homology on NCBI BLAST 

reveals that the Ricin-type beta-trefoil domains extends from 97 to 762 nucleotide 

positions on the N-terminal region of the Chrysaoralin protein. Contrarily, the C-
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terminal region revealed no conservation to any known domains in the NCBI 

database.  

  

The homologous hemolytic lectin from sea cucumber, CEL III, also belongs 

to the ricin-type (R-type) lectin family. Their carbohydrate-recognition pattern 

resembles to that of the C-type lectins that bind specific carbohydrates through 

coordinate bonds with Ca2+ located at their binding sites (Drickamer, 1999). The 

CEL III are members of the R-type lectins, the lectin family found in both 

Figure 29: Three B-chains of Ricin (40-114, 127-257, 273-305) are highlighted in purple. 
Highlighted in blue are metal ion binding sites (45, 46, 48, 54, 55, 65, 94, 95, 143, 146, 149, 150, 
152, 153, 159, 163, 190, 191, 193, 199, 200, 210, 231, 232, 234, 240, 241, 251, 278, 279, 281, 
287, 288, 298, 395). Protein models created using UCSF Chimera. 
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prokaryotes (bacteria) and eukaryotes (C. elegans, Drosophila, vertebrates, and 

plants) (Mancheno et al., 2010). 

 Amino acid residues in the ricin B-chain involved in carbohydrate-binding 

that are conserved in CEL III are conserved in Chrysaoralin as well (Figure 22). 

The Ricin B-type lectin homologs are spread across three different locations in 

both Chrysaoralin and CEL-III genes (Figure 29). These three homologs are 75, 

131, and 33 amino acids in length respectively, and on average approximately 70% 

identical to each other in terms of their amino acid residues. The high degree of 

conservation in structure and in sugar-binding function of this carbohydrate binding 

domain could mean that the gene encoding an R-type lectin has moved laterally 

between species (Mancheno et al., 2010). Highly conserved Ricin B-lectin domain 

in the two proteins may mean that these proteins are similar in their specificities to 

the carbohydrate moieties they bind on the target cell membrane however, this 

claim is yet to be verified experimentally. Additionally, the selectivity of 

Chrysaoralin protein to specific carbohydrates can be utilized during the 

construction of protein purification columns. 

 Two (QxW) sub-domains are present within the B-chains of ricin in 

Chrysaoralin gene (QKW, aa110-112, QMW aa252-254) (Figure 30.1). These 

domains are known to accommodate considerably differing amino acids at multiple 

positions in the protein structure (Mancheno et al., 2010). Another sub-domain 

called (QxF), similar to the (QxW) sub-domain, is also present within the B-chains 

of ricin in both CEL III and Chrysaoralin genes (QYF aa164-166, QWF aa211-213) 

(Figure 30.2). (QxW) and (QxF) sub-domains are laterally shared by many 
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unrelated proteins and are suitable evolutionary building blocks, which by gene 

fusion add carbohydrate-binding functionality to other proteins (Mancheno et al., 

2010). There is also an assumption by Mancheno et al that these motifs might have 

appeared early in evolution and thus been available to most evolving organisms to 

create proteins of varying functionality and exotic properties.  

 The presence of the carbohydrate binding motifs such as (QxW) and (QxF) 

in Chrysaoralin adds to the protein’s ability to bind membrane surface 

carbohydrates and enhance its functionality as a pore forming protein.  

 

 

 

 

 

 

Figure 30.1 left: (QxW) sub domains (110-112, 252-254) in Chrysaoralin. Figure 30.2 right: (QxF) 
sub domains (164-166, 211-213) in Chrysaoralin. Protein model generated using UCSF Chimera.  
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Pore Forming Mechanism  

 A study by Hatakeyama et al. (1995) revealed that the CEL III protein 

exerted hemolytic activity by damaging the erythrocyte membrane upon binding to 

specific carbohydrate moieties on the cell membrane. Their experiments were 

carried out with the galactose and GalNAc containing carbohydrates, exploiting 

CEL III protein’s specificity to these carbohydrate moieties. Hemolysis was tested 

with rabbit erythrocytes under different temperature conditions and highest 

hemolytic activity was observed at 10ºC. This suggested that pore formation is a 

temperature sensitive non-enzymatic process (Hatakeyama et al., 1995). Until this 

experiment, the exact pore forming mechanism of the CEL III protein was not 

known. So, they postulated that the hemolytic activity was caused by the formation 

of a transmembrane pore and conducted immunoblotting experiments on the 

proteins bound to the CEL III treated membrane. They discovered higher molecular 

weight of the irreversibly bound anti-CEL III antiserum in the susceptible 

erythrocytes treated with CEL III (Hatakeyama et al., 1995). This finding led them 

to conclude that there was aggregation of the CEL III protein on the erythrocyte 

membrane.  

 Subsequent experiments by Hatekayama’s group on the CEL III protein to 

determine its molecular weight revealed an interesting feature. They observed 

multiple high molecular weight bands than expected on the SDS page membrane. 

This observation was extrapolated to similar feature observed in other beta pore 

forming toxins, such as the Staphylococcus aureus alpha-toxin, that forms 

transmembrane pores with the integration of toxin hexamers. Therefore, from 
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these experiments it was understood that the hemolytic activity of the CEL III 

protein was a temperature dependent, non-enzymatic process that takes place 

upon oligomerization on the target erythrocyte membrane. Although experiments 

have not yet been conducted on the pore forming mechanism of Chrysaoralin 

protein, it can be predicted by simply comparing its sequence with those of 

previously characterized CEL III protein. It has been established that amino 

acid sequence determines protein structure and structure dictates biochemical 

function. Therefore, proteins that contain amino acid sequence homology usually 

perform similar biochemical functions, even when they are found in distantly 

related organisms, such as in the case of Sea Cucumber CEL III and Sea Nettle 

Chrysaoralin.  

 

Revelation of the Sequence Features  

 In 2014, Unno et al. revealed that the CEL III protein undergoes 

spontaneous oligomerization and conformational changes to create a 

transmembrane heptameric beta-barrel pore. The CEL III beta-barrel has a 75 Å 

height and 25 Å diameter. These dimensions are sufficient dimensions to make a 

transmembrane pore permitting small ions and molecules to pass across the cell 

membrane (Unno et al., 2014). Because CEL III and Chrysaoralin share a high 

degree of sequence homology, the residues involved in oligomerization and 

transmembrane pore formation in CEL III may add to our understanding of 

Chrysaoralin pore formation. An alignment of annotated CEL III protein sequence 

with the Chrysaoralin protein sequence uncovers the domains conserved in both 
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CEL III and Chrysaoralin (Figure 22). The Sea Cucumber CEL III protein comprises 

of two ricin B-chain-like carbohydrate recognition domains and a C-terminal 

domain that is responsible for oligomerization in target cell membranes. 

 The N-terminal Ricin B-chain-like carbohydrate recognition domains are 

termed domains 1 and 2, while the C-terminal domain responsible for 

oligomerization is termed domain 3. Based on the CLUSTAL alignment and Phyre2 

protein structure prediction, the domain 1 in Chrysaoralin extends from 23 to 173 

amino acids, domain 2 from 164 to 307 amino acids, and domain 3 from 308 to 

454 amino acids (Figure 20). The signal peptide constitutes the first 22 amino 

acids. Domains 1 and 2 in both CEL III and Chrysaoralin comprise of conserved 

metal ions and carbohydrate binding sites.  

 The CEL III protein is secreted as a monomer and during oligomerization 

domains 1 and 2 bind to the carbohydrates on the erythrocyte cell membrane and 

stabilize the pore by forming a large outer ring on the cell surface (Unno et al., 

2014). From Unno et al’s study on the CEL III protein, it was also discovered that 

domain 3 of monomeric CEL III contacts the side of domains 1 and 2 with its two 

alpha helices. Based on the sequences homology and Phyre2 prediction, 

“TVTVEVGASM” and “SVKVSTLSTA” amino acid sequences of the two alpha 

helices in domain 3 encode the two helices in Chrysaoralin (Figure 20, Figure 31). 

During heptamerization of the monomers, it is predicted that, the two helices 

transform to two long strands that assemble into a 14 stranded beta-barrel. The 

oligomerization process is described in great detail by Unno et al and a 
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supplemental movie is also available that illustrates oligomerization and pore 

formation (Unno et al., 2014).  

  

 

Chrysaoralin protein was also compared to other pore forming beta-toxins 

such as hemolysin from Staphylococcus aureus hemolysin, Vibrio Cholerae 

cytolysin, Aeromonas hydrophila aerolysin, Streptococcus pneumoniae 

pneumolysin and Bacillus anthracis anthrax toxin for sequence similarity (data not 

shown). Although these proteins are similar to CEL III in terms of their pore size 

and mechanism of action, conservation of any functional domains of Chrysaoralin 

and CEL III with these toxins was not observed.  

Figure 31: Protein model created using UCSF Chimera depicting two alpha-helices 
TVTVEVGASM (342-354) and SVKVSTLSTA (365-376) in domain 3 of 
Chrysaoralin.  
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 Although pore formers, the C. echinata CEL III protein differs from 

aforementioned pore forming toxins because of its property to undergo secondary 

structural change from alpha-helices to beta-strands during the formation of the 

membrane-spanning beta-barrel. This mechanism of pore formation is also 

observed in cholesterol-dependent cytolysin family proteins and membrane attack 

complex/perforin domains (Tilley et al., 2005, Rosado et al., 2007). The 

conservation of Chrysaoralin sequence with the CEL III sequence in the alpha-

helical region could mean Chrysaoralin’s pore forming mechanism is similar to that 

of CEL III.   

 

Origin of the Chrysaoralin gene in Chrysaora quinquecirrha  

 To investigate the evolutionary origin of the Chrysaoralin gene, I searched 

for homologs of Chrysaoralin gene in the NCBI database (Figure 18). I did not 

observe many significant results that matched my gene of interest. Along with the 

Hemolytic lectin from Sea Cucumber, other various distantly-related eukaryote 

taxa shared the BLAST search results.  The uncharacterized and hypothetical 

proteins of the acroporid coral Acropora digitifera (Accession number: 

XM_015908487) and the branching stony coral Acropora millepora (Accession 

number: EU863776) shared some sequence homologies with Chrysaoralin. Such 

sporadic distribution of Chrysaoralin like genes in eukaryotic homologues could 

suggest that this gene was acquired through independent horizontal gene transfer 

events. Additionally, the presence of this gene in phylogenetically distant 

organisms suggests that this gene is highly mobile. Availability of more closely 
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related sequences on the NCBI database could further our understanding of the 

evolutionary lineage of this gene.   

 Horizontal gene transfer, otherwise known as lateral gene transfer, is the 

transfer of DNA between organisms outside of traditional reproduction, which often 

results in adaptive gains of novel genes and traits. The acquisition of the full length 

Chrysaoralin gene, or some parts of the gene may have important consequences 

on Chrysaora quinquecirrha’s evolution.  

 

Future Research   

 Chrysaoralin, a putative pore-forming protein, is one of the many toxins in 

Chrysaora quinquecirrha’s venom repertoire. The presence of this toxin might have 

improved prey immobilization and defensive functions. However, some fields of 

inquiry such as, the reasons for phylogenetically distant organisms like the sea 

cucumber and the sea nettle to share this toxin, examination of this gene in other 

species of jellyfish and specifically, in other Chrysaora species are yet to be 

investigated.   

 As the NCBI and venom databases amass more sequences from closely 

related species, new sequence features could be revealed in Chrysaoralin which 

may have been overlooked at the moment. Cloning and recombinant expression 

of the Chrysaoralin protein and testing its biological effect on different cell types 

could shed more light on its pore forming and cytolytic properties. Conducting 

functional assays using Chrysaoralin genes from both Barnegat and Chesapeake 
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Bays could reveal the significance of the two amino acid variation seen in the 

Chrysaoralin protein.    

 The presence of Chrysaoralin gene in other Chrysaora species is not yet 

known. By obtaining tentacles or DNA samples from other Chrysaora species, I 

could investigate the presence of this gene in other species. The availability of this 

gene in other Chrysaora species could also answer how, and possibly when, this 

gene may have been acquired in the course of this organism’s evolution.   
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Conclusions 

 This study embraced both experimental and in silico techniques to identify 

and characterize a unique toxin peptide, Chrysaoralin, from the venom of 

Chrysaora quinquecirrha. Using Barnegat Bay Chrysaora mRNA transcripts 

generated by Next Generation sequencing as a scaffold, the genomic sequence 

for the Chesapeake and Barnegat Bay Chrysaoralin gene was successfully 

sequenced and assembled. Comparison of Barnegat Bay and Chesapeake Bay 

Chrysaoralin sequences resulted in a difference of 6 nucleotides, which translated 

to two amino acid differences in the immature protein.  A striking homology of 64% 

at the amino acid level was seen between Chrysaoralin and a sea cucumber 

hemolytic lectin, CEL III.  Conservation was observed in the different domains of 

the pore-forming proteins, particularly in the sugar-binding sites responsible for 

adhering to the target cell membrane, as well as in the alpha-helices that undergo 

conformational change to beta sheets during transmembrane pore formation. 

Finally, the Chrysaoralin gene was successfully cloned into the pET SUMO vector, 

which will permit expression of a fusion protein in E. coli to aid future studies on 

this important protein toxin. 
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Appendix B | List of Primers for Sequence Analysis  

 
 
  

Appendix B: List of primers used for sequence analysis. pMiniTF and pMiniTR primers were used to 
analyze cloning of the gene within the pMiniT vector. ChrysF and CQR primers generate full length 
Chrysaoralin gene. SUMOF and T7R primers are used to analyze cloning of the gene within the pET 
SUMO vector. FL-SPF and CQR generate full length of the gene minus the signal peptide. DOM3F and 
DO3R primers amplify only domain 3 of the Chrysaoralin gene.  

Primer List 
 

 

SEQUENCE NAME  PRIMER SEQUENCE Tm ºC 
pMiniTF ACCTGCCAACCAAAGCGAGAAC 63.8 

pMiniTR TCAGGGTTATTGTCTCATGAGCG 60.4 

ChrysF ATGGATCAAATACGCTTGATTGGTG 60.2 

CQ R GAGAAACGGCAGCAATTAATGTCAG 61.2 

SUMO F AGATTCTTGTACGACGGTATTAG  55.7 

T7 R TAGTTATTGCTCAGCGGTGG  57.7 

FL-SPF CAAGTCCTTGTGCACCAATCCG 61.8 

   
CTXD3F ATGTGCATGCCGTGCTTTACC 62.1 

CTXD3R TTAAATTTCCTGGCACAGGCT 58.1 

DOM3F TGGACAGCTCCTAATGCTGTT 59.4 

DOM3R TCAGATTTCTTGGCAAAGAG 53.5 
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Appendix C | Alkaline Lysis Plasmid Mini Prep Protocol  
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