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Abstract

In his classic study in 1908, A.M. Worthington gave a thorough account of splashes and
their formation through visualization experiments. In more recent times, there has been
renewed interest in this subject, and much of the underlying physics behind Worthington's
experiments has now been clarified. One specific set of such recent studies, which
motivates this thesis, concerns the fluid dynamics behind Jackson Pollock's drip paintings.
The physical processes and the mathematical structures hidden in his works have received
serious attention and have made the scientific pursuit of art a compelling area of
exploration. Our current work explores the interaction of watercolors with watercolor
paper. Specifically, we conduct experiments to analyze the settling patterns of droplets of
watercolor paint on wet and frozen paper. Variations in paint viscosity, paper roughness,
paper temperature, and the height of a released droplet are examined from time of impact,
through its transient stages, until its final, dry state. Observable phenomena such as paint
splashing, spreading, fingering, branching, rheological deposition, and fractal patterns are
studied in detail and classified in terms of the control parameters. Using the one-
dimensional (1-D) Saint-Venant differential equations, which are a simplification of the
three-dimensional (3-D) Navier-Stokes equations from fluid dynamics, we created a
computer-simulated, mathematical model of a droplet splash of watercolor paint onto a flat
surface. The mathematical model is analyzed using a MATLAB code which considered
changes in droplet height, radius, and velocity of dispersal over time. We also implemented
a stochastic version of the Saint-Venant equations which captured the random fingering
patterns of a droplet splash. Initial conditions for height, radius, and velocity of a radially
spreading droplet were given at the onset of the simulation. Dynamic viscosity and fluid
density were parameters incorporated into this system of differential equations, which
could be easily adjusted in the MATLAB code for the paint type to be simulated. The
stochastic nature of our model was designed to recreate the complex behavior of water
splashes, the non-homogeneity of the watercolor paper, and the resulting patterns. We then
computed the fractal dimension of each computer-generated droplet image to compare

theoretical and experimental values. Analysis of the set of data consisting of over 10,000



trials was conducted to determine any significant statistical correlations among the
spreading pattern, the number of fingers, viscosity, density and fractal dimension. Finally,
we extended the system of differential equations based on the Saint-Venant equations to
include the effects of temperature upon the paint-spreading pattern. In a similar manner,
we compared the theoretical values of fractal dimensions generated by our MATLAB

model to the experimental results for paint droplets on a frozen substrate.
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Chapter 1: Introduction and Literature Review
Section 1.1 The Fluid Dynamics of Art

The literature available on experiments involving droplet splashes is extensive.
From Newtonian fluids to non-Newtonian fluids, droplets onto hard surfaces or onto a thin,
liquid film, splash dynamics are a complex, remarkable, and beautiful phenomenon to
observe and to study. The investigation of the physics that drives the resulting fluid
mechanics is rich not only in analytical content but also in mathematical models that
attempt to predict droplet behavior from the moment of impact and afterward, given some
initial conditions and varying parameters. Crown formation, deposition, and dispersion are
just a few of the noticeable characteristics that a droplet might produce upon splash impact,
and its practical application is vast, from ink jet printing to aerosol spraying; from particle

ejection for seed dispersal to molecular aggregation in cloud nucleation.

Recent review papers discuss advancements in the study of the field up until the
last decade. In this regard, studies concerning the impact of droplets on dry surfaces are
most relevant to our own work. The experimental work by Rioboo, et al. [25], explored
the impact of different liquids on solid surfaces corresponding to varying surface
roughness. Their investigations revealed six categories of splashes: deposition, prompt
splash, coronal splash, receding break-up, partial rebound, and complete rebound, which
depend upon the properties of the liquid and surface. In addition to the roughness of the
surface, the viscosity, density, and surface tension of the liquid droplet have been
recognized as being significant, and the different regimes of droplet splashes are often
expressed in terms of three dimensionless quantities, namely the Reynolds (Re), Weber

(We), and Ohnesorge (Oh) numbers which depend upon the afore-mentioned parameters.



The viscosity of the droplet and friction of the surface determine the initial stages of the
splash while surface tension takes control of the final stages, when the drop thickness on

the surface is diminished.  The prominent regimes are distinguished by the parameter

K = WevRe, the critical value of which determines the onset of splashing [8].

There has also been a substantial amount of work on the splash patterns of non-
Newtonian and particle laden droplets [8,15,20,22,26]. As might be expected, non-
Newtonian characteristics such as viscoelasticity, yield-stress, and shear-thinning result in
marked variation in the observed post-impact behavior of droplets. These have been
categorized as irreversible viscoplastic, perfect elastic recoil, and viscoelasticity. In the
case of non-Newtonian fluids, the Deborah number (De), the critical strain parameter (Yt),
and the Mach number (M) have been used to classify the various, observed regimes. The
splash dynamics of droplets with embedded particles is equally interesting and unique. For
droplets with a sufficiently low particle concentration, the parameter K has been employed
to characterize the drop impact with the viscosity  replaced by an effective, concentration-
dependent viscosity we. In the case of high concentration droplets, it is observed that a
reinterpretation of the Weber number, based on particle characteristics, is needed to

accurately capture the onset of splashing.

Ivo Peters, et al. [14] investigated the impact of droplets of spherical glass and
zirconium dioxide (ZrO) beads in water suspension onto a solid substrate. They studied
three types of suspensions — two uniform suspensions of beads, one with a 78-micrometer
radius bead and one with a 362-micrometer radius bead and a third mixture containing a
50/50 combination of the two sizes of particles — to demonstrate a correlation between
droplet radius and surface tension and thus, derived a particle-based Weber number. The

7



Weber number is a dimensionless number that relates droplet impact velocity and radius to

2
surface tension and is crucial in driving the dynamics of a splash, We = %, p is the

density of the fluid, D refers to the characteristic length, which is taken to be the diameter
of the droplet, Vh is the impact velocity of the droplet, and o is surface tension. Peters’
revised, particle-based Weber number is roughly equivalent to the ratio of kinetic energy
at impact to the surface energy which is simply the energy required for a particle to escape

the inside of a droplet by overcoming surface tension. This ratio is now dependent on the

particle radius as well as the particle density and yields the following result: Lkin

surf

lWep, where Weyp is the particle based Weber number. The findings of this groups’
6

experiments predict that a Wep > 14 is the threshold at which splashing may occur.
Splashing is defined by Peters as the ejection of particles or secondary droplets from the
initial droplet [14]. In our experiments, we used permanent rose, Prussian blue, and sepia
watercolor paints dissolved in water. If we consider these as suspensions, which is a
reasonable assumption based on the chemical composition of watercolor paint which will
be discussed later, we can show that our experimental results fall within Peters’ predictions.
Droplets for some of our early experiments were released from a straw which had a
diameter of roughly 0.6 cm. Using this value, as a lower bound, in the formula based on
the particle-based Weber number, we found our We, values to be about 20, thus the
occurrences of splashing at a height of 6 inches and having an impact velocity of about
1.73 m/sec, conditions which might seem insufficient as to produce a splash, are however,
consistent with the predictions of Peters et al. For our droplets released with a medicine

dropper having a diameter of approximately 0.3 cm, we calculated a particle-based Weber



number of about 10, well below the threshold of splash onset. This is similarly confirmed

in our experimental results.

Deegan, Brunet, and Eggers [37] posit that an ejecta sheet is formed at the moment
of impact between a fluid drop and a thin fluid layer of the same liquid, which projects
outward in the horizontal direction and it contains, in that instant, an equal amount of drop
fluid as layer fluid. As the drop penetrates the layer, the sheet thickens and a greater
percentage of the sheet comes from the layer fluid. Ejecta sheet spreads were measured
experimentally by this team and showed high speeds with decreasing viscosity, reaching
up to 50 m/s. These researchers discussed the results of their series of experiments
analyzing ejecta sheets and splashes for water, propanol, silicon oil, and glycerol/water
mixture into shallow pools of the same liquid as the droplet. Our experiments explore paint

drops onto wetted, solid, porous surfaces.

S.D. Howison and his colleagues [41,60] derived models for four stages of an
inviscid (having no or negligible viscosity) droplet onto a thin film of incompressible
(when divergence equals zero) liquid. In a physical sense, divergence, V -, is a measure of
the quantity of flux emanating from any point in a vector field or the rate of loss of mass,
heat, etc., from it. First, the splash jet initiation stage, where the contact length is
comparable with the layer depth; second, when the nominal penetration depth is
comparable with the layer depth, called splash jet growth; third, when the jet thickness is
comparable with the layer depth, known as splash jet and layer interaction, and fourth when
the penetration depth is comparable with the initial droplet radius [37]. Yarin and Weiss
categorized the various types of splashes, and detailed his experiments, devised to gain
insight into splash behavior to derive a concise, predictive formula for theoretical

9



understanding as well as for practical use. Both Howison and Yarin derived mathematical
models for simulations and computations comparing theoretical values with experimental
data collected when observing jet formation, crown formation as well as crown position,
when inertial forces dominate viscous forces. Jetting occurs when inertial forces dominate
surface tension and liquid is squeezed out radially. However, the subject of our review
combines the phenomenon of rheological deformation and deposition of particles in
suspension along with the droplet impact on a wetted or frozen, porous substrate and
incorporates a temperature variable component, thus affecting the viscosity of a fluid,

specifically watercolor paint. To our knowledge, this is an area that has not been studied.

To understand the fluid dynamics of paint, we must first define a fluid; explore its
behavior along with the associated properties that will govern a fluid’s motion. A fluid is
defined as any substance that deforms continuously when subjected to an applied shear
stress, i.e. a tangential force (F) per unit area (A). The more stress that is applied, the more

the fluid will deform. Shear stress will play an important role in deriving the equations of
fluid motion. We can express shear stress, z, as t = %, force per unit area. One critical

assumption of fluids that permits us to study its behavior is the continuum hypothesis,
which neglects the fact that fluids, in fact, consist of billions of individual molecules or
atoms in a small region, and, instead, treats the properties (e.g. velocity, temperature, etc.)
as if it were a continuum. If we forgo the use of the continuum hypothesis, the structure
of the fluid consists of molecules moving about more or less randomly. If we are able to
measure for example, the velocity at the molecular level, we will obtain the result at only
a particular instance in time. If, instead, we average the velocities of the molecules in a

region surrounding a particular point, we can derive a representative value for the velocity

10



at any desired point. Thus, we identify with each point, a “fluid parcel” and then consider

the volume of the fluid as a whole to be continuous aggregation of fluid parcels [35].

An important property of a fluid is its viscosity or a fluid’s resistance to shear stress.
Consider a fluid region confined between an upper and lower plate, separated by a distance,
h, moving at a velocity, U. If the bottom plate remains stationary, the velocity at this point
y = 0, is also zero, a state called the no-slip condition. The first layer of fluid parcels away
from the wall imposes tangential forces on the next layer, and so on. Note that this whole
argument rests on the assumption that all fluid particles in a region are defined in a
continuous way. If we apply a constant force, F, the upper plate moves with a steady
velocity and furthermore, the force required to move the plate with a constant velocity, U,
is directly proportional to both the area, A, of the plate and to velocity U, and inversely

proportional to h, the distance between the plates. If we let u be a constant of

proportionality, then we have F = &hu. But since shear stress equals %, we then have% =

T= % In differential form, Z—;‘ = % where u is the x-component of the velocity vector

which changes only in the y-direction. Thus, shear stress is proportional to the rate of

deformation with viscosity, p, being the constant of proportionality. Hence, we have
Newton’s Law of Viscosity: T = % and since the velocity at any point in the fluid can be
given by Z—; =% , we thus have t = uZ—Iy‘. We need to differentiate between dynamic

viscosity, which is the ratio of the tangential force per area, and kinematic viscosity, which

is the ratio of dynamic viscosity to density, i.e. %. The Reynolds number, Re, is a

dimensionless number that relates inertial forces to viscous forces and is useful in

11



predicting fluid behavior, Re =%. Smooth, constant motion or laminar flow is

characterized by a low Reynolds number when viscous forces are dominant. Turbulent
flow occurs at a high Reynolds number when inertial forces tend to produce flow
instabilities. Inertial forces come from applying Newton’s Second Law of Motion, F =

ma, force = mass x acceleration; viscous forces from Newton’s Law of Viscosity. A given

; . . . . . . UZ2L2
fluid will possess a density, p. The ratio of inertial forces to viscous forces equals ’)HT =

p—ZL = Re, Reynolds number [35]. A high Reynolds number indicates that inertial forces

dominate the system; a low Reynolds number implies viscous forces are dominant. We
need also to make use of the Navier-Stokes equations for fluid flow, the general form of
which describes fluid behavior in three dimensions, but the foundation of which can be
represented by using Newtonian mechanics i.e. the conservation of mass and the balance

of momentum.

Luu and Forterre [18] utilize a simplification of the Navier-Stokes equations by making
several assumptions and thus enabling them to use the Saint-Venant equations. First, they
assume the surface tension of an aqueous solution to be 0.07 N/m, the same as pure water.
The surface tension of gels, analyzed by this team, was experimentally determined to be,
in fact, less than that of water, thus this value provides an upper bound. Second, they
considered the simplest time-dependent model of inertial spreading by using a shallow disc
that spreads radially along a surface with thickness given as h(t) and radius as R(t). They
neglect gravity, hoop stress and radial stress, hysteresis (secondary droplet ejection), and
dissipation, since these factors and their contributions to the comprehensive dynamics of

the droplet spread are negligible in yield-stress fluids. The viscosity of the yield-stress

12



fluids they used in their experiments is high compared to the surface tension and hence,
they neglect surface tension. In our experiments, we released droplets of watercolor paint
onto water-wetted substrates and similarly, we can neglect gravity, hoop and radial stress.
We will assume that surface tension and capillary forces are negligible. From Lu and
Forterre, we were able to utilize the following system of ordinary differential equations to
model a radially spreading droplet given by considering various aspects of the physical

problem such as the basal shear stress, Tz which scales as velocity divided by height, U/h

and is much larger than the elongation rate U /R in the shallow limit.

Our current work explores the interaction of watercolor paints with watercolor
paper. Specifically, we conducted experiments to analyze the settling patterns of droplets
of watercolor paint on wet and frozen paper. Variations in paint viscosity, paper roughness,
paper temperature, and the height of a released droplet are examined from time of impact,
through its transient stages, until its final, dry state. Observable phenomena such as paint
splashing, spreading, fingering, branching, rheological deposition, and fractal patterns are
studied in detail and classified in terms of the control parameters. The iconic photographs
of splashes taken by Arthur Worthington in 1908 and Harold Edgerton in 1936 are famous
not only for the mathematics and physics captured in an instant by a flash photograph, but
also for the inherent beauty of a subject that has intrigued both artists and scientists alike
for centuries [26]. Furthermore, a revolutionary art form was born in the mid-twentieth
century when American artist Jackson Pollock dripped paint onto his canvases, thus
beginning the abstract expressionist movement of visual arts, sometimes called “action
painting”. Pollock dripped paint from trowels, sticks, and punctured cans to create his

unique style, which has been emulated by enthusiasts and even imitated for profit by

13



forgers. Richard Taylor’s studies of Pollock’s work by utilizing fractal geometry analysis
to authenticate a Pollock drip-style painting is both intriguing and controversial. The

physics of art has become an exciting area of research for scientific investigation.

In 1941, F.1.G. Rawlins published one of the earliest reports on the subject when he was
Scientific Advisor to the National Gallery in London. His work focused primarily on the
maintenance, preservation, and restoration of the centuries-old works by the great masters,
on the details of the oil medium, and on the varnish crackle that would differentiate an
authentic masterpiece from a forgery, and generally gave art lovers and historians an
understanding of the many levels that comprise a painting, i. e. the support, the ground, the
paint, and the tools. It is of paramount importance for the artist to have a knowledge of the
materials that are used when creating a painting to gain a true insight into the fluid
dynamics that shape art, and in our particular case watercolor painting, an area not
thoroughly discussed by Rawlins. In fact, very little attention has been given to the
scientific investigation that drives the mechanics of the watercolor medium. To that end,
we must understand rheology. G.W. Scott Blair, presents a contemporary discussion of
the subject by defining rheology as the science that deals with the flow and deformation of
matter, primarily materials whose characteristics lie between those of crystalline solids and
true liquids. A material that will not flow when small forces are applied is called a solid.
A material that flows under the smallest measurable forces is called a fluid. A Newtonian
liquid, or a perfect liquid, is one which flows at a steady rate under a steady pressure and
whose rate of flow is proportional to the pressure, i.e. it flows twice as fast when the
pressure is doubled. Water, light oils, and many other liquids, such as benzene and alcohol

are very near to Newtonian. Fluids that do not behave in this manner are called non-
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Newtonian liquids. Many paints and oils contain resins that have both solid and liquid
properties. Solid particles mixed into liquids are called suspensions. A crucial property of
liquids that will play an important role in our analysis of watercolor paint is called viscosity,
which is, generally speaking, a fluid’s thickness or internal friction. More precisely defined
as pressure divided by rate of flow, viscosity is a measure of a fluid’s resistance to
deformation. Water has a low viscosity, while honey has a high viscosity. Still further,
there are some materials that will not flow under very low pressures and would thus be
considered solids, but under higher pressures, they flow readily. These substances, ketchup
or mayonnaise for example, are termed yield-stress fluids. Watercolor paints are a curious

mixture of these materials and their respective properties [19].

Marmanis and Thoroddsen examine the phenomenon of finger structures that emerge
upon impact when a droplet hits a solid surface or substrate. Following the work of
Marmanis and Thoroddsen, we estimate the “number of fingers” as a function of height
for various cases that show clear, fingering patterns. As in their review, “...everything that
resembles a finger, no matter how short...” is regarded as a finger. They performed
experiments by releasing droplets from a 5-mm inner diameter syringe containing

bromophenol blue dye from varying heights to attain impact velocities ranging from 0.77
m/s to 4.9 m/s, ignoring air resistance and simply using the kinematic formula U = ,/2gH,

where g is acceleration due to gravity and H is the height of the released droplet. They

derive an impact Reynolds number, Re), calculated as follows: Re; = (\/%)4 / (”i’;sg) which

is proportional to %/Re, VWe and thus correlating this impact Reynolds number to the

number of fingers that protrude outward from a droplet splash. The range of values for
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Reynolds and Weber numbers in Thoroddsen and Marmanis’s experiments were 1,100 <
Re < 25,000 and 100 < We < 4,000. In our study, the Weber number ranged from 150-
323, while the Reynolds number varied from 2,600-10,200. The number of fingers, they
conclude, is weakly dependent on the surface tension and depends primarily on inertial-
viscous interactions. Using the Reynolds and Weber numbers calculated in our own
experiments to compute the impact Reynolds number for our watercolor paints
demonstrates results which fit nicely with the results of these researchers. Aside from the
fact that we used paint in our experiments, our work differs from this article in another key
aspect. Marmanis and Thoroddsen used dry, linen paper at room temperature as the flat
surface upon which their droplets splashed. We will see that there is a direct correlation
between fingering and height as is concluded in this article, however, we used wetted
watercolor paper at or below room temperature, thus allowing for fluid diffusion and

particle dispersal after impact [24].

Karol Mysels [16] examined the effects of surface tension that arise among various
liquids such as oil, water, alcohol, and surfactants. Surface tension is defined as the
tendency of a liquid to assume a spherical form in the absence of external forces, because,
for a given volume of liquid, the spherical form presents the smallest possible surface in
contact with other substances, e.g. oil in water. Mercury has a high surface tension, water
has a low surface tension, and soapy water is lower even still. In the process of painting,
capillarity plays an important role in the interactions between paint brush hairs and water
as well as between water and porous watercolor paper, as explained by Mysels. For our
purposes, the capillarity effects between brush hairs and water do not play a role in our

experiments, since we dripped paint from two different heights. We nonetheless, leave for
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future investigation and experiments, the study of water flow and paint dispersal affected
by paint brushes as exhibited in some figures which follow. Mysels discussed to some
extent the effect of the porosity of the paper substrate on watercolor paints’ tendency to
flow. Rate of spreading will depend on how free the liquid is to move, particularly, on
whether there is any free liquid on the surface not held in pores. There are a few factors
that can reduce the tendencies of fluid to spread or to retract. They are, for example, related
to the roughness of a surface, to the deposit of particles from the liquid causing the surface
under the liquid to differ significantly from that surrounding it, to the swelling of wetted
paper, and to the occurrence of evaporation and the loss of liquid into the pores. The
tendency of the liquid to enter the pores of the surface depends primarily on how fine the
pores are. The finer the pores, the more surface involved for a given amount of liquid and
therefore the stronger is the tendency of the liquid to enter them that is, to be absorbed by
the paper. Particles may be pressed together by surface tension that exists among the paint,
the paper, and the water [16]. We recognize this absorption process of paint into the canvas

to be an important aspect of fluid dynamics involved in our investigation.

Section 1.2 The Art of Fluid Dynamics

Thus, it is from this vantage point that this thesis takes its motivation, i.e. to
analyze the fluid dynamics of art or perhaps more appropriately the art of fluid dynamics.
We were inspired by the many complex and beautiful patterns that result from sediment
residues, (rheology), in the watercolor medium. The authors of this paper designed and
performed “single-paint-droplet” experiments to reduce the watercolor painting process
down to a procedure with simplest parameters. We released droplets of three types of

watercolor paint, i.e. three different viscosities, from two distinct heights onto three types
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of watercolor paper each with its own roughness, i.e. porosity, at three different
temperatures. The results were categorized by the final, dry image of each painting and
analyzed for any statistical correlation from any of the parameters, height, viscosity, etc.,
to a discernable or even reproducible pattern within the final dry painting. We draw
motivation for our experiments from the complex nature and behavior of water and how
watercolor painting is an immediate consequence of fluid dynamics. American watercolor
artist Carol Grigg, for example, whose best-known works portray scenes from the
American southwest, makes brilliant and stunning use of watercolor pigments’ inherent
viscosity and material composition to create patterns which seamlessly and effortlessly find
their way into her paintings. The physical processes and the mathematical structures
hidden in Jackson Pollock’s paintings have received serious attention within the past two
decades, and have made the investigation of the connections between science and art a
compelling area of exploration. We return to the work of Richard Taylor and fractal

analysis as a means for a new metric to examine our painting experiments.

The method of box counting was implemented to approximate the fractal dimension
of each painting. Benoit Mandelbrot, the father of fractal geometry, defines a fractal as
“...geometric shapes that...if a piece...is suitably magnified to become the size of the
whole, it should look like the whole, either exactly, or perhaps only after a slight limited
deformation.” Mandelbrot’s article, published in the journal Leonardo in 1989 gives a
brief account of his inspiration for this new creation and its development into a branch of
mathematics, its correlation to art and natural patterns, and ultimately the need for the
computer’s invention and development to understand, explore, and advance this new

geometry along with its connection to iterative functions. Fractals encompass an enormous
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collection of geometric patterns that lie outside Euclidean geometry and their complex
mathematical form has in fact generated a new form of art. Fractals have a non-integer

dimension [39].

Fractals can be generated with analytical precision using computers as evidenced
in Figure 1. Fractal geometry or fractals, a twentieth-century mathematical advancement,
quantifies shapes or forms or patterns that lie outside Euclidean geometry. Remarkably
and curiously, fractals can be seen virtually everywhere in the natural world, from coast
lines and river deltas, to vast salt flats and mountain ranges; from the path of a lightning

bolt to the aggregation of sediment particles, even the shapes of the food we eat.

Figure 1. Golden Dragon, Dy = 1.61803, Pentaflake, Dy = 1.8617, Sierpinski Carpet,
Dy = 1.8928, Mandelbrot Set, Dy = 1.9340, Diffusion Limited Aggregation, Dy = 1.7,
Romanesco Broccoli, 2 < Dy < 3.
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Richard Taylor’s numerous articles on his use of computers and fractal pattern
studies to examine the paintings of Jackson Pollock are fascinating in their claims and
discoveries. Taylor classified Pollock’s drip works into three categories based upon the
range of fractal dimension thus indicating the year Pollock would most likely have painted
a particular work — the preliminary years, 1943-1945 when his work typically demonstrated
a fractal dimension, Dy, ranging from to 1.1 — 1.3; the transient years which lasted from
1946-1948, Dr = 1.4 — 1.6; and the later years, 1947-1953, the period when Pollock
perfected his technique, Df= 1.7 — 1.9. It is not so much the mystery of Pollock’s style that
inspires our work, but the analysis of fractal patterns and their dimension as found in the
fluid dynamics of the watercolor medium. Fluid motion has fascinated artist for centuries,
for example waves as depicted in Chinese art, The Great Wave by Japanese artist Hokusali,
or the hand drawings of water flowing, eddies, and turbulence by Leonardo da Vinci.
Interest in the mechanics of turbulent flow has led to the analyses of Vincent van Gogh’s
most impassioned works such as “The Starry Night” or “Road with Cypress Tree and Star”
which remarkably illustrate turbulence. There exists a similarity that has been observed in
Jupiter’s massive red spot and cosmic dust clouds to van Gogh’s unique brush strokes and
stunning use of color to capture luminance. Russian mathematician Andrey Kolmogorov
proposed that energy in a turbulent fluid at length R varies proportionally to the five-thirds
power of R, and experiments have shown Kolmogorov’s formula to be fairly close to the
way turbulent flow works. Turbulent flow, in 3 dimensions, is self-similar if there is an
energy cascade, i.e. big eddies transfer their energy to smaller eddies at smaller and smaller
scales [2,3,29]. More recent models have been proposed in the last several years to describe

turbulent flow with the use of multifractals. Although this is beyond the scope of our
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current work, it is nonetheless extraordinary that art, in its many forms, is inextricably
linked to mathematics, presents insight into scientific understanding, and may offer further

breakthroughs into other unsolved problems in mathematics and physics.

Figure 2. “Stars with Gas Clouds”, watercolor on Arches 140 LB rough paper, 22” x 30”,
David Baron 2009.

The inspiration for this painting came after viewing images taken by the Hubble space
probe. Two prior attempts to paint this subject were made before this “success”. The long,
vertically oriented strokes of Prussian blue and cadmium yellow disperse and blend into

subtle areas of green, simply by mixing together with no other outside forces acting on that
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specific area. Alizarin crimson pigment, along with areas of the paper intentionally left
white, meander their way through the Prussian blue vastness to create not just orange
patches, but the feeling of motion. Patches of stark white paper give the impression of

reflected and refracted light from distant stars.

Figure 3. “Orange Skies Over Crashing Waves”, watercolor on Arches 140 LB rough
paper, 11” x 15”, David Baron 2007.

This painting was intended to be a city landscape under an orange sky. Because the
painting was left unattended for 2 hours, the different sections of the painting mixed over

that time, and left a picture that looks like the crest of a giant wave, which became the most
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striking area of the work. The biggest area of sediment deposit bears a resemblance to the

Koch snowflake.

Figure 4. “Grey Field Under A Moody Sky”, watercolor on Arches 140 LB rough paper,
22” x 30”, David Baron 2009.
A brush was first used to apply paint in Rothko-esque fields of color. Loading up the same
brush with clean water and dragging the water along the paper cuts the pigments to create
not only the sense that clouds are moving through the sky, but the fingering phenomenon

in the foreground suggests vertical activity, such as wheat field growth.
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Figure 5. Watercolor paint drop experiment - permanent rose, 90 LB Canson paper, 6”x4”; Dy =
1.5104. David Baron June 10, 2015.
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Chapter 2: Experimental Outline and Results

Section 2.1 Experiment Set-Up

This experiment was conducted utilizing three types of Winsor & Newton Artist Series
watercolor paint, namely, permanent rose, Prussian blue, and sepia. These pigments were
chosen based upon their individual and significantly differing viscosities and chemical
compositions. Each color was available in tube form. Approximately 5 mL of pigment
was squeezed from the tube and dissolved in roughly 30 mL of clean, filtered water. Three
grades of acid-free watercolor paper were used — Arches 140 LB rough, Arches 140 LB
cold pressed, and Canson 90 LB paper. The papers were cut into smaller pieces measuring
about 57x7” and liquid frisket was applied with a knife around the edges of each rectangular
paper to create a thin latex border in order to reduce and contain water dispersion. Filtered
water was then applied with a soft sea sponge to both sides of the paper, a technique known
as wet-on-wet, and the paper (or substrate or canvas) was mounted flat on a backing board.
Excess water was spilled off and the paper let sit for a couple of minutes to allow the
substrate to thoroughly absorb the water. The papers were then separated into three
categories — unfrozen, frozen for 5 minutes, or frozen for 30 minutes. A droplet of paint
was released onto a substrate from a height of either 6 inches or 12 inches. For the first set
of paintings, the droplet was released from a standard drinking straw by holding the thumb
over the top, open end, removing the thumb and letting gravity pull down the pigment. For
the remaining sets of paintings, a medicine dropper (of outer diameter 4mm and inner
nozzle diameter Imm) was used to release the droplets. Photographs were taken with a
cellular phone camera at roughly 1-minute intervals for about 20-30 minutes or until the

paint spread had reached a maximum dispersion. We used the iPhone 6 which has a
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resolution 750 x 1334 pixel display and a 29-mm lens which is as effective as a 35-mm
camera. Our choice to use the iPhone was based not only on its sufficient capabilities and
excellent resolution for its camera, but also for ease of storing and transferring data,
roughly 750 photos. Each digital photograph was uploaded onto computer and analyzed
using ImageJ software (National Institute of Health, Bethesda, MD, USA). The greatest
distance covering each splash was measured by first calibrating the measuring tool of
ImageJ which would convert pixels into centimeters, thereby yielding the effective radius

(Refr) for each droplet and repeatedly measured at each time interval in minutes.

Camera r—
Dripper |
Canvas

Figure 6. Experimental set-up.

The volume of each droplet released from the medicine dropper was, on average,
about 0.04 mL, while the volume released from the straw was about 0.18 mL. The density,
p, of the droplets of the different paints was measured by weighing 10 mL of the solutions
and the volume of each droplet was measured by counting the number of drops that made

up 10 mL. The density of the paints ranged between 0.99-1.02 gm/cc. The viscosities of
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the paints, |, were measured using a hand held Haake viscometer (Thermo Scientific,
Waltham, MA, USA). The surface tensions of the watercolor paints, o, could not be
measured and were therefore assumed to be the same as that of water, 72 millinewtons per

meter at 25 degrees Celsius. The impact velocity of the droplet from the two different
heights was computed using the elementary kinematic formula, V), = \/ﬂ , Where
V,refers to the terminal, impact velocity of the droplet, released from height h. We find
that Vg, = 1.73 m/s and V;,;, = 2.45 m/s. Using these parameters, we can estimate the

values of the non-dimensional Weber number and Reynolds number which are given by

DV DV
Weszh,andRez PTh

where D refers to the characteristic length in the problem which was taken to be the
approximate diameter of the droplet. In this study, the Weber number ranged between
150 — 323, while the Reynolds number varied from 2,600 — 10,200. Comparing with
the Re vs. We curve we note that our experimental conditions put us in a very interesting
part of the phase map which is between the viscous-inertial and capillary-inertial spreading

regimes.

-

Figure 7. Camera image of permanent rose paint drop at impact. Fingers are beginning to
spread.
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t=0 t=3min t=6min t=9min t=15min

Figure 8. A time sequence of the spreading drop of permanent rose on frozen Arches 140 LB
cold-pressed paper.

Section 2.2 Materials

Rheology of paint: The rheological properties of the materials used for painting are each
important in their respective ways and interact differently with the other agents involved
in the process of painting [16]. Overall, we need to pay particular attention to the
following: (1) the support in these experiments: namely the watercolor paper; (2) the
ground: the first layer on the support, i.e. the water applied to the paper; (3) the paint: one
or more pigments, and sometimes a brightener, transparent or “white” that lighten the value
and increase the chroma of the dried paint dispersed in a vehicle or medium. The paint
consists of: a binder, traditionally and still commonly said to be gum Arabic or glycerin
used for softening the dried gum and helping it re-dissolve. The paint also contains
humectant, which is made of syrup, honey or corn syrup, to aid in moisture retention; an
extender or filler, such as dextrin, to thicken the paint; additives, to prevent clumping of
the raw pigment after manufacture and to speed up the milling of the pigment; fungicides
or preservatives to suppress the growth of mold or bacteria; and finally, water, which

dissolves all the ingredients, transports them onto the paper and evaporates quickly [19].
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A sheet of paper is most commonly composed of tangled cellulose fibers. Cellulose
is extracted from wood pulp by chemical and physical methods by successive cutting,
grinding, soaking, and screening of woodchips or sawdust, which is then bleached in a
sulfite or peroxide solution. The resulting mash of pulp is chemically neutralized by adding
sufficient amount of base, such as calcium carbonate, to create paper that is usually labelled
pH neutral. By contrast, the designation acid free usually means the paper was made by
using cotton or linen and that the pulp was not chemically bleached during the
manufacturing process. Most commercial art papers are manufactured by machine by
injecting the pulp onto a running wire mesh, or between two meshes. The water is drained
from the mesh; the wet sheet is fastened between two felts and finally dried. The finished
sheet is extruded in a continuous roll or web, and the web is torn or cut into sheets. Mold-
made papers are produced with a cylinder mold machine. The pulp is poured over wire
mesh cylinders operating at very low speed. The pulp adheres to the cylinders in a
continuous thin sheet. This web is pressed into a belt of wet felt, which lifts the web of
paper away from the screen. A second felt is placed on top of the sheet and this sandwich
is passed through a series of rollers that extrude the water and dry the sheet with forced air.
Finally, the bare sheet is run through a stack of heavy iron rollers that refine the surface
texture. Methods of drying vary, e.g., by being placed between heated cylinders or by the
gentle air flow of loft drying. The different methods affect both the surface texture of the
paper, and its stability, i.e., its resistance to buckling when wet. Watercolor papers are
supplied in three types of finish or surface texture: rough, cold pressed, or hot pressed.
Rough watercolor papers are dried as they are removed from the mold. The pebbly rough

texture results from the shrinking of the paper around the natural irregularities in the pulp.
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For this reason, the texture becomes rougher. Rough sheets are usually more absorbent
and often expand and buckle more than other types of finishes when wet. Cold pressed
paper is made by hanging the sheets to loft dry in clusters or by applying light pressure
during the felt covered rolling process. The sheets are more stable when wet and usually
less absorbent than rough sheets. Hot pressed sheets are manufactured at high pressure
between highly polished cold metal rollers, which creates a smooth, polished finish. The

surface and fiber density resist paint absorption so more paint stays on the surface [36].

The pigments within the paints used for this experiment are indicated as follows:
permanent rose: quinacridone red (PV19), Prussian blue: alkali ferriferrocyanide (PB27),
and sepia: carbon black and iron oxide (PBk6, PR101). Experiments were conducted using
approximately 5 mL of pigment dissolved in 30 mL of water. Accordingly, the materials
were scaled up to 20 mL of pigment dissolved in 120 mL of water for viscosity
measurement purposes. The viscometer was first calibrated to zero deciPascal-seconds
(dPa - s) for clean, filtered water, and then the viscosity of each paint type was measured
at 15 second intervals for 10 minutes. An average value for each paint was calculated,
along with one standard deviation. The Table 1 lists the average viscosity of the various

paints used.
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Table 1. Average viscosity measurements of the watercolor paints.

Viscosity Permanent Rose Prussian Blue Sepia
Average Viscosity (dPa-s) 0.0257 0.0132 0.0098
Standard Deviation 0.0085 0.008 0.0071

The non-Newtonian characteristics of watercolor paint are not presented in this
study. However, there is reason to believe that paints could be non-Newtonian based on
their various components, as mentioned above. Such a multi component suspension has
the tendency to display properties such as yield, thixotropy or dilatancy, which are
fundamental non-Newtonian characteristics and extend important properties for painting
purposes. It has long been thought that the low viscosity of the carrier fluid (water) would
render the watercolor system Newtonian, but recent work has shown that components such
as gum Arabic possess non-Newtonian properties when in solution. The effect of freezing
temperatures upon paint and surface roughness could also potentially bring out non-
Newtonian properties. These are, however, not rigorously proven at this stage and need to

be investigated in greater detail in the future.

Heating Curves for Canvas: The canvas was wetted on both sides according to the
procedure described earlier and placed in a freezer for a duration of 5 and 30 minutes,
corresponding to the two cases of frozen paper. The freezing times were chosen under the
assumption that freezing longer would allow us to maintain the surface as a solid for a
longer period. The time interval between the removal of the melting of the canvas from
the freezer and the start of the experiment was about 10-15 seconds. Therefore, no

significant effects would have occurred in this time. To verify how the temperature of the
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canvas changed with time, we measured the average surface temperature on the canvas in
all three cases using an infrared thermometer (General IRT 206 Infrared Thermometer,
Taiwan.) The Figure 9 shows the “heating curves” for all three cases which reveals the
Classical Newtonian profile. After approximately 10 minutes, the temperature of all three
canvases reach a common temperature and very slowly converge to room temperature. The
melting temperature for the two frozen canvases are approximately at the 1min and 4 min
mark indicated by the dashed lines in the Figure 9. Prolonged residence times in the frozen

state results in reduced viscous resistance for the paint to disperse on the canvas.

—@— Unfrozen
—A\— Frozen 5 min.

1
I
I
: # Frozen 30 min.
I
1

Temperature (deg. Celcius)

ce ey e a1
0 4 8 12 16 20 24

Time (minutes)

Figure 9. Temperature of the canvas as a function of time for all three cases. The dashed lines
point to the times when the canvas surface appears to be in molten liquid state.
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Porosity of Canvas: The porosity of the canvas was analyzed using the standard water

evaporation method [23]. The pore volume fraction is given by € = :’/—” where V; is the
t

total volume and V,,is the volume of pores of the form:

weight of wetted canvas — weight of dry canvas

p density of water

Our estimations of the porosity of the three of the three different canvas types reveal that
the void fractions for 90 LB, 140 LB, and 140 LB cold-pressed are 0.489,0.319, and
0.290, respectively suggesting 30% to nearly 50% of the canvas being empty space. Figure
10a-c show the canvas under a microscope with the last one, Figure 10d showing a regular,
uncoated printer paper under the same magnification for comparison. All the surfaces have
been stained with watercolor paint to highlight surface features. The images reveal
substantial coarseness of the surfaces, especially in cases in cases (a)-(c), when compared
to plain paper and the porous nature of the canvas, even at such relatively low levels of

magnification.

Figure 10. Closeup view of the three canvases used in this study showing their surface features
and porous nature. The pictures were taken with a Leica CME microscope at magnification
of 100x. Images (a)-(c) correspond to 90 LB, 140 LB, and 140 LB cold-pressed canvas,

respectively. The image (d) is of stained, uncoated printing paper at the same magnification.
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Section 2.3 Results

The greatest distance covering each splash was measured in centimeters, thereby
yielding the effective radius (Reff) for each droplet, and repeatedly measured at each time
interval in minutes (see Figure 13b). The final, dry image was measured with a ruler to
find the true distance of the effective radius. Each ImageJ-generated Refr was then adjusted
using a scaling factor. Graphs plotting Refr vs. Time were generated using Microsoft Excel
for each individual trial, as well as for displays to compare each parameter, i.e. paint
viscosity, paint volume, paper roughness, paper temperature, and height of droplet. The
data was then analyzed to look for statistical correlation among height, temperature, paint
viscosity, and paper type on (a) the final radius of the splash, (b) splash pattern, and (c)

fractal dimension.

The effective diameter of each splash was measured in centimeters, approximated
by the largest width of the splash. The effective radius of each droplet was repeatedly
measured using ImageJ at time intervals on the order of 15 seconds to 1 minute from the
time of impact until the time of equilibrium state, when the paint eventually dried on the
paper, on average 15 to 20 minutes. Figure 11 depicts the evolution of the effective radius
of the splash as a function of time. In particular, the figure shows a representative image
of the impact of. height of droplet, temperature of the canvas, surface roughness of the
canvas, and the viscosity of the paints upon this saturating curve. One can clearly see the
impact of some of these parameters more strongly than others from the figures. The
effective radius of the paint is most affected by the paint type and nature of canvas (Figure
11c, d) which can be attributed to the varying frictional forces caused by the different

pigment concentration of the paints and surface roughness of the canvas, respectively. The
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temperature of the canvas (Figure 11b) also shows interesting trends in the initial phase
when surface characteristics are different. However, the true impact of all the parameters
can be procured only by means of some more rigorous statistical means. Statistical
analyses were conducted for the 46 different cases that were studied and correlations
between the size of the splash and the various control parameters are best determined using
these tools. The statistical correlations are discussed below in Section 5, but, in the rest of
this section, we discuss some other specific quantitative features, drawing upon similar

work in the literature on slightly different systems.
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Figure 11. The effective radius of the splash as a function of time showing the effect of (a)
height of droplet; (b) the temperature of the canvas; (c) the viscosity of the paint; and (d) the

type of canvas used.
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We made a qualitative analysis of our paint drop experiments, as in [24]. We only
observed two broad categories of splashing, namely deposition and prompt splashing due
to the rapid absorption of much of the paint into the canvas upon contact. Within these
categories: (i) symmetric or circular patterns; (ii) splash pattern with a visible inner stamp;
(iii) splash with strong radial fingering patterns; and (iv) satellite droplets. In Table 2
below, we explain the qualitative impact of the experimental parameters upon the
appearance and strength of the splash patterns which are also shown in Figure 12. This is
also further investigated in our statistical analysis section. In the table 1 indicates that the
control parameter has an increasing effect upon the strength/magnitude/existence of that

particular pattern while the symbol | indicates the reverse.

Table 2. Repeated patterns observed in our experiments are analyzed for their qualitative
dependence upon canvas roughness, paint viscosity, height (or impact speed), and temperature
of canvas.

Symmetric/Circular | Visible  Inner | Radial Satellites
Stamp Fingering
Increase in...
Height l — T T
Paper Roughness l l l
Paint Viscosity — T l —
Freezing ) T - -
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(A1) (A2) (B1) (B2)

(C1) (C2) (D1) (D2)

Figure 12. Examples of the four distinct splash patterns seen in our experiments. A single
splash can contain one or more of these patterns. The images are organized in pairs, with the
first image (X1, where X = A, B, C, D), immediately upon impact and the final image (X2) are
the images at the final times, at equilibrium.

Rioboo et al. [25] break down the deposition of paint on a dry surface into two
phases: kinetic and actual, with the former displaying a radial growth r~+/t, where r is
the effective radius of the splash and ¢, is time. Such a profile is also observed in other
studies concerning droplet splashes on liquid surfaces [26]. However, the value of the
exponent is seen to vary in some other studies between 0.2 — 0.5 [27,28] which is
attributed to the interaction of adjacent splashes. In our experiments, we also fit a power
law function r~at?, to verify the radial growth rate of the splashes (see Figure 13). On

average, over all the experiments performed, the average values of the fit parameters
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are @ = 4.39 and b = 0.26, with an average fit correlation R? = 0.86. However, if the
data is analyzed in terms of the freezing period of the canvas, we observe a distinctly
different value of b; (i) in the case when the canvas is not frozen, b = 0.091, (ii) when the
canvas is frozen for 5 minutes, b = 0.194, and when the canvas is frozen for 30 minutes,
b = 0.471. in the current study, we therefore hypothesize the existence of three phases: (i)
initial absorption, (ii) Kinetic, and (iii) actual. The initial absorption phase, which does not
exist in previous experiments, could potentially leave a relatively smaller volume of the
droplet to spread. This would suggest a short kinetic phase which is dominated by capillary
forces resulting in a slower growth rate. The relatively low value of our own exponent can

be attributed to such an initial absorption phase.
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Figure 13a, b. The graph shows the evolution of the effective radius of the splash with time.
A power law fit to the data is also shown, with an exponent value of 0.13, which is smaller than
those seen in other kinds of splashes. Figure 13 b. An example of how measurements were
made using ImageJ.

Following the work of Marmanis and Thoroddsen [24], we estimate the “number
of fingers” as a function of height for various cases that show clear fingering patterns. As
in [24], “...everything that resembles a finger, no matter how short...”is regarded as a

finger. The exact number of fingers however, is difficult to determine and the numbers
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reported must be realized to be approximate. Figure 14 depicts some sample cases of our
analysis which shows the count for the two different heights considered in this study (h =
6 inand h = 12 in) and two different paints (permanent rose and Prussian blue). Clearly,
in both cases, the height, or impact velocity is directly related to the number of fingers (also
noted in [24]). In addition, the viscosity of the paint is inversely related to the number of
fingers seen from comparing the two graphs Figure 14a, b. Other potential factors are more

difficult to identify directly from the count and are dealt with in the following section 5.
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Figure 14. Number of fingers as a function of release or impact velocity, dependent on height
of release, 6 inches versus 12 inches. Figure (a) shows the results for permanent rose and
figure (b) shows the count for Prussian blue. The x-axis represents different experimental
cases where fingering was observed.

Section 2.4 Fractal Dimension

The fractal analysis of drip paintings has become a research area of widespread
interest in the past two decades [2,3,29]. The “organic” paintings of Jackson Pollock, in
particular, have been identified as having a unique fractal signature. As a result, Taylor
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et al. [29] have claimed that the fractal dimension can be used as a means to identify artists
and expose fakes, a claim which is contested by some [30]. However, this controversial
issue aside, the fractal dimension analysis of art is an interesting issue in itself.
Furthermore, fractal patterns have also found unique and interesting application in fields
such as environmental psychology, or for therapeutic purposes (see [31] and references

therein).

The method of box counting was implemented to approximate the fractal dimension
of each painting. To estimate a two-dimensional fractal, a grid of boxes, each with a
horizontal and vertical dimension of 2™, {n = 0,1,2, ..., m}, is superimposed over an image
and the total number of boxes, N,,, that are needed to cover the image are counted. At any

given value of m, the fractal dimension, or Hausdorff dimension, is then approximated by

10g(Npmy — - . . .
= ;ii—z’m;. This procedure is repeated as m — oo, thus D,, — D, the dimension of the

figure. A MATLAB based code was used to perform this computation. Test images with
known fractal dimension were used to determine the accuracy of the MATLAB code. A
numerical analysis of fractal dimension versus number of boxes graphically demonstrates
an ideal box count around 200-400. At box count numbers, greater than 400, the fractal
dimension diverges from the target value because the number of boxes covering the image,
N,,,, becomes negligible in comparison to the total number of boxes, 2™, just as an object
under a microscope might become blurry even though the lens gets closer and closer to a
specimen on a slide. Consequently, a limit must be imposed on m to prevent N,,from
becoming infinitesimally small and 2™infinitely large so as to yield a value equal to zero,
and thus an indeterminate logarithmic ratio. Test images with known fractal dimension

were used to determine the accuracy of the MATLAB code. A numerical analysis of fractal
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dimension versus number of boxes graphically demonstrates an ideal box count around

200-400.

10*

Box Count, N(s)
Box Count, log N(s)

0 50 100 150 200 250 300 350 400 0 1 2 3 4
a Number of blocks, N b Number of blocks, log N

Figure 15a, b. Limit for the numerical approximation of Hausdorff dimension of a typical
image. The box bount is method used in 15a keeps a count to compute the ratio of the boxes
that cover the image being analyzed to the total number of boxes. The limit of the logarithmic
ratio of those two values indicates the fractal dimension as shown in 15b.

The photographs were saved in ‘JPG’ format, loaded into MATLAB which
converted a color image into a binary data array to produce a black and white figure (see
Figure 16) which could then be analyzed with the box count method. Benchmark tests for
the fractal dimension were performed (see Table 3) on several well-known patterns such
as Sierpinski triangle, Koch snowflake, and Apollonian gasket, (see figure 16) [32].
Convergence studies were also conducted for box counts ranging from 25-500. Maximum

error in our fractal dimension computation was about 0.09% when compared with their

known dimensions.
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Figure 16a, b, c. Apollonian Gasket, Dy = 1.3057; Koch Snowflake,D; = 1.26; Sierpinski

Triangle, Dy = 1.5849. Some of our bench mark fractals used in convergence studies to test
the box count code’s accuracy.

Figure 17. Black and white images of 3 different splashes. We are looking for patterns of self-
similarity, i.e. fractals.
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Table 3. Fractal dimension of some sample cases.

Cases Permanent Rose Prussian Blue Sepia
Unfrozen (6in) 1.637 1.832 1.826
Frozen 30 min (6in) 1.975 1.570 1.707
Unfrozen (12in) 1.822 1.820 1.738
Frozen 30 min (12in) 1.931 1.722 1.650

The time evolution of the fractal dimension was also computed and shows a similar
overall profile to the effective radius. Figure 18 shows a sample curve corresponding to
the images in Figure 8. However, this curve does not display a power-law correlation. The

factors affecting the fractal dimension are discussed in the following section.
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Figure 18. Time evolution of fractal dimension of a splash.
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Section 2.5 Statistical Analysis

We first modeled the relationship between scaled radius and the predictor variables:
temperature (1 = unfrozen, 2 = frozen 5 min, 3 = frozen 30 min), height (1 = 6" and 2 =
12”), time, viscosity ( 1 = permanent rose, 2 = Prussian blue, 3 = sepia), type of paper (1
= Canson 90 LB, 2 = Arches 140 LB rough, 3 = Arches 140 LB cold-pressed), and the
volume (1 = medicine dropper, 2 = straw), where time is the only continuous variable and
all the others are treated as categorical variables. The fitted model result is given in Table
4. Further ANOVA analysis showed that all the predictors are significant predictors to the
scaled radius. Based on Table 4, we can see that frozen 30 minutes significantly decreases
the scaled radius compared to the unfrozen temperature (p-value = 0), but frozen 5 minutes
is not significantly different from unfrozen temperature. Height at 12” significantly
increases the scaled radius compared to height at 6. With time increasing, it significantly
increases the scaled radius. The normality and constant assumption of this multiple

regression are met through residual plot check.

We modeled how the same set of covariates affect certain specific parameters
(termed hole pattern 1 and hole pattern 2, see Figure 23 for comparison). We created a
binary variable for hole pattern 1 which corresponds to a prominent initial droplet stamp
where paint has landed and dispersed, such as in Figure 12(B2). We fitted a logistic
regression model using the covariates to explain the binary response variable hole pattern
1. The fitted model is given in Table 5. Height, time, paper type, and volume are

significant predictors to the binary response hole pattern 1. Specifically, height at 12”
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increases the odds of hole pattern 1; longer time increases the odds of hole pattern 1; using
paper type 2 has higher odds of hole pattern 1 than using paper type 1; and volume 2 has

lower odds of hole pattern 1 than volume 1.

We fitted a similar logistic model with response variable hole pattern 2 (rheological
settling paint pattern within boundary of initial droplet with no interior stamp, for example
Figure 12(A2)). The fitted model is given in Table 6. The result indicates that all predictors
are significant except for height. Frozen for 30 minutes has higher odds of hole pattern 2
than unfrozen. However, frozen for 5 minutes has no significant difference from unfrozen.
Longer time increases the odds of hole pattern 2. Prussian blue and sepia both have
significant higher odds of hole pattern 2 than permanent rose, sepia has the highest odds of
hole pattern 2 compared to the other two viscosity levels. Canson 90 LB paper has the
higher odds of hole pattern 2 than Arches 140LB rough and Arches 140 LB cold-pressed.
Volume 2 (straw), as seen in Figure 21, has higher odds of hole pattern 2 than volume 1

(medicine dropper).

We then fit the fractal dimension with all the predictors. For each experiment, we
recorded the last fractal dimension value. In total, there were 46 observed fractal dimension
values. We fit a multiple regression model but found two outliers from the residual plot
and normal Q-Q plot. We removed the two outliers and refit the model. The final result
is given in Table 7. The result indicates temperature frozen at 30 minutes significantly
reduces the fractal dimension value compared to unfrozen. Prussian blue and sepia
significantly reduce the fractal dimension value compared to permanent rose. The residual
against the fitted plot (see Figure 19a) and the normal Q-Q plot (see Figure 19b) indicate
that the model assumptions are met and the inference obtained from this model are valid.
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dimension. 19b. Normal Q-Q plot for multiple regression model of fractal dimension.
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Tables of Statistical Data

Table 4. Multiple regression model results for scaled radius.

Estimate Std. Error t Value Pr(>|t))
(Intercept) 5.5634 0.2156 25.81 0.0000
factor(Temp)2 0.1926 0.1931 1.00 0.3188
factor(Temp)3 -1.8528 0.1841 -10.06 0.0000
factor(Height)2 0.2908 0.1398 2.08 0.0378
Time 0.1579 0.0088 17.89 0.0000
factor(Viscosity)2 | —2.3478 0.1580 -14.86 0.0000
factor(Viscosity)3 | 0.7302 0.2721 2.68 0.0074
factor(Paper)2 0.8153 0.1941 4.20 0.0000
factor(Paper)3 —-0.4384 0.2769 -1.58 0.1138
factor(Volume)2 0.5852 0.1895 3.09 0.0021
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Table 5. Logistic model results for hole pattern 1.

Estimate Std. Error z Value Pr(>z|)
(Intercept) —26.6447 1457.5012 -0.02 0.9854
factor(Temp)2 20.1488 1457.5009 0.01 0.9890
factor(Temp)3 24.0557 1457.5010 0.02 0.9868
factor(Height)2 1.0877 0.3406 3.19 0.0014
Time 0.3074 0.0365 8.42 0.0000
factor(Viscosity)2 | —28.0664 1122.4010 —-0.03 0.9801
factor(Viscosity)3 | —20.9046 2602.5289 -0.01 0.9936
factor(Paper)2 2.2046 0.4948 4.46 0.0000
factor(Paper)3 0.5124 0.4571 1.12 0.2623
factor(Volume)2 | —2.8894 0.5487 -5.27 0.0000

Table 6. Logistic model results for hole pattern 2.

Estimate Std. Error z Value Pr(>|z|)
(Intercept) —0.8532 0.2482 -3.44 0.0006
factor(Temp)2 0.0944 0.2309 0.41 0.6827
factor(Temp)3 1.3492 0.2220 6.08 0.0000
factor(Height)2 —0.2046 0.1654 -1.24 0.2161
Time 0.0035 0.0101 0.35 0.7289
factor(Viscosity)2 | 1.3398 0.1847 7.25 0.0000
factor(Viscosity)3 | 3.6557 0.5041 7.25 0.0000
factor(Paper)2 -1.2459 0.2277 -5.47 0.0000
factor(Paper)3 -1.2640 0.3389 -3.73 0.0002
factor(Volume)2 0.8644 0.2167 3.99 0.0001
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Table 7. Multiple regression model results for fractal dimension.

Estimate Std. Error t Value Pr(>|t|)
(Intercept) 1.8432 0.0537 34.35 0.0000
factor(Temp)2 -0.0329 0.0297 -1.11 0.2762
factor(Temp)3 -0.0720 0.0303 -2.38 0.0232
factor(Height)2 -0.0126 0.0240 -0.53 0.6027
Time 0.0004 0.0021 0.18 0.8553
factor(Viscosity)2 | —0.0582 0.0269 -2.16 0.0377
factor(Viscosity)3 | -0.1247 0.0483 -2.58 0.0144
factor(Paper)2 0.0035 0.0414 0.08 0.9338
factor(Paper)3 0.0774 0.0476 1.63 0.1134
factor(Volume)2 0.0359 0.0337 1.06 0.2947

A qualitative analysis of the images that resulted during the “life-span” of our
paintings reveal some fascinating results. The similar nature of the branching fingers,
shown in Figure 20, to that of blood-carrying capillaries or to the diffusion limited
aggregation fractal, (Figure 1e), is quite interesting. This form of the spreading droplet
only exists for a couple of minutes after which time the fingers have dispersed and
displacement grows with increasing temperature. Before we begin devising our
mathematical model, it is worth examining more closely, other transient moments caught
on camera. Figure 22 a, b, and ¢ show a near radial symmetry for the entire time-evolution
of this particular experiment. A side-by-side comparison of hole patterns 1 and 2 are
shown in Figure 23a and b. Figure 24 a and b help explain how and why we refined our

experiment with emphasis on Prussian blue and permanent rose. The general results for
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sepia paint showed few dissimilarities among the initial, transient, and final images. The
difference between initial and final images shown in Figure 25a and b are difficult to
discern. The outward spread of mostly carrier fluid may be more obvious to find than the
very fine changes that occur along the perimeter of the drop. We use fractal dimension to
measure these imperceptible differences. Furthermore, compare Figures 26a and b to see
that we cannot be certain at this point if fractal dimension is monotonically increasing or
decreasing. These two images appear identical, yet the fractal value increases, exhibiting
the opposite behavior as Figure 25a and b. Figures 27 and 28 show the time-evolution for
two experiments differing only by the grade of watercolor paper used for the respective
experiments. The transient images and the final results are vastly different for these two

experiments.

Figure 20. Experiment #5 Melting permanent rose released with a medicine dropper from a height of
6 inches onto Canson 90LB paper, frozen 30 minutes, t ~ 4 min. The branching patterns seen only
during the transient stage of this spreading droplet are similar to those found in diffusion limited

aggregation.
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Figure 21. Experiment #34 Prussian blue paint pigment pattern, final dry image, 12 inches, frozen 5
min, Arches 140LB rough, released using a straw, t; = 25 min. A larger volume of paint droplet
results in a larger, final, effective radius. The release height results in satellite splashes (hysteresis),

and with that increased surface area covered comes a greater range of possible patterns.

Figure 22a, b, c. Time sequence Exp. #20 permanent rose, 90 LB Canson paper, unfrozen, release
height of 12 inches. The entire drop appears to spread out radially more or less uniformly at the early
stages (a), the beginning of a non-uniformity on the left side of (b), finally resulting in pattern (c). The
time when each image was taken: (a) t = 0, (b) t = 30 seconds, (¢) t = 4 min.
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Figure 23a, b. Exp. #6 permanent rose with hole pattern 1, t; = 18 min ; Exp. #23 Prussian blue with
hole pattern 2, t; = 16 min. Figure 23b shows the carrier fluid has spread outward, leaving pigment

behind in a region contained within the original radius distance. In 23a, all of the paint has spread
outward but left a stamp of the drop’s flattened appearance upon impact.

Figure 24a, b. Time sequence Exp. #45 sepia 140 LB Arches rough, frozen 30 minutes, height at 12
inches. Satellites are the result of hysteresis, ejection of particles from the liquid drop. Dry sepia paint
pigment sediment residue is visible as very little appears to have dispersed. Sepia paint was
experimentally determined to have the lowest viscosity of the paints used. t; = 15 min.
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Figure 25a, b. Exp. #27 Prussian blue drop released from height of 6 inches with a medicine dropper
spreading on Arches 140 LB rough paper at ¢y, Dy = 1.7285 and t;, Dy = 1.6390. The carrier fluid

has dispersed and the fingers have barely branched out. t, = 0,t; = 40 min.

Figure 26a, b. Exp. #36 Prussian blue drop from 12 inches height spreading on Arches 140LB rough
paper at to, Dy = 1.4270 and t;, Dy = 1.4550, almost no noticeable change in the drop. t; =
38 min.
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(@)t=0 (b) t =7 min (c)t =10 min

(d) t =11 min (e) t = 13 min (f)t = 15min

(@)t =17min (h) t =21min ()t =37 min

Figure 27a-i. Time sequence for Experiment #19, a droplet of permanent rose paint released from a
height of 6 inches, from a straw onto Arches 140 LB rough paper frozen for 30 minutes. Viscous forces
compete with inertial forces producing a spectacular show of changing patterns until equilibrium. The
end result is a large radial spread, a small amount of pigment left in the center (hole pattern 2), and a
very faint trace of the initial stamp (hole pattern 1).
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(@)t=0 (b) t = 2min (c) t =3 min
(d)t= 4 min (6’)t= 6 min (f)t= 12 min

Figure 28a-f. Time sequence for Experiment #5, a droplet of permanent rose paint released from a
medicine dropper onto Canson 90 LB paper frozen for 30 minutes after impact from a height of 6

inches. A more porous paper will permit further dispersal of carrier fluid and pigment particles.
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Chapter 3: Mathematical Models

3.1 The Basic Model

Introduction

The splash instability is a complex sequence of problems within fluid mechanics.
Experimental investigations of the many different regimes have been performed to develop
mathematical models to quantify and predict phenomena such as the coronal splash, or the
ejecta sheet, or the point at which particle ejection (hysteresis) occurs [8,26,41]. Our model
for a slow-spreading watercolor paint drop begins from the moment of impact, after a
falling droplet hits a hard, wetted surface, see Figure 7, and continues until the paint drop
reaches a maximum dispersal. We ignore hysteresis [14], and begin our model where the
finger studies in the literature end [24]. The shape of the drop at impact is assumed to be
spherical. This may be a reasonable assumption; however, we must remember that in fact,
gravitational forces on each point of the falling drop compete with surface tension forces,
simultaneously pulling each point of the drop back inward, holding the liquid drop together.
This causes a drop to oscillate between ellipsoidal and spherical forms, as demonstrated in
the first schematic diagram, Figure 29. We then assume that the fingers radiate outward
from points equally spaced along the circumference of a circular drop, assuming energy
dissipation in the y-direction is the same as in the x-direction, hence there is no angular
change over time. We ignore the fact that we are dropping paint onto a porous surface,
thereby disallowing for absorption into the paper and energy dissipation along the z-
direction. We assume that surface tension, defined as the tension of the surface film of a
liquid caused by the attraction of the particles in the surface layer by the bulk of the liquid

which tends to minimize surface area, will be negligible compared to viscous and inertial
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forces. We ignore capillary forces, generally defined as the ability of a liquid to flow in
narrow spaces without the assistance of, or even in opposition to gravity, the assumption
here being that vertical displacement will be negligible compared to horizontal dispersal.
The theoretical, one-dimensional model developed in this paper deals with the simplified

spreading regime when inertial forces compete with viscous forces.

From the continuity equation for the conservation of mass, we measure the quantity
of flux emanating from any point in a vector field or the rate of loss of mass or heat, etc.,
often referred to as the divergence in applied terms, using the differential operator short-
hand notation. The equation for conservation of momentum is a balance of the forces
acting on and in a dynamical fluid system, comprised of inertial, viscous, pressure, and
external forces applied to a fluid. This pair of equations form what is referred to as the 3-
dimensional Navier-Stokes equations, a set of equations used to mathematically model
fluid flow in general. Simplifications of Navier-Stokes can be made, if certain conditions
are held. For example, the 2-D Saint-Venant equation is used in systems of equations for
shallow water. The 1-D Saint-Venant equation, a simplification of the 2-D problem, is
commonly applied to one-directional fluid flow, e.g. open-channel flow or a stream.
Assume for now that a drop disperses uniformly in all directions with no lateral energy
dissipation. Everything that happens in the x-direction also happens in every other
direction. We can simplify a two-dimensional phenomenon into a one-dimensional
problem. The Saint-Venant equations for conservation of mass and momentum for an

incompressible flow, meaning divergence is zero, are given as follows:

0h  19(ruh) _
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Basal shear force, 7p, is the shear stress between the spreading drop and the solid plane and

has dimensions force per unit area. Let the thickness of the droplet be defined by the
function h(r, t), dependent on the radius over time, and the depth-average velocity defined

by u(r,t) [11]. Assuming the drop aspect ratio, i.e. the ratio of the height of the droplet
to the radius of the droplet, h/R, is negligible, allows us to ignore inertial pressure terms,

and stresses in the normal and tangential directions. We will use the approximation for
shear stress as: 1, ~ % From equation (1), and from the fact that divergence is zero at

r = 0, the equation for velocity as a function of radius and time is reduced to:

r dh
u(r,t) = —-— (3)

Simplification of the equation for conservation of mass ultimately yields:

dh Uh
S422=0 (4)

Similarly, from the conservation of momentum, we are left with

au
phs =~ ©)

the equation for acceleration. Making the substitution for basal shear stress, and the droplet

velocity front becomes:

auv uu
w o (6)
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We include the simple the rate of change of the radius over time, equivalent to the spreading

drop’s velocity:

dR
L=v ).

We have now based our model of an outward, radially-spreading paint drop on a system of
three ordinary differential equations using the simplest time-dependent model of inertial

spreading with radius: R = R(t); height: h = h(t); front velocity: U = U(t) [11].

Schematic Diagrams for Two-Dimensional Paint Drop Radial Spread

Q Inertial Spreading of a Drop After Impact

:

o)
i «— —»
— 5—» i B f— '
T T

Figure 29. A falling drop oscillates under gravity and surface tension forces to make spherical and
ellipsoidal forms. After impact with a solid surface, inertial and viscous forces compete until
equilibrium is reached.
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First, we assume that immediately upon impact, a droplet has a uniformly circular
shape with an initial radius, R,—,, (see Figure 30). This will be the first of three initial
conditions in our system of equations 4, 6, and 7. Discretizing points along the
circumference of the initial droplet, we assume each point will then move radially outward
creating a finger moving at an initial velocity, U,—,, which will be the second initial
condition, and thus determines each point’s new radial distance, R,—;. This process
continues for each successive time interval, At = 0.01 for the time-step in our ode solver.
The third initial condition to our system will be the initial height or thickness, h;—,, of the
droplet. This magnitude of this value, we estimate to be roughly between the radius of the
drop and the diameter, or twice the radius. The height is assumed also to be initially uniform
throughout the droplet, i.e. rectangular in shape as shown below in the schematic diagram
for thickness, or height, Figure 31. The last schematic, Figure 32, demonstrates the forces
acting on or in our particular system, i. e. basal shear force, which may tell us something

about acceleration.
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Radius R(t)

R _
dt

Figure 30. The initial drop is assumed to be circular. The circumference, we will assume, is made of
discrete points that radiate outward with no angular change. It is in fact a continuous fluid mass
made of an infinite number of points.

Thickness h(t)
dh  —2U-h
dt R
he=o
dh

Figure 31. Height, or thickness h, is assumed to be uniform which would give the model droplet a
rectangular shape, simplifying the geometry of our model.
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Front Velocity U(t)
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Figure 32. Basal shear stress is the pair of forces, acting in opposite directions, but parallel to the
surface.

3.1.1 The Homogeneous Case

We begin our radial-spread model with the homogeneous case, varying only the
number of circumference points which produce a finger. Droplet height and radius are
fixed. For the homogeneous case, we assume that the solid, impact surface is smooth for a
first approximation. For our model, we assume a discrete number of points along the
circumference, N, radiate outward at the same rate or initial velocity, also called the front
velocity. In reality, the circumference of the spherical-ellipsoid droplet is a continuous,
fluid mass and thus consists of an infinite number of points moving at different rates. Since
each point moves outward at the same rate, there are no true fingers for the homogeneous
model, but rather a radially-symmetric system that has spread outward, covering a certain
portion of the canvas. From our experimental data, recall from chapter 2, we measured the

change in effective radius over time for a radially-spreading drop using ImageJ software.
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From this data, AA—IE, we determined the front velocity, i. e. the average velocity at any given
point along the leading edge of a fluid body, to have a value on the order of U = 1073

t010~2 meters/second. Again, using ImageJ software, we measured the longest distance

that covered the maximum spread called the effective radius, R.;y = 1.106 cm. The

initial radius R, = Re% = 0.553 cm = 0.00553 m; recall the outer diameter of the

medicine dropper nozzle measured 4 millimeters. A reasonable initial condition for the
height of the drop at the moment of impact is then roughly h, = 2R, or hy =
0.01106 meters. Also included in chapter two’s experimental data, were measurements
for the viscosity of three types paint, and in one particular paint, we found the value for

uw = 0.00257 Pa - s, paint-droplet density, p = 998.0 kg/m3

We have now extracted enough information from our experimental data to use for
the parameters and initial conditions needed to run the system of equations 4, 6, and 7,
beginning with the homogeneous case. We used MATLAB to find an approximate solution
using a suitable numerical method. The initial velocity at each circumference point, i.e.
the point from which each finger originates, is constant, and using equations 4,6, and 7,
along with the ode solver ode45, a MATLAB function which implements a fourth and fifth
order Runge-Kutta method for numerical approximations to non-stiff differential equation,
with a variable time-step for efficient computation. Order of Runge-Kutta is determined by
the truncation of terms from a Taylor series expansion of approximations for a solution to
a differential equation. We based our model of an outward, radially-spreading paint drop
on the system of three ordinary differential equations with the following assumptions —

gravitational effects are neglected, the drop has already made an impact on a surface.
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Surface tension is the force on the water drop inward, maintaining a spheroid form for a
minimal surface area; radial stress, the stress toward or away from the central axis, and
hoop stress or circumferential stress, the normal stress in the tangential direction, are all
assumed to be zero. We are not examining the impact splash dynamics, and we neglect
hysteresis, a term for particle ejection often referred to as “splashing”. To simplify our
theoretical model, we deal only with spreading. The following three figures graphically

show the typical profiles for a droplet:

Height h(t
0.014 Height ht)

0.012

0.01

0.008

0.006

height(meters)

0.004

0.002

O 1 1 1 1
0 5 10 15 20 25

time(seconds)

Figure 33. Between 0 and 5 seconds, the height of the drop has reached a minimum value, or saturation
point, and is asymptotic to some value which is greater than 1/10™ the initial height.
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Radius R(t)
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Figure 34. The radius of our model droplet attains a maximum displacement between t = 5 to 10
seconds.
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Figure 35. The ordinary differential equation for velocity is asymptotic to zero between t = 5 to 10
seconds.
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The above profiles are what we might expect to see. The height should decrease
rapidly as the drop spreads out over time; the radius will increase until it reaches a
saturation point; and the velocity is asymptotic to zero in the long term. The next step is
to create a two-dimensional representation of a radially spreading droplet. Figure 36 is an
example of the type of output figure using conditions for the homogeneous case under our
model. The red circle is the initial droplet, plotted according to the initial conditions R, =

Retf = 0.00553 m. On the circumference, N = 700 points radiate outward with a constant

initial velocity as the droplet spreads outward on the surface.

We experimented with different values of N ranging from 50 to 1,000 points, evenly
spaced around the circle. The output figure was then subjected to the same analysis for
possible fractal dimension, as was performed on our experiments presented in chapter 2.
That being the case, recall that the image is converted into a black and white, or binary
version, the color threshold having been set in the program so that values below the
threshold will be converted to black, and those above will be converted to white, i. e. zeros
or ones. We will use the value of N =700 for our comparison study cases as we investigate
the effects of changes to various parameters, similarly to the qualitative and quantitative
analyses made in chapter 2. Figure 36 shows an example of a droplet with 700 radii of
equal distance. We will say more about fractal dimension later, but the Dy for the figure is
given for future reference and comparison. Figure 37 shows that fractal dimension

increases as N increases.
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Figure 36. An example of the homogeneous case for 700 fingers or circumference points; average Dy =
1.95 + 0.01. The output rendering is converted to black & white. The image is then inverted and the
box count method computes the fractal dimension. All MATLAB codes used for this analysis can be
found in the Appendix.

) Df vs. Number of Fingers, Homogeneous Case
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Figure 37. Fractal dimension increases with increasing number of circumference points, N, for the
homogeneous case. Initial velocity, U, = 0.00327?f0r each circumference point. The average Dy

with standard deviation shown by use of the error bars, was computed for 200 cases, for increasing
values of N. Convergence to 2 begins around N = 700 circumference points.
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As the number of circumference point increases, so does the fractal dimension, with
Figure 37 showing convergence of D, to some real number less than 2. The more radii,
the more surface area is covered. Interestingly, though, the Dy is not a constant value at
each N. A loop of 400 trials per value of N was run, recording the Dy for each trial. There
is a range of values for the fractal dimension of the MATLAB generated figures, for any
value of N. The error bar plot in Figure 37 shows the average fractal dimension with one
standard deviation. In theory, because the paint drop is spreading outward radially, the Dy
should be 2, but we are getting values on average of about 1.95 + 0.01, due to the

discretization, resulting in an error of about 2.5%.

3.1.2 The “Stochastic” Model

In order to account for the inhomogeneities intrinsic to each type of watercolor
paper’s roughness, we introduce a stochastic element to the system by randomly varying
the velocity at each circumference point as a real value between zero and one. The effect
of “paper quality” or roughness, is modelled by utilizing MATLAB’s random functions for
the velocity at each finger, again assumed to have originated along the circumference point
for the initial drop. Upon impact, the drop will begin spreading radially, however due to
roughness of paper along with porosity, some parts will radiate outward more slowly than
others. Once again, we assume that immediately upon impact, a droplet has a uniformly
circular shape with an initial radius, R;—,. This will be one of the initial conditions in our
system of equations 4, 6, and 7. Taking points along the circumference of the initial

droplet, we assume this time, that each point will then move radially outward with a

67



velocity, U, which will be the second initial condition, and thus determines each point’s
new radial distance, R,—,, creating a finger. This process continues for each successive
time interval, At = 0.01 for the time-step in our ode solver. The third initial condition to
our system will be the height or thickness, h, of the droplet. The magnitude of this value,
we estimate to be roughly between the radius of the drop and the diameter, or twice the
radius. The height is again assumed to be initially uniform throughout the droplet. Figure
40 illustrates the inertial spreading incorporating the stochastic element to our model. We
have included some typical simulation results for final height, radius, and velocity, from
which we derived respective profile figures. We created a two-dimensional model of the
final resulting pattern from a radially spreading paint drop. However, it would not only be
extremely time-consuming but meaningless to examine the profiles for height, radius, and
velocity for each finger emanating from the drop. Therefore, we need some other metric
by which to analyze the final patterns. We used fractal dimension, as we did as part of the
analysis of our paint-drop experiments. Results were saved in excel spreadsheets, recording
the Dy for 200 trials (a process which takes about 4 hours to complete). Beginning with N
= 50, the number of circumference points (Figure 38), we derived an average value and
one standard deviation. The number of circumference points, N, ranged up to 1,000
(Figure 39). What happens to fractal dimension as the number of fingers increases? As
more surface area is covered, dimension values increase. In total, we generated about 3,000
random splash patterns, for which was calculated the fractal dimension of each trial output
image. It is worth mentioning that the analyses of our paint-drop experiments were

conducted using over 750 images. All MATLAB code can be found after the References
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section. Figure 75 shows how fractal dimension changes as N changes for the non-

homogeneous case. The range of values varies from roughly 1.73-1.97.

Figure 38. This is an example of the output figure of a paint droplet with N = 50 circumference points
radiating outward to form fingers.

Figure 39. This is an example of the output figure of a paint drop with N = 1,000 circumference
points radiate outward to form fingers.
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Stochastic model of a slow spreading droplet

Figure 40. The stochastic nature of a radially spreading droplet. We assume each discrete point has
an initial velocity, randomly chosen. This is done to model the porous nature of the paper, to the effect
that some radii will flow slower than others.
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Droplet Spread 3-D View

Figure 41. Three-dimensional view of the final pattern and the droplet height/thickness as it flattens
on the substrate.

Figure 41(a) gives a 3-D view of a two-dimensional representation of the stochastic
conditions for velocity in our model for radial spreading; 41(b) shows the stepwise decrease

in droplet height as equilibrium is reached.

Figure 42. Permanent rose unfrozen paint droplet experiment #10, along with its MATLAB black and
white conversion figure, and inverted black and white figure, Dy = 1.8426. A value between 0 and 1

is chosen as the threshold, colors with chrome values above are rendered black, and those below are
rendered white.
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Figure 42 shows an image from the transient stage from one of our paint-droplet

experiments. The experiment and the 2-D figure generated by our model look very similar.
3.2 Temperature Effects

Until this point, we have assumed the initial temperature of the canvas to be room
temperature and thus the change in temperature equals zero for the sake of simplicity. We
used 25 degrees Celsius for the value for room temperature. However, much of our
experimental work involved releasing a droplet onto a frozen surface. The motivation for
this method was driven by the curiosity to explore water’s complex behavior and various
forms, e.g. snow, ice, frost, etc., under different temperature conditions, and to
incorporate this technique to the watercolor paint medium; then to make any qualitative
and possibly quantitative analyses within the physics of art. As this was the case, we
incorporated Newton’s formula for heating/cooling into our model to simulate the

experimental conditions:
T(t) = Tg+ (Ty — Tp)e 8)

Tr = 25°C, is room temperature, and T, is the initial temperature of the paper substrate,
which will vary according to our experimental results, i.e. Tp = —15°C or T, = —5°C or
T, = 8°C, the experimentally measured, average initial temperatures at the beginning of
our single-droplet-painting experiments. When T, < Tk, this is indicative of a system that
is heating up; if Ty > T, then this is indicative of a system that is cooling down. From our
graphs of data recorded for the changes in temperature of the paper substrate over time, we
used the curve-fit feature to determine three different beta values for each of the three cases

of initial temperature of the canvas. Since this temperature equation is an exponential
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function, we adjust for values less than or equal to zero by adding Ty to all of the data
points and then using the nonlinear curve fitting feature in both Maple or Excel, which uses

the method of non-linear least squares algorithm, to extract the value for § in each case.

Table 8. Beta values for exponential rate of heating at three different initial temperatures extracted
from experimental data shown in Figure 9.

Case I: unfrozen canvas Bunfrozen = 0.01
Ty = 5.1°C
Case Il: canvas frozen 5 minutes Bfrozen 5 min = 0.031
Ty = —2.6°C
Case IlI: canvas frozen for 30 minutes Bfrozen 30 min = 0.053
To = —15.1°C

It has been well established that viscosity is affected by temperature. The
experiments performed in this area are numerous, and the number of articles on
temperature’s effect on viscosity is numerous and available publicly [63]. Thus, we can
say with certainty that the viscosity (¢) of our paint will decrease with rising temperature.
Because each droplet of paint contains mostly water, we will assume that the viscosities of
watercolor paints behave similarly to that of water and thus we make use of the exponential
decay rate for water’s change in viscosity with respect to temperature, which is determined
to be @ = 0.029 [63]. Consequently, we incorporated a temperature dependent model for

viscosity (Reynolds’ viscosity model [64]) as follows:
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W(T) = poe~ TR (9)

where i, is the initial viscosity, in our case the viscosities of the three watercolor paints

used. Hence, our model for the equation for the velocity becomes:

du _(ﬂoe_“(TO‘TR)e_ﬁt)U
dat ph?

(10)

The other two equations 4 and 7, although they remain unaltered in their form, are
nonetheless affected by the temperature and viscosity components which we have now
added to this dynamical system. To our knowledge there have been no previous studies of
splash droplets under these conditions. One additional key assumption for the figures above
is that the surface of the canvas be homogeneous, smooth, and continuous surface, thus the
droplet would spread at the same rate in every direction. Also, much of our experimental
work involved releasing a droplet onto a frozen surface. As this was the case, we
incorporated Newton’s formula for heating/cooling and we incorporated a temperature
dependent model for viscosity where p, is the initial viscosity, in our case the viscosities
of the three kinds of watercolor paints used, T(t) = Tgr + (To — Tr)e Pt, u(T) =

—upe~*M=Tr) 'which exhibit respective profiles:
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Figure 43. The profiles for temperature and viscosity are indicative of a system that is heating up at
an exponential rate. It is expected that viscosity will decrease as the temperature of the system
increases.

We summarize the equations, which we will be using to create our model of a

slow-spreading paint droplet, and plot the figure of what would be analogous to the final

resulting images of the experimental data analyzed in chapter two:
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ph'E:_Tb
uU
Tb— h
dR_
dt
dh+2Uh_0
dt R

uw(T) = poe*TTR)

T(t) = Tg + (Ty — Tp)e Pt

Figure 44. Summary of equations used in our model.

3.2.1 Temperature Effects on The Homogeneous Case

The initial temperature of the paper substrate in our model has an effect on the
average radial displacement, as seen in Figure 45b. This seems like an inherently logical
relationship, and the results from our computer model are supported by the results of our
paint-drop experiments - the colder the initial substrate temperature, the shorter the radial
spread. We need to use some metric to describe the results of this radially-spreading
droplet, i.e. fractal dimension. We are looking for any effective change in the output figure
at different temperatures. There is very little effect on the fractal dimension of the final
pattern, regardless of substrate’s initial temperature. The Dy for the homogeneous case is

76



fairly constant. There is a small range of variation, 1.950 - 1.968. The reason for
variations in fractal dimension, may be, in part, due to image resolution of the output figure
as it is loaded into the box count code. This process then may lead to numerical differences
and thus variations in calculations. The range of variation in Dy is similarly equal to the
accuracy of the box count code convergence studies, which we demonstrated to be less
than 1% error. The average final-radius, in the second panel, (shown with error bars

indicating one standard deviation), increases slightly with increasing paper temperature.

At this point we investigate what effect, if any, changing the value of g will have
on the fractal dimension. Keeping fixed the initial temperature at T, = T, the number of
fingers on the circumference of the droplet, N = 700, we ran the two-dimensional model
simulation code two hundred times for all three values of £, yielding the following average
Dy values with one standard deviation. Table 9 shows the results. Are the three average
values for D more or less equal, or is there an upward trend? As the exponential rate of
change in heating/cooling, £ is increased, the fractal dimension is increased. (Figures 67,
68, and 69 located in the Appendix are scatter plots showing the fractal dimension for 200

trials for each value of §.)
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Table 9. Average Dy for three different values of beta using the stochastic model.

N =700 B =0.010 Dy = 1.8969 + 0.0101
B =0.031 Dy = 1.8977 £ 0.0097
B =0.053 Dy = 1.8980 + 0.0098

Df vs. Temperature, Homogeneous Case N =700 fingers Radius vs. Temperature, Homogeneous Case 700 fingers
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Figure 45a. Dy vs. Temperature for the homogeneous case. 45b. shows the effect of temperature on

radial displacement. Error bars represent one standard deviation for an average value computed for
200 trials for each initial temperature shown in the graphs.

3.2.2 Temperature Effects on The Stochastic Case

Using MATLAB’s ordinary differential equation solver, ode45, incorporating
experimentally determined values for g, the exponential rate of growth/decay for the
heating formula, p, the density of a paint droplet, u,, the initial viscosity of the paint at
room temperature, initial conditions for droplet height, k, radius, R, and a randomly chosen

value for velocity, U, we were able calculate numerical approximations for the final values
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of the time-dependent position variables, as well as the final values for the temperature-
dependent parameters. Compare the Figures 42 and 46 using the following initial
conditions and parameters: number of circumference points, N = 700, initial temperature,
T, = 25°C, room temperature, T = 25°C, the exponential rate of heating/cooling, also
called Newton’s Law of heating/cooling, 8 = 0.01, the exponential rate of heating/cooling,
for what is also known as Reynolds’ Viscosity Law, a = 0.02, initial viscosity, u, =
0.00257 Pa - s, and initial velocity, U,, for each finger will be between 0 and 1cm/sec for
each circumference point on the perimeter of the drop. Each one of 700 U,’s is randomly
generated by the MATLAB function command: U = (randi([0,10]) + rand)/1000, which
will randomly choose an integer on the closed interval from zero to ten, add a random real
number greater than zero but less than one, and divide the sum by one thousand, which
would output an infinite number of initial velocities within an interval, 0 < U < 0.011, in
other words, roughly between 0 and 1 cm/sec. Clearly this interval contains the value for
the velocity we measured, U = 0.00327 m/s, in our experiment. The final time for the
MATLAB ode solver was chosen at the time when the lower bound for the final height was
one-tenth the initial height, because the order of the numbers we are using range from 103

to 1074,

We ran the same substrate-temperature-effect study as the homogeneous case on
the stochastic model. The average fractal dimension with one standard deviation is plotted
below in Figure 47. Figures 48 and 49 compare average fractal dimensions for increasing
values of N for two cases, frozen and unfrozen substrate, and shows smaller readings as
temperature increases. Figures 45 and 50 show the effect of temperature on the average

radial displacement.
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Figure 46. An experimental result for the stochastic model using MATLAB, Dy = 1.8759,N = 700.

Each finger radiates outward with a randomly generated initial velocity resulting in a smaller value
for fractal dimension compared to the homogeneous case.

1.915 T T T T T T T

1.91 - .

T
|
1

T

1.905 7

Fractal Dimension
(o]
T
1

T
1

1.895

1.89 - 4 7

1.885 L 1 1 1 L 1
-15 -10 -5 0 5 10 15 20 25 30

Temperature -15 to 27 degrees Celsius

Figure 47. N = 700 fingers, stochastic case U, = 1 cm/sec. Increasing temperature suggests a
downward trend in fractal dimension.
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Df vs. Number of Circumference Points, T = 12 deg. C Df vs. Number of Circumference Points Tﬂ =-12deg.C
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Figure 48. Fractal dimension will be affected by the number of fingers, N, however temperature effects
are more difficult to discern. The average value for a droplet with 700 circumference points is around
1.88, regardless of temperature. Effects of temperature are observed when there are fewer
circumference points.
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Figure 49. Temperature will also affect the final pattern and fractal dimension of the dispersed drop.
Two cases are compared here, case i: temperature = -12 degrees Celsius (shown in red); case ii:
temperature = +12 degrees Celsius. Overall, D decreases as temperature increases. Beginning around
700 circumference points, the differences become negligible as the two curves begin to converge.
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0.0126 Radius vs. Temperature, Stochastic Case 700 fingers
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Figure 50. As temperature increases from frozen values to room temperature, the average effective
radius will also increase showing results for average, effective radius generated with our theoretical
model.

3.2.3 Comparison with Experiments

Now that we have a model for the radial spreading of a droplet of paint, let us
compare our experimental results with our model system beginning with the same initial
conditions and parameters. First, we begin by showing the power law function curve fitted
to our experimental measurements, see Figure 48. The method of non-linear least squares
is used to find the best non-linear function fit. The R? term is a statistical measurement of
curve-fit accuracy (not to be confused with our use of R for radius) is very close to 1,

indicating that this function is a good fit. These measurements were taken from movie
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stills as a camera filmed the droplet spread immediately beginning at time of impact. In
Figure 51, we see the data measurements, along with the power law function plotted on the
same axes as radius profile from our model system of equations 4,5, and 10. Figure 53
shows the velocity profile from our model plotted on the same axes as measurements from
our experiment along with the first derivative of the power law curve to see how accurately
our model matches our experimental observations. The radial profiles are very good
approximations (Figure 52). One significant difference is the shorter length of time that
the experimental data takes to reach a saturation point, resulting in a shorter radial
displacement, but why? What can we refine to account for this energy loss? The velocity
profile (Figure 53) shows that the first derivative of the radial function of time,
R’(t),indicated with the black dashed lines is a good fit to the experimental data, shown in
magenta circles. Our model’s velocity profile demonstrates a slower convergence toward
equilibrium. To what can we attribute this energy loss within our system? The same
comparisons were made for the three temperature conditions we studied in Chapter 2.
Table 10 gives the initial conditions and parameters for a substrate frozen for 30 minutes.
The individual profiles for height, radius, velocity, temperature, and viscosity are shown
in Figure 54. As might be expected, we observe that it takes longer for the profiles to
achieve equilibrium. Figures 55 and 56 show the model radial and velocity profiles
respectively, on the same coordinate axes as the experimental data. There is a significant
difference between our model functions and experimental results. Radial displacement
shows a time lag, which would occur during the molten phase of the substrate’s temperature

change. This phase change was not considered in the design of our model. The velocity
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profile shows a perturbation in the experimental data, (magenta circles), for which we must

account in our system of equations.

Table 11 and the figures that follow compare our paint-droplet experiment for a
paper substrate frozen for 5 minutes. There is not much noticeable difference in the
individual profiles, see Figure 57, except that temperature and viscosity curves are showing
signs of non-linearity. Temperature will have an effect on maximal, radial growth, as we
saw in the previous section on temperature effects, but this would not be noticeable on
figures at this scale. Notice the spike in the radial spreading (Figure 58), that is missing
from our model, however both curves eventually saturate on the same time scale. As in
the frozen experiment comparison, the early dissipation of energy is seen in the gap
between the model and the experimental data. The short-lived lag in the radial spread and
the small perturbation in the velocity profile (Figure 59) would again be happening during

the molten phase change from ice to water.

Table 12 and the subsequent figures compare results for our model on unfrozen
watercolor paper. Keep in mind that the power law curves make use of the average values
for coefficients and exponents collected from the experiments of chapter 2. Experimental
data, plotted in magenta circles, are each a representative from the three temperature case
studies we performed. The early dynamics for the radial spread are best studied using a

high-speed camera. Overall, though, our model compares favorably.
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Radius vs. Time
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Figure 51. Data points (in blue) for radial spread measured using ImageJ. Radius is measured in
meters; time units are seconds. The function, Radius(t) is the extracted non-linear power law curve

fit, with R? value indicative of a highly accurate fit.
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Figure 52. Compare the radius spread using ode45 solver from MATLAB, shown in the solid blue line,
with experimental values measured using ImageJ at 1 second intervals, plotted in magenta circles,
along with the power law fit, Radius(t) = 0.0064t%3*51  shown by the black dashed curve.
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Figure 53. Velocity, U(t), is plotted above using ode45 solver from MATLAB (solid blue line) along
with experimental data collected to calculate velocity change over time, again at 1 second intervals
(magenta circles), and the first derivative of the power law fitted curve, R'(t) = 0.00221 * 06449
(black dashed curve).

Table 10. Radial droplet spread, model simulation for canvas frozen for 30 minutes.

To = —15°C, T = 25°C,p = 998.0%, 1o = 0.00257 Pa - s,
Initial Height Radius Velocity | Temperature Viscosity
0.0130m | 0.0053m | 0.0009 m/s -15C 0.0054Pa-s
Final Height Radius Velocity | Temperature Viscosity
0.0035m | 0.0102m | 0.0001 m/s -8.479C 0.0050 Pa-s
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Figure 54. Profiles for our model simulating conditions for a substrate frozen for 30 minutes.
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Figure 55. On the same set of axes, the plots above for the power law, r = 0.0123t%471 shown by the
black dashed line, along with the data from experiment #8, shown in magenta circles, and our model
system of ordinary differential equations shown by the solid blue line.
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Figure 56. Velocity profiles for our model (solid blue line), the first derivative of the power law (black
dashed line), and data collected from a paint drop experiment (magenta circles).

Table 11. Radial droplet spread model simulation for canvas frozen 5 minutes.

For a canvas frozen for five minutes: T, = —5°C, T = 25,

Initial Height Radius Velocity Temperature | Viscosity
0.0275m | 0.0159m | 0.0033m/s | -5C 0.0047 Pas

Final Height Radius Velocity Temperature | Viscosity
0.0034m | 0.0450m | 0.0000 m/s | 1.638C 0.0041 Pa-s
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Figure 57. Profiles for our model, simulating conditions for a substrate frozen for 5 minutes.
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Figure 58. Compare the plots for power law curve (dashed line), our ode model (solid line), along with
the data from paint drop experiment #1, permanent rose released with a medicine dropper from a
height of 6 inches onto 90 LB paper frozen for 5 minutes.
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Figure 59. Now compare the plots for the first derivative of the power law curve (black dashed line),
our ode model (solid blue line), along with the data from experiment #1, permanent rose released with
a medicine dropper from a height of 6 inches onto 90 LB paper frozen for 5 minutes.

Table 12. Radial droplet spread model simulation for unfrozen paper substrate.

For an unfrozen paper substrate: T, = 8,Tz = 25,

Initial Height Radius Velocity | Temperature Viscosity
0.0305m | 0.0162m | 0.0033 m/s 8.0C 0.0036 Pas

Final Height Radius Velocity | Temperature Viscosity
0.0032m | 0.0503m | 0.0000 m/s | 12.0225C 0.0033 Pa's
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Figure 60. Compare the plots for power law curve (black dashed line), our ode model (solid blue line),
along with the data from paint drop experiment #9, medicine dropper of permanent rose, 6”, unfrozen,

90 LB paper.
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Figure 61. Velocity profiles for our model (solid blue line), the first derivative of the power law (black
dashed line), and data collected from a paint drop experiment (magenta circles).

3.3 Fractal Patterns and Calculations

We used our system of ordinary differential equations to run our MATLAB scripts
for 200 trials for each change in degree Celsius for temperature and for increasing number
of circumference points spreading outward radially from an initial drop impact, assumed
to be circular. Intotal, we generated over 10,000 figures representing our two-dimensional
model. MATLAB?’s function calls linked to Excel make it very convenient to save output

data. We collected model results for the longest finger, or R, ¢, the average radius distance

along with one standard deviation, the average final height, with one standard deviation,

the average initial velocity, the maximum and minimum initial velocity, with one standard
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deviation, and the fractal dimension for each trial. A more rigorous statistical analysis is

needed for this data.

We narrowed the focus of our model by using the properties measured for the
permanent rose paint. In chapter 2, our statistical analysis showed a correlation between
substrate temperature and fractal dimension. In fact, we previously stated that fractal
dimension will be significantly lower at freezing temperatures for Prussian blue and sepia
paints, the two paints with very low viscosities. Figure 3 showed that the D, for permanent
rose, the most viscous of our paints, increases at freezing temperatures and decreases as
the substrate warms up to ambient room temperature, thus confirming the validity of our
model for permanent rose watercolor paint, but indicating that we have not accounted for
something during dispersal. Future studies would be needed to generate data with the
parameters of the other two paints to confirm the validity of our model for those respective
experimental results. Perhaps capillary forces have a greater role in the net forces within
the system and should not be ignored. After all, basal shear force may at times be on the

order of 1072, Recall the surface tension of water, 0.07 N /m.

Focusing our model with the parameters based on permanent rose paint, we
performed a series of simulation studies varying one parameter at a time while the others
remained fixed to observe any trends in fractal dimension. The parameters we investigated
were: initial temperature, T,, wave-front velocity, U, exponential growth/decay rate, i.e.
the 3 experimental values for 8, the number of circumference points emanating from the
droplet impact splash, N. The following data profiles and figures are the results of our
model, given the parameters and conditions of our experiments for a canvas frozen for

thirty minutes:
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Fractal Dimension vs. Number of Fingers
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Figure 62. The stochastic case. 0 < Uy < 6—— =
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Figure 63. Observe the change in Dy when a homogeneous initial velocity (blue circles) at each

circumference point becomes a randomly generated value between 0 and 6mm/sec.
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Df for 700 fingers, Stochastic Case, T0 = -15 degrees Celsius
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Figure 64. Scatter plot for fractal dimension for 200 trials at frozen temperatures.

between 1.89 and 1.92, with an outlier at 1.86.

Df for 700 fingers, Stochastic Case, To = 27 degrees Celsius
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Figure 65. Scatter plot for fractal dimension for 200 trials at room temperature. Fractals range from

1.88 — 1.92, with an outlier around 1.845.
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D' for 700 fingers, Stochastic Case, To = -15 to 27 degrees Celsius
1.92

1.91
1.9
1.89 H

1.88

Fractal Dimension

1.87
1.86 ¢

1.85 0
2

184 . . . . . . . )
0 20 40 60 80 100 120 140 160 180 200

3000 Trials

Figure 66. Scatter plot for N = 700 fingers,3000 trials using our model. Fractal dimensions
range from 1.84 - 1.92 as initial substrate temperature changes from -15 degrees Celsius to 27 degrees
Celsius.

96



Chapter 4: Discussion, Conclusions & Future Experiments

In summary, our experimental investigation of droplet patterns from watercolor
paints on paper held at different temperatures reveals patterns which depend upon material
properties of the paint, paper type, as well as the impact velocity, the temperature, and
wetting properties of the canvas. The radial growth pattern of the splash from the time of
impact to equilibrium, achieved upon evaporation and settling, is qualitatively similar to
that seen in previous studies, but the growth rate can vary between 0.1 — 0.47, depending
upon the level of freezing of the substrate. The range of We and Re puts this analysis in a
well-studied part of the experimental phase where capillary and viscous forces compete;
however there have been no previous studies on the effects of temperature and the wetting

of canvas in quite the same physical context.

Figure 67 gives a qualitative idea of paint absorption which appears to be the
greatest at the impact point and caused by the penetration of paint into depths of the wet
canvas during first impact (referred to here as “initial absorption”). Details of the
absorption process were not pursued in this study which has focused on the long-term
pattern evolution. However, we do recognize this to be an important aspect of the fluid
dynamics involved here which will be investigated in our follow-up work. We also
recognize that the absorption of the paint into the canvas might also continue to occur post
impact when the surface is in liquid state. Therefore, in principle, the overall dynamics

could be characterized by the competition of not only We and Re, but also perhaps by

UpD
n(1-g)’

something additional such as the Blake number, B = which characterizes flows
through porous media. Here U is the flow speed, D the characteristic length, p is the
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density, u refers to dynamic viscosity, and ¢ is the void fraction. In addition, non-
Newtonian effects arising from the pigment concentration could also play an important role
especially during the impact phase when shear stresses on the droplet are a maximum,
making this a truly complex problem. Based on the material and flow parameters of this
study, the overall values of B range from 394 — 2155 and show sensitivity to the canvas,

paint type, and release height of the droplet.

Figure 67. Cross sectional image of canvas showing absorption and penetration of paint through
canvas around the droplet impact point.

To qualitatively understand the effect of canvas porosity, we took a few images of
the cross-sectional slice of a droplet splash stain done about 5 minutes after the experiment
when the paint had not yet had a chance to evaporate. The image was obtained with a
confocal microscope set at a magnification of 300. The Figure 67 reveals some penetration,
inferred from the pinkish hue of the paint at the center, i.e., the impact point, with not much
absorption (at least not at this scale) elsewhere in the observed time. We therefore believe
that while absorption might play some role at the early stages of the spread and paint
penetration might continue to play a small role at later times as well. Therefore, the
phenomenon still maintains the same overall properties as in the case of non-porous

surface. Inthe case of 30-minute paper freezing, the surface is frozen and stays as such for
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several minutes past impact reducing the absorption time. Therefore, in this case, viscous
and capillary regimes could dominate the absorption phase. Absorption dynamics appear
to occur in two extremes of time scales: (i) the very-short time impact scale where the
maximum penetration is likely to occur and (ii) the very-long time scales where slow
diffusion into the canvas occurs in the liquid-post-molten state of the canvas. Both these

phases need further investigation.

Figure 39 demonstrates that our model is quite good for radial paint-drop dispersal
on the unfrozen canvas. The gap between the model curve in blue and the measured data
in magenta circles is a hopeful indicator that further studies could help refine our model by

accounting for this discrepancy, see Figure 52. We hypothesize that our approximation for
basal shear stress, —15 ~ %, is the possible source for the model’s margin of error, that is

we may be missing a non-linear term for our system of ordinary differential equations such
as eu'’, if we take a closer look at the acceleration term in the 1-D Saint-Venant equation
(4). The velocity profiles in Figures 53, 56, and 59 reflect this shortfall in the model, as
the measured velocity drops off more sharply than the velocity of our system. In the frozen
experiments, there is a lag time in the radial spread due to the melting of the canvas, see
Figure 55. With refinement, our model could incorporate this condition by using some
form of the logistic model or a time delay. We can adjust for this in equation (8), Newton’s
equation for heating/cooling The velocity profile for the experimental data in Figure 56
(magenta circles) indicates a perturbation in the curve at the 10-minute mark. The
experiments under frozen conditions undergo a phase change, a phenomenon that was not
previously considered for our model. Incorporating the 1-D Stefan problem, which deals

with real, physical problems with a change of phase state, may further refine our model.
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We identified specific properties/patterns emerging in our experiments and a
rigorous statistical analysis validates the qualitative observations, discussed in Table 2. A
box count analysis of the images reveals that the splashes display fractal structure. The
fractal dimensions of the observed patterns are analyzed and contrasted with each other,
revealing significant correlations to the environmental and material factors in this study.
The fingering patterns observed in some of the experiments are seen to strongly correlate
to the impact speed of the droplets, and also the freezing temperature and to the wetting of

the canvas.

Some of the final patterns left by the paint drops are quite stunning, (Figures 28f,
76, 77). Some patterns are only seen during the transient stages, as presented in the panels
for examples of frozen paintings (Figures 22b, 27a-h, 28a-e,). In our 46 paint-drop
experiments, we observed that most fractal patterns for this set of images ranged between
1.6 and 1.9, (Figures 73-75), putting our paint-drop experiments, just for comparison’s
sake, in the range of Pollock paintings from the late-transient period toward the latter years
of his productivity, and also yielding dimensions close in value to some of the bench-mark
fractals, e.g. Sierpinski gasket, diffusion limited aggregation, etc. Stated simply, fractal
dimension is a useful metric. Our model demonstrates that we can generate a pattern with
atarget D, value. We must be cautious in using fractal dimension, however. Two patterns
may have a fractal dimension similar in value, but appear quite dissimilar. Our “Koch
Trefoil”, Figure 69, looks nothing like the Sierpinski Triangle, Figure 16¢, yet their fractal
dimensions are almost identical. There is a discernable pattern along the perimeter of the
drop as it radiates outward from the initial drop. It would be a worthwhile pursuit to make

a qualitative analysis of fractal patterns found most aesthetically pleasing for different
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demographics, similar to the visual studies on Pollock’s rhythmic drip paintings [53, 58]
and the fascinating application in psychotherapies. It would also be a worthwhile pursuit
to make an analytical and guantitative comparison of fractals with dimensions very close
in value. Two different figures may look nothing alike or may look similar, and yet their
respective fractal dimensions are close in value. The conclusion we draw from these
observations, and from our experiments and models is that, strictly using D to authenticate
an original Pollock is insufficient. Pollock would certainly have moved his body and tools
in a unique, rhythmic manner which could theoretically produce a work with a unique
result. But, there would, in all probability, be similarities among the works of the entire
set. Similarly, it is reasonable to say that all humans share some basic similarities to our
personal motions. For example, looking at the set of all signatures of all the world, there
are certain characteristics that appear similar among them, just as individual finger prints
are unique, but, there are still general qualities in finger prints that are common among the
entire population. Fractal dimension, as we showed from our experiments, is affected not
only by canvas type, as well as paint volume, viscosity and rheology, but it is also sensitive
to the way it is calculated — from the threshold value, used to convert color images to black
and white, to the box count method, which exhibited a range of values for an image that
was roughly the same as the error for the convergence studies of our bench-mark fractals.
But, do fractals offer any other information? They may offer some insight into fluid flow
on a greater scale, as in multi fractals [50]. Can we modify our model to make fractal
dimension a function of time? Figures 76 and 77 are examples of coincidence of similar
patterns left by two different paints. The general shape of these two paintings is not

circular, as we assumed for our model. The shape of these two experiments is more like a
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trefoil. Is this similar, final result due to one of the forces we neglected? A future
consideration might include the include an initial drop oscillating in such a manner that the
moment of impact produces the initial shape of the trefoil, fingers radiating outward, and
accounting for an angular differential and other sources of energy dissipation. The 2-
dimensional, stochastic model for a drop with 700 fingers does indeed look like a very
good representation of the real-life phenomenon of a slow-spreading droplet on Arches
140LB rough paper, (Figures 42 and 46) and their respective fractal dimensions are very
close in value. These are promising results for our model and confirm that our choice for
the stochastic nature of each finger’s velocity was a valid assumption. However, could the
model be refined by considering what is happening internally to a falling droplet? Are the
forces from surface tension, capillary action, or some other neglected stress, i.e. stress
toward or away from the central axis, playing more important roles in the drop dispersal
than previously thought? Can we begin with a more predictive function for the oscillatory
motion of the fluid inside the falling droplet? What if we include a term for angular energy

dissipation?

As a scientist, | am pleased with the results achieved with our model. We captured
the overall profiles of the various parameters over time, i.e. height, radius and velocity, but
what is more, is that there is room for improvement in the model, making this a more
exciting and complex mathematical problem. However, as an artist, | find the figures
generated by MATLAB lack a certain, 2-dimensional continuity along the perimeter of the
final figure which can be seen in the paint-drop experiments. In reality, as water radiates
outward, there are interactions and energy dissipation in the xy-plane, however slight as

they may be, they add to the overall aesthetics of the final pattern. As a watercolorist, one
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of the difficulties of creating a successful painting is to be careful lest the painting look
“overworked”, a lesson perhaps only learned through trial and error, but good advice given
to me by my teacher, Pamela Lovell. In my experience, | have found that most often, the
most remarkable results of a painting are the areas where the watercolor paint was left
alone to follow its natural spreading behavior, rather than attempt to force the fluid to yield
to my wishes - mathematics as art, fluids the artist. As an artist, it is my attempt when
painting to elicit a visceral reaction from the viewer from a visual stimulus, by using colors
sometimes with various, water-soluble materials (e.g. salt, alcohol, etc.) to achieve a
desired effect; to affect a certain mood; to bring a three-dimensional feel to a two-
dimensional piece of paper; to paint big so the viewer is brought into the work; to draw
influence from some of my favorite artists, e.g. to take Mark Rothko’s fields of color
technique, or Jackson Pollock’s rhythmic motion of paint dripping, a technique he used,
inspired by fluid Native American sand painting techniques; and to apply the complexities
of watercolor’s behavior to see what possibilities emerge; to let nature’s forces guide the
fluids within the painting creating flowers as mesmerizing as van Gogh’s irises or Pollock’s
drip patterns. These have been some of the principles by which | used to develop a unique,
personal style of abstract and representational painting. One of the challenges within the
watercolor medium is leaving some white areas of the canvas. This requires some planning
ahead. Seeing different kinds of patterns emerge from interactions between water,
pigments, and paper became a series of personal exercises in applied mathematics, physics,
and chemistry. For example, what will the results be from different combinations of
pigments? What will happen if other fluids are introduced to the system, e.g. isopropyl

alcohol or gum Arabic? What if instead of brushing paint onto the paper with a stroke, let
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a mass of fluid leave its signature pattern? If given a sizeable volume of watercolor paint,
could the final dry painting capture the directional flow of the water, the carrier fluid, along
with any patterns left by the settling of the pigments mixed in suspension? Using gum
Arabic to make watercolor paints more viscous may offer a new and interesting, creative
starting point. As a mathematician, it has been exciting to simplify a painting process into
a simple but rigorous procedure to investigate the origin, transient stages, and final form
of fractals not only as they occur in art, but hopefully to offer some insight and knowledge

into further understanding fractals’ application in fluid mechanics.

Overall, a thorough analysis of the physics of watercolor image on canvas can be
extremely beneficial to watercolor artists to help render more controlled artistic works.
Paint droplets on a substrate frozen for 30 minutes often produce a branch structure similar
to microscopic blood vessels, after thawing for two to five minutes. Refreezing a painting
at this moment may then permit the pigment to settle into the paper in this formation and
allow for the emergence of new paint patterns not only for creative exploration but also for
further scientific analysis. The beauty of watercolor painting lies in the complex flow of
water along with the physical processes and the chemical reactions that occur within a
singular pigment and between different paints. The nature of water allows pigment to open
up and become translucent. The technique of wet-on-dry, dry-on-dry are equally valid
methods, but wet paper makes for more vibrant colors. By freezing the paper, however,
new and different patterns, e.g., fingering, branching, and confined sedimentation, become
possible. These new and different patterns would otherwise quickly disperse and be a
fleeting moment in the lifespan of the painting process. Figure 71 shows two attempts to

capture the branching pattern that occurs about 2 minutes after thawing of a frozen
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substrate. Figure 68 is a droplet of the watercolor paint, cadmium red, of unknown
viscosity. This painting was created, not only as a new experiment, but also for the fun of
painting. The result from this particular painting was strikingly similar to a pattern from a
permanent rose droplet-painting, shown in Figure 69. Figure 70a, b, and c are the first
series of “frozen paintings” which show spectacular results of fluid flow and pigment
deposition. Figure 71a and b are close-ups of a frozen droplet painting made using 5 paints
different from the ones used in our experiments, released from a medicine dropper onto a
30-minute frozen substrate of Arches 140 LB paper. The initial drop and radial dispersal
of the turquoise paint are clearly visible. Hole pattern 1, a characteristic we analyzed in
chapter 2, is seen in the center of the Payne’s gray, the cadmium red, and the opera rose.
The very dry parts of the canvas captured the initial droplet with fingers, thus the
correlation we established between Dy and N is easy to see. The range of different patterns
is particularly nice in Figure 72b, e.g. the cadmium red spots left after water absorption,
dispersal, and evaporation, the different interactions among the 5 pigments to produce a
vibrant orange and a subtle purple, and the sprawling coverage of the Payne’s gray, highly
likely to be the most viscous paint of that group. What would happen if we were to increase

the viscosity of the watercolor paint?

The current study is only the first step in our understanding the physics of
watercolor painting. Several interesting key questions remain, including the effect of brush
(shear stresses) on canvas and surface tension of paints, as well as the additional component
from the Stefan problem for a system undergoing a phase change [67]. A more rigorous
analysis of impact velocity is also desired. In addition, while a very complicated task, a

theoretical/numerical analysis of the problem is also necessary for us to really appreciate

105



the underlying physics. There have been some attempts at providing analytical
explanations for the drop impact and spreading of liquids on solid surfaces [11,33,34].
These previous studies have incorporated Newtonian and non-Newtonian aspects of the
liquids, and also considered the effect of drying of the liquid. In the future, with the
inclusion of absorption, these models could be considered toward application to our
problem. Several of these ideas are either currently being pursued or will be taken up in

our future, ongoing work on this subject.
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Figure 68a, b, and ¢c. Cadmium red (Cadmium sulphoselenide PR 108) drop experiment, March 3,
2016. Canson 90Ib paper, unfrozen, height at 6 inches, Dy = 1.5154. Conversion to black and white
(binary) along with binary inversion.
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Figure 69a, b, and ¢. “Koch Trefoil” - Permanent rose drop experiment, June 10, 2015. Canson 90lb
paper, unfrozen, height 6 inches, Dy = 1.5104.
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a b

Figure 71a, b. Re-frozen experiment 1 and Re-frozen experiment 2, Prussian blue watercolor paint,
Arches 140 LB rough paper.

Figure 72a, b. Close-ups frozen substrate painting with drops of Payne’s Gray, cadmium red, cobalt
turquoise, opera rose, and aureolin yellow watercolor paints on Arches 140 LB rough watercolor

paper.
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Appendix

This first group of Figures 73-75 shows scatter plots investigating the effects from changes to 8, the

exponential rate of cooling/heating, for the three cases of paint-drop experiments. Case i: substrate

at cold water temperatures, T, = 5°C, 8 = 0.010, case ii:

substrate frozen for 5 minutes, T, =

—5°C, B = 0.031, and case iii: substrate frozen for 30 minutes, T, = —15°C, 8 = 0.053. The fractal

dimension was calculated for 200 trials, for each value of B, to find an average Dy with one standard

deviation. Number of fingers N = 700, initial velocity, U, for each finger is a random value between 0

and 1.1 cm/sec. Recall from Figure 50 we saw that Dy increases as T decreases. Prussian blue and

sepia paint were discovered to be significantly affected by freezing temperatures. During the melting

phase, less pigment is displaced as water, the carrier fluid, disperses. A greater amount of pigment is

dispersed for the more viscous permanent rose.
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Figure 73. Average Dy = 1.8969, standard deviation 0.0101, exponential rate g = 0.01.
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D' for 700 fingers, Stochastic Case, beta=0.031
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Figure 74. Average Df = 1.8977, standard deviation 0.0097, exponential rate 8 = 0.031.

Df for 700 fingers, Stochastic Case, beta=0.053
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Figure 75. Average Df = 1.8980, standard deviation = 0.0098, exponential rate 8 = 0.053.

The final groups of Figures 76-80 show scatter plots showing our results for fractal dimension for each
final image of our 46-single paint-drop experiments. Our original investigation began by taking a
qualitative look at parameters such as height of release, paint viscosity, paper type, i.e. porosity,
substrate temperature, and volume of paint-drop.
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Figure 76. Scatter plot comparing D at 6 inches and 12 inches from our paint drop experiments.
Fractal dimension values are generally greater for droplets released from a greater release height.
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Permanent Rose mu=0.00257 dPa*s
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Figure 77. Scatter plots comparing Dy for 3 different viscosities of paint. Permanent rose was

determined to have the highest viscosity among the paints we studied. We chose permanent rose on
which to base our mathematical model.
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90LB paper
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Figure 78. Scatter plots comparing D for 3 different types of paper. 90 LB paper, the most porous
of the papers we used exhibited the widest range of fractal dimension.
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Unfrozen paper
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Figure 79. Scatter plots comparing D for 3 different substrate temperatures. Freezing
temperatures will affect the viscosity of watercolor paint.
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Medicine Dropper Volume = 0.04mL
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Figure 80. Scatter plots comparing D for 2 different volumes of paint drops. The volume of a
droplet released from a straw is greater than the volume of the medicine dropper.
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MATLAB code for Numerical Simulations

function model4

% Inertial Spread for Droplet

% Use ode45 to solve system of differential equations
% dh/dt = -2Uh/R

% dR/dt=U

% dU/dt = -tau_b/(rho*h)

% h = height of droplet

% R =radius of droplet

% U = velocity of radialy spreading droplet

% tau_b = basal shear force figure(1)

% rho = density of fluid

% mu = viscosity

close all

clc

rho = 998.228; %Density of Permanent Rose kg/cubic meters
alpha = 0.02;

T_R =25

T 0=8;

mu_0 = 0.00257; % viscosity of permanent rose Pa*s
%mu_0 =0.00132; % viscosity of Prussian blue Pa*s
%mu_0 =0.00098; % viscosity of sepia Pa*s

%beta = 0.053;

%beta = 0.031;

beta = 0.01;
t final = 40;
delta_t =0.01;

T = zeros((t_final)*100+1,1);

V = zeros((t_final)*100+1,1);

%

T1)=T_0;

V(1) = mu_0*exp(-alpha*((T_0-T_R)));

=2

for i = delta_t:delta_t:t_final
T(j) = T_R+(T_O-T_R)*exp(-beta*i);
V(j) = mu_0*exp(-alpha*((T_0-T_R)*exp(-beta*i)));
j=JtL

end

%velocity = (randi([0,10])+rand)/1000;

velocity = 0.003265;

= @(tX)[(-2*x(3)*x(1))/x(2);x(3);
-(mu_0*(exp(-alpha*(T_0-T_R))*exp(-beta*t)))*x(3)/(rho*x(1)"2)];

[t,xa] = ode45(f,0:delta_t:t final,[0.0275 0.0171 velocity]);

figure(1)

plot(t,xa(:,1))

title("Height h(t)"

xlabel(‘time(seconds)"),ylabel("height(meters)’)

%

figure(2)
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plot(t,xa(:,2))

title('Radius R(t)")
xlabel(‘time(seconds)’),ylabel(‘radius(meters)’)
%

figure(3)

plot(t,xa(:,3))

title("Velocity U(t)")
xlabel(‘time(seconds)"),ylabel('velocity(m/s)")
%

figure(4)

plot(t,T)

title('Temperature T(t)")

xlabel('time (seconds)"),ylabel('Temperature deg Celsius’)
%

figure(5)

plot(t,xa(:,2))

title('Radius R(t)")

hold on

%

%y _bar = 0.0123*(t.%0.471);

%y _bar =0.0171*(t.~0.194);

y_bar = 0.0162*(t.~0.091)

plot(t,y_bar,"--k")

%

hold on

% RadiusData = xIsread('myData.xIsx’,'Sheet5");
RadiusData = xlsread('Thesis_Data_PermRose_FrozenExperiment.xIsx’,'Sheet3");
X = RadiusData(:,1);

Y = RadiusData(:,3);

plot(X,Y,'om’)

%

xlabel(‘time(seconds)’),ylabel('Radius (meters)’)
%

figure(6)

plot(t,V)

title("Viscosity mu(t)")

xlabel(‘time (seconds)"),ylabel('Mu (Pa*s)")

%

figure(7)

plot(t,xa(:,3))

title('Acceleration dU(t)/dt meters/sec”2")
xlabel('time (seconds)’),ylabel(‘velocity (m/s)’)
hold on

% RadiusData = xIsread('myData.xIsx’,'Sheet5");
RadiusData = xlIsread('Thesis_Data_PermRose_FrozenExperiment.xlsx','Sheet3");
X = RadiusData(:,1);

Y = RadiusData(:,4);

plot(X,Y,'om’)

%

disp('Initial Height Radius Velocity")

%
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disp(xa(1,:))

%

disp(' Final Height Radius Velocity')
%

disp(xa(end,:)) % display the last row of xa values
%

disp('Initial Temperature")

disp(T(1))

%

disp('Initial Viscosity")

disp(V(1))

%

disp(‘Final Temperature’)
disp(T(end))

%

disp('Final Viscosity')

disp(V(end))

%

function initialspread2(trial,rho,mu_0,alpha,beta,r,s,T_0,T_R,initial_height,initial_radius,num)
%function initialspread2(rho,mu_0,alpha,beta,r,s,T_0,T_R,initial_height,initial_radius,num)

% It is advised to run the script for model4.m to determine

% the time at which the radius reaches a maximum distance

% for the chosen fluid parameters and ode45 Initial Conditions.
% Time intervals can then be adjusted accordingly.

%

%

% Run ode45 for the entire droplet on first time interval
t_one_circumference_points = ceil(1/num);

%

del =0;

% initialize arrays for:

%

d = zeros(t_one_circumference_points,1);
%

C = zeros(t_one_circumference_points,1); % array for final velocities
H = zeros(t_one_circumference_points,1); % array for final heights
R = zeros(t_one_circumference_points,1); % array for final radii
D = zeros(t_one_circumference_points,1); % x-coordinates,
E = zeros(t_one_circumference_points,1); % y-coordinates,
radii = zeros(t_one_circumference_points,1); % to keep track of all the radii end values
heights = zeros(t_one_circumference_points,1); % to keep track of all the height end values
velocities = zeros(t_one_circumference_points,1); % to keep track of all the velocity end values
% %angles
ang = 2*pi/t_one_circumference_points;
i=1;
for step = 1:t_one_circumference_points
%velocity = 0.00327; % velocity of radially spreading droplet from experiment
%velocity = randi([0 10]);
%velocity = (randi([0,5])+rand)/1000;
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velocity = (randi([0,10])+rand)/1000;

%velocity = rand/10;

%f = @(t,X)[(-2*X(3)*X(1))/x(2);X(3);(-mu*x(3)/(rho*x(1)"2))];

f= @@ X)[(-2*x(3)*x(1))/X(2);x(3);(-(mu_0*(exp(-alpha*(T_0-T_R))*exp(-

beta*t)))*x(3)/(rho*x(1)*2))];

%f = @(t,x)[(-2*X(3)*x(1))/X(2);x(3);(-(mu_0+mu_0*(exp(-alpha*(T_0-T_R))*exp(-

beta*t)))*x(3)/(rho*x(1)*2))];

[t,xa] = ode45(f,0:0.01:5,[initial_height initial_radius velocity]);
[e] = xa(:,1); %height of droplet after first time interval

[d] = xa(:,2); %radius of droplet after first time interval

[c] = xa(:,3); %velocity of droplet spread after first time interval
radii(i) = d(end);

heights(i) = e(end);

velocities(i) = c(end);

%maximum_velocity = max(velocities);

D(i) = (d(end))*cos(del);E(i) = (d(end))*sin(del);

H(i) = e(end);

C(i) = c(end);

R(i) = d(end);

plot([initial_radius*cos(del) D(step)],[initial_radius*sin(del) E(step)],-b";
hold on

plot(r+D(step),s+E(step),.q");

hold on

i=i+l;

del = del+ang;

end

longest_finger = max(R);
average_radius = mean(R);
radius_standard_deviation = std(R);

%

%

average_final_height = mean(H);
height_standard_deviation = std(H);

%

%

average_initial_velocity = mean(c);
maximum_initial_velocity = max(c);
minimum_initial_velocity = min(c);
velocity_standard_deviation = std(c);

%

cell_one = sprintf('A%s',num2str(trial));
cell_two = sprintf('B%s',num2str(trial));
cell_three = sprintf('C%s',num2str(trial));
cell_four = sprintf('D%s',numz2str(trial));
cell_five = sprintf('E%s',num2str(trial));
cell_six = sprintf('F%s',numa2str(trial));
cell_seven = sprintf('G%s',num2str(trial));
cell_eight = sprintf('H%s',num2str(trial));
cell_nine = sprintf('1%s',num2str(trial));

%
%
%
%

filename = 'Thesis_Data_CircumPts.xIsx’;
filename = 'Thesis_Data_Stochastic_Case.xlsx';
filename = 'Thesis_Data_Stochastic_Velocity.xIsx;
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filename = 'Thesis_Data_Temperatures_nonHomogeneous.xIsx';
sheet = 8;

xlswrite(filename,longest_finger,sheet,cell_one);
xlswrite(filename,average_radius,sheet,cell_two);
xIswrite(filename,radius_standard_deviation,sheet,cell_three);
xlswrite(filename,average_final_height,sheet,cell_four);
xlswrite(filename,height_standard_deviation,sheet,cell_five);
xlswrite(filename,average_initial_velocity,sheet,cell_six);
xlswrite(filename,maximum_initial_velocity,sheet,cell_seven);
xlswrite(filename,minimum_initial_velocity,sheet,cell_eight);
xlswrite(filename,velocity_standard_deviation,sheet,cell_nine);

function hausdorffrun(trial)
%%%%%%%%% %%

% this is used to find the hausdorff dimension via the box counting method

% email: p.french@ee.ucl.ac.uk

% web: www.ee.ucl.ac.uk/~pfrench
%%%%%%%%% %%

close all

%clear

%clc

table =[1,2];

% load up original image and convert to gray-scale

%

p = imread('OutputFile.png’);

%

%

figure(1)

imshow(p)

K = im2bw(p,0.5275);

figure(2)

imshow(K)

%L = im2bw(p,0.3);

M = imcomplement(K);

figure(3)

imshow(M)

% scan each block to see if the edge occupies any of the blocks.
% If a block is occupied then flag it and record it in boxCount --

% store both size of blocks (numBlocks) and no of occupied boxes (boxCount)

% in table()

Nx = size(M,1);

Ny = size(M,2);

for numBlocks = 1:400

sizeBlocks_x = floor(Nx./numBlocks);
sizeBlocks_y = floor(Ny./numBlocks);

flag = zeros(numBlocks,numBlocks);
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for i = 1:numBlocks
for j = 1:numBlocks
xStart = (i-1)*sizeBlocks_x + 1;
XEnd =i*sizeBlocks_x;

yStart = (j-1)*sizeBlocks_y + 1,
yEnd =j*sizeBlocks y;

block = M(xStart:xEnd, yStart:yEnd);

flag(i,j) = any(block(:)==1); %mark this if ANY part of block is true
end
end
boxCount = nnz(flag);
table(numBlocks,1) = numBlocks;
table(numBlocks,2) = boxCount;
end

% from the above table of discrete points, take a line of best fit and plot
% the raw data (ro) and line of best fit (r-)

X =table(;,1); % xis numBlocks

y =table(:,2); %y isboxCount

P =polyfit(x,y,1);
BestFit = polyval(p,x);

figure(4)

hold on

grid on

plot(x,y, 'ko','LineWidth',1)
plot(x,BestFit, 'k-','LineWidth',2)
xlabel('Number of blocks, N','FontSize',12)
ylabel('Box Count, N(s)','FontSize',12)

% calculate Hausdorff Dimension
x2 = log(x);
y2 = log(y);

p2 = polyfit(x2,y2,1);
BestFit2 = polyval(p2,x2);

figure(5)

hold on

grid on

plot(x2,y2, 'bo’,'LineWidth',1)
plot(x2,BestFit2, 'b-','LineWidth',2)
xlabel('Number of blocks, log N','FontSize',12)
ylabel('Box Count, log N(s)' ,'FontSize',12)
%

HausdorffDimension = p2(:,1);
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%

cell_ten = sprintf('J%s',num2str(trial));

% filename = Thesis_Data_CircumPts.xIsx';

% filename = Thesis_Data_Temperatures_350fingers.xIsx’;
filename = 'Thesis_Data_Temperatures_halfU.xIsx’;

% filename = 'Thesis_Data_Stochastic_Case.xIsx’;

% filename = 'Thesis_Data_Stochastic_Velocity.xIsx’;

% filename = Thesis_Data_Temperatures_nonHomogeneous.xIsx';
% filename = Thesis_Data_Comparison.xIsx’;

Df= HausdorffDimension;

sheet = 8;

xlswrite(filename,Df,sheet,cell_ten)
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