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ABSTRACT 

AN ASSESSMENT OF NEW JERSEY TROUT PRODUCTION SYSTEMS: 

A MOVEMENT TOWARDS SUSTAINABILITY 

by Luke J. Diglio 

New Jersey supports reproducing populations of three lotic salmonids.  Only 

Brook Trout (Salvelinus fontinalis) are native and until approximately 100 years ago, 

were found in abundance throughout the northern part of the state.  Presently, native 

populations have been documented in 115 streams or stream sections and declines are 

thought to be in response to anthropogenically originated environmental stressors.  To 

evaluate the deterioration extent and assess numbers of breeding non-native Brown Trout 

(Salmo trutta) and Rainbow Trout (Oncorhynchus mykiss), comparisons are made 

between sets of historical (1968-1977) and modern (2001-2010) young-of-the-year 

presence/absence and abundance data and several geologic and land use/land cover 

characteristics hypothesized to influence species’ occurrence.  The range of reproducing 

Brown Trout populations have expanded, while groups of Rainbow and Brook Trout, as 

well as the overall amount of non-trout water have all decreased slightly.  Results show 

that land use and land cover catchment value thresholds exist at < 12% agriculture, < 

22% barren and urban, > 64% wetland and forest, and < 4-6% impervious cover to allow 

for natural Brook Trout reproduction.  Values for Brown Trout reproduction include < 

14% agriculture, < 27% barren and urban, > 58% wetland and forest, and < 5-7% 

impervious cover.  Additionally, a previously undocumented Brook Trout 

metapopulation has been discovered with abundance estimates suggesting that a 
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flourishing, reproductive and viable population is being maintained.  Also, observed 

movement between connected waters allows for gene flow and overall isolation may 

permit the existence of one of New Jersey’s remaining relict Brook Trout groups.  

Conservation of the once endemic native species has become a regional priority and a 

review of current lotic salmonid management strategies has identified some practices that 

may undermine protection efforts.  Suggestions to reverse declines and bolster unique 

populations include: 1) establishing a ‘Wild Native’ angling regulation, 2) creating 

stricter land use directives to support more natural flows, 3) curtailing or cessation of 

domestic salmonid stocking at larger catchment levels, 4) developing hatchery operation 

expansion to include indigenous origin fish, 5) removal of non-native fish from favorable 

standing within the State’s Wildlife Action Plan, and 6) obtaining new or reallocating 

current funds to support more research. 
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Chapter 1 

Introduction 

1.1 Background 

Prior to European settlement, North America harbored the greatest diversity 

worldwide of temperate freshwater fishes (Warren and Burr, 1994).  Currently about 20% 

of the aquatic species in the US are critically imperiled (Heinz Center, 2002), as are 40% 

of North America’s freshwater fish species (Walsh et al., 2009).  The endangered, 

threatened, or vulnerable status extends to 700 different taxa and has increased by 92% in 

the past 20 years (Jelks et al., 2008).  Additionally, three genera, twenty-seven species, 

and thirteen subspecies of North American fish have gone extinct in the last century 

(Miller et al., 1989).   

As a group of fish, salmonids serve as biological indicators, with their presence in 

an area pointing to waterbodies with high water quality (Behnke, 2000).  However, it is 

also known that salmonid populations have declined worldwide as a result of numerous 

anthropogenic activities (Fausch et al., 2006).  Brook Trout (Salvelinus fontinalis), 

Brown Trout (Salmo trutta), and Rainbow Trout (Oncorhynchus mykiss) are not 

threatened with extinction or extirpation in the region of this study, but because they are 

considered coldwater fish that require high levels of water quality and habitat to survive 

and reproduce, their breeding presence in a stream system is noteworthy.  New Jersey 

contains naturally reproducing populations of all three species (Hamilton and Barno, 

2005).     
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Brook Trout are indigenous to eastern North America and the only salmonid 

native to New Jersey.  MacCrimmon and Campbell (1969) relate that about 100 years ago 

these fish were found in abundance throughout most of the northern part of New Jersey.  

However, Hudy et al. (2005) have identified this species as experiencing large losses in 

the US, with 21% extirpation and 27% greatly reduced numbers throughout all the 

subwatersheds of their entire original range.  Moreover, New Jersey ranks in the top five 

US locations for percentage of total watersheds where Brook Trout have been extirpated 

(Hudy et al., 2005).  Due to these changes, Brook Trout have become a species of 

conservation concern (DeWeber and Wagner, 2015) with many state, federal, academic, 

and other conservation minded stakeholders taking an interest in understanding and 

rectifying the related issues at hand.        

Due to their demands for waters of a pristine nature and intolerance to disturbance 

(Steedman, 1988; Wehrly et al., 2003; Ficke et al., 2009), Brook Trout are seen as the 

most sensitive of New Jersey’s three stream salmonid species and extremely susceptible 

to environmental changes.  Several specific reasons have been suggested for causing 

native population declines, including warming of rivers from urbanization and dam 

building activities, fragmentation of systems by roads and dams, and competition with 

introduced non-native fish species (Hamilton and Barno, 2005; Hudy et al., 2005).  In 

spite of these anthropogenic alterations, Brook Trout are known to maintain naturally 

reproducing populations within 115 streams or stream sections at the most recent count 

(S. Collenburg, NJDFW Asst. Biologist, personal communication).   
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Brook Trout have been designated as a species of regional priority within New 

Jersey due to their declining numbers and native status (Niles et al., 2004).  Brook Trout 

require habitat that contains water of exceptional quality and identification of 

reproducing populations is a strong indicator of excellent overall water characteristics 

and minimally impacted watersheds.  Furthermore, their presence or absence in 

watersheds has taken on an even larger importance due to the recent demonstration by 

Hamilton (2007) that several of the state’s lotic systems hold relict populations related to 

those fish that swam in the region’s waters after the retreat of the Wisconsinan glaciation, 

approximately 20,000 years ago.  The identification of Brook Trout possessing a genetic 

structure of heritage stock elevates the status of all naturally reproducing fish for these 

groups are irreplaceable components to the region’s natural heritage and important 

components to biodiversity within the state.   

Many different attitudes exist as to how natural resources should be managed 

within the state of New Jersey (Responsive Management, 2003; 2010).  One prevailing 

approach involves end users obtaining as much as possible from natural systems when 

these places are open to exploitation.  This is possible due to regulators bearing the 

responsibility for ensuring these natural places are replenished with the goods and 

services being sought.  Nielsen (1999) explains that such a philosophy adheres to the 

maximum sustainable yield (MSY) concept.  As it relates to freshwater fisheries, this 

philosophy was most popular in the US between 1900 and 1950 and had wildlife 

managers stock and poison fish, build and modify water bodies, and regulate fish harvest 

“with the single aim of providing the greatest sustained quantity of fish” (Nielsen, 1999) 
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to meet the needs of recreational angling and replenish declining fish numbers.  Stocked 

fish were considered desirable as they fulfilled a need and their presence solved the 

perceived problem of not having ample supply of a resource.  Resource managers very 

ably, successfully, and efficiently met their goals.   

However, a newer approach has been formulated that is important to natural 

resource use and the systems from where they are found.  Since the mid-1970’s the 

concept of optimum sustainable yield (OSY) as a natural resource management strategy 

was identified.  Consideration was given to the reality that fisheries are multifaceted and 

include biological, ecological, sociological, and economic resource aspects (Nielsen, 

1999).  No longer was a fisheries managers’ single aim to maximize the physical fish 

yield.  Resource management was to proceed in a way that realized a unique management 

goal exists for each situation and each fishery.  In the US, fisheries are public resources 

held in trust by state and federal governments for the general use by all citizens and 

fishery management has been defined as, “the manipulation of aquatic organisms, aquatic 

environments, and their human users to produce sustained and ever increasing benefits 

for people” (Nielsen, 1999).    

It may be true that a MSY goal can be simpler to reach compared to OSY, 

especially concerning stocking a water body with catchable sized fish, but an OSY 

approach is much more practical for it considers the fact that aquatic ecosystems are 

diverse and the human needs related to them are equally as diverse (Nielsen, 1999).  

Currently, part of fishery management focuses on the possible return of self-sustaining 

populations.  Reliance on MSY goals for such sustainability is impossible, as even the 
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best efforts fail to include all parts of the equation.  Goals governed by OSY may be more 

difficult to reach, but they more rationally allow for attaining sustainability, as every 

aspect of the involved system is taken into account.   

Salmonids have been described as one of the most important natural resources in 

North America (Jones et al., 1996).  Dudgeon et al. (2006) relate that use of natural 

resources will undoubtedly involve compromise to meet the needs of all involved 

stakeholders.  Species preservation is difficult within the larger context of a regulated 

activity such as fishery management so goals that are grounded in conservation are more 

likely to be supported and attainable.  Nowhere is this more important than conserving 

the naturally reproducing Brook Trout populations of the New Jersey.  Searching for 

ways to assist in maintaining or even expanding these groups is paramount, because 

every self-sustaining population is potentially a relict and possesses irreplaceable 

fragments of the genetic structure of the species.  Through this research I seek to bring 

more clarity to the reasons for population strength and weakness and ultimately make 

advancements towards sustainability related to the management of freshwater fisheries 

within the state of New Jersey.   

 

1.2 Research objectives 

 

 The first objective of this study was to evaluate several abiotic factors that were 

hypothesized to influence the presence, absence, and abundance of naturally reproducing 

lotic salmonids within the state of New Jersey.  Through looking at historical and modern 
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sets of data, comparisons could be made to ascertain which land use or land cover or 

other characteristics may be driving the types, numbers, and range of wild salmonids 

found within stream segments.    

The second objective of this study was to ascertain the structure and movement of 

a previously unknown and potential relict Brook Trout group.  The discovery of 

undocumented assemblages of fish is evidence that there is still much to learn regarding 

how to manage resources appropriately, especially within the modern context of multiple 

stakeholders interested in resources for different purposes.  Furthermore, due to the noted 

decline in native salmonid populations in New Jersey, locating new native groups that are 

essentially cut off from the rest of the larger system and within the general vicinity of 

identified heritage fish could be useful for transplants or broodstock in future 

repopulation efforts.   

 The third objective of this research was to assess the management of salmonids 

within New Jersey with an emphasis on the only native species: Brook Trout.  Much has 

been done recently to assist in strengthening or expanding naturally reproducing native 

groups, but continuing conservation needs still exist.  Through a solid foundation based 

within related literature, practices that support, and those that may be undermining the 

process of wise management are investigated and suggestions are provided for a more 

sustainable pathway forward.      

 The fourth objective seeks to guide freshwater fishery coldwater salmonid 

management to include a movement toward sustainability.  Conclusions from personally 

conducted research are cast within the larger purpose of moving some currently 
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employed freshwater salmonids management strategies that are more MSY aligned to 

more of an OSY approach.  Freshwater fishery management has changed a great deal 

since its first inception and there is room to improve management strategies.  I believe 

this to be especially true with the added responsibility that has been incurred upon the 

revelation of irreplaceable components of our natural heritage still being amongst us 

today. 

 

1.3 Organization of thesis 

 

 All chapters are briefly introduced as follows: 

 Chapter 2, New Jersey’s Land Use and Land Cover Change; Effects on Trout 

Production Waters, evaluates the deterioration of naturally reproducing native salmonids, 

as well as the extent of wild groups of other lotic coldwater salmonid species.  

Additionally, reasons for observed changes are hypothesized with land use/land cover 

and other influential abiotic characteristics statistically correlated to salmonid species 

presence/absence and abundance between historical and modern data sets.     

Chapter 3, Headwaters case study: Raritan River-South Branch, Mt. Olive, New 

Jersey, assesses the potential for a previously unknown isolated group of naturally 

reproducing Brook Trout to be able to serve as a source of wild broodstock.  This 

research was conducted with mark and recapture methodology to assess population size 

and movement. The generation of population length-frequency histograms outlines the 

overall structure and movement of the individuals within the study area as well.  The 
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hypothesis of the existence of a thriving metapopulation is also investigated.  Such an 

isolated group remains as an important discovery for there is a high likelihood that it 

remains uncompromised and contains a new large collection of heritage genes. 

 Chapter 4, A Review of New Jersey’s Management of Brook Trout Production 

Waters, assesses the current management practices concerning New Jersey’s freshwater 

fisheries as related to lotic salmonids.  Due to New Jersey’s status of having some of the 

worst population declines within the natural range of native Brook Trout, a qualitative 

assessment evaluates current and past management practices to assist in elucidating some 

reasons for the present level of the natural resource.  Suggestions for additional 

approaches to help with bolstering native Brook Trout populations are offered with 

reasons for the incorporation of each outlined.      

 Chapter 5, A Movement Toward Sustainability, acknowledges the current status 

and efforts of freshwater fisheries management as it related to salmonids in New Jersey.  

The chapter also synthesizes what has been learned throughout this research and makes 

suggestions for a pathway forward to include a more sustainable component into 

freshwater fishery management within the state.  Like any philosophical change, progress 

may take time for a newer paradigm to gain in practice or popularity.  My attempt here is 

to create another opportunity for the concept of OSY to find a more successful place 

within a regulatory framework that is required to meet the needs of many different end 

users.   
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Chapter 2 

New Jersey’s Land Use and Land Cover Change; Effects on Trout Production 

Waters 

Abstract 

 Despite having only one native trout species, New Jersey provides valuable lotic 

waters supporting three wild salmonids: Brook Trout (Salvelinus fontinalis), Brown Trout 

(Salmo trutta), and Rainbow Trout (Oncorhynchus mykiss).  Found mainly in the 

northern part of this highly urbanized state, naturally reproducing populations of these 

coldwater fish are considered precious natural resources.  However, it is commonly 

believed that Brook Trout numbers have declined in response to numerous environmental 

stressors over the last one hundred and fifty years.  To more clearly evaluate the 

deterioration extent and assess numbers of breeding Brown and Rainbow Trout groups, 

this work makes comparisons between sets of historical (1968-1977) and modern (2001-

2010) young-of-the-year presence/absence and abundance data and several land use, land 

cover, and other geologic characteristics hypothesized to influence species’ occurrence.  

Investigations determine if relationships exist between factors at survey locations within 

each time frame.  This research suggests that the ranges of reproducing Brown Trout 

populations are expanding, while similar groups of Rainbow and Brook Trout, as well as 

the overall amount of non-trout water, have all decreased slightly.  Results showed that 

land use and land cover catchment value thresholds exist at < 12% agriculture, < 22% 

barren and urban, > 64% wetland and forest, and < 4-6% impervious cover to allow for 

natural Brook Trout reproduction.  Similarly, values uncovered for Brown Trout 
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reproduction include < 14% agriculture, < 27% barren and urban, > 58% wetland and 

forest, and < 5-7% impervious cover. 

 

2.1 Introduction 

 

New Jersey’s lotic trout supporting waters are currently located primarily in the 

northwestern portion (Figure 2-1) (Hamilton and Minervini, 1981; Hamilton and Barno, 

2005) of this highly urbanized state (Brown et al., 2005).  For the aesthetic, recreational, 

and other natural services provided, watersheds that maintain reproducing groups of these 

coldwater fish are extremely valuable and remain as important resources and popular 

destinations for the residents of this state (Responsive Management, 2003; 2010).  

Hamilton and Barno (2005) relate that streams and rivers in the Piedmont, Highlands, and 

Ridge and Valley physiographic provinces are known to hold natural groups of three 

trout and char species: Brook Trout, (Salvelinus fontinalis), Brown Trout (Salmo trutta), 

and Rainbow Trout (Oncorhynchus mykiss).  All belong to the subfamily Salmoninae of 

the Salmonidae family and, along with their specific names, collectively will also be 

referenced as salmonids throughout this writing. 

Brook Trout are the only native salmonid to the state, but continued stocking for 

recreational angling purposes from as far back as the late 1800s and early 1900s has 

resulted in self-sustaining or naturalized populations of Rainbow and Brown Trout 

(Hamilton and Barno, 2005), as well as possibly domestic lineage Brook Trout strains.  

Hamilton and Barno (2005) also relate that 175 streams or stream sections have been 
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identified as holding wild fish, which equates to about 5% of all of the streams of the 

state and composes over 1,000 miles (about 1,600 km) of water.  Soldwedel (1979) 

tabulated the earliest number of streams or stream sections holding wild fish at 95.  

However, additional waters continue to be identified and added to this list during periodic 

re-inventory survey activities or as additional finer scale investigations discover 

previously unknown populations (Hamilton and Barno, 2005; Diglio and Bologna, 2012).     

It has long been recognized that the existence of trout in an area strongly 

correlates with excellent water quality (Steedman, 1988; Hamilton and Barno, 2005; 

Ficke et al., 2009).  Hamilton and Barno (2005) report that identification and 

classification of New Jersey’s waters specifically for the presence of trout did not 

earnestly begin for Fish and Wildlife managers until 1968 and continued until 1972.  

During that time, ninety-five sampling sites provided data that were then used to establish 

a standard that could categorize the ability of a stream to support coldwater trout species.  

Managers used the data from this original five year effort to group waters into those that 

contain naturally reproducing salmonids, as well as the presence or absence of trout 

and/or trout associated species. 

Soldwedel (1979) presents a list of the sampled waters and their subsequent 

classifications which in 1981 were officially recognized within the Department of 

Environmental Protection’s Division of Water Resources under the State’s Surface Water 

Quality Standards.  These criteria essentially state that the more likely a waterway is to 

support trout, the greater its level of categorization and the more protection it receives 

(NJDEP, 2011).  These standards still remain today as surveyed waters are placed into the 



12 

  

 

 

following three classifications; 1) trout production, used by trout for spawning or nursery 

purposes during their first summer of life, 2) trout maintenance, used for the support of 

trout throughout the year, 3) non-trout, not used by trout for production or maintenance 

purposes.  The New Jersey Surface Water Quality Standards are listed under N.J.A.C. 

7:9B (NJDEP, 2011).    

Trout production waters receive more strict regulatory land use restrictions.  

Streams earn such status when sampling identifies young-of-the-year (YOY) of any 

coldwater salmonid species during the summer months.  Finding this age class of fish is 

extremely important because if found, it is likely they came from parents that spawned 

towards the end of the previous calendar year, making these offspring less than one year 

old upon summer capture.  It is well known that trout require exceptional water quality 

and habitat to reproduce naturally and the existence of wild individuals points to 

unspoiled water conditions (Raleigh, 1982; Raleigh et al., 1984; Raleigh et al., 1986; 

Lyons et al., 1996).  In the northern tier of New Jersey self-sustaining groups of these fish 

serve as biological indicators of the overall health of not only the waters in which they 

inhabit, but for the surrounding lands as well.  Their breeding presence is an excellent 

indicator of high overall water quality, habitat, and minimally impacted watersheds.  An 

observed absence of a previously noted existing wild group can be a cause for concern, as 

can a drop in overall population numbers or particular age class, especially the reduction 

or loss of YOY (Fausch, 1988; Schueler, 1994; Karr and Chu, 2000; Fausch, 2007; Steen 

et al., 2008).  
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Despite the land use regulatory protections designed to assist in preventing 

potential fish losses, Hamilton and Barno (2005) and Hudy et al. (2005) suggest that over 

the last century the most important factors influencing native trout populations in the 

state are due to increases in anthropogenic land use practices and have led to a decline in 

overall numbers and total watersheds inhabited.  Specific problems seen in New Jersey 

are warming of rivers from urbanization and dam building activities, fragmentation of 

systems by roads and dams, and competition with introduced non-native fish species.  

MacCrimmon and Campbell (1969) relate that about 100 years ago Brook Trout were 

found in abundance throughout most of the northern part of the state and Hudy et al. 

(2005) has ranked the New Jersey in the top five US locations for percentage of total 

watersheds where these fish have been extirpated.   

It is known that Brown and Rainbow Trout have the ability to competitively 

exclude Brook Trout through displacement due to more aggressive behavior (Fausch and 

White, 1981; Moore et al., 1983; Waters, 1983; Larson and Moore, 1985; Dewald and 

Wilzbach, 1992; Lohr and West, 1992), direct predation (Alexander, 1977), higher 

growth rate (Waters, 1983; Lyons et al., 1996; McKenna et al., 2013), greater fecundity 

(Clark and Rose, 1997), and taking advantage of erratic flow regime disturbance and 

related year class disruptions or failures (Waters, 1983; Clark and Rose, 1997; Fausch, 

2008).  It can be assumed that reproducing populations of all three species are going to 

interact with each other in New Jersey streams.  Additionally, since Brown and Rainbow 

Trout are known to be tolerant of higher water temperatures (Magoulick and Wilzbach, 

1998; Watson, 1999; Zorn et al., 2002; Baird and Krueger, 2003; Wehrly et al., 2003; 
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McKenna et al., 2013), related loss of forested land cover and altered surface and 

groundwater flows that follow increases in urbanization necessarily leads to warming of 

streams, lower overall water quality, and creates a circumstance for native Brook Trout 

numbers to decline and succumb to population replacement.           

As native Brook Trout populations have dwindled to relicts of their former 

prominence in New Jersey, concern for their return to sustainable levels has called for 

ameliorative action to increase the following for this species: individual abundance 

levels, numbers of overall populations and related metapopulations, and direct 

connectivity of as many groups as possible.  The best ways to achieve these ambitions 

still remain unknown.  Recognized in Hamilton and Barno (2005), the need exists to 

manage the State’s coldwater lotic systems in such a way that allows wild populations of 

all three trout species an opportunity to thrive.  To assist with meeting that goal, 

previously sampled locations continue to be revisited by New Jersey Division of Fish and 

Wildlife (NJDFW) officials and undergo re-inventory surveys.  Any trout production 

streams having historical data continue to be re-sampled to obtain current information, 

with the original waters from Soldwedel (1979) being re-sampled first in this effort.  All 

data have been entered into NJDFW database Fish Track, which allows for comparisons 

between historical and modern examinations. 

Determination of biological changes that have taken place over the decades within 

identified fluvial locations is important.  Karr and Dudley (1981) define the biological 

integrity of aquatic ecosystems as “the capability of supporting and maintaining a 

balanced, integrated, adaptive community of organisms having a species composition, 
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diversity, and functional organization comparable to that of natural habitat of the region.”  

Fish community assemblages are excellent indicators of the relative health of the aquatic 

ecosystem in which they are found and both are also known to be reflections of the 

surrounding watershed conditions (Fausch et al., 1990).  Other than natural 

environmental fluctuations and stochastic events, Fausch et al. (1990) state that the main 

agents of stress in communities of fish are human induced disturbances.  Such actions 

often lead to environmental decline.  Impairment levels or information related to 

important deterioration thresholds can go unnoticed unless some measureable way of 

observing them exists.   

Fish are used as indicators of environmental change because they hold a high 

level of economic and aesthetic value (Responsive Management, 2003; 2010) and the 

public generally understands when declines occur and support corrective actions that 

address deterioration (Karr, 1981) brought about by anthropogenic activities.  Compared 

to other organisms used for biological monitoring, fish are extremely helpful in this 

regard because they can be affected by many direct and indirect stressors and since they 

are generally long-lived, their populations reflect a lengthy and cumulative record of 

environmental impacts (Karr et al., 1986; Fausch et al., 1990).  The Index of Biotic 

Integrity, or IBI, was designed as a tool used to assess the quality of running waters based 

upon the types and amounts of fish found in different regions of the US (Karr, 1981; Karr 

et al., 1986).  Kurtenbach (1994) created the IBI for fish in northern New Jersey (NJFIBI) 

that was later refined and adjusted (Vile, 2008) to better meet the specific attributes found 

in the region.  When employing this method, researchers collect fish using standard 
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electrofishing protocols (Barbour et al., 1999) within a 150 m length and all individuals 

are identified to the species level and enumerated.  Vile (2008) reports that subsequent 

data sets are organized by ten specific metrics and each category earns a score of one, 

three, or five (Table 2-1).  All scores are summed and waters attain a final tabulation 

from 10-50 that ultimately rank locations as poor (10-28), fair (29-36), good (37-44), and 

excellent (45-50) (Vile, 2008). 

Within the NJFIBI, two metrics specifically focus on trout; metric three looks at 

the number of total trout in the survey and metric eight calculates the proportion of all 

individuals in a sample as trout.  Trout are viewed as important indicators of overall 

stream health because of their sensitivity and need for excellent water quality.  However, 

the mere presence of trout in a body of water does not always indicate areas are of high 

condition.  If averaged, over the last four years NJDFW annually stocks over 596,000 

Brook, Brown, and Rainbow Trout (NJDFW, 2015), so finding a coldwater salmonid 

may only mean a fish was released in that locale or moved there from a nearby stocking 

point.  A better gauge of a stream’s well-being concerns finding trout that were born in a 

particular waterbody.  Locating YOY salmonids during the summer months when stream 

conditions are severe due to waters typically being at base-flow and temperatures are 

elevated, suggests it was born within the system.  Finding coldwater fish under such 

stressful conditions suggests exceptional water quality exists throughout the year 

affording trout the opportunity to survive.  All three species of New Jersey’s lotic trout 

spawn in the fall or early winter and it is known that this occurrence takes place naturally 

for Brook and Brown Trout.  Recent observations in a study previously being conducted 
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under the guidance of NJDFW have identified Rainbow Trout redds in the autumn as 

well (B. Neilan, pers. comm.).     

Many researchers have relied on trout presence or absence (P/A) data to ascertain 

stream water quality (Barton, et al., 1985; Steedman, 1988; Wang et al., 2003b; 

Vondracek et al., 2005; Stanfield et al., 2006; Steen et al., 2006; Steen et al., 2008; 

Stranko et al., 2008; Smith and Sklarew, 2012), while others have focused on trout 

abundance or fish density per sample length (Steedman, 1988; Wang et al., 2003b; 

McKenna and Johnson, 2011; Smith and Sklarew, 2012) to gain an understanding of the 

characteristics of the waters from where the fish were sampled.  Both total biomass and 

P/A numbers are influenced by landscapes and land use surrounding flowing waters in 

numerous ways, including temperature fluctuations, changes in flow rates, and associated 

sedimentation rates (Wang et al., 1997; Diana et al., 2006).  Such biological metrics are 

extremely useful in providing information on fish stock health in sample reaches 

(McKenna and Johnson, 2011) and present helpful insights into what is occurring in the 

watershed and waterbody from where they drain.  Relationships of this nature are true for 

the members of the Salmonidae family, with impacts readily affecting all of the trout, 

salmon, and char of the subfamily Salmoninae.  Such connections are most easily 

observable related to New Jersey’s least tolerant species, the Brook Trout (Lyons et al., 

1996; Stranko, et al. 2008).  

Wang et al. (2003b) explain that P/A shows how frequent fish are found, while 

abundance numbers relate the success level of a species.  Smith and Sklarew (2012) 

suggest that abundance numbers are a more nuanced description of the relationship 
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between trout and another metric because fish quantity more strongly correlated to land 

characteristics than simple P/A.  Both quantitative strategies are included in this current 

research.  The purpose of this chapter is to tie specific survey location YOY trout species 

P/A or abundance numbers to particular LU/LC characteristics measured between two 

time periods.  Understanding connections of this nature are essential to managing fish 

populations and may uncover answers as to why some populations have remained stable 

and why changes have occurred in others.  Observed threshold levels may help to explain 

fish assemblage changes and can assist in directing conservation, restoration, and other 

future fishery resource management actions. 

 

2.2  Methods 

 

Paper copies of the sample locations identified in the Solwedel (1979) original 

five year endeavor (1968-1972) were obtained from the data housed at the NJDFW 

Bureau of Freshwater Fisheries (BFF) Lebanon, NJ Field Office.  All original data sheets 

were assessed to verify information accuracy and extensive efforts were taken to validate 

all sample locations.  It was discovered that some information in the original report was 

inaccurate and some records remained unconfirmed.  In several instances data sheets 

clearly identified YOY trout in surveys, but waters were listed as trout maintenance, or 

even non-trout.  Additionally, several reasons for excluding specific surveys or survey 

data include lost, incorrect, or indiscernible information contained on the data sheets; 

mistaken follow-up survey locations; locations that contained no water upon the follow 
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up effort; or sites that had any portion of their upstream catchment contained in another 

state.  The survey locations with portions of their watershed outside New Jersey were 

eliminated because I was unable to obtain land use and land cover information for these 

catchments.  In light of the inability to validate certain records and the discovery that a 

more expansive pool of data existed, the dates of the earliest work were expanded to 

include surveys up until the year 1977.  Modern comparison data were then expanded 

from the original 2001-2005 time frame to include surveys up to and including 2010.   

Through the combination of original data sheet hard copies, a Fish Track catalog 

data pull, and ArcGIS (version 9; Environmental Systems Research Institute (ESRI), 

Redlands, CA) geographic information system mapping software, I confirmed eighty 

survey pairs (one hundred sixty sample events) that met the criteria of occurring within 

the delineated time frame, in the proper stream location, and containing YOY in one of 

the two surveys.  While modern surveys include latitude and longitude coordinates that 

were plottable on GIS mapping software, equivalent information for the beginning time 

frame does not exist as GPS was not yet commercially available.  In these instances, 

corresponding site positions were ascertained from included survey location descriptions 

and checked against appropriate GIS layers.  Examples of descriptors that aided in this 

process include noted road and bridge crossings, village names, and other listed natural 

and man-made landmarks.  Sites were also indicated on paper United States Geologic 

Survey 1:24,000 topographic quadrangle maps housed at the BFF and compared for 

reference.  For a variety of reasons, some of the intended analogous positions did not 
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exactly match up, but such situations were still considered a valid match as long as the 

sample points were within 0.25 miles (about 400 m) of each other. 

The total upstream land area draining to each plotted point can be defined as a 

catchment (Brenden et al., 2006; Johnson et al., 2009).  I used digitized United States 

Geologic Survey topographic maps, the contour lines and they contain, and ArcGIS to 

digitally hand draw the lower boundary of each drainage area, as other researchers have 

done (Steedman, 1988; Wang et al., 2000; Stranko et al., 2008).  To ascertain the total 

upstream land area of combined catchments that would affect each survey point, the 

drawn edge was then incorporated into the available USGS National Hydrography 

Dataset Plus (NHDPlus, 2006) elevation-derived catchment drainage area GIS layer.  

Watershed catchment shape files for each location were then placed over GIS vector or 

raster layers of abiotic characteristics that were hypothesized to be influential in trout 

YOY P/A and overall abundance.  Shapefiles were clipped out for each characteristic 

(converting raster data to vectors when needed) and adjusted attribute tables allowed for 

each factor’s total acre or percentage calculation.   

From the accompanying listed GIS layers, I determined watershed catchment 

information for the following characteristics: bedrock geology (NJDEP/NJGS, 1999), 

1972 land cover (CRSSA, 2000), and 2007 land use/land cover (NJDEP, 2010).  Due to 

the relative influence bedrock can have on salmonid populations (Weiss and Schmutz, 

1999), I further divided the bedrock geology information into two categories: rocks that 

are composed of carbonates (limestone or dolomite) and rocks that are considered non-

carbonates (all others).  Average yearly base-flow (BFI) (Wolock, 2003) was also 
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included.  Base-flow is the component of streamflow that is attributable to ground-water 

discharge in streams and the BFI is a ratio of base-flow to total flow volume expressed as 

a percentage for a given year.  While not as precise as other analysis, the approach is 

consistent, indicative of base-flow levels, and relies on a grid that was interpolated from 

point value estimates for USGS stream gages (Wolock, 2003).  Additionally, based on 

Anderson et al. (1976), the 1972 and 2007 land use/land cover data were organized into 

the following six different groupings: agriculture (AG), barren (BAR), developed/urban 

(DEV), forest (FOR), open water (WAT), and wetland (WET).  Lastly, the 2007 data 

included impervious surface acreage.  It was included within the attribute information 

and converted into percentage of the catchment area.  These are henceforth referenced as 

impervious cover.                

As with the current approach, electrofishing was the main method used to sample 

streams in the late 1960s and early to mid-1970s.  During the modern era, stream 

sampling procedures follow those outlined in Hamilton and Barno (2005) and mirror the 

specifics presented in Environmental Protection Agency’s (EPA) ‘Rapid Bioassessment 

Protocols for Use In Wadeable Streams and Rivers’ (Barbour et al., 1999).  With block 

nets situated to signal the ending point, a single up-stream pass is made through a 150 m 

section of water.  Depending on the size of the waterbody (Dunham et al., 2009), single 

or multiple backpack units, a streamside generator or one positioned on a floatable barge 

employ one to four amps of pulsed direct electric current to sample the waterbody.  Upon 

completion of the measured distance, individual fish were enumerated by species and 

total length measurements in millimeters taken on all salmonids.  The previous 
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generation of field work relied on an alternating current generator with about 2 amps of 

current flow to sample six-hundred feet of stream, or the equivalent of just less than 183 

m.  To coincide with factors that are known to limit the range and survivability of 

coldwater salmonids, surveys occurred in the summer months from June through mid-

September in both the current and historical sampling cases.  During these months, 

stream base-flow conditions exist and potentially the warmest water temperatures of the 

year are expected. 

Currently, any trout found to be less than 100 mm in total length at this time of 

year is considered to be a YOY individual (Hamilton and Barno, 2005).  While the 

surveys of the late 1960s and early 1970s did not always take specific fish length 

measurements, the biologists’ professional judgment categorized individuals into two age 

class distinctions, YOY and all others (sub-adults as well as adults).  I believe these 

youngest individuals were around the significant 100 mm YOY size limit of today’s 

standards. 

Hypothesized abiotic factors related to YOY abundance of the three New Jersey 

resident salmonid species were compared using Pearson correlation coefficient (r) 

analysis (SAS®(PROC CORR), Cary, NC).  Others have looked for data trends in a 

similar way (Diana et al., 2006; Wang et al., 2000; Rashleigh et al., 2005; Wang et al., 

2000).  More specifically, abiotic values were set against the YOY number of each 

species in each time frame, the total combined YOY value of all species per survey 

(either 183 m or 150 m, depending on whether the data were historical or modern 

respectively), and the number of each species YOY per meter.  Where each variable was 



23 

  

 

 

evaluated against each other variable, as well as throughout all statistical analyses in this 

research, findings were considered significant if p < 0.05. 

Additionally, UseableStats (Measuring Usability LLC, Denver, CO) statistical 

software was employed to compare YOY presence or absence of all three trout species 

individually to percentage and total overall land use or land cover acreage variables.  The 

six LU/LC categories previously used were modified to create four data groups (sensu 

Diana et al., 2006).  The agriculture and open water metrics remained the same, but I 

combined the numbers for barren and developed LU/LC to reflect a how these places are 

in a more disturbed state, and wetlands and forests were joined to echo their more natural 

condition.  Other similar studies have used different types of t-tests to understand their 

data (Wang et al., 1997; Wang et al., 2000).  My efforts relied on the use of a two sample 

t-test of independent means by way of the Welch-Satterthwaite procedure to determine 

the relationship and discover the means of different land uses on particular species YOY 

P/A percentage and total acres LU/LC between the two time frames.  Statistically 

significant values (α=0.05) reflect differences in land use between where YOY were 

collected (present) versus where YOY were not gathered (absent).  Due to the 

heteroscedacity of the gathered land use data for each particular category, as seen in 

Steen et al. (2006), mathematical transformations were performed to homogenize the 

variance for each group through the use of arcsin for the percentage values and square 

root for the total acre information.   

Moreover, t-tests were conducted to make comparisons of YOY presence in each 

time period to overall total subwatershed acreage size.  Further use of t-tests involved the 
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NJFIBI.  Since this metric is only able to assess the health of lotic systems in those places 

that have catchments of at least 5 miles squared (about 8.1 square kilometers), I created a 

spreadsheet template in Microsoft Excel (Microsoft Office 10, Redman, WA) and 

following Vile (2008), generated an IBI score at twenty-four locations of my 80 paired 

historical and modern sample sites and compared calculated means.  Finally, t-tests were 

again used with percentage and total acreage LU/LC and YOY species P/A data to make 

comparisons between the characteristics of catchment values when shifts (losses or gains) 

of each species took place.  In the same way, I also investigated LU/LC changes for 

waters classified as trout production, regardless of the species, and those known to be of a 

non-trout quality. 

 

2.3 Results 

 

 Eighty individual sample locations from seventy-six different streams and rivers 

were used in this study and account for one hundred sixty total surveys.  Between the 

catchments in the survey locations and the two studied time frames, the mean value of 

farmed, forested, and wetland LU/LC in New Jersey has dropped, while the amount of 

barren and developed land and amount of open water has increased.  Significant changes 

in LU/LC occurred in barren areas (t = 2.7, p = 0.007), developed places (t = 10.6, p < 

0.001), and forested lands (t = -5.25, p < 0.001). During this same time period the overall 

mean IBI score for the 24 catchment locations that were large enough to be included 

within in this research has increased significantly (t = 3.19, p = 0.003) (Table 2-2).  On 
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average the earlier time frame had a score of 34 and rose to a value of 40.  In terms of the 

IBI rank scale, the scores moved positively from fair to good. 

With the exception of one species, the general breakdown of the presence or 

absence of young-of-the-year by stream during the two time frames of this study 

remained generally stable (Table 2-3).  From the 1968-1977 (historical) data set, Brook 

Trout YOY were present in 41 streams and absent in 39, Brown Trout YOY were present 

in 32 streams and absent in 48, and Rainbow Trout YOY were present in 9 streams and 

absent in 71.  A total of 11 streams were of non-trout classification in the historical time 

frame, but were later able to be classified as trout production.  In the 2001-2010 (modern) 

data set, Brook Trout YOY were present in 42 streams and absent in 38, while Brown 

Trout YOY were present in 46 streams and absent in 34, Rainbow Trout were present in 

8 water bodies and absent in 72 stream.  Additionally, seven streams that were trout 

production on the earlier data set were found to contain no trout in the latter time frame. 

Specific changes include ten streams that did not find Brook Trout in the second 

survey, while eleven water bodies showed new Brook Trout presence (Table 2-4, A and 

B).  Brown Trout were not located again in seven places, but were gained in twenty-one 

cases (Table 2-4, C).  Rainbow Trout were not gathered again from five waters, but 

subsequently found in four surveys.  In seven instances trout production waters turned 

into non-trout areas, and conversely, in eleven situations non-trout waters we able to be 

reclassified as trout production after the second survey (Table 2-4, D and E). 

Many changes have taken place in the presence and absence of the three species 

of coldwater salmonids’ young-of-the-year in New Jersey’s lotic ecosystems (Appendix 
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A).  By way of locating the presence of YOY, reproducing populations of Brook Trout 

were found in 52 of the 160 surveys at one time or another and they were present in both 

time frames at 31 of the 80 locations.  There were ten instances where these fish were 

found in the first time frame (Table 2-4, A), with Brown Trout replacing the Brooks in 

three instances.  In three other reclassification losses, Brook Trout were found living with 

Brown Trout in the first time frame, but after the second survey only Brown Trout were 

sampled.  In one other instance, sampled waters were first known to contain Brook Trout 

with Rainbow Trout, but later only Brown and Rainbow Trout were found.  In the 

remaining three locations that originally contained Brook Trout, no young-of-the-year 

trout of any trout species were encountered in the second sampling.  In eleven other 

locations, Brook Trout were collected in the second survey after not being seen in the 

historical sampling (Table 2-4, B).  Two of the gains had non-trout waters turn into 

Brook Trout production areas, and in another original non-trout area had the survey 

location later hold both Brook and Brown Trout.  Two other surveys had Brook Trout 

replace Brown Trout, and one had Brook Trout replace Rainbow Trout.  In four instances 

Brown Trout waters gave way to Brook and Brown Trout living together, and one case 

had Brown Trout now sharing space with Brook and Rainbow Trout when historically 

waters were purely Brown Trout. 

Study results concerning Brown Trout show that YOY were located at 53 of the 

160 surveys at some point during either time frame and Brown Trout were found upon 

both inspections 25 times.  Brown Trout were not collected from the recent surveys in 

seven instances.  In three cases Brown Trout waters turned into non-trout areas, in two 
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cases reproducing populations consisting solely of Brown Trout were replaced by Brook 

Trout, and in two other instances waters where Brook and Brown Trout were historically 

found together have turned into Brook Trout only waters.  Conversely, Brown Trout were 

collected in the second survey in 21 streams where they had not been previously found 

(Table 2-4, C).  Specifically, in ten cases only Brown Trout were found most recently 

with three occasions of allopatric Brook Trout waters changing to allopatric Brown Trout 

locations and seven non-trout areas becoming allopatric Brown Trout.  Seven other times 

had historical Brook Trout waters give way to Brook Trout sharing space with Brown 

Trout.  In one case solely Rainbow Trout waters changed to a Rainbow and Brown Trout 

location.  Finally, in one instance Brook and Rainbow Trout YOY found originally in 

sympatry were replaced by sympatric Brown and Rainbow Trout groups, and in another 

case, sympatric Brook and Rainbow Trout changed to a sympatric Brook and Brown 

stream section in the modern work.   

Lastly, Rainbow Trout YOY were present in both surveys only 4 of the 80 sample 

times, but were sampled in 13 locations out of the 160 at one time or another.  Generally, 

from the historical to modern surveys, reproducing populations were not identified in five 

streams and four streams gained wild groups of Rainbow Trout.  Specifically, one stream 

would be reclassified as non-trout, one changed from Brook and Rainbow Trout to Brook 

and Brown Trout, and another went from Brook and Rainbow Trout to Brook Trout only.  

Finally, Rainbows were replaced by Brooks once, and Rainbows living with Browns 

changed to allopatric Brown Trout waters one time also.  On the other hand, four 

locations saw waters gain young-of-the-year Rainbow Trout.  One went from non-trout to 
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trout production, two went from Brown Trout only to Brown and Rainbow Trout, and a 

sole location changed from only Brown Trout to Brown, Brook, and Rainbow Trout 

waters.  

It is also noteworthy that in seven instances waters originally classified as trout 

production were later found to be non-trout (Table 2-4, D) and in eleven other cases non-

trout locations were reclassified as trout production (Table 2-4, E).  Losses include three 

waters that initially contained Brook Trout, three that contained Brown Trout, and one 

known to hold Rainbow Trout.  Newly classified trout production streams occurred three 

times to include Brook Trout, twice as the only species present and once in sympatry with 

Brown Trout.  Seven streams were reclassified from non-trout waters to Brown Trout 

production and one was reclassified from non-trout to Rainbow Trout production.  Figure 

2-2 illustrates the relative presence of breakdown YOY occurring in stream segments of 

all salmonid species for the two survey periods.  Comparatively, of the waters included in 

the survey, non-trout areas have decreased from 14% to 9%.  Additionally, my findings 

suggest that the overall range of the reproducing Brook Trout and Rainbow Trout has 

shrunk but, the areas where wild Brown Trout are found is expanding.  Allopatric Brook 

Trout waters have decreased in from 36% to 30% and sympatry with Browns has gone up 

from 11% to 21%.  Brook Trout sympatry with Rainbow Trout has decreased to zero 

(from 4%) and although minor, total percentages of times Brook Trout were involved in 

surveys rose from 51% to 52%.   

Brown Trout locations have increased from 40% to 57%, with 30% as allopatric, 

21% as sympatric with Brooks, and 6% with Rainbows or Rainbows and Brooks.  
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Percentage of Rainbow Trout waters has decreased from the historical work to the 

modern surveys from 6% to 4%.  Overall, total percentage of waters where YOY 

Rainbow Trout were found in any capacity have dropped slightly from 11% to 10%, with 

no modern groups seen living with Brook Trout when historically 4% did.  An increase of 

sympatry between Rainbows and Brown Trout occurred as numbers have gone from 1% 

to 5%.  In the modern work, one instance (1%) was found where Rainbow Trout YOY 

were sampled alongside Brown and Brook Trout YOY.  In conclusion, numbers of waters 

holding Rainbow and Brook Trout YOY have given way to either allopatric Brown Trout 

waters or waters with Brooks and Browns or Rainbows and Browns living in sympatry.  

Loss of allopatric Brook Trout YOY in the second time frame is also higher than either 

allopatric Brown or Rainbow Trout losses. 

Brook Trout YOY abundance and number per meter correlation results were 

weakly negative surrounding the total acreage data from the 1972 time frame related to 

agriculture (AG) (r = -0.229, p = 0.0406), developed (DEV) (r = -0.21859, p = 0.0514) 

and forest (FOR) (r= -0.22516, p = 0.0446) LU/LC.  The number of total acres (TOT) 

from the 1972 time frame also displayed a weakly negative correlation (r = -0.2429, p = 

0.0299) (Table 2-5).  I did not see similar relationships with any other variables in this 

specific scenario, in the acre category devoted to land uses of the 2007 data, or with 

percentage land uses for either time frame. 

Significance of the other non LU/LC data occurred for YOY from the 2007 

timeframe (Table 2-6).  Specifically, a positive relationship occurred between percent 

impervious cover (IC) and amount of developed acres (r = 0.24267, p = 0.0301), the 
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percent of catchments in developed LU/LC (r = 0.88657, p < 0.001) and a strong 

negative relationship took place between IC and percentage forest LU/LC (r = 0.55855, p 

< 0.0001).  Significant results occurred involving the average base-flow (BFI) 

characteristic and percentages of LU/LC devoted to developed and forested areas, as well 

as percent land covered with impervious surfaces.  I found a strong positive correlation 

between average base-flow and impervious cover (r = 0.44855, p < 0.0001), and there 

was a strong positive relationship between BFI and percentage developed land (r = 

0.42859, p < 0.0001), and a strong negative relationship between BFI and percentage 

forest (r = -0.40724, p = 0.0002).  No other significant results occurred in the 

correlations. 

Additionally relationships between P/A and LU/LC parameters, when traits were 

grouped in a way that linked similarities of how the land was modified as percent 

agriculture (AG), barren and developed (BAR+DEV) (altered), wetlands and forest 

(WET+FOR) (natural), and open water (WAT) a few cases of significance were seen 

(Table 2-7).  No clear trends in the percentage LU/LC data emerged between both time 

frames.  However, significance occurred in the historical association of Brook Trout 

related to the BAR+DEV parameter.  Natives were present in surveys when catchments 

were on average 3% covered with this altered LU/LC type and absent when altered lands 

reached 7% (t = 2.890, p = 0.0051).  Open water significantly affected Brook Trout 

presence also, but this took place in the modern surveys.  The threshold at which Brook 

Trout were no longer occurring in samples was seen for open water at 1.5% (t = 2.248, p 

= 0.0290).  Also from the modern surveys Brown Trout were influenced significantly by 
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the natural LU/LC (WET+ FOR) in that they were present in catchments that contained 

on average 58% natural cover, but were no longer recorded when watershed averaged 

67% (t = 2.205, p = 0.0312).  Also in the modern surveys set Rainbow Trout were more 

often found in areas of low agriculture land use and in general, when agriculture 

exceeded 13%, this species did not occur (t = 4.888, p < 0.0001).  Finally, waters that 

became non-trout in the modern surveys showed increases in disturbed habitats 

(BAR+DEV) than trout production waters, with 14% and 26% seen respectively (t = 

2.353, p = 0.0508), as well as for open waters at 2.5% and 1.2% (t = 2.306, p = 0.0415).  

No other statistical significance was found in the data as related to percentage LU/LC and 

P/A. 

Total acreage of each LU/LC parameter had a more significant role with trout 

YOY presence and absence in survey locations than overall percentage data (Table 2-8).  

Not surprisingly, but most noteworthy, is the fact that Brook Trout were significantly and 

consistently (occurring in both time frames) present in catchments that averaged smaller 

total acreage than where they were absent.  Historically these fish were located in 

catchments averaging 1,783 acres and absent when areas averaged 6,108 acres (t = 3.858, 

p = 0.0003).  In the modern data set, Brook Trout were present when catchments 

averaged 2, 119 acres and absent when places averaged 5,850 acres (t = 3.129, p = 

0.0030).  I did also discover significance in both the historical and modern time frames 

concerning Brook Trout and sensitivity to total acreage for all LU/LC characteristics.  

Again, they were always found where agriculture (AG) (t = 2.859, p = 0.0188 and t = 

2.5145, p = 0.0309), disturbed areas (BAR+DEV) (t = 4.819, p = 0.0018 and t = 3.637, p 
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= 0.0163), and open water (WAT) acres (t = 2.577, p = 0.0133 and t = 2.824, p = 0.070) 

were lowest.  However, these fish were also always found were natural areas 

(WET+FOR) (t = 3.569, p = 0.0168 and t = 2.638, p = 0.0683) were lowest, a result 

which is counterintuitive to high quality habitat which yields good water quality.  

Interestingly, the significant t - test results from the historical time frame have 

connections to the correlations from that time as well. Agriculture, developed, and 

forested lands all have negative relationships to Brook Trout abundance and number per 

meter.     

 Furthermore, from the modern surveys, I found that Brown Trout YOY were on 

average more likely to be located where agriculture (AG) (t = -2.228, p = 0.0288) and 

disturbed (BAR+DEV) (t = -2.750, p = 0.0074) was higher and were absent where these 

land uses were lower on average.  Rainbow Trout were again associated with lower total 

amount of agriculture (AG) (t = 2.052, p = 0.0002).  Finally, the historical surveys 

showed that non-trout waters were much more associated with disturbed (BAR+DEV) (t 

= 2.5561, p = 0.0286) land cover than trout production waters.   

Looking specifically at P/A species shifts between the two time frames did 

produce some significant results (Table 2-9).  As might be expected, catchments that 

experienced the loss of Brook Trout YOY saw significant increases of both percentage 

and total acres of the disturbed (BAR+DEV) LU/LC characteristic (t = 2.868, p = 0.016 

and t = 3.458, p = 0.007).  However, in the catchments where Brook Trout YOY presence 

increased, percentage of barren and developed land areas went up (t = -4.290, p = 0.001), 

as did wetland and forest areas (t = 2.213, p = 0.017).  Similarly to Brook Trout, where 
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new Brown Trout presence was observed in catchments, the percentage and total acreage 

devoted to disturbed (BAR+DEV) LU/LC increased (t = -6.790, p = 0.001 and t = -2.399, 

p = 0.022), and the percentage natural (WET+FOR) LU/LC decreased (t= 3.554, p = 

0.001).  Finally, in the locations that went from non-trout in the historical surveys to trout 

production in the modern samples, on average, disturbed (BAR+DEV) lands increased (t 

= -7.035, p < 0.001) and natural (WET+FOR) areas decreased (t = 5.029, p < 0.001). 

 

2.4 Discussion 

 

Increased species distribution comprehension and general knowledge regarding 

shifts in populations leads to better fish assemblage management.  Such information is 

especially important since North America once harbored the greatest diversity worldwide 

of temperate freshwater fishes (Warren and Burr, 1994).  However, it is known that about 

20% of the aquatic species in the US are critically imperiled (Heinz Center, 2002), as are 

40% of North America’s freshwater fish species (Walsh et al., 2009).  The endangered, 

threatened, or vulnerable status extends to 700 different taxa and frighteningly has 

increased by 92% in the past 20 years (Jelks et al., 2008).  Additionally, three genera, 

twenty-seven species, and thirteen subspecies of North American fish have gone extinct 

in the last century (Miller et al., 1989).  Brook, Brown, and Rainbow Trout are not 

threatened with extinction in the region of this study, but because they are considered 

coldwater fish that require quality habitat to survive and reproduce, their breeding 

presence designates high value environments.  However, of the three species, Brook 
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Trout require habitat that contains water of the highest quality, so the presence of any of 

these YOY is significant and indicates that lands surrounding a sampled stream reach 

have been impacted minimally.   

Due to their intolerance of disturbance (Steedman, 1988; Wehrly et al., 2003; 

Ficke et al., 2009), Brook Trout are the most sensitive of New Jersey’s three natural 

reproducing stream salmonids species.  As a result, Brook Trout are extremely 

susceptibility to environmental changes and Hudy et al. (2005) have identified these fish 

as experiencing large losses in the US with 21% extirpation and 27% greatly reduced 

numbers throughout all the subwatersheds of their entire original range.  Additionally, 

since this species is the only salmonid indigenous to New Jersey, and this state ranks in 

the top five US locations for percentage of total watersheds where they have been 

extirpated (Hudy et al., 2005), identifying streams containing Brook Trout YOY and 

protecting both is paramount.  Finally, Brook Trout presence or absence in the New 

Jersey has taken on an even larger importance due to the recent demonstration by 

Hamilton (2007) that several flowing waterbodies there hold relict populations that may 

be direct descendants of those that swam in our waters upon the retreat of the last 

glaciation.   

The overall decrease in percentage of non-trout waters in this present study 

suggests that water quality in New Jersey streams has improved.  Such a result makes 

sense since the survey periods bracket the implementation of the Clean Water Act, 

producing an overall increase in water quality within the United States.  The NJFIBI 

investigation also supports the general water quality recovery observation and might 
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possibly reflect a larger regional occurrence.  However, it should be noted that the 

NJFIBI has only been in use for approximately two decades.  Differences between the 

survey time frames’ fish assemblages may be an artifact of sampling effort that seeks to 

gather all individuals and species in the modern work when compared to historical efforts 

that primarily were searching for trout.  Additionally, sampling gear may not have been 

as effective in the past when compared to modern equipment that is designed to be 

specifically adjusted to meet the criteria of each stream’s characteristics.  Lastly, overall 

fish diversity in the modern samples may be skewed higher as a result of the greater 

number of non-native species that were not seen historically, but are now expanding their 

ranges.  

In spite of these caveats, it seems that New Jersey is experiencing a positive trend, 

especially since this has all taken place while the State’s land use/land cover has been 

modified so much.  The drop in farming may be seen as a positive change for trout 

habitat improvement.  However, this may be offset by the increase in other human related 

LU/LC disturbances of barren, developed, and open water areas.  Coupling these changes 

with a decrease in natural forest and wetland land cover, it is understandable why native 

salmonids, fish that require clean and cold water to live, thrive, and reproduce, are 

struggling to survive in New Jersey (Hudy et al., 2005; 2008).  However, there are 

various other factors involved in this process besides those included in this research that 

may have an equal or greater influence on trout numbers, especially in the waters that 

have gone from, or changed to, non-trout classification. 
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Upon closer inspection, care must be taken in understanding the observed changes 

since reproducing exotic Brown Trout have been able to expand their range.  In most 

instances, New Jersey waters that went from being devoid of coldwater salmonids to 

containing reproducing populations (i.e., YOY) involved non-native Brown Trout.  The 

17% gain in steam assemblages that include Brown Trout is remarkable since total 

percentages of Rainbow and Brook Trout have respectively either decreased or risen 

negligibly over the same time period.  It is plausible that in the cases involving Brown 

Trout production, water quality improved to the point that they were able to survive in 

new areas, but due the Brook Trout’s need for cold water (MacCrimmon and Campbell, 

1969; McCormick et al., 1972; Wehrly et al., 2003; Kratzer and Warren, 2013) and 

systems that remain relatively undisturbed (Wang et al., 2006; Stanfield et al., 2006; 

Hudy et al., 2008), water quality and habitat improvement were insufficient to allow 

these stream segments to support Brook Trout. 

However, the most recent surveys have indicated that Brook Trout populations 

have been identified in several stream segments which previously were not classified to 

hold them.  Consequently, it is probable that water quality has improved to the point that 

Brook Trout might be able to survive and reproduce in New Jersey’s newly available 

areas as this species has been shown to recolonize previously disturbed areas (Phinney, 

1975; Roghair and Dolloff, 2005).  Despite this fact, their expansion may be limited by 

stream fragmentation from man-made impoundments, natural physical barriers, or other 

stream obstacles.  More likely it is that populations may not have any direct route to 

expand into open or improving habitats.  Lastly, it is possible that Brook Trout did 
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manage to locate these new places, but upon arrival they were out competed by 

naturalized non-native salmonids or even domesticated stocked fish (McKenna and 

Johnson, 2011).  Regardless, Brown Trout are advancing into new waterways, while 

evidence suggests Brook Trout are in decline.   

The abundance and richness of aquatic organisms found in riverine systems are 

limited by the quality of water in stream segments (Pegg and Chick, 2010).  This is 

especially true for fish (Dauwalter et al., 2010) and even more so for more sensitive 

species like coldwater salmonids (Kocovsky and Carline, 2006; Rieman et al., 2001; 

Hunter, 1991; Wiley et al., 1997).  I searched for potential reasons for observed changes 

because watersheds readily act to influence the characteristics of the lotic systems into 

which they drain (Steedman, 1988; Allan, 2004; Vondracek et al., 2005; Diana et al., 

2006; Galster, 2008; Hudy et al., 2008).  To better comprehend observed changes within 

this region of study, I explored the linkage between presence or absence of YOY 

coldwater fish species and the management of lands surrounding sample reaches.  

Related to the biological make-up of any ecosystem, Levin (1992) stated that “different 

processes are likely to be important on different scales”, but Steen et al. (2008) note that 

local aspects of systems can be influenced by landscape scale alterations.  As others have 

done (sensu Steedman, 1988; Vondracek et al., 2005; Hudy et al., 2008), I addressed the 

question from the larger landscape perspective to uncover findings that point to reasons 

for the existence of stable, growing, or shrinking groups of reproducing salmonids in 

New Jersey’s lotic waterways. 
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My findings suggest that overall land use within the watersheds of study does 

play a role, but may have less to do with any overall species change.  While it is true that 

Brook Trout always fared better where there was less agriculture (AG), disturbed 

(BAR+DEV), and open water (WAT) acreage, they also thrived were there was less 

natural (WET+FOR) LU/LC.  I believe that this finding is really just a result of the fact 

that Brook Trout YOY were located in smaller catchments on average, so necessarily 

there will be smaller amounts of all total LU/LC categories.  Despite Brook Trout being 

such a sensitive fish species, the earlier data illustrated a significant average threshold of 

3% disturbed (BAR+DEV) land use when present and 7% when absent, but this type of 

relationship did not hold true for the latter data set.  Within the modern surveys Brook 

Trout were both present and absent on average when disturbed (BAR+DEV) land use 

was over 20%.  Other factors must be having a greater influence in explaining the 

observed variation.  Steedman (1988) had about 25% urban LU/LC as the threshold for 

the presence of Brook Trout, but in his work this was linked to forest cover of about 75%, 

something that is no longer found in the catchments of my study.  While lower acreage of 

open water came up as a factor in the modern data set, it did not come out as significant 

in the earlier data.  This is most likely due to the 63% increase of open water observed in 

the modern survey impacting the overall trout production waters of the state. 

Significant factors concerning the location of Brown Trout were identified in 

LU/LC total acreage and percent situations, but only in the modern portion of the study.  

While not seen in the initial time frame, when compared to Brook Trout data, Brown 

Trout seem to fare better where natural landscapes were less common and where human 
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disturbance was more evident.  Brown Trout presence was noted in catchments with 

higher average agriculture acreage and their absence occurred in locales with higher 

percentages of non-developed habitats, despite the fact that both these types of LU/LC 

are decreasing in the state.  Further supporting this concept is that Brown Trout are 

flourishing in more disturbed areas.  This species was present in catchments that averaged 

over two times as much total acres devoted to development compared to the average 

amount when they were absent.  Interestingly, the expansion of the locations where these 

fish are now able to reproduce has outpaced the other species considered and may be 

connected to their ability to tolerate and even thrive among a certain level of human 

disturbance (Schueler, 1994; Stanfield et al., 2006; McKenna et al., 2013; Wagner et al., 

2013).  This was not noted for the other species. 

However, watershed and stream influence are complex and different aspects of 

systems can act to control fish assemblages at various scales.  For example, Wang et al. 

(2006) illustrated how Midwestern fish assemblages were largely controlled by local 

factors and natural gradients when catchments were less disturbed, but as urbanization 

and agriculture increased, so did the weight these land uses had in shaping the make-up 

of the fish found in each area.  This assertion is not supported by the findings in my 

study.  While it is true Brook Trout were lost as a result of an increase in barren and 

developed LU/LC for some stream segments, their presence also increased in catchments 

were percentage of this category increased, as well as where wetland and forest percent 

decreased.  It seems some other factors are at work here to explain the observed 

variability of this study’s most sensitive trout species.  By looking at Brown Trout 
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expansion, their range was extended into places were barren and development also 

increased, and where wetland and forested lands decreased.  This land use trend of 

increasing development and loss of natural systems is symptomatic at the local, regional, 

and national scales (Brown et al., 2005).  Similarly, this LU/LC change has also 

transpired where non-trout waters have given way to those that are trout production.  This 

would be expected since most of the catchments once barren of salmonids in the 1960-

70’s are now host to Brown Trout that are more tolerant of lower water quality, but most 

likely held wild Brook Trout 150 years ago.               

Determining the factors associated with stream and river fish, their spatial 

patterns, and how each change over time is a very challenging task (Stevens et al., 2007).  

It has been suggested that riparian buffers (Barton et al., 1985, Wesche et al., 1987, Wang 

et al., (2003a), instream habitat (Wang et al., 2006), spatial arrangement of instream 

habitat patches (Schlosser, 1995; Fausch et al., 2002) and biological interactions (Korsu 

et al., 2007; Ficke et al., 2009) may be potentially more influential on species presence or 

absence than landscape scale land use.  Part of this difficulty stems from lotic species’, 

such as the coldwater salmonids, naturally high rate of variability concerning the yearly 

population abundance fluctuation (Platts and Nelson, 1988; Milner et al., 2003; Zorn and 

Nuhfer, 2007; Ham and Pearsons, 2000; Moyle and Vondracek, 1985; Karr and Chu, 

1999; Moscrip and Montgomery, 1997).  Fish population numbers do adjust annually, but 

groups of healthy individuals will tend to settle around an equilibrium biomass value 

(Allen and Hightower, 2010).  To limit erroneous estimations, Ham and Pearsons (2000) 

suggest that salmonid abundance numbers can only truly be detected after five or more 
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years of annual surveys and Wiley et al. (1997) relate that this can only be determined 

after 15 to 20 years of sampling.  Rarely are stream inventories collected by State or 

Federal agencies carried out for this length of time on an annual basis, since broad spatial 

coverage is often of greater importance given fiscal concerns and the labor intensive 

nature of surveys.  The 30 year data set analyzed here however provides insight into long-

term temporal changes in land use and fish utilization of streams. 

Different landscapes have different potential for supporting trout and management 

plans and regulations that acknowledge this will provide more realistic and achievable 

objectives than those that do not (Kocovsky and Carline, 2006).  Because of their 

importance as indicators of stream and overall watershed health, looking at the streams 

used in this study as a subset of the New Jersey as a whole, my data suggest that New 

Jersey’s waters are improving for habitat requirements related to Brown Trout, but the 

opposite seems to be taking place for Brook Trout.  However, this may be misleading for 

various other factors may be involved that provide an advantage for Brown Trout.  

Potentially, all of the following could play a role in Brown Trout expansion and Brook 

Trout contraction: increased rates of domestic trout stocking, more hearty trout stains 

being stocked, adaptation of stocked fish to more successfully deal with local conditions, 

recent dam removals, or simply the passage of time and subsequent opportunity for non-

native spreading to new territories.   

Furthermore, climate change also plays a role in observed changes.  Ficke et al. 

(2007) explain that freshwater systems will encounter changes in the next century due to 

a predicted 1-7°C increase in mean global air temperature.  Alterations that may affect 
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fish habitat quality include increased water temperatures, decreased dissolved oxygen 

levels, hydrologic regime changes and increased groundwater temperatures.  Clarke et al. 

(2001) describe that the warming of streams may actually increase Brook Trout 

abundance in certain situations, but stream flow modifications lead to bed scour, the 

washing away of eggs and fry and an overall decrease in fish numbers.  Others have 

noted habitat loss for all trout due to rising temperatures beyond species’ physiological 

requirements, as well as specifically up to a 77% loss for Brook Trout when increased 

warmth is coupled with higher flooding rates (Wenger et al., 2011).  Scenarios including 

such extremes are predicted to ultimately extirpate natives from the southern portion of 

their range (Meisner, 1990; Clark et al., 2001; Flebbe et al., 2006).  Since New Jersey is 

adjacent to the margin area it seems likely salmonid populations there are beginning to 

experience the negative effects already.    

In spite of these predictions, Trumbo et al. (2014) describe how the previously 

assumed linearly related climate change model of a 1°C air temperature increase equating 

to a 0.8°C water temperature increase may be erroneous.  Less than half of the predicted 

water temperature rise was found to occur in that study and groundwater influences were 

hypothesized to have mitigated much of the negative outcomes expected to occur.  If this 

study represents a larger scale occurrence, it is probable that more Brook Trout habitat 

may persist under a warming climate than previously thought (Trumbo et al., 2014).  

However, Jensen et al. (2008) describe how salmonid genetic plasticity allows for local 

adaptations to arise that afford an advantage to some populations.  Specifically, it was 

discovered that warming temperatures negatively affected some populations, but other 
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groups of Brown Trout took advantage of the habitat changes with their locally adapted 

characteristics that were well suited to similar conditions.  From the observed expansion 

rate of New Jersey’s Brown Trout, potential populations are also exploiting similar 

phenotypic adaptations.                       

Focusing on land use and land cover specifics, Steedman (1988) suggested that 

the 10-100 km² directly upstream of survey sites were most influential on the quality of 

the fish community.  More specifically, he stated that catchments that were composed of 

greater than 75% forest, something not seen in the catchments of this study, and less than 

25% urban cover contained waters of excellent quality.  Presumably, places of this nature 

would lend themselves to Brook Trout habitat.  Nevertheless, Steedman (1988) continues 

that good quality water was able to exist as long as urban areas remained below 50% and 

total forest was in the 25% to 75% range.  Such values were observed in this research and 

are able to support salmonids, such as the Brown Trout that have been increasing in 

abundance. 

Hudy et al. (2005) illustrated that the two biggest factors for declining numbers of 

Brook Trout in their original range are agriculture and urban land use changes.  In New 

Jersey, rising water temperatures and other stream quality degradation resulting from land 

use changes, specifically urbanization, has been suggested as the cause for the decline.  

Others have looked to land use percentages and other related metrics to understand trout 

species presence and absence (Table 2-10).  Hudy et al. (2008) looked further at this 

problem across the entire eastern US range of these fish and proposed that in order to 

maintain intact populations of Brook Trout, catchments need to contain at least 68% 
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forest and less than 12% agriculture land use.  New Jersey’s agriculture LU/LC in the 

catchments of study has fallen to the suggested threshold level, but forest cover has not 

been at the necessary advisement point since 1972.  In addition to agriculture land uses, 

Blann (2004) includes percentage of wooded land cover in her explanation for presence 

of Brown Trout.  Such fish were known to occur in systems when forests made up at least 

24% of the catchment and agriculture was no higher than 59%.  Brown Trout were 

notably absent when wooded lands comprised 9% of the catchment and farming reached 

69%.  My findings fell well within the range of these reported thresholds.  Siitari et al. 

(2011) found intact Brook Trout populations with forest and agriculture land use 

percentages that differed from Hudy et al. (2008), as their surveys containing these fish 

averaged about 24% agriculture lands, 45% forest (55% natural land use if the 10% 

wetland characteristic is included), and 7% developed land.  My current findings fare 

better in these categories, with the exception of average development.  Remarkably, my 

results were also very similar to those found in Maryland by Stranko et al. (2008) after a 

data adjustment offset a hypothesized groundwater flow anomaly.  Utz et al. (2010) 

observed loss of Brook Tout from systems upon LU/LC independently reaching about 

13% urban and about 35% agriculture.   

Coincidently, Siitari et al. (2011) suggest that high amounts of groundwater 

flowing in survey areas can offset any negative influences from other LU/LC factors.  

That study contained streams that averaged an annual base-flow numbers of 63%, well 

higher than the suggested ≥55% required for the achievement of excellent (Raleigh, 

1982) and ≥50% for good (Raleigh et al., 1986) water quality.  In my case, the base-flow 
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ranged from 43-59% and had a mean of 52%.  Moreover, only 28 of the 80 areas 

averaged greater than or equal to the suggested 55%.  Stanfield et al. (2006) also spoke of 

the importance of high levels of base-flow to support populations of salmonids, with 

>51% noted for Brown Trout presence, but that report pointed to catchment percent 

impervious cover (PIC) as the most influential factor on coldwater fish.   

That study also related that total absence of Rainbow Trout occurring when PIC 

reached 8.9%, while Brown Trout were lost at 6.9%, and Brook Trout were eliminated at 

6.6%.  In this current research, only 29% of the cases fell into the mentioned areas for 

concern, as overall they averaged 4.9%, and ranged from 0.06-17%.  Of the 80 study 

sites, 59 had less than a 6.6% value, 60 had less than 6.9%, and 68 had less than 8.9%.  

Interestingly, the mean PIC for non-trout sites was 2.3%, while Brook Trout presence 

was found to be 4.3%, Brown Trout was 5.2%.  Others have recommended that PIC is the 

main controlling agent in lotic system water quality, with between 4%-14% as the 

threshold for streams to begin to become impaired (Klein, 1979; Moscript and 

Montgomery, 1997; Wang et al., 2000; Stranko et al., 2008).   

Furthermore, Schueler et al. (1994) suggested a loss of Brown Trout at 13% PIC 

and Wang et al. (2003b) noted that greater than 10% of this land cover results in poor 

coldwater fish assemblages.  Again, with the range and average PIC found in this current 

study things seem to be at the lower end (around 4-5% PIC as opposed to 11-14%) of the 

previously suggested levels for impairment.  However, in Maryland, Stranko et al. (2008) 

noted that Brook Trout were rarely found when PIC was above 4% and averaged 5% and 

Boward et al. (1999) did not find these species when this land cover was as low as only 
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2%.  Moreover, the key findings of Wang et al. (2003b) suggest that PIC is such a 

negative factor to coldwater fish populations because urbanization acts to raise water 

temperatures, lower base-flow through infiltration to groundwater reduction and 

increased runoff, and ultimately a lowering of an area’s water table and alteration of a 

stream’s flow characteristics.  It is further purported that urbanization influence is so 

strong it actually swamps out any positive results from a catchments’ forest LU/LC or 

other vegetation. 

Others have also found that base-flow is reduced upon urbanization (Simmons 

and Reynolds, 1982), but my research is at odds with this concept.  High base-flow is 

extremely important to cold water fish species because groundwater is ultimately 

connected to in-stream habitat and it can offer temperature moderation (Power et al., 

1999), flow stability (Wiley and Seelbach, 1997), thermal refuge from summer and 

winter extremes (Waco and Taylor, 2010), and even allow populations to persist in 

locations that are otherwise too warm (Trumbo et al., 2014).  As such, base-flow and its 

related relative lower temperature, is seen by many as the single most important factor to 

limiting the existence of Brook Trout (McCormick et al., 1972; Siitari et al., 2011; 

Kratzer and Warren, 2013).  Lowering a catchment’s base-flow is believed to take away 

from the traits that are necessary for salmonids to survive and as such, urbanization leads 

to their decline.  

Despite these facts, my calculated correlations illustrate a strong positive 

relationship between the average base-flow characteristics and percent impervious cover.  

Initially this result seemed counterintuitive, but several studies have shown that 
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urbanization does not always lower a catchment’s base-flow (Barringer et al., 1994; Evett 

et al., 1994; Brandes et al., 2005; Meyer, 2005).  In fact, septic systems, leaking water 

mains, sanitation sewers, storm drains, and the use of detention basins within developed 

areas have been found to actually raise the ground water base-flows of built up locations 

(Lerner, 1986; Barringer et al., 1994; Meyer, 2005; Schueler et al., 2009).  In another 

situation, I found a strong negative relationship between average base-flow and percent 

FOR LU/LC.  Again, this seems counterintuitive to me, but perhaps what I have 

discovered relates more to the underlying geology or topography of the studied 

watersheds or the overall size of the basin being evaluated, as has been suggested by 

Barringer et al. (1994).  In other New Jersey areas, the climate (Barringer et al., 1994; 

Lins and Slack, 1999) or even alterations to the process of evapotranspiration upon 

removal of vegetation (Meyer, 2005; Zang and Schilling, 2006) has also been suggested 

as playing a large role in base-flow calculations.  Potentially, it could also simply be 

related to the location and arrangement of the developed areas being placed at lower 

elevations which happen to be near waterways.     

Others have also included correlations between land uses, water quality, and fish 

assemblages in their research.  Wang et al. (1997) noticed positive relationships between 

these factors when catchments contained forest cover greater than 80%, something rare 

on average in this current study.  They also illustrated that negative correlation 

associations occurred with catchment forest cover less than 15%, agriculture greater than 

50%, and urbanization greater than 20%.  My research contained average LU/LC above 

the lower forest threshold level, well under the agriculture cut-off, and greater than the 
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urbanization amount noted.  Finally, Zorn et al. (2002) focused on trout abundance and 

found Brook Trout were most common in catchments that were smaller than 30 km² and 

Brown Trout were highest in areas that were smaller than 65 km² in total size.  Stanfield 

et al. (2006) also proposed comparable catchment areas supporting both species in that 

they came across Brown Trout in areas < 75 km² and Brook Trout were in places < 33 

km².  My research reflects similar outcomes, in the sense of the overall watershed size 

related to the species present, but on a much smaller scale.  I found Brook Trout on 

average present in catchments between 7-9 km2, Brown Trout consistently were present 

in places of 19 km2 and for comparison purposes, Rainbow Trout were located in areas 

between 9-27 km2.  Potentially, however, my catchment size numbers could be a result of 

the original data set used in that the streams studied had to be of a certain size to fall into 

the rapid bioassessment protocols for wadeable waters and larger systems were omitted 

from inclusion here.    

 Landscape scale factors have an influence on the presence, absence, and 

abundance of lotic salmonids in New Jersey.  Although not the main focus of this study, 

groundwater flows, the spatial arrangement and connectivity of habitat patches, as well as 

local scale stream characteristics undoubtedly play a role in the existence of coldwater 

fish species in watersheds too.  From my work it is clear that Brook Trout are more 

sensitive than Brown Trout to disturbances that replace natural land cover with 

anthropogenically altered land cover.  This research suggests that in order to support 

reproducing Brook Trout populations, catchments in New Jersey should contain an 

average of the following land use or land cover characteristics: 12% agriculture, < 22% 
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urban, > 64% forest and wetlands, and 4 - 6% impervious cover.  Catchments with waters 

expected to hold reproducing Brown Trout groups should on average be composed of the 

following land use or land cover traits: < 14% agriculture, < 27% urban, > 58% forest 

and wetlands, and < 5-7% impervious cover.  While there was a range for each land use 

variable, on average the means reported here represent a good target threshold for 

managers and other interested stakeholders to aim toward in conservation efforts related 

to Brook Trout and coldwater fisheries in general.    

 

2.5 Conclusions 

 

For the 80 northern New Jersey waters included in this study that were of trout 

production classification at one point in the last 40 plus years, the land use and land cover 

of the watershed catchments changed from the late 1960s and early 1970s to about 2010.  

Specifically, land devoted to agriculture and more natural cover decreased, while those 

that resulted in human induced disturbances increased.  Based upon the NJFIBI for the 24 

of the 80 locations that contained enough associated watershed land area to complete the 

proper calculation, this current study finds that despite these land alterations, condition of 

the lotic water bodies has improved overall.  If these two data sets are seen as a 

subsample of what has taken place in New Jersey as a whole over this period of time, the 

findings suggest that improvements have taken place to the state’s aquatic ecosystems.  

Support for this assertion comes in the form that during the studied time frame an 

expansion of one coldwater fish species has outpaced all other types as well.  The non-
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native, but naturalized Brown Trout is responsible for most of the new habitat occupied 

by salmonid species.   

Despite these findings, care must be taken when viewing this information within 

the larger framework of lotic waterbodies found in New Jersey.  Extrapolation of my 

results to the rest of the State’s systems is challenging since the 80 included sites were 

not selected at random from all of those available to sample.  I only worked with sites 

that were trout production quality within the historic and modern data sets and I did not 

address the other larger percentage of lotic waters that are contained in the State.  

Furthermore, NJFIBI scores may be misleading for there are fish used in the modern 

calculation that were not as common in the State’s waters historically (i.e., smallmouth 

bass, largemouth bass, green sunfish, and others) that when incorporated may improve 

the overall total score in that they increase the total number of fish species present.  

However, when IBI scores increased between the two time periods, in each metric in 

which the noted species were included, other species that fulfilled the category 

requirement were also sampled.  Additionally, in some cases, final IBI scores remained 

the same when these noted species were surveyed in the modern work and other times 

scores improved when they were not sampled.  Either way, the presence of salmonids 

during surveys points to excellent water quality for sample locations, as is stated in the 

NJFIBI.       

Regardless of the cause, unfortunately, the spatial expansion of the Brown Trout 

is often at the expense of the native Brook Trout, a species much more sensitive overall 
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and less tolerant of lower water quality.  Such observations suggest that anthropogenic 

changes to land use and land cover may have made it more difficult for Brook Trout to 

thrive and as a consequence, this important piece of natural heritage is becoming more 

rare.  Bradshaw (1984) stated that, “we cannot hope to know how to put the pieces 

together again unless we understand how the system works” as well as, “when proper 

ecological understanding is combined with appropriate technology, … effective and self-

maintaining end products are produced.”  While his topic of study was a bit different than 

this current work, the basic premise is the same.  My research has taken steps to further 

the recognition of biodiversity associated with pristine watersheds as well as the resultant 

changes that can occur upon land use alterations.  Correlations and t - tests confirm the 

sensitivity of native fish to land use and land cover changes and point to the success of 

non-native trout species being related to observed human disturbances.  Several threshold 

levels for land use characteristics have been offered that can be strived for and thus allow 

for increased Brook Trout sustainability.    
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Figure 2-1. New Jersey’s current lotic trout production waters. 
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Figure 2-2. Comparisons of reproducing trout species.  From 80 historical (1968-

1977) and modern (2001-2010) trout production (TP) classified stream survey locations. 

 

 

 
 

 

 

 

 

 

 

 

 

 

36%

11%
28%

1%

6%

4%
14%

Historical TP:
1968-1976

Brook

Brook & Brown

Brown

Brown and Rainbow

Rainbow

Brook & Rainbow

Brook, Brown & Rainbow

Nontrout

30%

21%
30%

5%

4%1%

9%

Modern TP:
2001-2010

Brook

Brook & Brown

Brown

Brown and Rainbow

Rainbow

Brook & Rainbow

Brook, Brown & Rainbow

Nontrout



 

  

 

 

5
4
 

Table 2-1.  Metrics and scoring criteria for Northern New Jersey Index of Biotic Integrity for Fish.   

Presented by Vile (2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Condition Categories 
  45-50 Excellent  Comparable to the best situations with minimal human disturbance: all regionally expected species for the habitat and stream size, most intolerant 

forms are present and there is a balanced trophic structure. 

  37-44 Good  Species richness somewhat below expectation, especially due to the loss of some intolerant species; some species present with less than optimal 

abundances or size distributions; trophic structure shows some signs of stress (increasing freq. of generalists and tolerant spp.). 

  29-36 Fair  Signs of additional deterioration include fewer species, loss of most intolerant species, highly skewed trophic structure (high frequency of generalists 

and tolerant species); older age classes of trout and/or top carnivores may be rare. 

  10-28 Poor  Low species richness, dominated by generalists and tolerant species, few (if any) trout or top carnivores, individuals may show signs of 

disease/parasites and site may have overall low abundance of fish. 

Metric Category 

 

Scoring Criteria 

SPECIES RICHNESS AND COMPOSITION: 5 3 1 

1)Total Number of Fish VARIES WITH STREAM SIZE 

2)Number and Identity of benthic insectivores spp. VARIES WITH STREAM SIZE 

3)Number and identity of trout &/or sunfish spp. VARIES WITH STREAM SIZE 

4)Number and identity of intolerant spp. VARIES WITH STREAM SIZE 

5)Proportion of tolerant individuals <20% 20-45% >45% 

TROPHIC COMPISITION: 

 

  

 6)Proportion of individuals as generalists <20% 20-45% >45% 

 7)Proportion of individuals as insectivorous cyprinids >45% 20-45% <20% 

8)Proportion of individuals as trout 

   or (whichever is a higher score) >10% 3-10% <3% 

 Proportion of individuals as piscivores (exc. Am. eel) 

>5% 1-5% <1% 

FISH ABUNDANCE AND CONDITION: 

  9) Number of individuals in the sample >250 75-250 <75 

10) Proportion of individuals with disease and anomalies  

                              (exc. blackspot disease) <2% 2-5% >5% 
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Table 2-2. Mean percent value of each land use/land cover characteristic. Information  

from catchments above 80 sample sites and mean calculated numeric score 

and ranking value for 24 catchments able to be included in Index of Biotic 

Integrity for Fish (FIBI) (larger than 5 km2) per time frame.  Abbreviation 

of H represents historical data (1968-1977) and M corresponds to modern 

data (2001-2010).  As a result of t – tests (α=0.05), statistically significant 

changes noted in bold and indicated with an asterisk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time Frame Agriculture Barren Developed Wetland Forest Open Water NJFIBI 

H 16 0.2* 5* 10 68* 0.8 34* (FAIR) 

M 12 0.7* 24* 9 53* 1.3 40* (GOOD) 
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Table 2-3. Number of streams included for each data set. Information from the 

historical 1968-1976 and modern 2001-2010 timeframe (P-present, A-

absent, BKT-Brook Trout, BNT-Brown Trout, and RBT-Rainbow Trout, 

NT-non-trout). 

  

 Historical Modern 

Species P A P A 

 BKT 41 39 42 38 

BNT 32 48 46 34 

RBT 9 71 7 73 

NT 11 69 7 73 
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Table 2-4. Notable Changes to New Jersey’s Trout Production Waters: 1968-1977 to 2001-1010.  BKT= Brook Trout,  

BNT = Brown Trout, RBT= Rainbow Trout, NT= non-trout. 

Stream Name 
Trout Species Present 1968-1977 

Trout Species Present 2001-2011 

Black Brook 
BKT 

BNT 

Dawson's Brook 
BKT 

BNT 

Flanders Brook 
BKT & RBT 

BNT & RBT 

Herzog Brook 
BKT & BNT 

BNT 

Parker Brook 
BKT 

NT 

Pohatcong Creek 
BKT & BNT 

BNT 

Rinehart Brook 
BKT & BNT 

BNT 

Shawanni Creek 
BKT 

NT 

Trout Brook- Middleville 
BKT 

BNT 

Trout Brook- Tranquility 
BKT 

NT 

A) Sites where young-of-the-year Brook Trout were lost from 1968-1977 to 2001-2010. 

Stream Name 
Trout Species Present 1968-1977 

Trout Species Present 2001-2011 

Green Brook (Passaic) 
BNT 

BKT 

Hewitt Brook 
BNT 

BKT 

Hickory Run 
RBT 

BKT 

Hollow Brook 
BNT 

BKT & BNT 

India Brook (A) 
BNT 

BKT & BNT 

Lamington (Black) River  
NT 

BKT 

Ledgewood Brook 
BNT 

BKT & BNT 

Little Brook 
NT 

BKT & BNT 

Mine Brook (A) 
NT 

BKT 

Van Campens Brook 
BNT 

BKT, BNT, & RBT 

West Portal Brook 
BNT 

BKT & BNT 

B) Sites where young-of-the-year Brook Trout were gained from 1968-1977 to 2001-2010. 
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Stream Name 
Trout Species Present 1968-1977 

Trout Species Present 2001-2011 

Beatty’s Brook 
BKT 

BNT & BKT 

Black Brook 
BKT 

BNT 

Dawsons Brook 
BKT 

BNT 

Flanders Brook 
BKT & RBT 

BNT & RBT 

India Brook (A) 
BKT 

BNT & BKT 

Little Brook 
NT 

BNT & BKT 

Macopin River 
NT 

BNT 

Mulhockaway Creek (A) 
NT 

BNT 

Musconetcong River (trib) 

Changewater 

BKT 

BNT & BKT 

Musconetcong River (trib) Franklin 
BKT 

BNT & BKT 

Musconetcong River (trib)  

Port Murray 

BKT 

BNT & BKT 

Norton Brook 
BKT & RBT 

BNT & BKT 

Pophandusing Creek 
NT 

BNT 

Raritan River North Branch 
NT 

BNT 

Raritan River South Branch 
NT 

BNT 

Stonehouse Brook 
NT 

BNT 

Trout Brook (Middleville) 
BKT 

BNT 

Whippany River (trib) Brookside 
RBT 

BNT & RBT  

Whippany River (B) 
NT 

BNT 

White Brook 
BKT 

BNT & BKT 

Wilhoughby Brook 
BKT 

BNT & BKT 

C) Sites where young-of-the-year Brown Trout were gained from 1968-1977 to 2001-2010. 

 

 



 

 

 

 

5
9
 

Stream Name Trout Species Present 1968-1977 
Trout Species Present 2001-2011 

Buckhorn Creek BNT 
NT 

Parker Brook BKT 
NT 

Paulinskill River East Branch RBT 
NT 

Paulinskill River (trib.)  

Emmons Sta. BNT 

NT 

Shawanni Creek BKT 
NT 

Shimers Brook BNT 
NT 

Trout Brook- Tranquility BKT 
NT 

D) Sites where young-of-the-year trout of all species were lost from 1968-1977 to 2001-2010. 

Stream Name 
Trout Species Present 1968-1977 

Trout Species Present 2001-2011 

Indian Grove Brook 
NT 

RBT 

Lamington (Black) River (A) 
NT 

BKT 

Little Brook 
NT 

BKT & BNT 

Macopin Brook 
NT 

BNT 

Mine Brook (A) 
NT 

BKT 

Mulhockaway Creek (A) 
NT 

BNT 

Pophandusing Creek 
NT 

BNT 

Raritan River N/Br 
NT 

BNT 

Raritan River S/Br 
NT 

BNT 

Stonehouse Brook 
NT 

BNT 

Whippany River (B) 
NT 

BNT 

E) Sites where young-of-the-year trout were seen in the second time frame after waters were initially classified as non-trout. 
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Table 2-5. Significant results for (r) Pearson correlation coefficient tests. Value related to p < 0.05 in the historical time 

frame for Brook Trout YOY abundance and number per meter in each survey versus total acres in each 

catchment devoted to agriculture (AG), developed land (DEV), forest (FOR), and overall size (TOT). 

 

Trait AG72 DEV72 FOR72 TOT72 

BKTYOY72 -0.2295 -0.21859 -0.22516 -0.2429 

 

0.0406 0.0514 0.0446 0.0299 

BKTM72 -0.2295 -0.21859 -0.22516 -0.2429 

 

0.0406 0.0514 0.0446 0.0299 
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Table 2-6. Statistically significant results for (r) Pearson correlation coefficient tests. Value for  p < 0.05 in the modern 

time frame for catchment land use/land cover characteristics of total acres devoted to developed (DEV) and 

forested (FOR) land versus percentage of land impervious cover and the average base-flow of groundwater as a 

percentage of total water flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait IC07P AVBFI07P 

DEV07 0.24267 NA 

 

0.0301  

DEV07P 0.88657 0.42859 

 

<0.001 <0.0001 

FOR07P -0.58781 -0.40724 

 

<0.0001 0.0002 

AVBFI07P 0.44855 1.0000 

 

<0.0001  
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Table 2-7. Mean percent catchment land use and land cover per presence (P) and absence (A) of trout production classified  

waters by species. (BKT-Brook Trout, BNT- Brown Trout, RBT-Rainbow Trout, and NT-non-trout) of 80 

locations in historical (H) 1968-1977, and modern (M) 2001-2010 surveys of northern New Jersey.  Statistical 

significance of difference between the two time frames as determined by two-sample t-test results indicted with 

asterisk (*) and bold font, with p <0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Agriculture  Barren & Developed  Wetlands & Forest  Open  Water 

   P  A  P  A  P  A  P  A  

BKT H 17  16  3*  7*  79  76  0.6  1  

BKT M 12  12  22  27  64  59  0.8*  1.5*  

         BNT H 16  16  5  5  77  77  1  1  

BNT M 14  10  27  22  58*  67*  1.5  1.5  

         RBT H 12  17  7  5  80  77  1  1  

RBT M 2.8*  13*  32  24  63  62  1.5  1.3  

         NT H 13 17 9 5 76 78 2 1 

NT M 11 12 14* 26* 72 61 2.5* 1.2* 
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Table 2-8. Trout production classified waters mean total acres land use and land cover per presence (P) and absence (A) by  

species. (BKT-Brook Trout, BNT- Brown Trout, RBT-Rainbow Trout, and NT-non-trout) of 80 historical (H) 

1968-1977, and modern (M) 2001-2010 northern New Jersey survey catchments.  Total catchment acres and 

approximate km2 area also included.  Statistical significance of difference between the two time frames 

determined by two-sample t-test results indicted with asterisk (*) and bold font, with p <0.05.   

  Agriculture Barren & Developed Wetlands & Forest               Water Total  Acres 

 

Approximate area/km2 

  P A P A P A P A P A 
P A 

BKT H 291* 874* 40* 495* 1,439* 4,631* 13* 108* 1,783* 6,108* 

             

 7* 

 

25*              

BKT M 217* 624* 440* 1,500* 1,437* 3,571* 26* 154* 2,119* 5,850* 

 

9* 

 

24* 

                      
  

BNT H 684 503 256 265 3,611 2,585 87 40 4,638 3,394 

 

19 

 

14 

BNT M 539* 236* 1,260* 515* 2,946 1,780 116 48 4,861 2,579 

 

19 

 

10 

                      
  

RBT H 370 602 338 252 5,758 2,645 249 35 6,711 3,534 

 

27 

 

14 

RBT M 47* 451* 575 985 1,523 2,534 40 92 2,185 4,081 

 

9 

 

17 

           

  

NT H 1,044 596 940* 154* 6,063 2,506 120 49 8,166 3,216 

 

33 

 

13 

NT M 461 405 699 967 2,312 2,464 98 86 3,571 3,922 

 

15 

 

16 
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Table 2-9. Shifts of species presence and absence of surveyed waters between historical (1968-1977) and modern  

(2001-2010) time frames per land use/land cover (LU/LC) characteristics.  Barren and developed land (B+D) 

are considered disturbed and wetland and forested (W+F) land are seen as natural areas.  Statistical significance 

values shown of difference between the two time frames determined by two-sample t-test results, with p <0.05. 

NS = non-significant values. 

 

  LU/LC p – value 

Historical 

% 

LU/LC 

Modern 

% 

LU/LC 

 

p – value 

Historical 

total acres 

LU/LC 

Modern 

total acres 

LU/LC 

BKT                 

loss B+D 0.016 3 20   0.003 52 274 

gain B+D < 0.001 5 25   NS 278 887 

gain W+F 0.041 83 65    NS 2,357 1,861 

 

                

BNT                 

gain B+D  < 0.001 7 28   0.022 414 1,394 

gain W+F 0.001 73 56   NS 3,194 2,377 

 

                

NT-TP                 

gain B+D  < 0.001 9 32   NS 870 2,608 

gain W+F  < 0.001 76 55   NS 5,634 4,067 
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Table 2-10. Mean percentage values per characteristic related to Brook Trout (BKT) and Brown Trout (BNT)  

presence/absence in study catchments providing favorable habitat for populations.  Unless noted, percentages of 

land use / land cover related to trout of all age classes. 

 
Species % 

Agriculture  

% Barren & 

Urban 

% Wetland & 

Forest 

PIC  % BFI Citation 

BKT NA NA NA NA ≥55 Raleigh (1982) 

BKT NA NA NA <2 NA Boward et al. (1999) 

BKT NA NA NA <6.6 NA Stanfield et al. (2006) 

BKT 12 NA NA & 68 NA NA *Hudy et al. (2008) 

BKT 12 (9) NA & 23 (39) NA & 66 (51) 5 (17) NA **Stranko et al. (2008) 

BKT 35 NA & 13 NA NA NA Utz et al. (2010) 

BKT 24 NA & 7 10 & 45 NA 63 Siitari et al. (2011) 

BKT 12 22 64 4.3 52 ***This study 

       

BNT NA NA NA NA ≥50 Raleigh et al. (1986) 

BNT NA NA NA 13 NA Schueler et al. (1994) 

BNT 59 NA & 3 24 NA NA Blann (2004) 

BNT NA NA NA <6.9 >51 Stanfield et al. (2006) 

BNT 14 27 58 5.2 52 ***This study 

 

*Subwatershed scale 

** Small study with one highly urbanized case (with skewed results in parentheses) 

*** YOY P/ A use only  
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Chapter 3 

Headwaters Case Study: Raritan River-South Branch, Mt. Olive, New Jersey 

Abstract 

 To ascertain the structure and movement of an eastern Brook Trout (Salvelinus 

fontinalis) population, I conducted surveys and marked fish in the headwaters of New 

Jersey’s South Branch of the Raritan River.  In 2010, four hundred twenty-five trout were 

tagged above an on stream barrier, and recapture efforts occurred in early 2011.  Based 

upon recapture success, it is approximated that the surveyed subwatershed sections hold 

approximately 3,008 trout, with most contributed from three tributaries.  Fish size ranged 

from 50-254 mm (total length) and five individuals traveled to locations other than where 

they were initially marked.  A second mark and recapture survey at the same locations 

tagged three hundred thirty-six trout and yielded a population estimate of 2,618 Brook 

Trout.  During the second marking episode, fish ranged in size from 48-316 mm (total 

length) and the largest numbers of fish came from the same streams as the original work.  

Recapture efforts discovered six individuals that had moved from the waterbodies where 

they were marked.  To gain an understanding of how fish use these connected waters, 

additional recapture assessments were conducted at these sites during the April that 

followed each marking survey, as well as in the summer of 2012.  My research suggests 

that I have discovered a Brook Trout metapopulation in this catchment, as the observed 

movement between the mainstem and connected tributaries would allow for potential 
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gene flow to occur among the fish of the area.  Perhaps most importantly, this population 

may represent one of the few remaining relict Brook Trout groups in New Jersey. 

 

3.1 Introduction 

 

Without a basic comprehension of a species’ location or an understanding of 

related population shifts, fish assemblages can be lost due to lack of proper management.  

Such information is especially important since it is known that that about 20% of the 

aquatic species in the US (Heinz Center, 2002) and 40% of North America’s freshwater 

fish species (Walsh et al., 2009) are critically imperiled.  This endangered, threatened, or 

vulnerable status extends to 700 different taxa and has frighteningly increased by 92% in 

the past 20 years (Jelks et al., 2008).  Moreover, three genera, twenty-seven species, and 

thirteen subspecies of North American fish have gone extinct in the last century (Miller et 

al., 1989).  Brook Trout (Salvelinus fontinalis), Brown Trout (Salmo trutta), and Rainbow 

Trout (Oncorhynchus mykiss) are not threatened with extirpation in the region of this 

study, but because they are considered coldwater fish that require high quality habitat to 

survive and reproduce, their breeding presence in a stream system is noteworthy.  Brook 

Trout require habitat that contains water of exceptional quality, and since it is also known 

that native salmonid populations have declined worldwide as a result of numerous human 

effects (Fausch et al., 2006), these fish serve as biological indicators.  Identification of 

reproducing populations is a strong indicator of excellent overall water characteristics 

and minimally impacted watersheds.  The presence of any young-of-the-year (YOY) of 
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this species is not only significant, but relates valuable information concerning the 

catchment surrounding areas of interest. 

Due to their intolerance to disturbance and increased demands for waters of a 

pristine nature (Steedman, 1988; Wehrly et al., 2003; Ficke et al., 2009), native Brook 

Trout are seen as the most sensitive of New Jersey’s three wild stream salmonid species.  

As a result, Brook Trout are extremely susceptible to environmental changes and Hudy et 

al. (2005) have identified these fish as experiencing large losses in the US with 21% 

extirpation and 27% greatly reduced numbers throughout all the subwatersheds of the 

entire original range of the species.  Additionally, since New Jersey ranks in the top five 

US locations for percentage of total watersheds where Brook Trout have been extirpated 

(Hudy et al., 2005) and this is the only indigenous salmonid to the area, a greater 

meaning surrounds the discovery of any YOY here.  Finally, Brook Trout presence or 

absence in the watersheds of the Garden State has taken on an even larger importance due 

to the recent demonstration by Hamilton (2007) that several lotic systems hold relict 

populations of these fish that are direct descendants of those that swam in the region’s 

waters upon the retreat of the Wisconsinan glaciation that began about 20,000 years ago.   

Continued stocking for recreational angling purposes from as far back as the late 

1800s and early 1900s, until the present, has resulted in naturalized groups of Rainbow 

and Brown Trout as well in the lotic waters of the New Jersey (Hamilton and Barno, 

2005).  Despite this, MacCrimmon and Campbell (1969) relate that about 100 years ago 

Brook Trout were found in abundance throughout the northern part of New Jersey.  

However, populations of these fish have dwindled to fractions of their former prominence 
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(Hudy et al., 2005).  Hamilton and Barno (2005) also relate that at the most recent count, 

175 streams or stream sections have been identified as holding wild salmonids of any 

kind, which equates to about 5% of all of the streams of the state and composes over 

1,000 miles (about 1,600 km) of water.  Soldwedel (1979) relates the earliest 

documentation of streams or stream sections holding wild trout at 95.  Additional waters 

are often discovered annually during fisheries surveys (Hamilton and Barno, 2005; Diglio 

and Bologna, 2012). 

As evidenced in a recent report by New Jersey Division of Fish and Wildlife’s 

Bureau of Freshwater Fisheries (NJDFW-BFF), the amount of allopatric Brook Trout 

water in the New Jersey is shrinking while the amount of allopatric Brown Trout and 

sympatric Brook and Brown Trout waters are on the rise (Diglio, 2014 NJDEP 

unpublished report).  The extent of such population shifts are not totally known, but 

expansion of invasive species at the cost of native ones is a troubling situation that may 

point to larger issues within watersheds.  Hamilton and Barno (2005) and Hudy et al. 

(2005) suggest that over the last century the most important factors influencing 

indigenous trout populations in the state are land use changes.  Specifically, the warming 

of rivers from urbanization and dam building activities, fragmentation of systems by 

roads and dams, as well as competition with introduced domestically cultured and non-

native fish species  have led to a decline in overall Brook Trout abundance, as well as the 

total number of watersheds inhabited. 

The alteration of many flowing waterbodies first occurred as the region’s streams 

were dammed to harness their mechanical energy and run the numerous small mills that 
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operated in the past (Walter and Merritts, 2008).  Over the last 150 years the use of these 

structures has largely been discontinued, but many dams still remain intact.  Finally, as 

the state continued to urbanize, dams were constructed to meet flood control, water 

supply, and recreational demands.  Similar to the mill structures, many of these 

obstructions have been abandoned, but still remain in place, and are now known to 

contribute to water quality degradation, serve as impassable obstacles to lotic organisms, 

and isolate fish populations found in stream segments.  As the current status of Brook 

Trout in New Jersey has become recognized, ameliorative action to strengthen population 

numbers has become urgent.   

Dam removal has the potential to reconnect isolated populations and improve 

water quality by restoring stream flow to the major stems of lotic system (Freeman and 

Bowerman, 2002; Tsuboi et al., 2010).  Stream obstruction razing events are currently 

seen as important components in watershed restoration because of these positive 

contributions (Pohl, 2002), but further urbanization, habitat destruction, and introduced 

species create ever increasing challenges to species conservation.  For the only native 

salmonid in New Jersey, these changes in the environment have substantial 

consequences.  Stocking of streams with Brown and Rainbow Trout have led to 

competitive interactions (Ficke et al., 2009; Hudy et al., 2008) and it is now understood 

that dams may actually play a role in protecting small, relict populations (Thompson and 

Rahel, 1998; Morita and Yamamoto, 2002; Diglio and Bologna, 2012).  Despite a 

growing body of literature regarding positive impacts resulting from dam eliminations 

(e.g., Pohl, 2002), structure removal, without prior investigation of the involved stream 
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segments to determine potential consequences, could lead to actions that might allow for 

non-native species to colonize and occupy new areas.   

In cooperation with New Jersey State Freshwater Fisheries Managers, I have 

uncovered a previously unidentified Brook Trout population which may be a heritage 

strain.  Moreover, the group exists free from invasion and competitive interactions of 

non-native Brown Trout and Rainbow Trout existing below a dam structure that separates 

the upper most part of this catchment.  In 2009, previously undocumented Brook Trout 

populations were found in four individual tributary streams and the mainstem of the 

Raritan River’s South Branch, just upstream of an on-stream impoundment.  Originally 

built in 1926 to fulfill recreational needs of a summer camp (Hilbert, 2001), at the time of 

this writing the dam had been cited by NJDEP Dam Safety Unit as in need of attention, 

with either removal or rehabilitation as options.  Just prior to this research a notch was 

cut in the dam to lower the level of impounded water and while still a formidable 

obstacle, questions existed whether this local Brook Trout population would remain free 

of any competitive interactions with invasive trout species (wild or domestic) that are 

established in the system below the barrier.  Rehabilitation of the dam took place after my 

in-field research was completed. 

It remains unclear whether razing activities would increase the potential for Brook 

Trout to be lost from these waters through competitive exclusion by Brown and Rainbow 

Trout or if dam removal would improve connectivity, gene flow, and strengthen the 

population as a whole.  It also is unknown how long the above dam Brook Trout can 

remain as a viable and intact group, due to their isolation and relatively small overall 
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population size.  This research aims to address the following objectives prior to dam 

removal or repair activities: A) Assess Brook Trout population size for six previously 

unknown sections of water; B) assess population size structure and determine if these 

segments are trout production waters; and C) assess trout movement potential among 

tributaries.   

 

3.2 Methods 

 

Nielsen (1992) states that the use of marking as a technique for fisheries research 

and management is essential.  Many different approaches to fulfilling this need exist, 

including fin clipping, application of external tags, branding, as well as the insertion of 

internal marks.  According to McFarlane et al. (1990) marking fish with an internal tag 

originated in the 1920s and increased in popularity during the 1960s and 1970s.  The 

visual implant elastomer (VIE) and its subsequent marking process have been devised by 

Northwest Marine Technology Inc. (NWMT) (Shaw Island, WA).  The VIE tags are 

meant to be implanted internally beneath transparent or translucent tissues in many types 

of animals, from finfish to reptiles, but still remain externally visible.  VIE is a medical-

grade, two part silicone based polymer material that is mixed immediately before use and 

then injected as a liquid that cures into a pliable, biocompatible solid (NWMT, 2008).  To 

my knowledge, no research involving freshwater salmonids in New Jersey has relied on 

elastomers as a marking strategy. 

Figure 

1:  
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Multiple studies have shown this method to be extremely successful for several 

reasons.  Ficke and Myrick (2009), Adams et al. (2000), and Close (2000) all were able to 

complete studies where they used VIE on fathead minnows, creek chubs, and Brook and 

Rainbow Trout as small as 50 mm (total length).  Other studies have marked much larger 

fish, including bull trout up to 400 mm (total length) (Bonneau et al., 1995).  

Additionally, it has also been established that even in field studies, if inserted properly, 

tag retention approaches 100% for up to a year for Rainbow Trout (Walsh and 

Winkelman, 2004).  Baily et al. (1998) was able to recapture Coho salmon that retained 

marks for up to two years and FitzGerald et al. (2004) had 17 month retention in over 

90% of the Atlantic salmon in her net-pen study.  Josephson et al. (2008) had a 100% 

retention rate in Brook Trout after 2.66 years in both a hatchery setting as well as for 

those fish that were placed into three separate lakes.  Overall fish health and growth rates 

do not seem to be affected by the insertion of the elastomers either.  Evidence for this was 

shown with Brook Trout (Zerrenner et al., 1997; Josephson et al., 2008; Bryan and Ney, 

1994), Brown Trout (Olsen and Vollestad, 2001), Chinook salmon (Garcia et al., 2004), 

and Atlantic Salmon (FitzGerald et al., 2004). 

Despite the successful field and hatchery use of VIE, the literature does contain 

some writings where researchers did have lower tag retention or detection rates.  

Examples include Close and Jones (2002) with a study using marked yearling Rainbow 

Trout and by Bryan and Ney (1994) using wild Brook Trout.  It should be noted that there 

seems to be a general consensus by many authors that the longer the study the greater the 

chance of loss or inability to relocate the inserted mark (Zerrenner et al., 1997; Hale and 
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Gray, 1998; Fitzgerald et al., 2004).  Some situations had some tags lost within a few 

hours of being implanted, while others saw tag loss at a later time, but still before the fish 

were released (Zerrenner et al., 1997; Bailey et al., 1998; Adams et al., 2000).  Finally, 

some fish lost their marks while in the study environment.  It is also a fair assumption 

that the more a fish is handled the greater the likelihood for tag loss or mortality.   

I felt it necessary to take a look at my ability to mark fish since several authors 

mentioned that marking retention rates are closely related to tag insertion quality and that 

a more experienced tagger is more likely to be a more skilled tagger.  I was interested to 

see how well we could tag small fish due to the knowledge that many of the fish in the 

larger project location are less than 100 mm (total length) in size.  We were also 

interested to see if any tags were lost over the course of the study, and to see how fish 

reacted to different levels of stress from being handled. 

To determine the efficacy of the use of VIE as an option for my infield research, a 

pilot batch study was conducted at the Charles O. Hayford State Fish Hatchery in 

Hackettstown, New Jersey.  The study ran from April 7 to May 2, 2010.  Surplus 

domestic Rainbow Trout were obtained from the Pequest State Hatchery and used in this 

research.  Two large raceways were separated with a metal screen for a total of four 

sections.  All sections had a continuous flow of 12° C water and all fish were fed typical 

hatchery food from automatic feeders in amounts previously determined for this size and 

species of animal.  Tanks were cleaned daily of any uneaten food and any dead fish were 

removed at that time.   



75 

 

 

 

Two hundred fish were randomly sampled from two other raceways filled with 

similar sized fish and ultimately ranged in size from 54 mm to 115 mm.  Before being 

used in the study fish were inspected for DELT (deformities, erosion of fins, lesions, and 

tumors) anomalies.  The first group consisted of 50 fish which were simply placed into 

the first raceway section.  Group two also contained fifty fish but, before being placed in 

the water, was exposed to two seconds of pulsed, direct current electricity from a Smith-

Root backpack electroshocker.  The settings on the pack were similar to those used in any 

field sampling procedure and produced between one and a half and two and a half 

amperes of electric current.  The third group was also exposed to the same electricity as 

the second, but they additionally experienced a dose of the fish anesthesia tricaine 

methanesulfonate, or MS-222.  One half of a teaspoon of the powdered substance was 

placed into two and a half gallons of water to achieve the desired concentration of the 

solution of 100mg/l (Tricane-S, Western Chemical, Ferndale, WA).  At this sedation 

level the animal totally loses its equilibrium, relaxes, and turns over after the passing of 

about a minute.  The final group experienced the electricity and tricane, but additionally 

they received the VIE.  With great care taken to handle fish with wet hands and as little 

as possible, a two to three mm fluorescent green VIE mark was placed just beneath the 

adipose tissue behind the left eye of each fish.  All fish from all groups were up off the 

bottom and swimming upright by the end of the first day.  

 Results of the pilot batch study had no control fish die.  On April 21 one of the 

electroshocked only fish from group two died, but this group saw no other mortality 

during the experiment.  On April 27 one of the fish from the electroshock and tricane 
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group three died.  Like group two, no other death occurred again.  Despite being handled 

the most, group four saw no mortality throughout the entire study as all fish were 

accounted for after the allotted time had passed.  At the conclusion of the study, all fish 

were removed from the tanks, again checked for DELT anomalies and released to an 

outside pond on the hatchery property.  With the exception of two fish, one from group 

two and one from group three that had a pronounced bend in their backs that affected 

their ability to swim, all fish looked healthy.  Without individually measuring each fish 

they generally noticeably grew quite a bit, and were noted to be behaving much like the 

fish from the group where they were originally randomly selected.   

All of the fish from group four were inspected more closely upon the conclusion 

of the study.  As previously mentioned, all fish survived the study and 100% of the fish 

retained the VIE tags.  Most fish marks were visible in the ambient light, but when any 

questions regarding retention arose an ultraviolet light source provided by Northwest 

Marine was directed toward the marked location.  During these situations the tags were 

very easily and clearly seen.  All fish looked healthy and no sores or infections were seen 

on or near the VIE injection sites. Based upon the results that out of 200 handled fish the 

mortality rate was 1%, the 100% retention rate of VIE by tagged fish, as well as the fact 

that the elastomer was able to clearly be seen in white or ultraviolet light we were 

encourage by this marking product and process.  In conclusion, visual implant elastomers 

can be successfully implemented in a larger field study.   

In conjunction with NJDFW-BFF, a mark and recapture field study was 

conducted in the headwaters of the South Branch of the Raritan River below Budd Lake, 
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Mt. Olive, New Jersey at approximately 40⁰  50’34.77” N and 74⁰  45’14.61” W.  The 

specific stream segments sampled included the mainstem of the South Branch of the 

Raritan River (MS) and the following six tributaries:  South West of Budd Lake (SW), 

North of Drakestown (NDT), Drakestown (DT), Small Ditch (DD), Sun Valley Brook 

(SV), and Warmwater (WW) (Figure 3-1).  All stream segments sampled populations 

above a 5.5 m high structure known as the ‘YMCA Dam’.  Employing a single upstream 

pass and following the procedures and strategies determined by NJDEP-BFF (Barbour et 

al., 1999; Hamilton and Barno, 2005) and approved by the Montclair State University 

IACUC (protocol #2010-10), Smith-Root electrofishing backpacks with 1-3 amps of 

pulsed DC electricity were used to survey 150 m sections within each tributary and the 

mainstem river.   

In August and September of 2010, a target collection of 100 individual Brook 

Trout was gathered for each waterbody, but where I was unable to reach this number in 

the first stretch of water the sampling team continued up stream until we met our goal or 

covered an additional 150 m.  An expanded effort was employed on the Raritan River 

mainstem that included a continued upstream single pass covering the entire above dam 

waterbody area until we reached the section known to be too warm to possess lotic 

salmonids (> about 22⁰  C).  Actual acquisition numbers ranged from zero on the 

Warmwater tributary, six in Sun Valley Brook, thirty-five from the Small Ditch, and 

eighty-four from the Mainstem.  We were able to achieve our 100 fish goal from the 

remaining streams.  Individuals were measured to the nearest mm (total length), 

anesthetized with MS-222, injected with a VIE unique to each stream reach, revived, 
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observed, and finally released.  All other gathered fish species were identified by species, 

enumerated, inspected for anomalies, and released.  In January 2011, the stream segments 

were again visited, but the recapture surveys were expanded to check for fish movement 

(sensu Moore et al., 1985) and included a total stream length of 400 m.  At this time 

captured fish were measured, simply examined for previous VIE tags, and released.  As 

in the previous marking situation, the entire mainstem of the Raritan River was sampled 

again.  During this time, no other fish species were gathered or identified.  All recaptured 

fish were noted by GPS coordinates to determine if they had moved from where they 

were originally tagged and later Terrain Navigator mapping software (Maptech, Billings 

MT) was used to plot the locations of the moved fish.   

With the same previously mentioned procedures in place, except employing a 

different set of VIE colors, the entire marking and survey process was repeated a second 

time in the summer months of August and September, 2011.  Coinciding with this second 

marking episode, recapture efforts took place in the winter that followed, specifically 

during December, 2011 and January, 2012.  Specific VIE colors used on each stream, 

numbers of fish marked, numbers of captured individuals upon the follow up efforts, as 

well as the specifics surrounding recapture rates can be located in Table 3-2. 

In both marking and capture/recapture events, to approximate Brook Trout 

numbers overall and in individual stream sections we used a modified version of the 

Lincoln-Peterson population estimation approach, originally presented in Ricker (1975) 

and summarized in Lockwood and Schneider (2000), known as the Chapman-Peterson 

method, as listed below.  
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𝑁 =
(𝑀 + 1)(𝐶 + 1)

𝑅 + 1
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑁 =
(𝑀 + 1)²(𝐶 + 1)(𝐶 − 𝑅)

(𝑅 + 1)2(𝑅 + 2)
 

where, 

     C = total number of fish caught in the second sample (including recaptures), 

     M = number of fish caught, marked and released in the first sample, 

     N = population estimate, 

     R = number of recaptures in the second sample (fish marked and released in the first 

sample). 

All estimates are also presented with 95% confidence intervals. 

Lockwood and Schneider (2000) suggest using the Chapman-Peterson strategy in 

a study of this nature for this model produces population estimation results that are 

statistically unbiased in that calculations account for an upper and lower range of 

confidence limits, and allows for variability to be more accurately measured.  Despite a 

longer than typical amount of time used to attain capture/recapture information in this 

research (Beard and Carline, 1991; R. Carline, personal communication), Ricker (1975) 

explains that it is acceptable for follow up samples to occur over long periods.  

Additionally, because the portions of the waters looked at in the study are essentially 

closed (due to the warm water conditions and a large dam at the fringes of the research 

location) I believe there is negligible immigration and emigration overall into and out of 

the general area.  Furthermore, birth events in the system had not yet occurred from any 

late fall and early winter spawning activities, and stream conditions at this time of the 

year in the inhabited areas are ideal (cool temperatures, high oxygenation levels, and low 
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flows) to limit the general rate of death.  Moreover, due to the close consideration of 

tagging and sampling methods and procedures, marked and unmarked fish were 

considered to have no differences in the following experiences: rates of mortality, 

vulnerability to capture, and overall random mixing.  Finally, as demonstrated in the 

previously mentioned highly controlled batch study and close inspection with ambient 

and ultraviolet light sources upon recapture surveys, all marks were recognized and 

retained.  As such, the assumptions of the overall method have been met and this work 

can provide acceptable population estimates for the area of study. Difference between, 

and averages among the two estimate time frames were also determined.  

 

3.3 Results 

 

Based upon our results from the first year of the mark-recapture study, I 

approximate the population size of Brook Trout in this above dam study area as 3,008 

individuals (±788), with the majority contributed from three tributary streams of the 

South Branch of the Raritan River’s mainstem (Table 3-1 and Table 3-2).  The 

Drakestown, South West of Budd Lake, and North of Drakestown tributaries contributed 

1,111 (±530), 716 (±383), and 494 (±279) individuals respectively.  Brook Trout were 

not recorded in the Warmwater tributary and marked fish were not recaptured in Sun 

Valley, while the Mainstem is estimated to hold 349 (±183).  These headwater fish 

ranged in overall size from 50-254 mm ( x (mean) = 103 mm and s (standard deviation) = 

45.3) during the marking period.  All tributaries where fish were collected contained 
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YOY individuals, generally recognized for this species in New Jersey at less than 100 

mm in total length (Hamilton and Barno, 2005), but verified through the age-class 

cohorts observed from length-frequency assessment histogram graphs  (Petty et al., 2005) 

(Appendix B).  Others have also placed similar sized trout into the YOY category in their 

studies (Moore et al., 1985; Moyle and Vondracek, 1985).  The largest individuals were 

found in the Sun Valley Brook tributary (254 mm) and the Mainstem (249 mm), with 

these stream sections containing the largest average fish sizes also ( x =158 mm and 129 

mm respectively).  

During our second mark-recapture study, I approximated the Brook Trout 

population in the study area at 2,618 individuals (±647).  During this marking period 

these headwater fish ranged in overall size from 48 to 306 mm ( x =96 mm and s = 36.0) 

and again, the Sun Valley Brook tributary held the largest individual (306 mm).  All other 

water segments contained YOY fish.  Again, the majority of fish were found to be in the 

same watercourses as previously discovered in the initial marking event.  In this case, 

specifically the Drakestown tributary was estimated to hold 941 (±371) Brook Trout, the 

South West of Budd Lake water had 815 (±394) Brook Trout, and the North of 

Drakestown tributary was estimated at 384 (±165) individuals.  While overall total 

abundance numbers were less for all waters when combined compared to the first 

marking (2,618 (±647) versus 3,008 (±788)), two locations did see an increase in 

numbers of fish (Table 3-2).  The South West of Budd Lake and Small Ditch tributaries 

saw an estimate increase by 99 and 56 fish in the second survey, while all others had a 

decrease in total abundance. 
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Averaged together, the total study area has an estimated population of 2,813 

Brook Trout, with a decrease in abundance in the second time frame compared to the first 

estimation.  Despite having the largest total coverage area, over the two survey years the 

South Branch of the Raritan River mainstem averaged among the smallest total number 

of Brook Trout.  Only the Sun Valley Brook and Small Ditch tributary averaged smaller 

population estimates, but the Small Ditch water did see a year over year rise in 

abundance.  Despite a decrease between the two population estimates, the Drakestown 

tributary averaged the largest population estimate each year as well as, in its overall 

average abundance calculation with 1,026 Brook Trout. Additionally, in the year over 

year comparison, the South West of Budd Lake tributary saw an increase in overall 

abundance of individuals and averaged the second highest in its population estimation.  

The North of Drakestown tributary had a decrease in Brook Trout abundance.  No 

recaptures of marked fish were found in Sun Valley Brook or the Warmwater tributary. 

As others have done, Brook Trout that were identified to have moved from their 

stream of marking were considered as a percentage of total marked individuals (Corbett 

et al., 2008).  However, many other researchers report fish movement percentages as they 

relate to the total number of recaptured individuals (Moore et al., 1985; Carlson and 

Letcher, 2003; Wilson et al., 2004; Pepino et al., 2012; Ecret and Mihue, 2013; Kanno et 

al., 2014).  Over the course of this study, twenty-three of the seven hundred sixty-one 

marked and one hundred ninety three recaptured fish were recaptured in stream segments 

other than where they were marked (Figure 3-2, Table 3-2).  Respectively this calculates 

to 3% and 11.9% of the total for each.  During the first recapture effort (winter 2010-



83 

 

 

 

2011) five fish moved overall, for a value of 1.2% of all those marked.  Three fish that 

were marked in the mainstem were found to have traveled into two different tributaries; 

two into Drakestown and one into the Small Ditch.  Additionally, one marked fish moved 

from the Drakestown tributary into the mainstem, while another marked individual 

moved from the Small Ditch into the mainstem.  Furthermore, the size of the fish that 

were found to have moved ranged from 96 mm to 165 mm and had a mean of 120 mm 

and median of 116 mm, while those fish that were recaptured in their home-waterbodies 

ranged in size from 50 mm to 249 mm and averaged 99 mm in total length (Table 3-3).  

However, when fish movement was viewed compared to total recaptures, 9.4% of the 

group had traveled.  No marked and moved fish were recaptured during the spring or 

summer 2011 surveys.  

However, during the spring work the average of all captured fish was found to be 

110 mm, with a range of 24 mm to 236 mm and in the summer fish ranged from 48-306 

mm and averaged 96 mm overall.  After the second marking, the winter (2011-2012) 

recapture gathered six marked fish that were from another stream than where they were 

sampled, or 1.8%.  As a percentage of the recaptured Brook Trout, 10% of the fish were 

seen to have moved.  Interestingly, all moved fish were gathered in the mainstem of the 

Raritan River.  One came from the South West of Budd tributary, one from Sun Valley 

Brook tributary, two from the Drakestown tributary, and two moved from the North of 

Drakestown tributary.  Again, the moved fish averaged larger than the overall captured 

fish average at 157 mm (median 143 mm) compared to 111 mm, while a comparison of 

the ranges had 58 mm to 316 mm versus 114 to 233 mm. 
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The spring 2012 capture sampling discovered the most moved fish of any 

recapture endeavor, with ten of the marked fish identified as migrants, or 3%.  When 

looked at as a percentage of total recaptures, 29% of the Brook Trout were seen to have 

moved.  Again, the fish that traveled were on average larger (181 mm with a median of 

176 mm) than the rest of those taken during the surveys (mean and median of 120 mm).  

The migrants ranged from 126 to 245 mm, while the other captures ran from 29 to 318 

mm.  Specifically, during this spring all the marked and relocated fish were again found 

in the mainstem and originated from the following tributaries; one from Sun Valley 

Brook, two from Drakestown, three from the Small Ditch, and four from North of 

Drakestown tributaries.  Finally, in the summer 2012 recapture survey two migrants were 

noted, at 0.6%, or 11.8% of the total recaptures.  One found in the mainstem from the 

Small Ditch and another located in the Drakestown tributary when they were tagged in 

the North of Drakestown waters.  As noted in other seasons, the migrants averaged larger 

(181 mm and a median of 181 mm) compared to all others (104 mm) and ranged from 

165 to 196 mm while the other captures ranged from 50 mm to 299 mm. 

Despite identifying only native Brook Trout in the above dam area in the pre-

study preliminary work and initial marking surveys, I did ultimately uncover thirteen 

nonnative Brown Trout in five of the six subsequent follow-up field events.  In the first 

winter work the survey team surprisingly uncovered one Brown Trout (262 mm in total 

length) and we encountered another one the following spring (239 mm) (Table 3-3).  In 

the second summer effort we sampled four Brown Trout (ranging 156 to 258 mm) and 

the following winter we surveyed a total of six Brown (ranging from 215 to 334 mm).  
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We gathered one final Brown Trout (321 mm) in our last survey in the summer of our 

work.  All exotics were gathered in the lower reaches of the mainstem of the South 

Branch of the Raritan River. 

 Finally, other than Brook and Brown Trout, eighteen other species of fish were 

gathered in my work (Table 3-4).  While I conducted seven total infield survey events, 

identification and enumeration of non-salmonid species was only conducted during the 

summer sample surveys. At these times official NJDFW-BFF sample strategies were 

employed. 

 

3.4 Discussion 

 

Trout naturally move throughout their environment as they seek food, refuge, 

and/or a chance to breed, as well as to realize other life history needs (Northcote, 1997; 

Fausch et al., 2006).  If presented with the opportunity, Brook, Brown, and Rainbow 

Trout can and will move great distances to fulfill these requirements (Clapp et al., 1990; 

Meyers et al., 1992; Riley et al., 1992; Gowan et al., 1994; Gowan and Fausch, 1996).  

Dams and other water restrictions impede these migrations and generally create a 

situation where populations become isolated (Rieman et al., 1993; Young, 1995b).  Such 

segregation has the potential for creating genetic bottlenecks, genetic drift, and ultimately 

sub-population loss through reduction of individuals below a minimum viability 

threshold (Wofford et al., 2005; Morita et al., 2009).  However, impediments also have 

been identified as playing a positive role in regions where introduced species may 
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outcompete native ones, leading to a substantial reduction or total loss of the indigenous 

organisms (Thompson and Rahel, 1998; Young, 1995a).  Identifying populations and 

understanding related species shifts is necessary to ensure the health of fish as a natural 

resource.   

After confidently conducting two marking and recapture procedures, as well as 

three additional simple recapture undertakings on all six waterbodies located above the 

YMCA dam, my observations demonstrate evidence of trout movement among the 

stream segments.  On average, approximately 1% of the marked or 10% of the recaptured 

fish did migrate.  However, of the six recapture opportunities to observe fish traveling 

from streams where originally tagged, I noticed this type of movement only four times.  

Interestingly over the course of this study, migrating fish averaged six per infield event, 

and the majority were found to have traveled from the outer tributaries into the mainstem.  

I believe the Brook Trout in this headwater section of the South Branch of the Raritan 

River are not isolated to individual streams and are using the mainstem in some capacity 

as a corridor for movement.  While fish from South West of Budd Lake tributary entered 

the main river one time, this did not occur again.  However, Brook Trout from other 

waters moved quite often, as demonstrated by two seasons of movement to the mainstem 

from the North of Drakestown tributary, and Sun Valley Brook, as well as three seasons 

of travel for the Drakestown and Small Ditch tributaries.   

In the two years of this study, the North of Drakestown water did supply seven 

marked fish in total to the mainstem (two in one recapture, four in another, and one in the 

last), the largest contributor of any the tributaries.  Next in abundance of marked and 
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moved fish was the Small Ditch, with five Brook Trout in total (three in one season, and 

two others with one).  In one other season I did discover fish marked in the mainstem that 

moved into a tributary.  In my first winter recapture, two Brook Trout were sampled in 

the Drakestown tributary and one was discovered in the Small Ditch water.  I never did 

see this type of travel again.  Finally, on one occasion I found fish moving from one 

tributary into another nearby tributary.  Specifically, a Brook Trout that was marked in 

North of Drakestown water was recaptured in the Drakestown tributary, waters that are 

just south of the marking location.  During both mark and recapture events the North of 

Drakestown waters ranked directly in the middle for overall abundance estimates, but 

ended up associated with the largest amount of migratory fish, with seven in total.  Also 

of interest, is the fact that my recapture effort picked up a fish originally marked in the 

Sun Valley Brook tributary in the mainstem on two occasions from only three total 

tagged fish!  While it is true that I may have gathered the same fish in the Spring 2012 re-

sampling and again in the Summer 2012 work, it is also plausible that in each time frame 

a separate individual was sampled. 

Fish traveled into and out of these study waters from the tributaries, but this was 

not common.  Of the six chances to detect movement it was noticed four times and was 

composed of 1.2%, 1.8%, 3%, and 0.6% of the total tagged group or 9.4%, 10%, 29%, 

and 11.8% of the recaptured group when it was found.  This averaged 1.7% of the total 

tagged or 15.1% of the total recaptured individuals in the four times when movement did 

occur.  However, looking at the mean of all six field events, movement between the 

mainstem and tributaries was lower, at 1.1% overall for marked and 10% for recaptured 
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fish.  Movement percentages such as these are generally in line with what has been 

described in other cases involving Brook Trout.  Ecret and Mihue (2013) and Kanno et al. 

(2014) noted between 8% and 18% and 6% and 19% for longer range trout movement of 

recaptured individuals.  Moore et al. (1985), Carlson and Letcher (2003), Wilson et al. 

(2004) and Pepino et al. (2012) saw larger range Brook Trout movement of recaptured 

fish no higher than 5%, while Corbett et al. (2008) had about 9% of the marked fish 

move.  In my study, movement among the tributaries was more rare than tributary to 

mainstem or mainstem to tributary travel as it was observed on only one occasion.  

Others have also seen low rates of this specific type of movement in studies conducted on 

similar tributary/mainstem type systems (Moore et al., 1985).  All of the described 

movements imply that the potential for gene flow among the various sections of this 

system exists.  

As noted earlier, the generated length-frequency graphs (Appendix B) identify at 

least two and up to three or more age class groups when the data are all pooled together.  

This was also the case in most of the individual stream sections for the headwaters of this 

system.  Young-of-the-year for Brook Trout are generally known to be around 100 mm or 

less, and for my purposes, any fish larger were considered sub-adults and adults.  Since 

male Brook Trout can reach sexual maturity and reproduce when as small as 89 mm 

(Raleigh, 1982) and in the first (Watson, 1999) or second (Scott and Crossman, 1973) 

year of life, and females reach this capability a year later (Ficke et al., 2009), all of the 

waters surveyed above the dam support breeding fish groups.   
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Hallmarks of a metapopulation includes local populations that are at least partially 

isolated in tributaries (Rieman and McIntyre, 1993), contain YOY, are not too isolated to 

prevent recolonization, have an increased risk of going extinct (Hanski, 1997), and are 

linked by relatively low rates of migration (Levins, 1969; Hanski and Simberloff, 1997).  

My findings suggest that fish in this headwater section can be considered to be part of 

this type of population structure (Levins, 1969; Rieman, et al., 1993; Hanski and 

Simberloff, 1997; Fausch et al., 2006).  This ‘population of populations’ (Levins, 1969) 

concept can be noticed here through individuals originating from tributaries and 

interacting with each other within the mainstem river with a small amount of movement 

from this mixing location.   

Furthermore, to allow for the maintenance of a flourishing, reproductive, and 

viable total population, Soule (1987) describes the need for a breeding population of 

between 50 and 500 individuals for vertebrates in general, while Kruse et al. (2001) and 

Rieman and Allendorf (2001) respectively suggest that between 500 and 1,000 members 

are needed to make up an area’s effective population related to salmonids.  My averaged 

findings of 2,813 ± 718 suggests there are sufficient numbers of Brook Trout in the 

headwater study area that have the potential to breed and enable persistence of the total 

group.  Additionally, applying to this study the recommendations put forth by Rieman 

and McIntyre (1993) related to bull trout (Salvelinus confluentus), a species that also 

shares many of the same habitat requirements and pristine water quality needs as Brook 

Trout, by my estimation these headwaters surpass the necessary 1,000-2,000 total 

members to not substantially increase the extinction risk of this local isolated group.     
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Results from my study also indicate that the down-stream dam which separates 

these headwaters may in fact be providing some form of refugia necessary for Brook 

Trout to continue to remain in the area and not succumb to the competitive pressures that 

often follow when introduced species come in contact with native ones (Fausch and 

White, 1981; Korsu et al., 2007).  While over the course of this work I did encounter 

thirteen total Brown Trout in five of the seven field events, exotics were not surveyed 

every time out.  I believe that the existence of the dam held down the number of invaders 

and substantial movement rates only occurred after an atypical amount of rain fall (Table 

3-5) during the summer of 2011 resulted in extreme water flows that created an 

opportunity for upstream travel.  Adams (1999) relates that others have experienced 

Brook Trout ascending a four foot vertical drop when high spring flows allowed for the 

possibility of this feat to occur. 

By looking at data taken from the three closest recording locations to the study 

site, the late summer of 2011 produced rates of precipitation on the order of two to three 

times greater than the previous or following summers’ rainfall amounts.  In 2011 the 

most intense rainfall took place in the months of August and September and that summer 

averaged 8.2 inches (20.8 cm) overall, when the previous and following summers 

averaged 3.0 inches (7.6 cm) and 2.4 inches (6.1 cm) respectively (NOAA, 2014).  I 

believe that this increase in the amount of water in the mainstem offered the chance for 

Brown Trout to navigate up and over the recently notched dam and is a plausible 

explanation as to maybe why I found four individuals in these waters in the summer 2011 
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and six more in the following 2011-2012 winter surveys.  When flows were lower in the 

previous and following years, at best I only ever located one exotic salmonid. 

Other researchers have observed trout movement occurring upon higher stream 

flows (Heggenes, 1988; Gowan and Fausch, 1996; Mollenhauer et al., 2013).  

Additionally, Ney and Bryan (1992), Petty et al. (2005), and Mollenhauer et al. (2013) all 

found the salmonids that moved away to be larger individuals, something also noted in 

this study (Table 3-3 and Appendix C).  As used by Ney and Bryan (1992), this current 

study relies on a two sample t- test (Usable Stats, 2004-2014) to confirm the statistical 

significance of the difference in mean sizes between the Brook Trout captured in their 

home streams verses those that were known to have immigrated into an area (109 mm 

versus 160 mm,  p = 0.040).  My findings related that the largest individuals are not 

always the most mobile.  Riley et al. (1992) had similar findings and suggest that strayers 

may not be big enough to select prime habitat locations that are already being held by the 

largest fish.  Movers are forced to search elsewhere downstream for suitable locations 

that can better meet the needs of their larger size. 

Hanski and Gilpin (1991) and Hanski and Simberloff (1997) believe that the 

conservation of a species can begin to take place only after an understanding of the 

dynamics of the specific situation has been learned.  Protecting the isolated populations in 

this area of study is important because in this highly urbanized state (Brown et al., 2005) 

these animals serve as sentinel species that warn of environmental degradation.  

Additionally, until genetic testing can allow for confirmation, conservation of the 

metapopulation here is essential for there is a high likelihood that these are a heritage 
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group of fish, thought to be uncommon in the state.  Understanding this area’s Brook 

Trout is also imperative for these fish may be able to serve as a source population 

necessary for maintenance and expansion on a range-wide level, whether that is a natural 

process or something initiated by freshwater fisheries resource managers.  

As Moore et al. (1985) explain is possible, I did notice important metapopulation 

dynamics in action through the course of this study with the potential refounding of a 

local Brook Trout population. Within the Warmwater tributary, a waterbody that by my 

measure was completely lacking native salmonids until the seventh and final field 

sampling event, two larger Brook Trout were encountered.  Rieman and McIntyre (1993) 

advocate that in metapopulations, some local populations are more stable than others and 

nearby groups will likely support each other through migratory movements.  The 

discovery of two strayers during my research in a stream that until that time was devoid 

of any trout, helps to demonstrate the short-term resilience of this overall above-dam 

Brook Trout assemblage.  

The movement of fish also is believed to support long-term persistence by 

potentially strengthening of imperiled gene pools by the migration of natives in an 

otherwise isolated area (Fausch et al., 2006).  Though occurring on a limited basis in this 

study, when fish movement occurred and they vacate their home streams, their travel did 

cover long distances.  Dunham et al. (2002) propose that migrant fish are often bigger 

than those that remain close to the location of their birth and, by virtue of their size, are 

more fecund.  Such a combination of factors is significant for these fish can potentially 

successfully breed in the locations of emigration and in the process allow for the entrance 
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of new genes.  Those authors continued to explain that such a situation is vital for the 

metapopulation as unit for such actions can offer demographic support and general 

resistance to environmental stochasticity, two factors that are believed to have negative 

effects on local groups from a population genetics standpoint.   

Large adults are more mobile and do move to meet their own needs, but 

tributaries can also allow for persistence of group by acting as sources for spawning to 

occur (Petty et al., 2005). Additionally, resident life histories may be selected for over 

migratory ones when systems occur that do have barriers in place (Neville et al., 2006b).  

Northcote (1992) and Neville et al. (2006a) explain that there is a disadvantage for 

headwater fish to move away in that fish that possess the resident genes remain in an area 

and can make genetic contributions to the next generation.  Migratory life-forms take 

their contributions away with them upon leaving the local section of their birth, thus 

ensuring the residency characteristics are well developed among the members of those 

that remain.  Letcher et al. (2007) also note that naturally isolated subpopulations of 

Brook Trout differ genetically from those in a more connected larger population.   

While it has been noted that movement of fish is important in persistence of 

groups, local populations do exist that are totally free of immigration support.  

Specifically, Letcher et al. (2007) relate that local adaptations were thought to allow for 

population persistence through a phenotypic response to environmental conditions in that 

members were skewed toward smaller and younger individuals that reproduce sooner 

compared to those in a more open system.  Such higher early survival and sexual 

maturation rates have been suggested as a means to increase resilience to stochastic 
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extinction (Winemiller, 2005).  Koskinen et al. (2002) also show how positive natural 

selection can occur relatively rapidly and lead to noticeable changes in salmonids existing 

in small populations.   

While obstructions can protect the fish living in headwaters from invasion, 

isolating qualities also have the potential to lead to extirpation of above barrier groups 

(Soule and Mills, 1998; Frankham, 2005).  It is believed that losses occur due to a 

decrease in genetic diversity, overall random genetic drift, and subsequent inbreeding 

depression that follows (Rieman and Allendorf, 2001; Neville et al., 2006b).  Caughley 

(1994) uses the term “small population phenomena” to describe the vulnerability of 

extinction of groups due to the coupling of a lack of genetic variability and demographic 

and environmental stochasticity that can act to negatively influence populations.  

Ultimately, isolation can lead to the removal of resiliency that larger more connected 

groups possess in the form of genetic heterogeneity and the existence of additionally life 

histories that have emerged by chance.  Finally, small populations are vulnerable to 

extirpation with no potential for recolonization when local extinctions occur.   

Morita and Yamamoto (2002) relate that in less than a century almost 60% of the 

White Spotted Char populations (Salvelinus leucomaenis) situated above erosion control 

dams were predicted to be, or had already been, extirpated in 50 years.  These authors 

also suggest that a minimum of 2.3 km2 to 9 km2 of watershed area is necessary to allow 

populations a 50 to 90% chance to sustain themselves.  Additionally, Letcher et al. (2007) 

found that the existence of barriers would result in local population extinction in two to 

six generations, and this would increase the likelihood of system-wide extinction as 
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tributaries no longer have the ability to act as sources of fish.  Harig and Fausch (2002) 

also suggest that larger catchments are ideal for persistence of isolated populations of 

salmonids, and Neville et al. (2006b) states that if the population above the dam is large 

enough, genetic drift may be reduced. 

Despite these findings, Reinman and McIntyre (1993) purport that 

metapopulations are more likely to go extinct from environmental reasons than genetic 

ones.  Hayes (1995) relates that processes that act to control the strength of a year class in 

salmonids usually operates in the early life stages, like the eggs and alevins in the redd or 

in the first year of the free swimming stage (Alonso-Gonzalez et al., 2004).  It has been 

reported that high flows and related floods can scour out and destroy redds and the eggs 

and alevins (Seegrist and Gard, 1972; Cattaneo et al., 2002) and fry (Heggenes and 

Traaen, 1988; Jensen and Johnsen, 1999; Zorn and Nuhfer, 2007) contained there.  

Additionally, high flows can displace or eliminate YOY (Hoopes, 1975) and ultimately 

cause weak or failures of year classes for Brook (Elwood and Waters, 1969; Waters, 

1983; Spina, 2001; Carline and McCullough, 2003), Brown (Hayes, 1995), and Rainbow 

(Strange et al., 1992) trout.  However, as the size of salmonids increase, the direct effect 

of floods on trout is lowered as the chance of getting washed away decreases for Brook 

(Elwood and Waters, 1969), Brown Trout (Heggenes, 1988; Hayes, 1995; Lobon-Cervia, 

1996; Cattaneo et al., 2002) and Rainbow (Simpkins et al., 2000) trout.  Interestingly, 

Heggenes and Traaen (1988) demonstrated that when salmon and trout reach lengths of 

around 40 to 50 mm they were able to better tolerate higher water velocities and thus 

lower the chance of being washed out and displaced by high flows.  The related specifics 
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in my situation remain unclear, but it is plausible that this type of dynamic is important 

for these actions may push fry out of tributary sources and into the mainstem areas.  

Although I did gather YOY in the mainstem of South Branch of the Raritan River, with 

the exception of the first field event, the abundance was usually low.  Possibly, these 

young fish were not born in the larger waterbody, but instead were pushed there from 

their tributary redd areas during high water times and were able to survive the 

displacement in the larger less turbulent part of the system. 

 

3.5  Conclusions 

 

Recently, after I had finished my infield work, the land owners have opted to not 

remove the dam structure and rehabilitation has taken place instead.  With the newly 

acquired knowledge of small populations of coldwater salmonids existing in headwater 

areas I can lend some assistance to the decision making that environmental managers 

may undertake if this type situation is encountered again in the future.  Ultimately, the 

relative biological costs and benefits for dam razing or rehabilitation must be determined 

on a case by case situation in attempts to effectively preserve or conserve native 

populations.  This work has specific implications regarding Brook Trout populations.  

First, with the exception of the Warmwater and Sun Valley Brook tributaries, length-

frequency has determined population age structure and consistently identified the 

existence of YOY individual fish during the three summers of research.  Sun Valley 

Brook did have YOY in two of the three summer surveys, indicating that all of the above 
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dam streams are indeed trout production waters and should be treated as such in regard to 

the New Jersey Surface Water Quality Standards, N.J.A.C. 7:9B.  

Second, the movement of individuals among sections of water and the overall 

population size estimates indicate that these Brook Trout are a set of linked local 

populations or a metapopulation.  Such a population structure is important in assisting 

overall species strength in naturally disturbed systems, but may be equally important in 

anthropogenically altered or fragmented regions.  Again, smaller populations in each 

patch are thought to be less resilient and more vulnerable to threats like invaders and 

environmental and demographic stochasticity, so migrant fish become critical to long 

term persistence through recolonization and use of other habitats.  Next, since this portion 

of the watershed had not previously documented trout production waters since originally 

surveyed in the late 1960s, results imply that population relicts may be found in other 

regions of New Jersey.  This finding is an extremely important outcome, for knowledge 

of these remnant populations may become valuable in assisting with reestablishment of 

Brook Trout to other areas of the state and thus ensuring native genetic diversity and an 

overall strengthening of heritage strains of this once endemic fish.  Furthermore, like the 

suggestions made in Poff et al. (1997) and Zorn and Nuhefer (2007), managers of this 

watershed should continue to support actions that allow its streams to have the most 

natural flow regime.  By doing so, abnormal flooding and high water flow situations that 

often follow land use changes are reduced and less likely to wash out fry, weaken year 

classes, and act to imperil the unique group of Brook Trout in this area.  This is an 

especially important goal to help mitigate scenarios predicted to result from altered 
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hydrologic regimes brought about in the upcoming decades by climate change (Clark et 

al., 2001; Wenger et al., 2008).   

Finally, continued investigations in locations that have not been surveyed before 

is essential to locating undocumented populations.  Catchments with similar geologic and 

LU/LC characteristics as the thresholds ascertained in Chapter 2 would be a logical place 

to begin investigating.  However, it should be noted that when the catchment area from 

the dam upward is considered as one large unit this case study area does not meet most of 

the levels determined in Chapter 2 to find reproducing Brook Trout groups (Table 3-7).  

The only measure that fell within the suggested LU/LC quantity was observed in 

agriculture areas.  Barren and developed, open water LU/LC, and PIC were higher, while 

wetland and forest LU/LC was lower.  Conversely, the case study BFI was higher.   

This last finding is very interesting, for as I conducted my winter in-field surveys 

many of the tributary streams were observed to take much longer, if ever, to freeze over.  

It seemed clear that these places were being influenced by a large amount of ground 

water.  When all linked together, these observations suggest that high amounts of 

underground flow may be buffering against the negative influences from LU/LC factors.  

Siitari et al. (2011) describes a similar situation taking place in streams that averaged 

base-flow numbers of 63%.  My study area maintained an average of 58% BFI.  Both 

findings are well higher than the suggested ≥55% required for the achievement of 

excellent (Raleigh, 1982) and ≥50% for good (Raleigh et al., 1986) salmonid quality 

water.  Stanfield et al. (2006) also spoke of the importance of high levels of base-flow to 

support salmonid populations.   
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Power et al. (1999) discusses the importance of base-flow in that is offers 

temperature moderation, while Wiley and Seelbach (1997) related the value of its flow 

stability.  Waco and Taylor (2010) focus on the thermal refuge from summer and winter 

extremes high base-flow provides for trout, and Trumbo et al. (2014) suggest such 

characteristics even allow populations to persist in locations that are otherwise too harsh.  

Base-flow is seen by many as the single most important factor to limiting the existence of 

Brook Trout (McCormick et al., 1972; Siitari et al., 2011; Kratzer and Warren, 2013).  

This could also be an explanation as to why Brook Trout persists in the locale despite the 

potentially unsustainable LU/LC levels that have been previously realized.   
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Figure 3-1. Headwaters of the Raritan River South Branch study area, Mt. Olive, New  

Jersey. 
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Figure 3-2. Population estimates and total number of moved Brook Trout.  Breakdown  

per waterbody in catchment area above YMCA Dam. 
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Table 3-1. Population estimates of stream sections above YMCA dam using the Chapman-Peterson strategy. 
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Chapman-Peterson pop. est. 1 349±183 716±383 494±279 1,111±530 77±37 42±54 0 3,008±788 

Chapman-Peterson pop. est. 2 66±74 815±394 384±165 941±371 132±82 8±4 0 2,618±647 

Difference 2 & 1 pop. est. -283 99 -110 -169 56 -34 0 -390 

Average both pop. ests. 207 766 439 1,026 105 25 0 2,813±718 
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Table 3-2. Mean and median values of Brook Trout in millimeters for seven in-field events above YMCA Dam, Mt. Olive,  

NJ. 

 

 

 

 

 

 

 

 

 

 

 

 

Year  
Su 

10 

W 

10-11 

Sp 

11 

Su 

11 

W 

11-12 

Sp 

12 

Su 

12 

In-

Field 

Event 

#1 

Mark 

#2 

Capt. 

#2 

Recapt. 

#2 

Mvd. 

Recapt. 

#3 

Capt. 

#3 

Recapt. 

#4 

Mark 

#4 

Recapt. 

#5 

Capt. 

#5 

Recapt. 

#5 

Mvd. 

Recapt. 

#6 

Capt. 

#6 

Recapt. 

#6 

Mvd. 

Recapt. 

#7 

Capt. 

#7 

Recapt. 

#7Mvd. 

Recapt. 

N 425 345 48 5 263 28 336 501 434 56 6 503 24 10 541 15 2 

range 

(mm) 

50-

254 

50-

249 71-232 96-165 

24-

236 86-226 

48-

306 40-306 

58-

316 68-223 

114-

233 

29-

318 

112-

227 

126-

245 

50-

299 

129-

210 

165-

196 

average 

(mm) 103 99 115 120 110 135 96 95 111 124 157 120 151 181 104 166 181 

median 

(mm) 80 91 100 116 110 124 86 84 103 119 143 120 144 176 85 166 181 

s 45.3 30.3 38.2 27.5 42.9 35 36.0 37.9 33.1 33 45.5 45.2 31.9 31.1 43.7 26.4 21.9 
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Table 3-3. Comparisons of Brook Trout and Brown Trout length (mm) in surveyed 

waters 2010-12.  

 

Fish Type 

BKT 

All 

BKT 

Mvd. 

BNT 

All 

N 3,012 23 13 

Mean (mm) 106 156 268 

Median 

(mm) 98 161 262 

Range (mm) 25-318 94-245 156-334 

s 41 37 49 
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Table 3-4. Fish species gathered during official summer field surveys, not including 

Brook or Brown Trout species.  Numbers indicate first, second, or third 

summer of work when sampled. 

 

S
p

ec
ie

s 

R
a

ri
ta

n
 R

iv
er

 S
/B

r 

R
.R

. 
S

/B
r 

(t
ri

b
) 

(S
W

  

o
f 

 B
u

d
d

 L
a

k
e)

 

R
.R

. 
S

/B
r 

(t
ri

b
) 

(N
  

o
f 

D
ra

k
es

to
w

n
) 

R
.R

. 
S

/B
r 

(t
ri

b
) 

(D
ra

k
es

to
w

n
) 

R
.R

. 
S

/B
r 

(t
ri

b
) 

 

(S
m

a
ll

 D
it

ch
) 

S
u

n
 V

a
ll

ey
 B

ro
o

k
 

R
.R

. 
S

/B
r 

(t
ri

b
) 

(W
a

rm
w

a
te

r)
 

American eel (Anguilla rostrata) 1             

Banded killifish (Fundulus diaphanus) 1,2,3             

Bluegill (Lepomis macrochirus) 3             

Blacknose dace (Rhinichthys atratulus) 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 

Creek chub (Semotolus atromaculatus) 1,2,3 1,2,3 3 1,2,3 3 1,2,3 1,2,3 

Chain pickerel (Esox niger) 2             

Eastern mudminnow (Umbra pygmaea) 1,2,3 2   2,3 1,2,3   1,3 

Golden shiner (Notemigonus 

crysoleucas) 

2     1       

Largemouth bass (Micropterus 

salmoides) 

1,3           1,2 

Longnose dace (Rhinichthys cataractae) 2 1 2 1,2,3   1,3 3 

Margined madtom (Noturus insignis) 1,2,3             

Pumpkinseed (Lepomis gibbosus) 1,2,3 1   2,3   2,3 2 

Readbreast sunfish (Lepomis auritus) 1             

Tesselated darter (Etheostoma olmstedi) 1,2,3     1,2,3   1,2 1,2,3 

White perch (Morone americana) 3             

White sucker (Catostomus commersoni) 1,2,3 2   1,2,3   1,2,3 1,2,3 

Yellow bullhead (Ameiurus catus) 1,2,3             

Yellow perch (Perca flavescens) 1             
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Table 3-5. Rainfall amounts measured in inches at three nearby NOAA recording 

stations for the summer months (7-July, 8-August, 9-September) for the 

three years of the study.  EWR- Newark Liberty International Airport, 

ECA- Essex County Municipal Airport, & CTM- Chatham Township. 

 

2010        2011        2012        

EWR  

precp 

tot  

 1 day 

max  EWR  

precp 

tot  

 1 day 

max  EWR  

precp 

tot  

 1 day 

max  

7  1.93  0.6  7  2.04  0.47  7  2.28  0.73  

8  2.44  0.78  8  18.8  6.4  8  2.56  0.59  

9  3.58  1.21  9  8.13  3.18  9  3.13  0.94  

x̄ 2.7  0.9   x̄  9.7  3.4   x̄ 2.7  0.8  

ECA        ECA        ECA        

7  2.95  1.44  7  2.57  0.63  7  3.46  1.65  

8  3.45  1.48  8  16.17  5.57  8  4.1  1.13  

9  3.42  1.09  9  7.61  3.48  9  3.98  1.65  

x̄ 3.3  1.3   x̄  8.8  3.2  x̄ 3.8  1.5  

CTM        CTM        CTM        

7  2.39  0.53  7  2.52  0.77  7  0.79  0.54  

8  3.41  1.82  8  9.81  2.44  8  0.03  0.03  

9  3.14  0.92  9  6.01  2.36  9  1.57  0.77  

x̄ 3.0  1.1  x̄ 6.1  1.9  x̄ 0.8  0.4  

x̄ 3.0  1.1  x̄ 8.2  2.8  x̄ 2.4  0.9  
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Table 3-6.  Headwater Case Study-Raritan River, South Branch above YMCA Dam- Mt, Olive, NJ 

mark/recapture results and population estimates. 
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Summer 2010 marked 84 100 100 100 35 6 0 425 

Summer 2010 VIE color red yellow green yellow red green NA  

Summer 2010 VIE 

location 

right right left left left right NA  

Other trout species 

captured 

0 0 0 0 0 0 0 0 

 

Winter 2010-2011 capture 40 77 43 164 16 5 0 345* 

Winter recapture w/mark  

   from original stream 

9 

 

10 

 

8 

 

14 

 

7 

 

0 

 

0 48 

 

Winter recapture w/mark  

   from another stream 

1 LR,  

1 LY 

0 0 2 RR 1 RR 0 0 5 
(1.2%/9.4%) 

Other trout species captured 1 BNT 0 0 0 0 0 0 1 BNT 

Chapman-Peterson pop. est. 349±183 716±383 494±279 1,111±530 77±37 42±54 0 3,008±788 

 

Spring 2011 capture 18 67 52 116 4 6 0 263 

Spring recapture w/mark  

   from original stream 

2 

 

12 

 

7 

 

6 

 

1 

 

0 

 

0 28 

 

Spring recapture w/mark  

   from another stream 

0 0 0 0 0 0 0 0 

Other trout species captured 1 BNT 0 0 0 0 0 0 1 BNT 



 

 

 

 

1
0
8
 

 

Summer 2011 capture 3 178 105 180 31 4 0 501 

Summer recapture w/mark  

   from original stream 

0 0 0 0 0 1 

 

0 1 

 

Summer recapture w/mark  

   from another stream  

0 0 0 0 0 0 0 0 

Other trout species captured 4 BNT 0 0 0 0 0 0 4 BNT 

         

Summer 2011 marked 3 100 100 100 30 3 0 336 

Summer 2011 VIE color white blue purple blue white purple NA  

Summer 2011 VIE 

location 

left left right right right left NA  

Other trout species 

captured 

0 0 0 0 0 0 0 0 

 

Winter 2011-2012 capture  32 112 56 204 29 1 0 *434 

Winter recapture  w/mark  

   from original stream  

1 LW 

**(1 RR) 

13 14  21  6  0 0 54 

 

Winter recapture  w/mark  

   from another stream (** 

and from a different time 

frame) 

1LB,1LP, 

2RB,2RP 

 

0 0 0 0 0 0 6 

(1.8%/10%) 

**7 

Other trout species captured 6 BNT 0 0 0 0 0 0 6 BNT 

Chapman-Peterson pop. est. 66±74 815±394 384±165 941±371 132±82 8±4 0 2,618±647 

         

Difference 2 & 1 pop. est. -283 99 -110 -169 56 -34 0 -390 

Average both pop. ests. 207 766 439 1,026 105 25 0 2,813 

         

Spring 2012 capture 91 76 46 276 8 6 0 *503 

Spring recapture  w/mark  1RR 4 10 7 2 0 0 24 
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   from original stream 

Spring recapture w/mark  

   from another stream 

1LP,2RB,

3RW,4RP 
0 0 0 0 0 0 10 

(3%/29%) 

Other trout species captured 0 0 0 0 0 0 0 0 

         

Summer  2012 capture 17 56 65 385 12 4 2 *541 

Summer recapture  w/mark  

   from original stream 

0 1  7  7  0 0 0 15  

Summer recapture w/mark  

   from another stream 

1 WR  0 0 1 RP  0 0 0 2 
(0.6%/11.8%) 

Other trout species captured 1 BNT 0 0 0 0 0 0 1 BNT 

 

* Total number per all streams includes fish that moved to location where not originally marked and those fish recaptured from 

different marking event. 

**Includes fish from first marking event in second recapture survey, not included in the recapture portion of the population 

estimate, but included in the capture portion. 
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Table 3-7. Important geologic and land use/land cover characteristics determined for Raritan River / South Branch 

Headwater Case Study area and chapter 2 threshold levels calculated as pointing to systems containing 

reproducing Brook Trout populations.  Percentages indicated with an asterisk (*) surpass the suggested 

necessary levels. 

Year AG BAR&DEV WET&FOR WAT x̄/TOT BFI PIC 

Reproducing Brook Trout Presence Thresholds Determined in Chapter #2 

1972                   

TOT 291 40 1439 1 1783 NA NA 

% 17 3 79 0.6 100 NA NA 

2007                   

TOT 217 440 1437 26 2120 NA NA 

% 12 22 64 0.8 100 52 4.3 

S Br/ Raritan River Headwaters Study Area Values  

1972                   

TOT 833 784 3465 400 5482 NA NA 

% 15 14 63 7 100 NA NA 

2007                   

TOT 482 2057 2522 421 5482 NA NA 

% *9 38 46 8 100 *58 9.9 

 

 

 

 



111 

 

 

 

 

 

Chapter 4 

A Review of New Jersey’s Management of Brook Trout Production Waters 

Abstract 

 New Jersey maintains naturally reproducing populations of Brook Trout 

(Salvelinus fontinalis), Brown Trout (Salmo trutta), and Rainbow Trout (Oncorhynchus 

mykiss).  However, only the Brook Trout is native to the eastern United States.  

Conservation of this once endemic species has become a regional priority for natural 

resource managers due to a noted decline in much of its original range.  Urgency for 

ameliorative action in New Jersey has taken on an even greater importance with the 

recent discovery of heritage strain Brook Trout still surviving in several watersheds.  By 

reviewing current freshwater fishery lotic salmonid management strategies, a more clear 

understanding of which practices may be helping and which may be hindering the larger 

goal of expanding the overall range native fish inhabit, as well as the abundance of 

individuals and self-sustaining populations.  With the creation of the Coldwater Fisheries 

Management Plan, several approaches are offered to bolster populations.  However, some 

accepted practices may be acting to undermine the conservation efforts.  Proposals to 

assist in attaining greater native brook trout sustainability include the establishment of an 

additional angling regulation which identifies ‘Wild Native’ status of unique Brook Trout 

groups and creating stricter land use directives to support more natural flows in the 

headwater stream sections that hold the most rare populations.  Additionally, the 

curtailing or cessation of stocking domestic salmonids within those same catchments 

would relieve some of the competitive interactions and genetic introgression/interstock 
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issues that could limit native survivability.  Other suggestions include hatchery operation 

expansion to include fish of indigenous origin, removal of non-native fish from favorable 

standing within the State’s Wildlife Action Plan, and obtaining new or reallocating 

current funds to support more research: such as determining the genetic structure 

specifics of the identified unique Brook Trout strains. 

 

4.1 Introduction 

 

According to Hudy et al. (2005) New Jersey ranks in the top five US locations for 

percentage of total watersheds where reproducing populations of Brook Trout (Salvelinus 

fontinalis) have been extirpated from their original range.  The recent demonstration by 

Hamilton (2007) that several of the state’s flowing waterbodies hold relict populations of 

the region’s only native salmonid is an extremely important discovery.  This portion of 

natural heritage may be direct descendants of the fish that swam in the region’s waters 

upon the retreat of the last glaciation.  A link to the ancient past is remarkable, 

considering how much European settlement of North America changed the continent 

(Nielsen, 1999; Walter and Merritts, 2008) and altered natural systems. An increase in 

urbanized land use and a decrease in forested land cover have most recently been noted 

(Brown et al., 2005; Hasse and Lathrop, 2010) and they have the potential to negatively 

impact the survival of the only native trout species in New Jersey.     

Two other species of trout are known to have reproducing populations in New 

Jersey’s lotic waters (Hamilton and Barno, 2005), but both the Brown Trout (Salmo 
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trutta) and Rainbow Trout (Oncorhynchus mykiss) are non-natives.  It is well recognized 

that the existence of trout in a waterbody strongly correlates with excellent water and 

habitat quality (Steedman, 1988; Hamilton and Barno, 2005; Ficke et al., 2009).  It is also 

well known that trout require exceptional water and habitat quality to reproduce 

naturally, with the existence of wild individuals pointing to unspoiled conditions 

(Raleigh, 1982; Raleigh et al., 1984; Raleigh et al., 1986; Lyons et al., 1996) and 

minimally impacted watersheds.  Furthermore, self-sustaining groups of these fish serve 

as biological indicators of the overall health of not only the waters in which they inhabit, 

but for the surrounding lands as well.  An observed absence of a previously noted 

existing wild group can be a cause for concern, as can a drop in overall population 

numbers or particular age class (e.g., the reduction or loss of young-of-the-year (YOY)) 

(Fausch, 1988; Schueler, 1994; Karr and Chu, 2000; Fausch, 2007; Steen et al., 2008).  

MacCrimmon and Campbell (1969) relate that about 100 years ago Brook Trout 

were found in abundance throughout most of the northern part of New Jersey, but 

Hamilton and Barno (2005) and Hudy et al. (2005) suggest that over the last century 

anthropogenic factors have negatively influenced native trout populations in the state and 

led to a decline in overall numbers and total watersheds these fish inhabit.  Specific 

problems seen in New Jersey are warming of rivers from urbanization and dam building 

activities, fragmentation of systems by roads and dams, and competition with introduced 

non-native fish species (Hamilton and Barno , 2005; Hudy et al., 2005).  Hamilton and 

Barno (2005) also describe that 175 streams or stream sections have been identified as 

holding wild fish, which equates to about 5% of all of the streams of the state and 
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composes over 1,000 miles (about 1,600 km) of water.  The earliest tabulation for stream 

or stream sections holding wild fish in New Jersey was established at 95 as shown in 

Soldwedel (1979).  According to the New Jersey Division of Fish and Wildlife, Bureau of 

Freshwater Fisheries (NJDFW-BFF), as of 2012, one hundred fifteen streams or stream 

sections held reproducing populations of Brook Trout (Figure 4-1) (S. Collenburg, 

NJDFW Asst. Biologist, personal communication). 

Since it is known that Brown and Rainbow Trout have the ability to competitively 

exclude Brook Trout through displacement due to more aggressive behavior (Fausch and 

White, 1981; Moore et al., 1983; Waters, 1983; Larson and Moore, 1985; Dewald and 

Wilzbach, 1992; Lohr and West, 1992), direct predation (Alexander, 1977), higher 

growth rate (Waters, 1983; Lyons et al., 1996; McKenna et al., 2013), greater fecundity 

(Clark and Rose, 1997), and capitalizing on erratic flow regime disturbances and related 

year class disruptions or failures (Waters, 1983; Clark and Rose, 1997; Fausch, 2008); it 

can be assumed that reproducing populations of all three lotic species are going to 

interact with each other in New Jersey streams.  Additionally, since Brown and Rainbow 

Trout are known to be tolerant of higher water temperatures (Magoulick and Wilzbach, 

1998; Watson, 1999; Zorn et al., 2002; Baird and Krueger, 2003; Wehrly et al., 2003; 

McKenna et al., 2013) ), related loss of forested land cover and altered surface and 

groundwater flows that follow increases in urbanization necessarily leads to warming of 

streams, lower overall water quality, and creates a circumstance for native Brook Trout 

numbers to decline and succumb to population replacement.  
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Danzmann et al. (1998) indicate that all major groupings of extant phylogenetic 

Brook Trout clades were present about 100,000 years ago and divergence towards 

today’s current structure began within the Pleistocene epoch.  Remnant Brook Trout 

populations that are descendants of the original fish that colonized an area after 

deglaciation are referred to "heritage" strains (Perkins et al., 1993).  The identification of 

heritage strain Brook Trout populations in New Jersey waters warrants further 

investigation.  In the NJDFW BFF Coldwater Fisheries Management Plan (CFMP), 

Hamilton and Barno (2005) make reference to New Jersey’s Brook Trout as the 

following: “considered a species of special concern, will be perpetuated and maintained, 

a preferred species for wild population establishment or re-establishment in waters 

having suitable habitat achieved by using genetically suitable stock and, in the absence of 

conservation genetic guidelines, translocations using wild stock may be considered”.  The 

CFMP sets resource management goals including the prospect of this once endemic fish 

to again sustainably populate New Jersey’s waters.  This chapter evaluates the current 

management practices for lotic salmonids in New Jersey and determines if existing 

strategies may be supporting or hindering the return of self-sustaining groups of native 

Brook Trout.   

 

4.2.1 Historical Context 

 

 Due to overfishing and environmental degradation associated with the industrial 

revolution, the late 1800s and early 1900s saw the fisheries of the United States 
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experience the worst conditions in their history (Nielsen, 1999).  To help rectify the dire 

situation, Nielsen (1999) explains that between 1900 and 1950 wildlife managers stocked 

and poisoned fish, built and modified water bodies, and regulated fish harvest “with the 

single aim of providing the greatest sustained quantity of fish” to meet the needs of 

recreational angling and replenish declining fish numbers.  This strategy adheres to a 

philosophy known as maximum sustainable yield (MSY). Stocked fish were considered 

desirable species, they fulfilled a need, they solved the perceived problem and resource 

managers very successfully and efficiently repeated this approach.  The fact that the 

cultured and stocked fish were of a hatchery origin (Perkins et al., 1993) was not a 

consideration at that time.  New Jersey was no exception to the trend (Hamilton and 

Barno, 2005).   

Hamilton and Barno (2005) and Hamilton (2007) recount New Jersey’s fish 

culture history.  Starting in 1875 the Charles O. Hayford State Fish Hatchery began to 

produce Brook Trout for release into New Jersey waters after a large drought further 

compromised the existing native fish populations.  In 1882 and 1908, respectively, 

Rainbow Trout and Brown Trout were also produced at the hatchery and released for 

angling purposes.  The origin of all of these strains is unknown.  In 1984, trout 

propagation was moved from the Hayford Hatchery to the newly constructed Pequest 

State Trout Hatchery.  The Brook Trout raised were from eggs of the Nashau strain 

gained, along with Brown Trout eggs, from the North Attleboro National Fish Hatchery 

in Massachusetts, while the Rainbow Trout eggs were obtained from the White Sulfur 

Springs National Fish Hatchery in West Virginia.  Over the last four years, the New 
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Jersey Division of Fish and Wildlife on average annually stocks streams, rivers, and lakes 

with close to 596,000 Brook, Brown, and Rainbow Trout (Table 4-1) (NJDFW, 2015).        

 In the mid-1970s the concept of optimum sustainable yield (OSY) as a natural 

resource management strategy was formulated.  This new approach took into 

consideration the reality that fisheries are multifaceted by including the biological, 

ecological, sociological, and economic aspects of the resource (Nielsen, 1999).  When 

using this strategy, no longer was a manager’s single aim to maximize physical fish yield.  

In fact, it was realized that a unique management goal existed for each situation and each 

fishery.  While it may be true that a MSY goal can be simpler to reach, especially 

concerning stocking a water body with catchable sized fish, but an OSY approach is 

much more practical in that it considers the fact that aquatic ecosystems are very diverse 

and the human needs related to them are equally as diverse (Nielsen, 1999).  After all, 

fishery management has been defined as, “the manipulation of aquatic organisms, aquatic 

environments, and their human users to produce sustained and ever increasing benefits 

for people” (Nielsen, 1999).  This is because in the US, fisheries are public resources that 

are held in trust by state and federal governments for the general use by all citizens.  

Reliance on MSY goals is difficult, if not impossible, because variability in populations, 

environmental conditions, and continuing human impact on natural resources limit the 

ability of managers to accurately predict fisheries yields, so depletions and extirpations 

are likely to occur.  Goals governed by OSY may be more difficult to reach, but they 

more rationally allow for attaining sustainability, for every aspect of the involved system 

is taken into account. 
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4.2.2 Modern Context 

 

 To meet the various needs of anglers in New Jersey, currently the state’s lotic 

waters are managed for salmonids in several ways, including strategies which are aligned 

as MSY approaches and others which are closely aligned to an OSY strategy.  Numerous 

water bodies are known as put-and-take fisheries where cultured fish are stocked at times 

of the year when lotic areas are of good temporary quality to allow for limited survival.  

In these locations anglers are expected to harvest released individuals as it is known that 

eventually these places will warm to the point that fish not removed will most likely not 

survive beyond the initial angling timeframe.  In other situations waters are considered 

put-grow-and-take.  In these instances, stocked fish are released in places that provide 

water quality that may allow salmonids to survive the year and hold-over to the next 

angling season.   

 Hamilton and Barno (2005) explain that the stocking of non-native or cultured 

fish species may potentially affect wild trout populations negatively through disease 

vectors, competitive interactions, and genetic structure of wild versus cultured 

populations.  Others have described similar concerns as well (Krueger and May, 1991; 

Perkins et al., 1993; Einum and Fleming, 2001).  Due to apprehension with cultured 

genes potentially entering into known wild populations, as well as competitive 

interactions and other issues, new management strategies have been implemented to the 

put-grown-and-take releases of the past decades.  Hamilton and Barno (2005) explain the 

specifics as follows: 35 streams or stream sections are presently regulated as Wild Trout 
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Streams (WTS) and are not stocked with cultured trout.  Streams having self-sustaining 

trout populations that are not designated as a WTS, and have not been stocked with 

cultured trout since 2000, will not again be stocked.  Streams having self-sustaining trout 

populations that are not designated as a WTS, but have been stocked since 2000 will be 

evaluated on a case by case basis to determine whether stocking is necessary.  The ability 

of the existing wild population to sustain a desirable fishery is paramount, but if stocking 

is allowed, then DFW stocking guidelines regarding species selection will be followed.   

The guidelines for streams having reproducing trout populations points to 

stocking efforts with cultured species that minimizes potential inter-specific competition 

or inbreeding interactions (Table 4-2).  Additionally angler regulations have been 

established to support wild fishery stocks.  A minimum nine inch length is required to 

harvest any trout in the State to protect the typically smaller wild fish as compared to the 

cultured individuals that have been raised and released at a larger overall size.  

Furthermore, during the spawning season all WTS fish must be returned to the water 

unharmed.  Finally, a small number of other trout production streams or stream sections 

are protected under additional special regulations that further limit size and timing of 

harvest. 

At the center of the aforementioned salmonid management plan is the fact that 

knowledge exists regarding reproducing populations as well as other species present in 

the numerous lotic systems.  Until very recently, this information was hand drawn on 

USGS topographic quadrangles, but currently the DFW Fish Track database that houses 

all of survey information pertaining to individual water bodies has been linked to 
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geographic information system (GIS) mapping software.  As waters are surveyed during 

the summer sampling season (see Hamilton and Barno (2005) for specifics) and data 

processed, any noted changes within survey areas can be more easily indicated on 

summary maps.  Furthermore, the New Jersey Surface Water Quality Standards, listed 

under N.J.A.C. 7:9B that govern the State’s flowing waters can also be updated, with any 

necessary protection adjustments recommended (NJDEP, 2011).  Surveys of lotic 

systems and analysis of data are essential, for without these freshwater fisheries 

management would rely on outdated information and fisheries sustainability would be 

compromised.   

 Revenue for NJDFW fisheries management was approximately $4.7 million in 

1997 and, similar to most other states (Ross and Loomis, 1999), supplied from two 

sources.  Eighty percent of the funds came from that year’s 341,000 fishing licenses sales 

and other related fees (e.g.,  trout stamps) and the remaining twenty percent was collected 

from federal aid funds (Epifanio, 2000).  Federal resources exist mostly in the form of 

grants available from a 1% to 10% excise tax on the sale of fishing related equipment, 

some small engine and motorboat fuel, and import duties on tackle, yachts and pleasure 

boats (USFWS, 2011a).  This funding structure was first authorized in 1950 under the 

Sport Fish Restoration Act (also known as the Dingell-Johnson Act) and expanded in 

1984 under the Wallop-Breaux Amendment (USFW, 2014).  The program has been 

slightly altered several times further, with the most recent adjustment in 2005, but the 

spirit of the plan has remained the same.  The largest annual distributions from collected 
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revenues are available to all US states in the form of grants and make up 57% of the total 

yearly allocations (USFW, 2014).    

 From the most current information available, annually 33.1 million anglers in the 

US spent $41.8 billion dollars involved in their various sporting activities (USDOI, 

2011).  USDOI (2011) also reports that within that same timeframe there are 27.5 million 

freshwater anglers in the US who spend $25.7 million dollars related to fishing.  

Additionally, throughout the country, 26% of all freshwater anglers, or $7.2 million 

people, specifically targeted trout while fishing.  USFWS (2013) documented that in the 

state of New Jersey in 2011, there were about 265,000 total fishing licenses and related 

stamps holders and whose privileges generated approximately $5 million.  The following 

two years saw similarities in both permit sales and generated revenues for the state.  In 

2011 the Dingell-Johnson Sport Fish Restoration act apportioned $365 million to US 

states and territories, with $3.6 million provided to New Jersey (USFWS, 2011b).  It is 

unclear how much money specifically was allocated to freshwater fishery management 

that year.  In his study, Epifanio (2000) found that federal aid grant monies in New Jersey 

for fisheries management were apportioned as follows: 50% went to fish propagation, 

20% was used for research, 5% supported habitat improvement, 5% assisted with 

regulations, and 20% was used in other areas.  Since the data from Epifanio (2000) are 

almost 20 years old, I sought to determine if this apportionment structure was still in 

place today. 
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4.2.3 New Jersey Freshwater Fisheries Funding  

 

 Following a similar method as Epifanio (2000) I generated a questionnaire and 

surveyed the NJDFW Freshwater Fisheries Administrator (Figure 4-2) to better 

understand the overall management formula of the Bureau of Freshwater Fisheries.  

Questions were asked regarding the last two fiscal years (2013 and 2014), sent by the US 

Postal Service, and very graciously responses were provide by mail in the return envelope 

I supplied in the initial contact.  Presented numbers were very similar for both years and 

the numbers reported here represent an approximate average of both time frames.   

 New Jersey’s budget for the culture and management of freshwater fisheries is 

approximately $4.05 million annually (Figure 4-3).  To support these activities $2.15 

million is generated from freshwater fishing license sales and another $995 thousand 

comes from trout stamp sales.  Federal Aid funds from the Sport Fish Restoration Funds 

amount to $880 thousand and another $25 thousand is provided by the NJ Mosquito 

Commission for the rearing of fish stocked for mosquito control purposes.  The operation 

of the state’s two fish hatcheries costs $2.6 million annually, or 65% of the total funding.  

Brook, Brown, and Rainbow Trout culture operates on $1.8 million: 45% of the total 

budget or 69% of monies used for freshwater fish culture.  Of the funds put towards 

raising salmonids, $1.5 million supports trout stocking in lotic systems; 82% of the 

coldwater hatchery operations allocation and 37% of the entire annual freshwater fishery 

budget.  
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 Beyond fish culture practices, from the two years of data provided, $1.4 million is 

directed towards research and management of freshwater fish.  On average about $233 

thousand of Sport Fish monies is set aside for research projects, representing 27% of total 

federal monies and 6% of the entire apportionment of freshwater funds.  Expenditure of 

funds allocated towards coldwater research varies annually depending on the current 

focus of activities.  In 2013 roughly $35 thousand and in 2014 $61 thousand went to 

coldwater fisheries research.  While the numbers provided above are only representative 

of 2013 and 2014, looking at them as an average the $48 thousand covers about 20% of 

the budget for research activities and 1% of the entire freshwater fishery budget.  

Additionally, yearly about $1 thousand is used for coldwater fishery habitat restoration, 

or less than 0.025% of the total budget. 

Nationally, on average more than half of total states’ budget expenditures for 

fisheries management is devoted to two main areas: hatchery operations and stocking and 

analysis of fish population conditions (Ross and Loomis, 1999).  On average about 33% 

of all funds support hatchery and stocking programs (Ross and Loomis, 1999).  My 

findings relate that New Jersey is similar to most other US state’s fishery management 

strategies, with all relying heavily on hatchery production and distribution of cultured 

fish (Ross and Loomis, 1999).  Currently, resource managers are very good at culturing 

fish, with an average of 596,000 salmonids released into New Jersey waters over the last 

four years (Table 4-1) (NJDFW, 2015).  The process is very efficient and the practice 

fulfills a publically desired need.   
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Mather et al. (1995) suggests that “within state fishery agencies nationally, due to 

current fiscal austerity, expanding job responsibilities, shrinking personnel allocations, 

and increasing public scrutiny of government activities, time spent on specific 

management activities must reflect agency priorities”.  Allocation of time and money to 

specific tasks correlates to the perceived importance of fishery management objectives 

and is based on allocated funding.  However, debate surrounds the continued application 

of domestic fish into lotic systems as the primary management strategy (Garcia-Marin, 

1991; Kruger and May, 1991; Einum and Fleming, 2001; reviewed in Araki and Schmid, 

2010).  Furthermore, it has also been reported that managers have noted obstacles to self-

sustaining salmonid populations due to habitat related issues; yet when compared to other 

activities, personnel time and general funding devoted to habitat protection and 

restoration is usually very small (Epifanio, 2000).  In spite of all this, US coldwater 

fishery managers rank conservation of native species and protection and enhancement of 

wild trout as the second and first priority concerns (Born and Stairs, 2003).                   

 

4.2.4 Wild Trout in New Jersey 

 

In New Jersey, watersheds that maintain reproducing groups of coldwater fish 

such as the salmonids are extremely valuable and important resources for the state’s 

residents (Responsive Management, 2003; 2010).  Other states have recognized this as 

well and have even placed a higher regard on the fact that native Brook Trout are the 

salmonid present within systems.  New York, Pennsylvania, North Carolina, and South 
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Carolina have all established a category of recognition for the heritage strains of these 

fish within their borders, but this seems more to have been done to raise public awareness 

or establish a sense of cultural value for the species and no extra protections or 

regulations followed the additional designation (Epifanio, 2000).      

Currently, New Jersey contains 135 miles of water which have been designated as 

wild trout streams and afforded more stringent fishing regulations.  This quantity 

represents 20% of all lotic areas within the state which have been identified as having 

reproducing trout populations.  Such places are otherwise known as trout production 

waters.  According to Hamilton and Barno (2005) approximately 140 additional trout 

production streams are not trout-stocked or regulated as a WTS.  Furthermore, the harvest 

of these wild trout is currently governed by the general statewide regulations, but a need 

exists to have more stringent regulations controlling the harvest of wild trout in these 

areas (Hamilton and Barno, 2005).  Under N.J.A.C. 7:9B, New Jersey presently holds 

three general surface water quality standards that relate to salmonids: 1) trout production, 

used by trout for spawning or nursery purposes during their first summer of life, 2) trout 

maintenance, used for the support of trout throughout the year, 3) non-trout, not used by 

trout for production or maintenance purposes (NJDEP, 2011).  Other states utilize similar 

categorization of flowing waters for regulation purposes with some even creating an 

additional recognition for some waterbodies.  Maine and California include stream 

regulations that build off their existing WTS tenet and connects surface water quality 

classification structure to protect the heritage strain trout that exist within each state 

(MDIFW, 2013; CDFW, 2015).  
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Recent work by Danzmann et al. (1998) uncovered six different major 

evolutionary phylogenetic clades of Brook Trout in North America.  Large genetic 

differences were found to exist between the southern and northern groups.  Populations 

that were believed to exist outside the zone of influence of the recent glaciation were 

more genetically heterogeneous and contained members from all evolutionary units, 

while populations from the previously glaciated areas were made up of only members of 

three lineages.  Furthermore, in support of ideas purported by Moritz et al. (1995), 

Danzmann et al. (1998) suggest that evolutionary differences among clades detected were 

quite substantial and therefore certain lineages or populations should be recognized as 

evolutionary significant units.  This research is important for it emphasizes the 

uniqueness of regional members of the Brook Trout species.  Differentiation began in 

New Jersey upon the northern tier’s repopulation upon the recession of the Wisconsinan 

glaciation about 15,000 years ago (Schmidt, 1986).  Brook Trout most likely made their 

way to the area by traversing the numerous glacial lakes and recaptured streams 

(Schmidt, 1986; Danzmann et al., 1998; Hall et al., 2002) that comprised the changing 

landscape (Figure 4-4) (Stanford, 1997).  Currently it is unknown, but it is probable that 

these fish originated from refugia either in the upper Mississippian Valley, the Atlantic 

Coastal uplands, or Northeastern Coastal locations (Schmidt, 1986; Danzmann et al., 

1998).   

 Similarly, Hayes et al. (1996) indicate that native southern Appalachian Brook 

Trout are genetically distinct from those that were stocked and determined to be more 

related to northern lineages.  Perkins et al. (1993) found heterozygosity of hatchery 
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Brook Trout populations to be lower compared to some wild groups, but within the range 

seen in northeastern US populations.  However, this low level of genetic diversity is to be 

expected as only a few closely related lineages founded the newer species groups upon 

the recession of the last glacial period (Hayes et al., 1996).  Quattro et al. (1990) also 

found comparable low levels of diversity in their research involving more northern Brook 

Trout populations.  

 Such differentiation is possible for as Allendorf and Ryman (1987) state, 

generally speaking, salmonids have, “a well-documented tendency to evolve genetically 

discrete, ecologically specialized populations by natural selection over thousands of 

generations of adaptations to local environmental conditions.”  Therefore Perkins et al. 

(1993) describes a population’s genetic diversity that has evolved through natural 

selection and other random events as irreplaceable.  Furthermore, a high likelihood exists 

that this genetic material will be necessary for future environmental changes and any loss 

of current heritable resources simplifies the overall genetic structure through non-native 

mixing will create lasting implications (Perkins et al., 1993).  Others have also identified 

population specific traits existing between different groups of the same salmonid species 

(Krueger and Menzel, 1979; Garcia-Marin, et al., 1991; Van Offelen et al., 1993; 

Kriegler et al., 1995; Letcher et al., 2007). 

As has been demonstrated to occur, the loss of regional or local genetic diversity 

from supporting nonnative or hatchery deployed salmonid introductions should be a 

concern (Allendorf and Leary, 1988; Ferguson, 1990; Hayes et al., 1996).  Any actions 

that potentially assist in eroding the strength of heritage populations need to be 
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considered with the costs versus benefits in mind.  This is especially central to decisions 

that are under the control of resource managers, such as whether an area should be 

stocked or not, and if so, what is the appropriate level. Krueger and May (1991) discuss 

the many negative ecological and genetic effects introduced salmonids may impart to 

native fish including competition, predation, habitat alteration, and indigenous species 

gene pool alteration.  Gene mixing from wild and hatchery strains of the same salmonid 

species does not always take place (Krueger and Menzel, 1979; Hayes et al., 1996; 

LeClair et al., 1999; Hansen, 2002).  Several reasons exist for why gene exchange does 

not occur, including differences in indigenous population size compared to the number of 

stocked individuals, reduced fitness of hatchery reared individuals, and poor record 

keeping (Hayes et al., 1996), but the fact that gene mixing can occur should be cause for 

concern (Almodovar et al., 2001; Humston et al., 2012).   

As a result, hatchery salmonids can develop reproducing populations, either of the 

same species native to an area (Garcia-Marin, 1991, Humston et al., 2012) or of a non-

native variety (Larson and Moore, 1985).  Compared to wild fish, often the larger size 

and more aggressive behavior of hatchery fish lead to an initial competitive advantage 

and ultimately displacement of native individuals, frequently rather quickly (Bachman, 

1984; Einum and Fleming, 2001).  Wild fish abundance has also been shown to stay 

depressed in stocked waters for years after the initial release (Vincent, 1975; Cornett et 

al., 2004), potentially due to the original displacement event followed by the hatchery 

fish themselves not surviving long term due starvation, predation, and poor general 

fitness (Vincent, 1960; Mason, et al., 1967; Bachman, 1984; Garcia-Marin, 1991; Weiss 
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and Schmutz, 1999; Einum and Flemming, 2001; Hansen, 2002; reviewed in Araki and 

Schmid, 2010).  Einum and Fleming (2001) suggests that many empirical studies clearly 

illustrate that fish density in streams may not show the positive intended response from 

stocking and fish populations may actually decrease as a result from purposeful releases.  

Conversely, others have shown that increases in total fish abundance and general size of 

individuals occurs in wild populations when waters are no longer stocked (Vincent, 1975; 

Bachman, 1984; Vincent, 1987; Bachman et al., 1989; Carlin et al., 1991; Gougeon, 

1991; Cornett et al., 2004).   

Introgression and interstock crossing of hatchery genes into wild populations also 

directly weakens fish population genetics by removing the natural heterozygosity that has 

develop over thousands of year and allowed for the group to survive (Krueger and May, 

1991).  Additionally, indirect genetic concerns exist when wild fish are outcompeted by 

stocked individuals, or naturalized non-natives, and their distribution gets restricted to 

headwater stream sections.  Essentially population isolation occurs and such segregation 

increases the possibility for an outright loss of the local assemblage as population size 

dwindles, the overall gene pool decreases, and the potential for genetic bottlenecks and/or 

genetic drift situations increases (Krueger and May 1991; Wofford et al., 2005; Morita et 

al., 2009).         

It is clear that hatchery fish have been shown to be detrimental to wild fish 

populations through ecological and genetic interactions (Einum and Fleming, 2001; Araki 

and Schmid, 2010).  NJDFW managers have created some protection for WTS 

populations, but the presently employed hatchery program may effectively be working 
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against preserving natural populations.  Others have noted a similar situation taking place 

(Garcia-Marin, 1991).  Hanski and Gilpin (1991) and Hanski and Simberloff (1997) 

discussed that the conservation of a species can begin to take place only after an 

understanding of the dynamics of the specific situation has been learned.  Consequently, 

to set conservation priorities for New Jersey Brook Trout, population genetics must first 

be determined.  Once this is known, the best way to manage stocks can then be 

implemented.   

 

4.2.5 Analysis of Salmonid Resource Management 

 

The search for heritage strain Brook Trout that was started by Hamilton (2007) 

needs to be built upon and all streams with reproducing Brook Trout populations should 

have their genetic structure assessed and mapped (sensu Perkins et al., 1985; Moritz et 

al., 1995; as reported in SCDEDP, 2013).  If NJDFW does not have the resources or staff 

to meet this need, then a relationship with a University capable of processing existing or 

future genetic samples should be developed to complete the task.  A better understanding 

of the depth and range of the heritage group can lead to effective management strategies.  

Hamilton (2007) described wild Brook Trout in New Jersey as being genetically similar 

to each other, but it remains unclear how these fish fit into the clades identified by 

Danzmann et al. (1998).  Comparisons of the uncovered population genetics should be 

completed to identify regional and local relationships of New Jersey Brook Trout.  

Population genetic analysis can also assess whether hatchery reared individuals are 
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contributing to wild stocks or whether these fish are reproductively isolated from the 

native population.     

As evidenced through genetic mapping, Rogers and Curry (2004) and Kanno et al. 

(2011) demonstrated that when restrictions are absent, Brook Trout move throughout and 

populate all parts of stream systems, whether the catchments are in large open-river 

watersheds or in smaller headwater locales.  Hamilton (2007) also noted this type of 

genetic structuring within some New Jersey populations, as did Perkins et al. (1993) in 

New York and Jones et al. (1996) in eastern Canada.  Partly for these reasons it is 

recommended that the primary management unit size to protect the unique characteristics 

of heritage strain Brook Trout populations be set at the individual river basin dimension 

(Perkins et al., 1993).  To further assist with this conservation goal, it is suggested that at 

least two populations from each major river basin be protected at as high of an effective 

population size as possible to ensure preservation of unique characteristics. 

Currently the NJDFW does not stock WTS.  However, it is known that when 

possible, trout will move great distances to meet their life history needs (Clapp et al., 

1990; Meyers et al., 1992; Riley et al., 1992; Gowan et al., 1994; Gowan and Fausch, 

1996).  In order to heed the suggestions by Perkins et al. (1993) related to heritage strain 

fish management units, any streams near to WTS and connected to the larger waterbody 

within in the river basin should also not be stocked.  It is understandable that such a plan 

may generate some discontent among anglers.  For this reason NJDFW should consider 

expanding the state’s fish propagation program in two ways.   



132 

 

 

 

 

 

First, a plan to include identified heritage Brook Trout strains can help bolster the 

natural gene pools, as well as assist in bringing abundance numbers and overall range of 

genetic relicts up, much like New York State currently employs (Ernst and Lewthwaite, 

2011).  While it can be assumed that concern for disease introductions may be an issue, 

such an idea may be worthy for others have reported that wild fish progeny raised in a 

hatchery setting show higher mortality during rearing, but survive better when 

reintroduced into the natural environment (Vincent, 1960; McLaren, 1979; Garcia-Marin 

et al., 1991).  Ultimately such fish remain in the systems much longer and once 

established, the process can then be used to propagate heritage stocks for repopulation 

elsewhere.  Another cost saving advantage that can be garnered from this strategy is that 

repeated stocking events are less likely to be necessary due to the higher survival rates of 

the heritage groups.   

Second, if resource users are dissatisfied with stocking eliminations, potentially 

different non-reproductive fish strains (FFSBC, 2004) could be released at the 

watershed’s periphery.  Triploid or all-female populations of fish could be generated in a 

hatchery with the intent of stocking in locations farthest from the WTS under protection.  

In this compromise scenario, concerned anglers have an opportunity to catch larger fish 

and the WTS populations have one of the two concerns removed that surround fish 

stocking.  The hatchery modified fish have an inability to breed, so genetic 

introgression/interstock issues are removed, but the uneasiness related to resource 

competition remains. 



133 

 

 

 

 

 

Programmatic savings from the need to stock less often or fish overall can then 

possibly be put toward investigations into the problems that have altered catchments and 

related instream habitat to the point that natural salmonid reproduction can no longer 

occur (Vincent, 1987; Almodovar et al., 2001).  Additionally, funds may even be 

available to take corrective actions in disturbed catchments or for land acquisition to keep 

such deterioration from occurring.        

Hayes et al. (1996) suggest that native Brook Trout be reestablished in streams 

that historically held them, but no longer do, with introduced native fish from the same 

watershed population.  As stated by Perkins et al. (1993), such naturalization of new self-

sustaining groups in new habitats is key to aiding in preservation of species and genetic 

diversity.  Hayes et al. (1996) continued that the active removal of the system’s 

previously hybridized fish is unnecessary, due to the ultimate loss of some important 

heritage genetics, as well as the high financial cost.  Additionally, as demonstrated by 

Almodovar et al. (2001), in less than a decade non-native genes were no longer part of 

the population genetics once stocking was halted.  Hayes et al. (1996) continue that 

populations should be eradicated from places that support only hatchery origin stocks and 

replaced with fish of native origins. 

The life history of Brook and Brown Trout are very similar in many ways.  It is 

because of this fact that issues have arisen when the two species have been 

anthropogenically brought together on the North American continent.  Watson (1999) 

states, “the two fish have evolved to fill almost identical niches on either side of the 

Atlantic…their diets are much the same…they spawn at the same time of year in broadly 
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similar habitats and tolerate almost identical ranges of temperature.”  Because of their 

specific requirements these fish are most likely found in similar lotic environments.   

Diglio (2014) notes that within the last 30 to 40 years, New Jersey waters 

supporting Brown Trout reproduction have increased substantially, while those for Brook 

Trout have not shown similar growth.  Land use and land cover characteristics 

undoubtedly play a role in the presence, absence, and abundance of reproducing 

populations of Brook and Brown Trout (Table 4-2).  However, recent work by McKenna 

et al. (2013) suggests that a more important factor than habitat in tipping the balance in 

favor of the non-natives over the natives is due to the repeated Brown Trout stocking and 

the competition for limited resources that follow the introductions.  These researchers 

contend that wild Brook Trout populations may even be able to recover upon the 

cessation of stocking. 

In New Jersey, Brook Trout and Brown Trout are both valuable sport fish, as 

McKenna et al. (2013) note is also true in other states.  Fish stocking is an important tool 

to meet angler needs (Jones et al., 1996).  However, the fact that the non-native Brown 

Trout, along with New Jersey’s other stream stocked salmonid the Rainbow Trout, have 

made the list of the world’s 100 most invasive alien species cannot be ignored (Lowe et 

al., 2000).  Specifically related to New Jersey, it also should not be ignored that part of 

the NJDFW funding is tied to the State Wildlife Action Plan (SWAP) (see Niles et al., 

2004), an overriding blueprint for how the agency manages wildlife resources.  The 

strategy of the SWAP is to address the importance of all species within the state beyond 

those that are controlled as game.  This plan acts to include those species that are 
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considered rare, threatened, or endangered.  Furthermore, even though all are subject to 

freshwater fishery game regulations, the document notes the importance of New Jersey’s 

coldwater salmonid species and issues surrounding related aquatic systems.  Presumably 

because of their need for unspoiled habitat and water quality, repeatedly throughout the 

document Brown Trout and Rainbow Trout are noted as being species of special concern.  

Furthermore, Brook Trout are noted as being a species of regional priority.   

 As the SWAP comes up for periodic review and reassessment, eight elements are 

required to be addressed (Table 4-3).  To meet the many goals concerning species 

conservation delineated in the SWAP, several prevailing strategies are as follows:  

“-Inventory and monitor all endangered, threatened, and special concern wildlife 

and fish species…; especially those with data gaps.   

-Maintain ecological integrity of natural communities and regional biodiversity by 

controlling invasive species… 

-Protect, enhance, and restore coldwater fish habitat and ecosystems. 

-Conserve and enhance native, wild trout populations at optimum levels.” 

 

It seems likely that the BFF is capable of meeting many of the goal necessities.  

However, in light of the above listed conservation approaches, the SWAP makes no 

reference to the importance that heritage strain Brook Trout are swimming in New 

Jersey’s lotic systems.  It seems the current BFF stocking program acts to undermine the 

native Brook Trout related SWAP goals and greater conservation of the species seems 

unlikely. 

Fish propagation is expensive (McKenna et al., 2013) and stocking cessation 

potentially saves funds (PFBC, 2011).  This is especially true for places that repeatedly 

require fish replenishment to maintain a fishery.  The literature has demonstrated positive 

results on wild fisheries with curtailing such releases (Vincent, 1975; Bachman, 1984; 
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Vincent, 1987; Bachman et al., 1989; Carlin et al., 1991; Gougeon, 1991; Cornett et al., 

2004) and adjustment of some WTS regulations would go a long way to moving toward 

more sustainable lotic fisheries.  Hatchery fish may be able to be placed in other more 

appropriate locations or newly freed up funds can be diverted to investigate more OSY 

based strategies.  Coupled with the recent advance of GIS, available money may be able 

to support research that advances the understanding of what are the root causes for 

coldwater salmonid declines.  

  

4.2.6 Suggestions for Greater Brook Trout Sustainability 

 

Previously unknown populations of reproducing trout are still being uncovered in 

New Jersey and known groups are annually noted as undergoing abundance, age-class, or 

even species changes (Diglio, 2014; Diglio and Bologna, 2012).  To move forward with 

creating sustainable Brook Trout populations the following suggestions are offered: 

-1) Designate lotic “Native Wild” trout water status where appropriate.  Begin 

with those populations of wild Brook Trout that were identified in Hamilton (2007) that 

have the possibility for heritage group existence.  Next continue to assess the 115 current 

steams or stream sections known to hold self-sustaining populations that have no known 

history of stocking or may be separated by natural or man-made barriers.  Samples from 

these places can have their genetic structures analyzed for markers that suggest an 

indigenous strain.  Interestingly, California presently has eight streams or related systems 

noted with the heritage status (CDFW, 2015).  Management of species based on their 
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genetic differentiation among populations has been reported to be used successfully in 

other cases (Hall et al., 2002). 

-2) Cease or dramatically curtail stocking of domestic lineage salmonids in the 

systems that hold the 115 naturally reproducing Brook Trout groups.  Perkins et al. 

(1996) sets the management unit for salmonid genetic conservation at the river basin size, 

but this may be unrealistic in New Jersey due to angler concerns.  However, discussions 

amongst all interested stakeholders could set the appropriate watershed dimension to 

realistically achieve this goal.  However, it is important to note that all three of New 

Jersey’s lotic salmonids are known to travel long distances to meet their life history needs 

(Clapp et al., 1990; Meyers et al., 1992; Riley et al., 1992; Gowan et al., 1994; Gowan 

and Fausch, 1996) so the closer the catchment to the basin size the better the protections. 

-3) Move funding from the fish propagation and distribution program to more 

research oriented efforts.  Depending upon the determined catchment size for stocking 

cessation surrounding any wild Brook Trout groups, fewer fish may be required to be 

produced at the hatchery.  The details would have to be worked out, but the savings from 

the purchase of less feed alone could be substantial enough (PFBC, 2011) to see funds 

diverted to other areas for use.  Specifically, field surveys in locations that have yet to be 

sampled at a scale that might allow for undocumented native groups to be discovered as 

was recently demonstrated in Diglio and Bologna (2012).  If dedicated funds are unable 

to be moved from fish propagation toward other purposes it seems sensible to at least re-

allocate the extra fish to put-and-take areas.      
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-4) Investigate ways for more federal grant money research opportunities to be 

explored.  The questionnaire results I obtained and supporting personal communication 

shows a good deal of money is budgeted for use that is obtained from the Sport Fish 

Restoration grant.  Specifically, about $232 thousand is available, but due to a small staff 

roughly only $80 thousand is actually used.  This amounts to a large surplus that might 

otherwise be used for more investigations.  Possibly additional staff might be hired or 

relationships with Universities can be developed to create internships where stipends are 

available to complete work.  Examples of research projects that could be investigated 

include the previously suggested molecular genetics project or to even recreate the 

Hamilton (2007) study but have the focus be on wild Brown Trout populations.  It would 

be very interesting to see if these fish show a similar relatedness trend as New Jersey’s 

Brook Trout do.  Furthermore, follow up surveys can be conducted to see how WTS 

Brook Trout populations have changed since stocking was halted.  This could serve as the 

foundation for the rationale to curtail stockings in some segments and redirect hatchery 

reared individuals to more appropriate locations   

-5) Investigate the possibility of raising heritage lineage Brook Trout for stocking 

in appropriate locations.  Others have noted the progeny of wild fish raised in the 

hatchery environment fare better than those of domestic origin upon their release 

(Vincent, 1960; Garcia-Marin et al., 1991).  Taking advantage of such an outcome may 

lead to two benefits.  First, areas receiving the stocking will most likely require less 

future effort due to the greater ability of the transplants to flourish under the local 

conditions with which they have become adapted to over the multiple generations of 
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being in the system.  Furthermore, a much greater potential exists for these fish to 

develop self-sustaining populations.  Second, by selecting the proper broodstock to 

include the ‘heritage’ lineage genetic structure, the efficiencies within the State hatchery 

system can be maximized.  Potential savings from other areas of the hatchery operation 

or newly secured Federal Grant funds can be put toward this project. 

-6) Use GIS to test the LU/LC threshold values for trout reproduction waters 

based on all data points within the Fish Tracks database system.  From the procedures 

outlined in Chapter 2, the data pool can now go beyond simply those that had matching 

survey locations between the historical and modern time frames.  Expansions should 

include all catchments where trout production is known.  Tests can check for differences 

between individual species and a separate look can be taken that pools LU/LC for all 

trout in combination.  An additional focus for this project would be to understand the 

characteristic make-up of the catchments containing reproducing Brook Trout in potential 

‘heritage’ type situations. 

-7) Seek ways to push for develop LU/LC codes in ‘Wild Native’ Brook 

catchments that go beyond the current Surface Water Quality Standards, N.J.A.C. 7:9B, 

protections.  Pending legislation in other places that will soon offer greater protection to 

identified important heritage populations (MDIFW, 2013) can be used as a model for 

how New Jersey can proceed with this strategy.  Category 1 and Freshwater 1 

designations come with 150 to 300 buffers along stream riparian zones, but suggestions 

that these may not offer enough of a safeguard to aquatic residents exist as characteristics 

on the landscape scale can have important and lasting influences as well (Steedman, 
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1988; Vondracek et al., 2005; Hudy et al., 2008).  This especially may hold true for 

LU/LC alterations that change ground and surface flow regimes.  Like the suggestions 

made in Poff et al. (1997) and Zorn and Nuhefer (2007), managers of these unique 

watersheds should continue to support and push for greater actions that allow streams to 

have the most natural flow regime.  By doing so, abnormal flooding and high water flow 

situations that often follow land use changes are reduced and less likely to wash out fry, 

weaken year classes, and act to imperil the unique group of Brook Trout in this area.  

Such concerns are especially important in light of the predicted scenarios resulting from 

altered hydrologic regimes brought about by climate change (Clark et al., 2001; Wenger 

et al., 2008).   

  

4.3 Conclusions 

 

Through implementation of these management strategies, strides can be made to 

incorporate an OSY based approach to freshwater fishery management in New Jersey.  

Freshwater fishery management is beholden to a multitude of interested resource users 

and decisions for the best pathway forward need to include stakeholders from social, 

economic, and environmental avenues.  The use of OSY strategies can allow for this to 

occur.  However, with any type of change, progress will occur slowly, especially in 

regards to an adjustment of philosophical foundations.  Significant ecological, cultural 

and bequeathed value surround those parts of our natural heritage that contain 

irreplaceable characteristics.  For that reason, additional protection and conservation 
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should be afforded to the self-sustaining groups of New Jersey’s Brook Trout that are 

connected to an indigenous lineage.  By doing so, the opportunity for heritage strain 

Brook Trout sustainability is viable.  With the proper management some “human effects 

on ecological and evolutionary processes can be minimized” (Moritz et al., 1995) and 

unique populations of our precious natural resources have a higher likelihood of being 

saved.      
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Figure 4-1. Locations for New Jersey’s lotic wild Brook Trout waters as of 2012. 
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Figure 4-2. Survey questionnaire.  Sent to NJDFW Bureau of Freshwater Fisheries 

regarding yearly revenues and expenditures. 

 

NJ Freshwater Fisheries Management Survey Questionnaire (pg 1 of 2) 

1) 2013 Fiscal Year Budget:______________________ 

 

-% or actual $ from license sales:____________________ 

 

-% or actual from trout stamp sales:_____________________ 

 

-% or actual $ from Federal Aid:______________________ 

 

-% or actual $ from any other funding source:_________________________ 

 

-example(s) of other funding source(s):______________________________________ 

 

2) Budgetary expenditures- 

 

-% or actual $ on hatchery operations / fish propagation:____________________ 

 

-% or actual $ on total trout propagation :___________________________ 

 

-% or actual $ on stream/river intended trout propagation:__________________ 

 

-% or actual $ on trout stocking:_______________________________ 

 

-% or actual $ on all research:______________________________ 

 

-% or actual $ on coldwater fisheries research:____________________________ 

 

-% or actual $ on research related to wild trout streams/rivers:___________________ 

 

-% or actual $ on research related to put & take/put, grow, & take trout streams/rivers:____________ 

 

-% or actual $ on habitat restoration:___________________________ 

 

-% or actual $ on coldwater fishery habitat restoration:_________________________ 

 

-% or actual $ on education/outreach:____________________________ 

 

-% or actual $ on regulations:________________________________ 

 

-% or actual $ on other:______________________ 

 

  -examples of other expenditures:__________________________ 
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Figure 4-3.  New Jersey Freshwater Fisheries Funding Schematic- All figures represent the average of only the 2013 and 

2014 funding years.  Actual year to year allocations vary depending on different project needs and focus areas.   

M= million dollars, k= thousand dollars, (#%) = % of total budget, (*#%) = % of previous dollar amount  
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Figure 4-4. Glacial Lakes and Ice Margins related to the recession of the Wisconsinan glaciation. Presented in Stanford 

(1997).  Note the amount of interconnected glacial-lake, glacial-lake outflow, and glacial-stream drainage area 

suggested to be the pathways Brook Trout repopulated northern New Jersey after glacial ice recession occurred.  
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Table 4-1.  New Jersey Division of Fish and Wildlife cultured salmonid stocking 

summaries over the last four years by season and species.  Adapted from 

NJDFW (2015).  BKT- Brook Trout, BNT- Brown Trout, RBT- Rainbow 

Trout 

 

 

  2014 2103 2012 2011 mean 

            

Spring (BKT, BNT, & RBT) 370,675 614,833 620,262 619,160 556,233 

Fall (BKT, BNT, &/or RBT) 26,760 19,980 22,225 21,390 22,589 

Sea Run (BNT only) 8,600 NA 15,840 15,849 13,430 

Winter (BNT & RBT) 13,340 4,810 5,010 5,000 7,040 

TOTAL 419,375 639,623 663,337 661,399 595,934 
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Table 4-2. As seen in Hamilton and Barno (2005), specifics related to acceptable  

NJDFW cultured salmonid species stocking in known lotic trout 

production water bodies. 

 

  

Reproducing trout species Acceptable cultured trout species 

brook rainbow 

brown brook and/or rainbow 

rainbow brook and/or rainbow 

brook and brown rainbow 

rainbow and brown brook and/or rainbow 

brook and rainbow rainbow or brook (opposite of dominant 

wild species)  
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Table 4-3. NJDFW State Wildlife Action Plan procedural goals, as seen in Niles et al. 

(2004). 

 

 
EIGHT (8) REQUIRED ELEMENTS of the WILDLIFE ACTION PLAN 
 

1. Information on the distribution and abundance of species of wildlife 

2. Descriptions of locations and relative condition of key habitats and community types 

3. Descriptions of problems and priority research and survey efforts 

4. Descriptions of conservation actions 

5. Proposed plans for monitoring 

6. Descriptions of procedures to review the strategy 

7. Coordinating the development, implementation, review and revision of the plan with Federal, State,  

     and local agencies and Native American tribes 

8. Broad public participation         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



149 

 

 

 

 

 

Chapter 5  

Assessment of New Jersey Trout Production Systems: Moving Towards 

Sustainability 

5.1 Introduction 

 

 The Eastern Brook Trout (Salvelinus fontinalis) has had substantial declines in 

presence, abundance, and coverage related to its original range in North America (Hudy 

et al., 2005; Hudy et al., 2008).  Anthropogenic stressors are considered the primary 

threats and are generally most to blame for the noted deterioration (Fausch et al. 2006).  

Hamilton and Barno (2005) and Hudy et al. (2005) suggest that over the last century the 

most important factors influencing native trout populations within New Jersey are 

increases in human induced land use practices.  Specific problems seen in New Jersey are 

warming of rivers from urbanization and dam building activities, fragmentation of 

systems by roads and dams, and competition with introduced non-native fish species.  

MacCrimmon and Campbell (1969) relate that about 100 years ago Brook Trout were 

found in abundance throughout most of the northern part of the state and Hudy et al. 

(2005) has ranked the New Jersey in the top five US locations for percentage of total 

watersheds where these fish have been extirpated.   

New Jersey maintains natural groups of three trout and char species: Brook Trout, 

(Salvelinus fontinalis), Brown Trout (Salmo trutta), and Rainbow Trout (Oncorhynchus 

mykiss).  Finding each species within a lotic system indicates high levels of water quality 

and habitat (Raleigh, 1982; Raleigh et al., 1984; Raleigh et al., 1986).  Identifying young-
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of- the-year (YOY) of each species is even more notable for such self-sustaining groups 

point to water and habitat of immensely high quality (Hamilton and Barno, 2005).  

Because of their need for waters and habitat of the highest quality (Steedman, 1988; 

Wehrly et al., 2003; Ficke et al., 2009), Brook Trout are seen as the most sensitive of 

New Jersey’s three wild stream salmonid species and extremely susceptible to 

environmental changes.  Locating Brook Trout YOY is exceptionally indicative of 

pristine systems and surrounding watersheds.  Any observed absence of a previously 

noted existing wild group can be a cause for concern, as can a drop in overall population 

numbers or particular age class, especially the reduction or loss of YOY (Fausch, 1988; 

Schueler, 1994; Karr and Chu, 2000; Fausch, 2007; Steen et al., 2008).  Due to these 

changes, Brook Trout have become a species of great conservation concern (DeWeber 

and Wagner, 2015) and natural resource managers across the fish’s original range seek 

solutions to help reverse the negative trend.  With this motivation in mind I conducted 

research to add to the cause and help make strides towards seeing this once endemic 

species again sustainably populating the watershed of New Jersey.     

   

5.2 A Movement Towards Sustainability 

 

 To understand the problem of Brook Trout decline it is essential to have an idea 

of the severity of the problem.  Chapter 2 quantitatively evaluated population level 

changes in all species of self-sustaining or wild salmonids in New Jersey.  While the sets 

of historical and modern data that were compared did not include every catchment within 
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the state, the sample was large enough to identify important LU/LC thresholds related to 

P/A of reproducing lotic salmonid species.  Care must be taken if one is to generalize 

these findings across the region, but nonetheless the identified values are still significant.  

At the most basic level, this research suggests that the range of reproducing Brown Trout 

populations is expanding, while Rainbow and Brook Trout groups have all decreased 

slightly.   

 Furthermore, correlations and t-tests were run to see if relationships existed 

between species’ presence or absence (P/A) within survey locations, land use or land 

cover characteristics (LU/LC), and other hypothesized abiotic factors influential to 

salmonid life history.  Results showed that LU/LC catchment value thresholds exist at < 

12% agriculture, < 22% barren and urban, > 64% wetland and forest, and < 4-6% 

impervious to allow for natural Brook Trout reproduction.  Similarly, values assigned for 

Brown Trout reproduction include the following; < 14% agriculture, < 27% barren and 

urban, > 58% wetland and forest, and < 5-7% impervious cover.  While these figures are 

similar to findings others have identified, never were specifics such as these determined 

for New Jersey.  As previously mentioned, the data set only included sites that were 

paired in that they were sampled historically and again in a more modern time frame so 

much of the state was left out.  However, the employed methods proved useful and 

should be relied upon again to test all New Jersey catchments with reproducing 

salmonids to understand larger state trends. 

 Within the context of changing salmonid population structure is an additional 

realization that Brook Trout of an ancestral heritage strain do still exist in New Jersey.  
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To me this is a remarkable find, considering how much watersheds have been altered 

since European settlement (Nielsen, 1999; Brown et al., 2005; Hasse and Lathrop, 2010).   

Such a find brings along with it an even greater responsibility in that these fish contain 

irreplaceable components of natural heritage (Perkins et al., 1993) and their preservation 

or conservation is of the utmost importance.  To that end, Chapter 3 of this thesis outlines 

the discovery and investigation of a previously undocumented wild Brook Trout 

metapopulation.  A very high likelihood surrounds this group as being of a heritage 

lineage due to the fact that it has remained intact after being essentially cut-off from the 

larger system almost 100 years ago (Hilbert, 2001) and it exists in close proximity to 

another known relict population (Hamilton, 2007).  Such a find is important because this 

population can be used as broodstock to repopulate other stream sections deemed 

appropriate for such releases (Perkins et al, 1993; Hayes et al., 1996).   

 Finally, a qualitative assessment of freshwater fishery management as it relates to 

lotic salmonids in New Jersey was undertaken.  Not surprisingly, the strategies practiced 

for overseeing the resources are not uncommon throughout the rest of the country 

(Mather, 1995; Nielsen, 1999; Ross and Loomis; 1999; Epifanio, 2000; Hamilton and 

Barno, 2005; USDOI, 2011; USFW, 2014).  Much success has come from making use of 

policies that are founded on the maximum sustainable yield concept (Nielson, 1999).  

Perhaps nowhere is this more evident than with the vast commitment that has been made 

to stocking trout of domestic origin (NJDFW, 2015).  Such releases have been pulled 

back when self-sustaining fish have been identified to exist within a stream section.  

Additionally, a more restrictive Wild Trout Stream regulation status gets assigned to each 
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waterway, but recent suggestions relate that more should be done to protect wild groups, 

especially those of an indigenous lineage (Perkins et al., 1993).  Salmonids can travel 

large distances to meet their life history needs, as shown in Chapter 3 and illustrated by 

others (Clapp et al., 1990; Meyers et al., 1992; Riley et al., 1992; Gowan et al., 1994; 

Gowan and Fausch, 1996).  If reproducing Brook Trout populations are to be more 

protected, domestic releases should take into account the potential for stocked fish to 

make their way into locations that are ultimately connected, with more thought to the 

relative distance of the two groups. 

 Furthermore, the State Wildlife Action Project (SWAP) that is a foundation for 

protecting all species of concern in New Jersey is currently undergoing a reassessment 

process (Niles et al., 2004).  The framework of the SWAP is excellent, but it may actually 

be undermining the greater protection of Brook Trout.  While other strategies presented 

in the plan invoke the outright removal of invasive and other non-native species, special 

consideration has actually been assigned to non-native Brown and Rainbow Trout.  Both 

species are known to competitively exclude natives, and as Chapter 2 of this thesis 

illustrates, the range of Brown Trout is expanding, many times at the expense of 

indigenous groups.  Adjustments to the SWAP should reflect a different status for non-

native trout species.    

Moreover, the work started by Hamilton (2007) should be completed by mapping 

the genetic structure for all 115 of New Jersey’s identified wild Brook Trout groups 

(sensu Perkins et al., 1985; Moritz et al., 1995; as reported in SCDEDP, 2013).  However, 

until this can be finished, through the use of stocking records, places that contain wild 
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natives and have never had domestic fish releases should be considered for a new 

regulatory “Wild Native” rank.  A similarly named and equally important level currently 

exists in California (CDFW, 2015), and includes eight streams or stream systems. 

As it is likely that New Jersey will have a minimal number of watersheds 

harboring heritage strain Brook Trout, additional special status will not have to be 

provided on a large scale.  In this regard, LU/LC regulations in the catchments above 

each group should also acknowledge the existence of something special below.  As Poff 

et al. (1997) and Zorn and Nuhefer (2007) purport, managers of these places should 

support actions that allow for the most natural flow regime in streams.  By doing so, 

abnormal flooding and high or low water flow situations that often follow land use 

changes are reduced and it is less likely fry will be threatened by such extremes that 

weaken year classes, and act to further imperil the area’s unique Brook Trout.  Such goals 

remain essential, especially with the predicted hydrologic alterations believed to follow 

expected climate change scenarios (Clark et al., 2001; Wenger et al., 2008). 

Finally, management of freshwater fishery salmonid resources in New Jersey 

exists with a firm foundation in MSY strategies.  More funding can be reallocated to 

research oriented avenues with the cessation or curtailing of domestic origin stocking.  If 

this concept proves too controversial, other stocking strategies can be employed that 

reduce the harm to wild fish.  The generation of alternative reproduction domestic fish 

strains can assist in fulfilling this need, as does hatchery rearing and releasing heritage 

origin fish.  If all of this proves too daunting, new or creative ways can be implemented 

to take advantage of Federal Funds that might otherwise go unused.  Much research can 
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be conducted from available grants by graduate students, academia professionals, or 

resource managers.     

 

5.3 Summary and Recommendations 

 

Presently, New Jersey’s holds 115 wild Brook Trout populations.  Some of these 

groups are known to be of heritage origin.  Strategies should be employed to assist with 

the expansion of native groups and all populations need further protection to prevent 

further declines.  Valuable LU/LC thresholds have been identified to support salmonid 

reproduction and should guide conservation efforts.  Following a similar process, all of 

the catchments where natural salmonid reproduction occurs should be tested to create a 

more wide ranging sample and allow for greater generalization of the characteristics.  A 

reinvestment in mapping wild trout genetics should begin, for such knowledge can drive 

many other activities.  To help expand indigenous populations, examples of future work 

include the following: repopulation of streams with appropriate stocks, developing 

hatchery operations to specifically raise progeny of wild fish for release.  Relief for 

natives can also be provided through a reassessment of current stocking strategies such as 

the lowering or cessation of stocking catchments with known unique populations.  

Furthermore, knowledge related to the damage non-native fish can cause should be 

reflected in New Jersey’s SWAP upon reestablishment.  Finally, the devotion of more 

funds to research based activities that focus on projects like the genetic lineage mapping, 

investigating reasons for catchment decline, monitoring of LU/LC threshold values 
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within the most important locations, or for outright habitat improvement or land 

acquisition are all possibilities.  Prior to European settlement of North America Brook 

Trout maintained self-sustaining populations for thousands of years (Danzmann et al., 

1998) in the eastern United States.  With some adjustments to general lines of thinking 

and taking advantage of new knowledge steps can be taken to assist with making the 

natural process of sustainability more common again. 
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Appendix A Specifics of Historical vs. Modern Trout Production Waters Sample Sites 

Table A-1. Sites, observed species presence and absence and abundance numbers in New Jersey Trout production 

inventory/re-inventory study, (historical) 1968-1977 and (modern) 2001-2010. Yellow color & BKT = Brook 

Trout, Brown color & BNT = Brown Trout, and pink color & RBT = Rainbow Trout. 

Site Date BKT_YOY BNT_YOY RBT_YOY YOY tot/183m YOYper m 

  

site date BKT_YOY BNT_YOY RBT_YOY YOY tot/150m YOYper m 

Bear Brook 7/21/1970 3 0 0 3 0.016 Bear Brook 7/8/2004 1 0 0 1 0.007 

Bear Swamp 
Brook 8/13/1968 10 0 0 10 0.055 

Bear Swamp 
Brook 7/15/2003 4 0 0 4 0.027 

Beatty's Brook 6/22/1970 32 0 0 32 0.175 Beatty's Brook 8/14/2001 7 11 0 18 0.12 

Beerskill 
Creek 8/30/1968 20 0 0 20 0.109 

Beerskill 
Creek 8/10/2004 11 0 0 11 0.073 

Big Flat Brook 9/18/1968 2 0 0 2 0.011 Big Flat Brook 7/27/2005 1 0 0 1 0.007 

Black Brook 8/4/1969 23 0 0 23 0.126 Black Brook 8/14/2003 0 1 0 1 0.007 

Black Creek 
(trib.) (McAfee) 7/29/1970 30 1 0 31 0.169 

Black Creek 
(trib.) 
(McAfee) 7/26/2005 34 0 0 34 0.227 

Brass Castle 
Creek 8/5/1970 4 16 0 20 0.109 

Brass Castle 
Creek 7/17/2001 12 38 0 50 0.333 

Buckhorn 
Creek 7/17/1970 0 1 0 1 0.005 

Buckhorn 
Creek 7/16/2002 0 0 0 0 0 

Burnett Brook 8/7/1969 0 24 0 24 0.131 Burnett Brook 8/16/2002 0 20 0 20 0.133 

Capoolong 
Creek 6/26/1969 0 2 0 2 0.011 

Capoolong 
Creek 8/12/2002 0 2 0 2 0.013 

Clove Brook 
(B) 8/13/1968 10 0 0 10 0.055 

Clove Brook 
(B) 7/25/2003 25 0 0 25 0.167 

Cold Brook 7/31/1969 0 4 0 4 0.022 Cold Brook 8/22/2002 0 60 0 60 0.4 

Cooley Brook 9/1/1970 22 7 0 29 0.158 Cooley Brook 8/26/2010 10 0 0 10 0.067 

Dawson's 
Brook 8/12/1969 28 0 0 28 0.153 

Dawson's 
Brook 7/29/2005 0 18 0 18 0.12 

Delaware 
River (trib.) 
(Holland) 9/8/1970 0 12 0 12 0.066 

Delaware 
River (trib.) 
(Holland) 7/10/2002 0 17 0 17 0.113 

Dunnfield 
Creek 8/6/1970 2 7 0 9 0.049 

Dunnfield 
Creek 9/3/2004 4 59 0 63 0.42 

Electric Brook 7/30/1970 3 0 0 3 0.016 Electric Brook 8/15/2007 8 0 0 8 0.053 

Flanders 
Brook 8/14/1969 12 0 39 51 0.279 

Flanders 
Brook 8/30/2004 0 13 38 51 0.34 
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Frog Hollow 
Brook 8/13/1970 4 0 32 36 0.197 

Frog Hollow 
Brook 7/14/2005 85 0 0 85 0.567 

Green Brook 
(Passaic) 9/1/1970 0 8 0 8 0.044 

Green Brook 
(Passaic) 7/18/2003 32 0 0 32 0.213 

Hacklebarney 
Brook 9/18/1970 6 0 0 6 0.033 

Hacklebarney 
Brook 7/19/2005 47 0 0 47 0.257 

Hances Brook 8/5/1970 5 0 0 5 0.027 Hances Brook 7/29/2004 16 0 0 16 0.107 

Harmony 
Brook 8/13/1969 0 6 0 6 0.033 

Harmony 
Brook 7/15/2010 0 2 19 21 0.14 

Herzog Brook 8/6/1969 8 6 0 14 0.077 Herzog Brook 7/9/2004 0 55 0 55 0.367 

Hewitt Brook 9/1/1970 0 2 0 2 0.011 Hewitt Brook 8/26/2010 3 0 0 3 0.02 

Hickory Run 9/12/1969 0 0 14 14 0.077 Hickory Run 8/23/2002 59 0 0 59 0.393 

Hollow Brook 8/5/1969 0 6 0 6 0.033 Hollow Brook 7/12/2005 1 23 0 24 0.16 

India Brook (A) 8/12/1969 6 0 0 6 0.033 
India Brook 
(A) 7/21/2005 53 3 0 56 0.373 

India Brook (B) 8/12/1969 0 6 0 6 0.033 
India Brook 
(B) 7/28/2005 1 58 0 59 0.393 

Indian Grave 
(Grove) Brook 7/23/1969 0 0 0 0 0 

Indian Grave 
(Grove) Brook 7/19/2007 0 0 137 137 0.913 

Jackson Brook 8/28/1969 0 38 0 38 0.208 Jackson Brook 8/18/2010 0 24 0 24 0.16 

Lamington 
(Black) River 
(A) 8/11/1972 0 0 0 0 0 

Lamington 
(Black) River 
(A) 7/17/2003 1 0 0 1 0.007 

Lamington 
(Black) River 
(B) 7/25/1969 0 1 0 1 0.005 

Lamington 
(Black) River 
(B) 7/27/2005 0 6 0 6 0.04 

Ledgewood 
Brook 8/14/1969 0 22 0 22 0.12 

Ledgewood 
Brook 9/13/2002 1 57 0 58 0.387 

Little Brook 9/12/1969 0 0 0 0 0 Little Brook 7/13/2007 5 51 0 56 0.373 

Lommasons 
Glen Brook 7/13/1970 26 0 0 26 0.142 

Lommasons 
Glen Brook 8/10/2001 30 0 0 30 0.2 

Macopin River 8/20/1969 0 0 0 0 0 Macopin River 8/31/2010 0 3 0 3 0.02 

Mill Brook 6/30/1970 12 0 0 12 0.066 Mill Brook 6/29/2005 137 0 0 137 0.913 

Mine Brook 
(Morris) (A) 8/6/1970 0 0 0 0 0 

Mine Brook 
(Morris) (A) 7/24/2009 24 0 0 24 0.16 

Mulhockaway 
Creek (A) 8/4/1969 0 0 0 0 0 

Mulhockaway 
Creek (A) 8/13/2002 0 14 0 14 0.093 

Mulhockaway 
Creek (B) 7/9/1971 0 16 0 16 0.087 

Mulhockaway 
Creek (B) 8/12/2002 0 28 0 28 0.187 

Musconetcong 
River (trib.) 
(Changewater) 9/4/1970 3 0 0 3 0.016 

Musconetcong 
River (trib.) 
(Changewater) 8/17/2005 3 6 0 9 0.06 
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Musconetcong 
River (trib.) 
(Franklin) 9/4/1970 5 0 0 5 0.027 

Musconetcong 
River (trib.) 
(Franklin) 7/21/2005 9 24 0 33 0.22 

Musconetcong 
River (trib.) 
(Port Murray) 8/5/1970 16 0 0 16 0.087 

Musconetcong 
River (trib.) 
(Port Murray) 7/20/2004 73 1 0 74 0.493 

Norton Brook 9/4/1970 4 0 10 14 0.077 Norton Brook 8/15/2003 1 2 0 3 0.02 

Parker Brook 8/27/1968 20 0 0 20 0.109 Parker Brook 8/24/2004 0 0 0 0 0 

Paulins Kill 
(trib.) 
(Emmons 
Station) 8/27/1970 0 7 0 7 0.038 

Paulins Kill 
(trib.) 
(Emmons 
Station) 8/15/2002 0 0 0 0 0 

Paulins Kill 
East Branch 7/23/1970 0 0 1 1 0.005 

Paulins Kill 
East Branch 8/24/2005 0 0 0 0 0 

Peapack 
Brook 7/25/1969 0 37 0 37 0.202 

Peapack 
Brook 9/13/2002 0 10 0 10 0.067 

Pequannock 
River (trib.) 
(Copperas 
Mtn.) 8/20/1969 36 38 0 74 0.404 

Pequannock 
River (trib.) 
(Copperas 
Mtn.) 8/11/2010 15 3 0 18 0.12 

Pequannock 
River (B) 8/6/1968 0 1 1 2 0.011 

Pequannock 
River (B) 9/12/2007 0 36 0 36 0.24 

Pohatcong 
Creek 6/29/1970 2 2 0 4 0.022 

Pohatcong 
Creek 7/15/2004 0 46 0 46 0.307 

Pophandusing 
Creek 7/17/1970 0 0 0 0 0 

Pophandusing 
Creek 7/17/2009 0 3 0 3 0.02 

Raritan River 
N/Br 8/5/1969 0 0 0 0 0 

Raritan River 
N/Br 7/30/2008 0 3 0 3 0.02 

Raritan River 
S/Br 8/25/1969 0 0 0 0 0 

Raritan River 
S/Br 8/28/2007 0 2 0 2 0.013 

Rinehart Brook 8/12/1969 8 22 0 30 0.164 
Rinehart 
Brook 7/26/2004 0 99 0 99 0.66 

Rockaway 
Creek, N/Br. 
(B) 7/15/1969 0 7 0 7 0.038 

Rockaway 
Creek, N/Br. 
(B) 8/24/2004 0 24 0 24 0.16 

Schooley's 
Mountain 
Brook 8/5/1970 8 0 0 8 0.044 

Schooley's 
Mountain 
Brook 8/11/2005 15 0 0 15 0.1 

Shawanni 
Creek 8/11/1970 1 0 0 1 0.005 

Shawanni 
Creek 8/19/2005 0 0 0 0 0 

Shimers Brook 6/18/1970 0 2 0 2 0.011 Shimers Brook 7/22/2005 0 0 0 0 0 

Spring Mills 
Brook 8/10/1970 0 5 0 5 0.027 

Spring Mills 
Brook 8/7/2001 0 35 0 35 0.233 

Stephensburg 
Creek 8/5/1970 10 0 0 10 0.055 

Stephensburg 
Creek 7/30/2002 75 0 0 75 0.5 

Stonehouse 
Brook 8/26/1969 0 0 0 0 0 

Stonehouse 
Brook 7/31/2003 0 42 0 42 0.28 
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Stony Brook 
(Morris) 8/22/1969 6 32 0 38 0.208 

Stony Brook 
(Morris) 7/14/2005 3 10 0 13 0.087 

Stony Brook 
(Sussex) 8/11/1970 12 0 0 12 0.066 

Stony Brook 
(Sussex) 7/23/2004 21 0 0 21 0.14 

Sun Valley 
Brook 9/18/1970 8 0 0 8 0.044 

Sun Valley 
Brook 7/29/2004 2 0 0 2 0.013 

Trout Brook - 
Hacklebarney 
S.P. 8/7/1969 14 0 0 14 0.077 

Trout Brook - 
Hacklebarney 
S.P. 7/20/2001 119 0 0 119 0.793 

Trout Brook – 
Middleville 8/26/1970 2 0 0 2 0.011 

Trout Brook - 
Middleville 7/14/2004 0 7 0 7 0.047 

Trout Brook 
(Tranquility) 7/22/1970 35 0 0 35 0.191 

Trout Brook 
(Tranquility) 8/11/2005 0 0 0 0 0 

Turkey Brook 8/18/1969 28 0 0 28 0.153 Turkey Brook 8/21/2001 28 0 0 28 0.187 

Van Campens 
Brook 8/30/1968 0 1 0 1 0.005 

Van Campens 
Brook 7/18/2005 1 18 17 36 0.24 

West Brook 7/24/1968 0 0 43 43 0.235 West Brook 8/11/2010 0 0 71 71 0.473 

West Portal 
Brook 6/17/1970 0 18 0 18 0.098 

West Portal 
Brook 7/8/2002 5 96 0 101 0.673 

Whippany 
River (trib.) 
(Brookside) 8/13/1969 0 0 2 2 0.011 

Whippany 
River (trib.) 
(Brookside) 7/8/2010 0 10 36 46 0.307 

Whippany 
River (trib.) 
(Mendham) 8/13/1969 0 0 8 8 0.044 

Whippany 
River (trib.) 
(Mendham) 7/23/2002 0 0 1 1 0.007 

Whippany 
River (A) 8/13/1969 0 8 0 8 0.044 

Whippany 
River (A) 7/15/2010 0 27 1 28 0.187 

Whippany 
River (B) 8/7/1969 0 0 0 0 0 

Whippany 
River (B) 9/25/2002 0 4 0 4 0.027 

White Brook 6/18/1970 2 0 0 2 0.011 White Brook 7/28/2005 28 8 0 36 0.24 

Wilhoughby 
Brook 8/4/1969 4 0 0 4 0.022 

Wilhoughby 
Brook 8/7/2001 1 41 0 42 0.28 

            6             16 

total times P   41 32 9 82 average/m     42 46 8 96 average/m 

total times A   39 48 71 158 0.069     38 34 72 144 0.204 

Totals   80 80 80 240       80 80 80 240   

 

 

 



 

 

 

 

1
8
5
 

Appendix B Brook Trout length-frequency histograms.   

Figure B-1. Y-axis indicates number of fish and x-axis fish length in mm.  Season, year, and stream abbreviation indicated. 
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Appendix C Box and Whisker plots for headwater stream segment and Brook Trout length 
 

Figure C-1 All lengths measures in millimeters.  Numbers near each abbreviation indicate in-field event.  Error bars 

illustrate minimum and maximum range of fish lengths, green area equals first quartile, purple area equals the 

third quartile, interface between the two represents the median value.  Mved abbreviation represents the size of 

fish that were recaptured in a stream different than where initially marked.  In these instances, the red area 

represents the first quartile and the yellow area is the third quartile values. 
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Appendix D Breakdown for findings of historical vs. modern salmonid species  
 

Table D-1. Historical (H) 1968-1977 and modern (M) 2001-2010 data sets for NJ 

trout production lotic waters. 

 

A: BKT: 
    

H M Present  

either 

time 

Present 

both times 

Absent 

both times 

Loss-10 Gain-11 

present 41/80 present 42/80 52/160 31/160 28/80 3: BKT to 

BNT 

2: NT to 

BKT 

absent 39/80 absent  38/80    3: BKT & 

BNT to 

BNT 

2: BNT to 

BKT 

     3: BKT to 

NT 

1: RBT to 

BKT 

     1: BKT& 

RBT to 

RBT&BNT 

4: BNT to 

BNT & BKT 

      1: BNT to 

BNT, RBT & 

BKT 

      1:NT to BKT 

& BNT 

    

B: BNT:  

H M Present  

either 

time 

Present 

both times 

Absent 

both times 

Loss-7 Gain-21 

present 32/80 present 46/80 53/160 25/160 27/80 2: BNT to 

BKT 

7: NT to 

BNT 

absent 48/80 absent 34/80    2: BNT & 

BKT to 

BKT 

1:NT to BKT 

& BNT 

     3: BNT to 

NT 

3: BKT to 

BNT 

      7: BKT to 

BKT & BNT 

      1: RBT to 

RBT & BNT 

      1:BKT&RBT 

to 

BNT&RBT 

      1:BKT&RBT 

to 

BKT&BNT 
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C: RBT:  

H M Present 

either 

time 

Present 

both times 

Absent 

both times 

Loss-5 Gain-4 

present 9/80 present 7/80 13/180 4/180 68/80 1: RBT to 

BKT 

1: NT to 

RBT 

absent 71/80 absent 73/80    1: RBT & 

BKT to 

BKT 

2: BNT to 

BNT & RBT 

     1: RBT & 

BNT to 

BNT 

1: BNT to 

BKT, BNT 

& RBT 

     1: RBT & 

BKT to 

BKT & 

BNT 

 

     1: RBT to 

NT 

 

       

D: NT:       

H Change    M Change 

 11/80 2:to BKT    7/80 3:from BKT 

 1:to 

BKT&BNT 

    3:from BNT 

 1:to RBT     1:from RBT 

 7:to BNT      
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