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Abstract

This work is dedicated to the properties of the 3× 3 magic squares of cubes modulo

a prime number. Its central concept is the number of distinct entries of these squares

and the properties associated with this number. We call this number the degree of a

magic square. The necessary conditions for the magic square of cubes with degrees

3, 5, 7, and 9 are examined. It was established that there are infinitely many primes

for which magic squares of cubes with degrees 3, 5, 7, and 9 exist. I apply n-tuples of

consecutive cubic residues to prove that there are infinitely many Magic Squares of

Cubes with degree 9. Furthermore I use Brauer’s theorem, that guarantees the exis-

tence of a sequence of consecutive integers of any length, to construct Magic Squares

of Cubes whose entries are all cubic residues. Such analytic tools as Modular Arith-

metic, Legendre symbol, Fermat’s Little Theorem, notions of quadratic and cubic

residues were employed in the process of research.
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Chapter 1

Introduction

1.1 History and Background

A Magic Square (MS) of order n is an n × n matrix that contains integers whose

sum along any row, column or diagonal is the same. This sum is called the magic

constant or magic sum. The history of magic squares goes back to 6BC China.

The so called Lo Shu Square is associated with the flood that took place during

the Yu Dynasty. According to the legend the people of China were able to use the

pattern in the Lo Shu Square to defend themselves against the floods. The 8th

century Arabian mathematician Jabir ibn Hayyan treated a magic square of order 3

as a child-bearing chasm. The 13th century Egyptian mathematician Ahmad al-Buni

attributed mystical qualities to magic squares. The concept of magic square intrigued

the Islamic mathematicians of Persia as well. One of them, the 10th century Persian

mathematician Buzjani, performed a study of various magic squares. In India 3 × 3

magic squares have ritualistic significance. The magic square of order three, Kubera-

Kolam (see the matrix below), is often seen on floors in India. It is in fact the result
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by adding 19 to each number of the Lo Shu Square:

L =

⎡
⎢⎢⎢⎢⎣

4 9 2

3 5 7

8 1 6

⎤
⎥⎥⎥⎥⎦
=⇒ M =

⎡
⎢⎢⎢⎢⎣

23 28 21

22 24 26

27 20 25

⎤
⎥⎥⎥⎥⎦
.

In Europe magic squares are immortalized through art. A. Durer pictured a 4 × 4

square in his engraving Melencolia 1. The Sagrada Familia church in Barcelona

features a 4 × 4 magic square with a magic sum = 33, the age of Christ at the time

of his crucifixion. Overall, the concept and image of magic square belong to many

civilizations never ceasing to challenge and delight their inhabitants.

1.2 Basics about Quadratic and Cubic Residues

Let p be a prime number. An integer a satisfying xn ≡ a (mod p) is called the nth

power residue mod p. In particular when n = 2, a is a quadratic residue while when

n = 3, a is a cubic residue.

Legendre symbol has been a major tool for dealing with quadratic residues. When

a is a quadratic residue mod p the Legendre symbol
(

a
p

)
= 1, but when a is a quadratic

non-residue mod p the Legendre symbol
(

a
p

)
= −1. The following lemma states some

basic properties about Legendre symbol for quadratic residues.

Lemma 1.2.1. Let p be a prime number and a, b ∈ Z. Then

1.
(

a2

p

)
= 1,

2. If a ≡ b (mod p) then
(

a
p

)
=

(
b
p

)
.

3.
(

p
q

)
=

(
q
p

)
if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)
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4.
(

p
q

)
= −

(
q
p

)
if p ≡ 3 ≡ q (mod 4).

I use the above law of quadratic reciprocity associated with Legendre symbol to

establish that −3 is a quadratic residue mod any prime in the form of 3m+ 1 where

m is an integer.

1.3 Magic Squares of Integers

The earliest known 3× 3 magic square of integers is the Lo Shu Square whose magic

sum is 15. It has been established that in a 3×3 magic square its magic sum is equal

to 3 times its middle element. In the Lo Shu Square the middle element 5 multiplied

by 3 yields 15. Also the Lo Shu square has 9 distinct entries thus being of degree

9. In general the number of distinct entries in an MS is called its degree. Thus the

maximal degree of a 3 × 3 magic square is 9 while the minimum is 1. As for MS

viewed modulo p it has been established that their degree can be 1, 2, 3, 5, 7, or 9.

A 3× 3 magic square in which every entry is a perfect square of an integer is called

a Magic Squares of Squares. It has the following form:

M =

⎡
⎢⎢⎢⎢⎣

a2 b2 c2

d2 e2 f 2

g2 h2 i2

⎤
⎥⎥⎥⎥⎦
,

where a, b, c, d, e, f, g, h, i ∈ Z and

a2 + b2 + c2 = d2 + e2 + f 2 = g2 + h2 + i2 = a2 + d2 + g2

= b2 + e2 + h2 = c2 + h2 + i2 = a2 + e2 + i2

= c2 + e2 + g2 = 3e2.
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One example of an MSS of degree 3 is

M =

⎡
⎢⎢⎢⎢⎣

1 49 25

49 25 1

25 1 49

⎤
⎥⎥⎥⎥⎦
.

An open question was raised by by M. LaBar in 1984 and reposed by Martin

Gardner in 1996:

Open question (Labar, 1984)

Can a Magic Square possess nine distinct integer squares?

So far this conjecture remains unresolved. Motivated by this question, I try to

establish for what primes Magic Squares of Cubes with 9 distinct cubes exist.

1.4 Magic Squares of Cubes Mod a Prime p

In this Master Thesis I focus on magic squares whose entries are cubes of integers

modulo a prime number p. This type of MS is called Magic Squares of Cubes (MSC).

It has the following form:

M =

⎡
⎢⎢⎢⎢⎣

a3 b3 c3

d3 e3 f 3

g3 h3 i3

⎤
⎥⎥⎥⎥⎦
,

where a, b, c, d, e, f, g, h, i ∈ Zp and mod p

4



a3 + b3 + c3 = d3 + e3 + f 3 = g3 + h3 + i3 = a3 + d3 + g3

= b3 + e3 + h3 = c3 + h3 + i3

= a3 + e3 + i3 = c3 + e3 + g3 = 3e3.

One example of a MSC with degree 3 over Z3 is

M =

⎡
⎢⎢⎢⎢⎣

13 23 03

23 03 13

03 13 23

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1 2 0

2 0 1

0 1 2

⎤
⎥⎥⎥⎥⎦
.

1.5 Definitions and Notations

Below I give formal definitions for magic squares and related concepts.

Definition 1.5.1. Let p be a prime. A magic square (MS) over Zp is a 3× 3 matrix

M = [aij] where aij ∈ Zp such that

S =
3∑

j=1

aij =
3∑

i=1

aij =
3∑

i=1

aii =
3∑

j=1

ai(3−j).

This sum S is called the magic sum. The magic square M is trivial if all of its entries

are the same. The degree of M is the number of its distinct entries in Zp. An MS is

called a magic square of squares (MSS) over Zp if all aijs are squares in Zp. Similarly,

An MS is called a magic square of cubes (MSC) over Zp if all aijs are cubes in Zp.

Definition 1.5.2. Two MSs are called isomorphic if they can be transformed into

each other by rotations or reflections.

5



Example 1.5.3. over Z71,

M =

⎡
⎢⎢⎢⎢⎣

22 22 12

02 282 192

172 122 122

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

4 4 1

0 3 6

5 2 2

⎤
⎥⎥⎥⎥⎦
,

is an MSS of degree 7.

If all aijs are cubes in Zp we obtain an MSC:

Example 1.5.4. Over Z11, the following matrix M is a magic square of cubes of

degree 9 .

M =

⎡
⎢⎢⎢⎢⎣

53 43 73

93 33 63

23 13 83

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

4 9 2

3 5 7

8 1 6

⎤
⎥⎥⎥⎥⎦
.

Note that, for some prime numbers p, all numbers in Zp are cubes. For example,

it is the case for p = 11:

Example 1.5.5. Consider the prime number p = 11 ≡ 2 (mod 3). The following

table shows that all numbers in Z+ 11 are cubes mod 11.

x 0 1 2 3 4 5 6 7 8 9 10

x3 0 1 8 5 9 4 7 2 6 3 10
.

Thus every magic square in Z11 is also a magic square of cubes. It confirms Example

1.5.4.

In general for primes p = 3m+2 all the integers in Zp are cubic residues while for

primes p = 3m+ 1, m+ 1 of them are cubic residues.

6



1.6 Existing Results

A well-known result about magic squares of integers is given below:

Theorem 1.6.1. Let M = [aij] be a magic square of integers. Then the magic sum

S = 3a22.

This theorem is trivial yet extremely important for 3× 3 magic squares. It is also

true for MS over Zp. In particular, the next theorem is its direct consequence.

Theorem 1.6.2. Any 3× 3 magic square M = [aij] is determined by its 3 elements:

in the top corners and the central one. Let a11 = a, a13 = b, a22 = c. Then

M(a, b, c) =

⎡
⎢⎢⎢⎢⎣

a 3c− a− b b

c+ b− a c c+ a− b

2c− b a+ b− c 2c− a

⎤
⎥⎥⎥⎥⎦

(∗)

characterizes all the magic squares [7].

Proposition 1.6.3 (Hengeveld and Li [8]). For any prime p > 5, the degree of every

3× 3 magic square over Zp must be odd (1, 3, 5, 7, or 9).

I use this theorem as a guideline for the project. I would like to find over which

Zp there exist MSCs with degree 3, 5, 7, or 9. It is a critical issue to find how many

solutions the congruence x3 ≡ a (mod p) has for a fixed a.

The following result is known, but I would like to provide a short and simple proof.

Proposition 1.6.4. For a given prime number p = 3m + 2, where m is an integer,

every integer is a perfect cube mod p.

Proof. Let x be any integer. If p | x then x ≡ 03 (mod p), done. If p � x, by

Fermat’s Little Theorem we have xp−1 ≡ 1 (mod p) and xp ≡ x (mod p). Thus

7



x ≡ x2p−1 ≡ x2(3m+2)−1 ≡ (x2m+1)3 (mod p). Therefore x is a cubic residue and all

MSs are MSCs mod p = 3m+ 2.

To build magic squares of cubes we need a method to identify what numbers are

cubes. The following theorem is a tool for finding cubes mod prime p. It was proven

by R. Sharifi.

Theorem 1.6.5. Sharifi [3]

Let p = 1 + 3x+ 9x2 be a prime, where x is an integer. Then any divisor of x is

a cubic residue (mod p).

Example 1.6.6. The integer 2971 = 1 + 3 · 18 + 9 · 182 is a prime number. Since 2

and 3 are divisors of 18, they are cubic residues in Z2971.

I use Shariffi’s theorem to construct prime numbers p such that over Zp, a desired

set of numbers are cubic residues mod p.

Lemma 1.6.7. Let p be a prime number in the form of 1 + 3x + 9x2 as stated in

the Shariffi’s theorem, where x is an integer. Consider the primary decomposition

x = pa11 pa22 ...pann , where p1, . . . , pn are distinct primes with ai > 0 for all i. Then

there are at least (a1 + 1)(a2 + 1)...(an + 1) many nonzero cubic residues mod p. In

particular, all the primes p1, p2, . . . , pn are cubic residues mod p.

Proof. The number of positive factors of x other than 1 is (a1+1)(a2+1)...(an+1)−1.

By Sharifi’s theorem, all of them are cubic residues (mod p). These include the prime

divisors p1, p2, . . . , pn.

8



The following theorem was proven by D. Lehmer, E. Lehmer, W. Mills, and J.

Selfridge [5]. It enables us to construct MSCs with consecutive cubic residues.

Definition 1.6.8. [5]

For a prime p and a ∈ Z, the n-tuple (a, a+1, . . . , a+r−1) is called a Consecutive

Cubic Residue (CCR) of length r if a, a+ 1, . . . , a+ r − 1 are all cubic residues mod

p.

A natural question is. “For a fixed integer r ≥ 3, how many prime numbers admit

a CCR tuple of length r?” The following theorem answers the question:

Theorem 1.6.9. (Selfridge [5])

a) There are infinitely many primes whose smallest triplet of consecutive cubic

residues is 23532, 23533, 23534.

b) Every prime, except for 2, 3, 7, 13, 19, 31, 37, 43, 61, 67, 79, 127, 283, has a

triplet of consecutive cubic residues that does not exceed (23532, 23533, 23534).

The following theorem was proven by A. Brauer [6]. It proves invaluable for

constructing MSCs with consecutive integers.

Theorem 1.6.10. (Brauer [6])

For every sufficiently large prime p there exist m consecutive positive integers r,

r + 1, . . . , r +m− 1, each of which is a kth power residue of p, where 1 < k ∈ Z.

Proposition 1.6.11. (Euler’s Conjecture) A prime number p can be written as p =

A2 + 27B2, where A and B ∈ Z, if and only if 2 is a cubic residue (mod p).

9



1.7 Research Questions, Goals, and Methodology

I focus on magic squares of cubes modulo a prime p. In other words, every entry of

an MS is the remainder when it is divided by a fixed prime number p. This approach

grants me additional opportunities and freedom. The central question I want to

address is paralell to La Bar’s open question.

Research Questions

Let p be a prime number.

1. Over Zp, does a magic square of cubes of degree 9 exist?

2. What is the maximal degree of an MSC over Zp?

3. How many prime numbers admit MSCs of degree 3, 5, 7, or 9?

4. How can we construct an MSC with a given degree and/or magic sum?

Applying the theorems by Sharifi and Brauer, I attempt to obtain MSCs of degree

3, 5, 7, or 9 and claim that each type of the MSCs exist for infinitely many primes.

Concrete examples were provided to illustrate my conclusions.

1.8 Main Results

In this research I established that there are infinitely many primes admitting MSCs

of degree 3, 5, 7, or 9. It is proved that MSCs of degree 3 exist for any prime p > 2.

Sharifi’s theorem enables me to obtain MSCs of degree 3, 5, 7, or 9 for primes p in the

form of p = 1 + 3x + 9x2. I applied Brauer’s theorem to prove that there are MSCs

of any possible degree for infinitely many prime numbers. The proof is constructive

by using consecutive cubic residues modulo appropriate primes.

10



Chapter 2

Cubic Residues in Zp

Throughout this section p denotes a prime number. By Proposition 1.6.4 if a prime

is in the form p ≡ 2 (mod 3) then every element in Zp is a cubic residue. We are

more interested in the other case where p = 3m+ 1, m ∈ Z. Note that if p = 3m+ 1

is prime, then p = 12k + 1 or p = 12k + 7 for some integer k. A useful fact is that

−3 is always a quadratic residue of p which may be used to help constructing MSCs

mod p.

Lemma 2.0.1. The number −3 is always a quadratic residue (perfect square) mod p

where p = 3m+ 1 is a prime with m ∈ Z.

Proof. Let p = 3m + 1. If p = 12k + 1, then p ≡ 1 (mod 4) =⇒
(
−1
p

)
= 1. Also(

3
p

)
=

(
p
3

)
= 1 for p ≡ 1 (mod 4) by the law of quadratic reciprocity. Then we

obtain
(
−3
p

)
=
(

3
p

)(
−1
p

)
= (1)(1) = 1.

If p = 12k + 7 then because p ≡ 3 (mod 4) we obtain
(
−1
p

)
= −1. By the law of

quadratic reciprocity again,
(

3
p

)
= − (

p
3

)
= −1 for p ≡ 3 (mod 4). Then we obtain(

−3
p

)
=
(

3
p

)(
−1
p

)
= (−1)(−1) = 1.

In either case, −3 = p− 3 is a quadratic residue.

11



For the rest of this chapter, we assume p = 3m + 1 for some m ∈ Z and p is

a prime. Furthermore, assume −3 ≡ c2 (mod p) where c is an integer. Note that,

∀a ∈ Z x3 ≡ a (mod p) has exactly 3 distinct solutions.

Lemma 2.0.2. The equation x3 ≡ 1 (mod p), p ≥ 7, has exactly three distinct

solutions: x1 = 1, x2 = 2−1(c− 1), and x3 = −2−1(c+ 1).

Proof. Obviously, 1 is a solution. By checking,

(x2)
3 ≡ (2−1(c− 1))3 ≡ 2−3(c3 − 3c2 + 3c− 1)

≡ 2−3(c(c2 + 3) + 9− 1) ≡ 2−3(8) ≡ 1 (mod p),

thus x2 = 2−1(c− 1) is a cube root of 1. Similarly,

(x3)
3 ≡ (−2−1(c+ 1))3 ≡ −2−3(c3 + 3c2 + 3c+ 1)

≡ −2−3(c(c2 + 3)− 9 + 1) ≡ −2−3(−8) ≡ 1 (mod p).

So x3 = −2−1(c + 1) is a root of 1. Next I show that x1, x2, x3 are distinct. If any

two numbers among these 3 are equal, there is a contradiction:

1. If 1 ≡ 2−1(c− 1) (mod p), then 3 ≡ c (mod p) =⇒ 9 ≡ −3 (mod p)⇒ 12 ≡ 0

(mod p). It implies p = 2 or p = 3 which is a contradiction since p ≥ 7.

2. If 1 ≡ −2−1(c + 1) (mod p) then c ≡ −3 (mod p) =⇒ −3 ≡ 9 (mod p) ⇒
12 ≡ 0 (mod p). Again it is a contradiction.

3. Suppose x2 ≡ x3 (mod p) then 2−1(c− 1) ≡ −2−1(c+1)⇒ c− 1 ≡ −(c− 1)⇒

c ≡ 1 (mod p) and −3 ≡ 12 (mod p) ⇒ 4 ≡ 0 (mod p), therefore p = 2, a

contradiction.

12



Next I show that these are the only solutions. Suppose, x ∈ Z and x 	= 1 but

x3 ≡ 1 (mod p). Then (x − 1)(x2 + x + 1) ≡ 0 (mod p) =⇒ x2 + x + 1 ≡ 0

(mod p). By multiplying both sides of the congruence by 4 we obtain 4x2+4x+4 ≡ 0

(mod p) =⇒ (2x + 1)2 ≡ −3 (mod p). By Lemma 2.0.2, −3 ≡ c2 (mod p). Thus

(2x+1)2 ≡ c2 (mod p) =⇒ (2x+1+c)(2x+1−c) ≡ 0 (mod p). Thus, 2x+1+c ≡ 0

(mod p) or 2x + 1 − c ≡ 0 (mod p) =⇒ x = 2−1(c + 1) or x = 2−1(c − 1) which are

x2, x3.

The next proposition generalizes the above result to the congruence equation

x3 ≡ a. It implies an important result concerning primes in the form of p = 3m+ 1.

Proposition 2.0.3. For every a 	= 0 and a ∈ Zp, the equation x3 ≡ a3 (mod p) has

three distinct solutions: y1 = a, y2 = ax2, and y3 = ax3 where x2 = 2−1(c − 1),

x = 2−1(c+ 1).

Obviously, y3i = (axi)
3 ≡ a3x3

i ≡ a3 (mod p), i = 1, 2, 3. So yi is a solution. If

yi ≡ yj ⇒ axi ≡ axj ⇒ xi ≡ xj (a 	= 0). Therefore y1, y2 and y3 are distinct.

Proposition 2.0.4. For every prime number p = 3m+1, there exist m+1 = (p+2)/3

distinct cubes, including 0.

Proof. By Proposition 2.0.3 for every 0 	= a ∈ Zp the equation x3 ≡ a3 (mod p) has

three distinct solutions x1,x2,x3. Hence Zp has m = (p − 1)/3 distinct cubes in Zp.

With the trivial 0 there are m+ 1 = (p+ 2)/3 perfect cubes in Zp.

Example 2.0.5. For p = 19, there are 7 cubic residues 0, 1, 7, 8, 11, 12, 18:

x 0 1 2 3 4 5 6 7 8 9 10 11 12

x3 0 1 8 8 7 11 7 1 18 7 12 1 18

x 13 14 15 16 17 18

x3 12 8 12 11 11 18
.

13



Chapter 3

Construction of Magic Squares of

Cubes

The concept of degree of an MS is central to this research. In this chapter we establish

what degrees are possible and later explore for what primes each degree can occur.

3.1 What Degrees are Possible for a Magic Square?

For a prime number p > 7 the following theorem states that every MS is of degree

1, 3, 5, 7, or 9. Therefore in this research I try to establish the existence of MSCs

with odd degrees. The following theorem let us exclude degrees 4, 6, 8 and focus on

degrees 3, 5, 7, and 9.

Theorem 3.1.1. Let p be a prime number > 7. Consider the magic square M(a,b,c)

configured in 1.6.2, where a, b, c ∈ Zp:

1. deg(M(c, c, c)) = 1;

2. deg(M(a, b, a)) = deg(M(a, b, b)) = 3, where a 	= b;

14



3. deg(M(a, a, c)) = 5 when a 	= c;

4. deg(M(a, b, c)) = 5 when a,b,c are all distinct and 2c = a+ b;

5. deg(M(a, b, c)) = 7 when a, b, c are distinct and either a+ c = 2b or b+ c = 2a;

6. deg(M(a, b, c)) = 7 when a, b, c are all distinct, a + c 	= 2b, b + c 	= 2a, and

a+ b 	= 2c, plus one of the following holds: (1) 2b+ a 	= 3c and 2a+ b = 3c; or

(2) 2a+ b 	= 3c and 2b+ a = 3c.

7. degM((a, b, c)) = 9 when a, b, c are all distinct, a+c 	= 2b, b+c 	= 2a, a+b 	= 2c

2a+ b 	= 3c, and 2b+ a 	= 3c.

Proof. Let M(a, b, c) be the considered magic square over Zp:

M(a, b, c) =

⎡
⎢⎢⎢⎢⎣

a 3c− a− b b

c+ b− a c c+ a− b

2c− b a+ b− c 2c− a

⎤
⎥⎥⎥⎥⎦
.

1. It is obvious that degM(c, c, c)) = 1.

2. In case a 	= b, but a = c.

M(a, b, a) =

⎡
⎢⎢⎢⎢⎣

a 2a− b b

b a 2a− b

2a− b b a

⎤
⎥⎥⎥⎥⎦
.

It is straightforward to check that all of a, b, 2a − b are distinct in Zp. For

example, if 2a − b = b implies 2a = 2b. Since p > 7, a = b, a contradiction.

Thus deg((M(a, b, a)) = 3.
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3. If a = b 	= c.

M(a, a, c) =

⎡
⎢⎢⎢⎢⎣

a 3c− 2a a

c c c

2c− a 2a− c 2c− a

⎤
⎥⎥⎥⎥⎦
.

We can check that all a, c, 2c−a, 2a− c, 3c−2a are distinct in Zp. For instance,

if 3c − 2a = a, we obtain 3c = 3a. But p > 7, so a = c, a contradiction. Thus

deg(M(a, a, c)) = 5.

In the following items, a, b, c are all distinct.

4. Assume a+ b = 2c:

M(a, b, c) =

⎡
⎢⎢⎢⎢⎣

2c− b c b

2b− c c 3c− 2b

2c− b c b

⎤
⎥⎥⎥⎥⎦
.

It is easy to check that c, 2c− b, 2b− c, 3c− 2b, b are distinct in Zp. For instance

2c − b = 2b − c implies 3c = 3b. Since p > 7, a = b, a contradiction. Thus

deg(M) = 5.

5. In case of a+ c = 2b or b+ c = 2a, without loss of generality, assume a+ c = 2b,

then

M(a, b, c) =

⎡
⎢⎢⎢⎢⎣

2b− c 4c− 3b b

2c− b c b

2c− b 3b− 2c 3c− 2b

⎤
⎥⎥⎥⎥⎦
.

It is easy to establish that b, c, 2b− c, 2c− b, 3b− 2c, 4c− 3b, and 3c− 2b are all

distinct in Zp. For instance if 3b−2c = 4c−3b then 6b = 6c. Since p > 7, b = c,

a contradiction. Thus degM(a, b, c) = 7. The case b+ c = 2a is analogous.

6. If a+ b 	= 2c, a+ c 	= 2b, and b+ c 	= 2a. There are two sub-cases.
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Case 1. 3c− a 	= 2b and 3c− b = 2a (it is impossible to have both 2a+ b = 3c,

2b+ a = 3c since then a = b, a contradiction).

Obviously, a, b, c, c + b − a, c + a − b, 2c − b, 2c − a are all distinct in Zp. For

instance c+ b−a = 2c− b implies c+a = 2b, a contradiction. Since 3c− b = 2a

a = 3c− a− b and a+ b− c = 2c− a. Thus deg(M) = 7.

Case 2. 3c− b 	= 2a and 3c− a = 2b. This case is analogous to the previous one

which gives deg(M) = 7.

7. a+ b 	= 2c, a+ c 	= 2b, b+ c 	= 2a, 2a+ b 	= 3c, and 2b+ a 	= 3c.

Obviously, a, b, c, c + b− a, c + a− b, 2c− b, 2c− a, a + b− c, 3c− a− b are all

distinct in Zp. For instance, 3c− a− b = a implies 3c = 2a+ b, a contradiction.

Thus deg(M) = 9.

We covered all possible structures of M(a, b, c) over Zp, p > 7. Thus the degrees

of any MS must be 1, 3, 5, 7, or 9.

3.2 Magic Squares of Cubes Modulo 2, 3, 5, or 7

In this section we explore MSCs of what degrees are possible for p = 2, 3, 5, or 7. Also

all possible MSCs of degree 2 in Z2 and of degree 3 in Z3 are listed.

Proposition 3.2.1. Consider Zp, p = 2, 3, 5, or 7.

1. If p = 2 then there are four non-isomorphic MSCs.

2. If p = 3 then there are six non-isomorphic MSCs.

3. If p = 5 then there exist MSCs of degree 5 (maximal degree).

4. If p = 7 then there exist MSCs of degree 3 (maximal degree).
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Proof. 1. For p = 2, the maximal degree for a magic square over Z2 is 2 because there

are only two elements in Z2. A fact is that the opposite corner elements must be the

same. All the four non-isomorphic MSCs are presented here:

M(0, 1, 0) =

⎡
⎢⎢⎢⎢⎣

0 1 1

1 0 1

1 1 0

⎤
⎥⎥⎥⎥⎦
, M(1, 1, 0) =

⎡
⎢⎢⎢⎢⎣

1 0 1

0 0 0

1 0 1

⎤
⎥⎥⎥⎥⎦
.

M(0, 0, 1) =

⎡
⎢⎢⎢⎢⎣

0 1 0

1 1 1

0 1 0

⎤
⎥⎥⎥⎥⎦
, M(1, 0, 0) =

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦
.

2. All six non-isomorphic MSCs over Z3 are given below:

M(2, 0, 0) =

⎡
⎢⎢⎢⎢⎣

2 1 0

1 0 2

0 2 1

⎤
⎥⎥⎥⎥⎦
, M(2, 1, 0) =

⎡
⎢⎢⎢⎢⎣

2 0 1

2 0 1

2 0 1

⎤
⎥⎥⎥⎥⎦
.

M(1, 2, 1) =

⎡
⎢⎢⎢⎢⎣

1 0 2

2 1 0

0 2 1

⎤
⎥⎥⎥⎥⎦
, M(0, 0, 1) =

⎡
⎢⎢⎢⎢⎣

0 0 0

1 1 1

2 2 2

⎤
⎥⎥⎥⎥⎦
.

M(2, 0, 2) =

⎡
⎢⎢⎢⎢⎣

2 1 0

0 2 1

1 0 2

⎤
⎥⎥⎥⎥⎦
, M(1, 0, 2) =

⎡
⎢⎢⎢⎢⎣

1 2 0

1 2 0

1 2 0

⎤
⎥⎥⎥⎥⎦
.

By proposition 1.6.4 there are 5 cubic residues in Z5 since 5 = 3m+2. It can also
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be shown in the table below:

x 0 1 2 3 4

x3 0 1 3 2 4
.

The maximal degree of MSCs over Z5 is 5, confirmed by the MSC below:

M(2, 1, 0) =

⎡
⎢⎢⎢⎢⎣

2 2 1

4 0 1

4 3 3

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

33 33 1

43 0 1

43 23 23

⎤
⎥⎥⎥⎥⎦
.

3. By proposition 2.0.4 there are 3 cubic residues in Z7 (0, 1, and 6). See the

table below:

x 0 1 2 3 4 5 6

x3 0 1 1 6 1 6 6
.

An MSC of degree 3 (maximal degree) over Z7 is:

M(6, 0, 0) =

⎡
⎢⎢⎢⎢⎣

6 1 0

1 0 6

0 6 1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

33 1 0

1 0 33

0 33 1

⎤
⎥⎥⎥⎥⎦
.

3.3 Possible Degrees of Magic Squares of Cubes

over Zp for p > 7

One of the central questions I discuss in this work is what maximal degree an MSC

may achieve mod a given prime p. MSCs of degrees 2, 3, 5, 7, and 9 are explored

knowing that no MSCs of degrees 4, 6, or 8 exist. In this chapter we focus on methods

of constructing MSCs of degrees 3, 5, 7, or 9.
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Proposition 3.3.1. Given a prime number p = 3m+1 where m is a positive integer,

there exist at least m many non-isomorphic MSCs of degree 3 in Zp.

Proof. By proposition 2.0.4, ∃ m cubic residues mod p. Assume x is such a residue.

Then the matrix M(0, x, 0) is an MSC of degree 3:

M(0, x, 0) = x

⎡
⎢⎢⎢⎢⎣

0 −1 1

1 0 −1
−1 1 0

⎤
⎥⎥⎥⎥⎦
.

Obviously all entries are cubes. As was previously established in Proposition 2.0.4,

the number of non-zero cubes of p = 3m+ 1 is m. Thus we can construct m of such

MSCs.

Theorem 3.3.2. For any prime p = A2+27B2 where A, B ∈ Z, ∃ an MSC of degree

5 over Zp.

Proof. If p = A2 + 27B2 is a prime, by Proposition 1.6.11, the number 2 is a cubic

residue mod p. Thus the following matrix gives an MSC of degree 5:

M(−1, 1, 0) =

⎡
⎢⎢⎢⎢⎣

−1 0 1

2 0 −2
−1 0 1

⎤
⎥⎥⎥⎥⎦
.

Remark. The prime numbers 31, 43, 127, and many others are in the form stated

in the above theorem. The result of the theorem guarantees that MSCs of degree 5

exist, one of which M(−1, 1, 0), modulo these primes.
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Applying Sharifi’s Theorem, we construct MSCs of degree 5, 7, or 9 over Zp for

certain prime numbers p.

Proposition 3.3.3. Assume p is a prime in the form of p = 1 + 3x + 9x2, where x

is a positive integer divisible by 6. Then over Zp, M(−1, 1, 0) is an MSC of degree 5;

Similarly, M(3, 1, 2) and M(2, 1,−1) are MSCs of degree 7 or 9 respectively.

Proof. Since 2 | x and 3 | x, by Sharifi’s theorem 2, 3 are cubic residues mod p. Then

the three mentioned matrices are MSCs of the indicated degree.

Consider the prime number 2971 = 1 + 3(18) + 3(182). Over Zp, the MSCs of

degree 5, 7, or 9 are constructed in the following examples.

Example 3.3.4. M(−1, 1, 0) is an MSC over Z2971:

M(−1, 1, 0) =

⎡
⎢⎢⎢⎢⎣

−1 0 1

2 0 −2
−1 0 1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

29703 03 13

2863 03 26853

29703 03 13

⎤
⎥⎥⎥⎥⎦

with deg(M(−1, 1, 0)) = 5.

Example 3.3.5. Two degree 7 MSCs over Z2971:

M(3, 1, 2) =

⎡
⎢⎢⎢⎢⎣

3 −2 2

0 1 2

0 4 −1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

4223 2, 6853 2863

03 13 2863

03 1, 5793 2, 9703

⎤
⎥⎥⎥⎥⎦
,

M(2, 1, 0) =

⎡
⎢⎢⎢⎢⎣

2 −3 1

−1 0 1

−1 3 −2

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

2863 2, 5493 13

(−1)3 03 13

(−1)3 4223 2, 6853

⎤
⎥⎥⎥⎥⎦
.
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Example 3.3.6. The matrix M(2, 1,−1) is an MSC of degree 9 in Z2971:

M(2, 1,−1) =

⎡
⎢⎢⎢⎢⎣

2 −6 1

−2 −1 0

−3 4 −4

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

2863 11193 13

26853 29703 03

25493 15793 13923

⎤
⎥⎥⎥⎥⎦
.

Also, 11543 ≡ 7 (mod 2971). Thus we have another instance of MSC of degree 9:

M(a, b, c) =

⎡
⎢⎢⎢⎢⎣

7 −2 1

−4 2 8

3 6 −3

⎤
⎥⎥⎥⎥⎦
.

Another interesting prime useful for constructing MSCs is, for instance, p =

8191 = 1 + 3× 30 + 9× 302.

Example 3.3.7. Let p = 8191. Over Zp, M(2, 1,−1), M(4, 2, 1), and M(3, 2, 0) are

all MSC of degree 9. Since 2, 3, and 5 are divisors of 30, by Sharifi’s theorem they

are all cubic residues mod 8191. Precisely, 5123 ≡ 2, 18073 ≡ 3, and 19383 ≡ 5. Thus

the following MSCs are all degree 9:

M(4, 2, 1) =

⎡
⎢⎢⎢⎢⎣

4 −3 2

−1 1 3

0 5 −2

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

323 63843 5123

(−1)3 13 18073

03 19383 76793

⎤
⎥⎥⎥⎥⎦

and
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M(3, 2, 0) =

⎡
⎢⎢⎢⎢⎣

3 −5 2

−1 0 1

−2 5 −3

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

18073 62533 5123

(−1)3 03 13

76793 19383 63843

⎤
⎥⎥⎥⎥⎦
.

Example 3.3.8. The prime number 11,311 can be expressed as 11, 131 = 1 + 3 ×
35 + 9 × 352, thus by Sharifi’s theorem 5 and 7 are cubic residues mod 11,131. An

MSC of degree 3 with magic sum 3 is constructed:

M(7, 1, 1) =

⎡
⎢⎢⎢⎢⎣

7 −5 1

−5 1 7

1 7 −5

⎤
⎥⎥⎥⎥⎦
.

Proposition 3.3.9. For the prime p = 1, 922, 383 = 1 + 3 × 462 + 9 × 4622, There

exist MSCs of deg = 9 whose central elements are 2, 3, 4, 6, 7, 8, 9, or 11.

Note that 462 = 2 × 3 × 7 × 11. By Sharifi’s theorem 2, 3, 7, and 11 are cubes

mod 1,922,383. The following constructions give the desired MSCs of degree 9:

Example 3.3.10. Over Z1922383, the following MSCs are all of degree 9 with central

element 2, 3, 4, 6, 7, 9, or 11 respectively:

M(7, 11, 2) =

⎡
⎢⎢⎢⎢⎣

7 −12 11

6 2 −2
−7 16 −3

⎤
⎥⎥⎥⎥⎦
, M(2, 7, 3) =

⎡
⎢⎢⎢⎢⎣

2 0 7

8 3 −2
−1 6 4

⎤
⎥⎥⎥⎥⎦
,

23



M(7, 11, 4) =

⎡
⎢⎢⎢⎢⎣

7 −6 11

8 4 0

−3 14 1

⎤
⎥⎥⎥⎥⎦
, M(11, 3, 6) =

⎡
⎢⎢⎢⎢⎣

11 4 3

−2 6 14

9 8 1

⎤
⎥⎥⎥⎥⎦
,

M(11, 2, 7) =

⎡
⎢⎢⎢⎢⎣

11 8 2

−2 7 16

12 6 3

⎤
⎥⎥⎥⎥⎦
, M(12, 18, 8) =

⎡
⎢⎢⎢⎢⎣

12 −6 18

14 8 2

−2 22 4

⎤
⎥⎥⎥⎥⎦
,

M(11, 4, 9) =

⎡
⎢⎢⎢⎢⎣

11 12 4

2 9 16

14 6 7

⎤
⎥⎥⎥⎥⎦
, M(1, 14, 11) =

⎡
⎢⎢⎢⎢⎣

1 18 14

24 11 −2
8 4 21

⎤
⎥⎥⎥⎥⎦
.

Apparently, the number of MSC with degree 9 becomes larger as the number of

prime factors of x in Sharifi’s theorem grows.

3.4 Construction of MSC Using Consecutive Cu-

bic Residues

In this section we will use the idea of consecutive cubic residues to construct MSCs of

degrees 3, 5, 7, and 9. Using the theorems that guarantee the existence of consecutive

cubic residues we are able to obtain fine results.

Theorem 3.4.1. There are infinitely many primes p such that MSC of degree 3,5,7,

or 9 exist over Zp.

Proof. By Brauer’s theorem [6], there are infinitely many primes p such that there are

9 consecutive cubic residues r, r+1, . . . , r+8 mod p. We then construct the following

24



magic squares of cubes using these consecutive cubic residues. The following are

MSCs of various degrees over Zp.

MSC of degree 3:

M(r + 1, r + 2, r + 1) =

⎡
⎢⎢⎢⎢⎣

r + 1 r r + 2

r + 2 r + 1 r

r r + 2 r + 1

⎤
⎥⎥⎥⎥⎦
.

MSC of degree 5:

M(r + 3, r + 1, r + 2) =

⎡
⎢⎢⎢⎢⎣

r + 3 r + 2 r + 1

r r + 2 r + 4

r + 3 r + 2 r + 1

⎤
⎥⎥⎥⎥⎦
.

MSC of degree 7:

M(r + 2, r + 1, r + 3) =

⎡
⎢⎢⎢⎢⎣

r + 2 r + 6 r + 1

r + 2 r + 3 r + 4

r + 5 r r + 4

⎤
⎥⎥⎥⎥⎦
.

Finally, we obtain the most important result of this research: there exist MSCs of

degree 9 over Zp for infinitely many primes p.

MSC of degree 9:

M(r + 3, r + 1, r + 4) =

⎡
⎢⎢⎢⎢⎣

r + 3 r + 8 r + 1

r + 2 r + 4 r + 6

r + 7 r r + 5

⎤
⎥⎥⎥⎥⎦
.
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By a similar approach, we claim the main result which answers a similar question

as the open question raised by La Bar.

Theorem 3.4.2. There exist infinitely many primes p in the form of 3m + 1 such

that MSC of degree 9 exist over Zp.

Proof. By Brauer’s theorem [6], there are infinitely many primes whose smallest

triplet of consecutive cubic residues is (23532, 23533, 23534). All of these primes

are of the form 3m+1, because primes of the form 3m+2 have (0,1,2) as the smallest

triplet of consecutive cubic residues. Let p be such a prime. We can construct the

following MSC over Zp:

M(23533, 1, 0) =

⎡
⎢⎢⎢⎢⎣

23533 −23534 1

−23532 0 23532

−1 23534 −23533

⎤
⎥⎥⎥⎥⎦
.

By choosing a prime p > 23534 + 23533 = 47, 077 we guarantee that all the

entries of this MSC are distinct. Obviously, infinitely many primes mentioned above

are greater than 47,077 which have ( 23532, 23533, 23534 ) as a triplet of consecutive

cubic residue.

We already established that 2971 is a prime such that 2 and 3 are cubic residues in

Z2971. Thus we can construct a 9-tuple of consecutive cube residues, (−4,−3,−2,−1, 0,
1, 2, 3, 4), and use it to obtain MSCs of degree 3, 5, 7, or 9. These are all possible

degrees for MSCs over Z2971.

Example 3.4.3. Over Z2971,

An MSC of degree 3:
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M(−1, 0, 0) =

⎡
⎢⎢⎢⎢⎣

−1 1 0

1 0 −1
0 −1 1

⎤
⎥⎥⎥⎥⎦
.

Degree 5:

M(−1, 1, 0) =

⎡
⎢⎢⎢⎢⎣

−1 0 −3
2 0 −2
−1 0 1

⎤
⎥⎥⎥⎥⎦
.

Degree 7:

M(−2,−3,−1) =

⎡
⎢⎢⎢⎢⎣

−2 2 −3
−2 −1 0

1 −4 0

⎤
⎥⎥⎥⎥⎦
.

Degree 9:

M(−1,−3, 0) =

⎡
⎢⎢⎢⎢⎣

−1 4 −3
−2 0 2

3 −4 1

⎤
⎥⎥⎥⎥⎦
.
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Chapter 4

Concluding Remarks and Future

Direction

In this research I answered questions concerning the existence of Magic Squares of

Cubes of degrees 3, 5, 7, or 9 over Zp where p is a prime. I proved that there are

infinitely many primes in the form 3m+ 1 with integer m for which MSCs of degree

3, 5, 7, or 9 exist over Zp. Along with theoretical results, concrete examples of such

MSCs were demonstrated. However some questions remain unanswered and can be

of interest to an inquisitive mathematician.

Further Questions

1. What primes do not admit MSC of degree 5 or 7 or 9?

2. For what prime p, the maximum degree of any MSC over Zp is 3?

3. What prime numbers admit MSCs of degree r for a given r = 5, 7 or 9?

4. What prime numbers in the form of p = 3m + 1 have 9 consecutive cubic

residues?
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5. How many primes in the form of p = 27A2+B2 with A,B being integers admit

the cubic residue of 2 and thus an MSC of degree 5 exist?

6. Given b ∈ Zp, does there exist MSC over Zp with the magic sum b?
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