

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE MECÁNICA ESCUELA DE INGENIERÍA INDUSTRIAL

"ESTUDIO DE FACTIBILIDAD PARA EL DISEÑO DE UNA PLANTA INDUSTRIAL DE MECANIZADO PARA LA RECONSTRUCCIÓN DE TURBINAS FRANCIS Y PELTON DE GENERACIÓN ELÉCTRICA PARA LA EMPRESA CELEC E.P"

SAGÑAY CASTAÑEDA BYRON ROBERTO PILAMUNGA MORALES LEONARDO PATRICIO

TESIS DE GRADO

Previa a la obtención del Título de:

INGENIERO INDUSTRIAL

RIOBAMBA – ECUADOR

2012

Facultad de Mecánica

ASESOR DE TESIS

CERTIFICADO DE APROBACIÓN DE TESIS

<u>Abril 11, de 2012</u>
Yo recomiendo que la Tesis preparada por:
BYRON ROBERTO SAGÑAY CASTAÑEDA
Titulada:
"ESTUDIO DE FACTIBILIDAD PARA EL DISEÑO DE UNA PLANTA
INDUSTRIAL DE MECANIZADO PARA LA RECONSTRUCCIÓN DE
TURBINAS FRANCIS Y PELTON DE GENERACIÓN ELÉCTRICA PARA LA
EMPRESA CELEC E.P"
Sea aceptada como parcial complementación de los requerimientos para el Título de:
INGENIERO INDUSTRIAL
Ing. Geovanny Novillo A. DECANO FACULTAD DE MECÁNICA
Nosotros coincidimos con esta recomendación:
Ing. Víctor Marcelino Fuertes A. DIRECTOR DE TESIS
Ing. Gloria Miño Cascante.

Facultad de Mecánica

Ing. Gloria Miño Cascante. ASESOR DE TESIS

CERTIFICADO DE APROBACIÓN DE TESIS

	<u>Abril 11, de 2012</u>
Yo recomiendo que la Tesis preparada por:	
LEONARDO PATRICIO PILAMUI	NGA MORALES
Titulada:	
"ESTUDIO DE FACTIBILIDAD PARA EL INDUSTRIAL DE MECANIZADO PARA L' TURBINAS FRANCIS Y PELTON DE GENERA	A RECONSTRUCCIÓN DE
EMPRESA CELEC E.P"	
Sea aceptada como parcial complementación de los rec	querimientos para el Título de:
INGENIERO INDUST	TRIAL
DECAN	Ing. Geovanny Novillo A. O FACULTAD DE MECÁNICA
Nosotros coincidimos con esta recomendación:	
	Ing. Víctor Marcelino Fuertes A. DIRECTOR DE TESIS

Facultad de Mecánica

CERTIFICADO DE EXAMINACIÓN DE TESIS

NOMBRE DEL ESTUDIANTE: BYRON ROBERTO SAGÑAY CASTAÑEDA.

TÍTULO DE LA TESIS: <u>"ESTUDIO DE FACTIBILIDAD PARA EL DISEÑO DE UNA PLANTA INDUSTRIAL DE MECANIZADO PARA LA RECONSTRUCCIÓN DE TURBINAS FRANCIS Y PELTON DE GENERACIÓN ELÉCTRICA PARA LA EMPRESA CELEC E.P"</u>

Fecha de Examinación: Abril 11, de 2012.

RESULTADO DE LA EXAMINACIÓN:

COMITÉ DE EXAMINACIÓN	APRUEBA	NO APRUEBA	FIRMA
Ing. Marco Santillán.			
(DELEGADO PRESIDENTE TRIB.			
DEFENSA)			
Ing. Víctor Marcelino Fuertes A.			
(DIRECTOR DE TESIS)			
Ing. Gloria Miño Cascante.			
(ASESOR)			

^{*} Más que un voto de no aprobación es razón suficiente para la falla total.

RECOMENDACIONES:		

El Presidente del Tribunal certifica que las condiciones de la defensa se han cumplido.

f) Presidente del Tribunal

Facultad de Mecánica

CERTIFICADO DE EXAMINACIÓN DE TESIS

NOMBRE DEL ESTUDIANTE: LEONARDO PATRICIO PILAMUNGA MORALES.

TÍTULO DE LA TESIS: <u>"ESTUDIO DE FACTIBILIDAD PARA EL DISEÑO DE UNA PLANTA INDUSTRIAL DE MECANIZADO PARA LA RECONSTRUCCIÓN DE TURBINAS FRANCIS Y PELTON DE GENERACIÓN ELÉCTRICA PARA LA EMPRESA CELEC E.P"</u>

Fecha de Examinación: Abril 11, de 2012.

RESULTADO DE LA EXAMINACIÓN:

COMITÉ DE EXAMINACIÓN	APRUEBA	NO APRUEBA	FIRMA
Ing. Marco Santillán.			
(DELEGADO PRESIDENTE TRIB.			
DEFENSA)			
Ing. Víctor Marcelino Fuertes A.			
(DIRECTOR DE TESIS)			
Ing. Gloria Miño Cascante.			
(ASESOR)			

^{*} Más que un voto de no aprobación es razón suficiente para la falla total.

RECOMENDACIONES:	_
El Presidente del Tribunal certifica que las condiciones de la defensa se han cumplido.	_

f) Presidente del Tribunal

DERECHOS DE AUTORÍA

El trabajo de grado que presentamos, es original y basado en el proceso de investigación y/o adaptación tecnológica establecido en la Facultad de Mecánica de la Escuela Superior Politécnica de Chimborazo. En tal virtud, los fundamentos teórico - científicos y los resultados son de exclusiva responsabilidad de los autores. El patrimonio intelectual le pertenece a la Escuela Superior Politécnica de Chimborazo.

f) Byron Roberto Sagñay Castañeda.

f) Leonardo Patricio Pilamunga Morales.

DEDICATORIA

Dedico este trabajo de manera especial a mi madre por brindarme su apoyo incondicional durante toda mi vida, a mi esposa Paola y a mis queridos hijos Jostin y David que Dios les bendiga.

Byron Roberto Sagñay Castañeda.

Dedico este trabajo con todo mi amor:

A mis padres, Francisco Pilamunga y Alicia Morales, por el apoyo brindado durante mi carrera.

A mis hermanos, Francisco, Alex y José Luis, por toda la confianza que depositaron en mí.

A mi esposa, Yajaira por estar siempre a mi lado brindándome su apoyo.

A mi familia y amigos, por haber confiado en mí.

Leonardo Patricio Pilamunga Morales.

AGRADECIMIENTO

A mi mamá Gloria Castañeda y a mi Papá Raúl Sagñay por apoyarme durante toda mi carrera, al igual que a mis hermanos Juan Carlos, Eduardo y Carlota por brindarme su compañía y consejos.

A la empresa **CELEC E.P.** UNIDAD DE NEGOCIO HIDROAGOYÁN, Ing. Kleber Zhañay, Tlgo. Eduardo Ruales y todo el personal, quienes nos apoyaron técnicamente en el desarrollo de esta tesis.

A mí querida amiga, confidente y amor, Paola Verónica por apoyarme en la culminación de mi carrera.

Byron Roberto Sagñay Castañeda.

A mis padres francisco Pilamunga y Alicia Morales por haberme brindado todo su apoyo durante carrera estudiantil, de igual manera mis hermanos Francisco, Alex y José Luis por toda la confianza que me brindaron y a toda mi familia y amigos.

A mi Director Ing. Marcelino Fuertes y a mi Asesora Ing. Gloria Miño quienes con su sapiencia hicieron posible la consecución de esta tesis.

A mi querida esposa Yajaira Castro, por todo su apoyo incondicional brindado durante mi carrera.

Leonardo Patricio Pilamunga Morales.

CONTENIDO

		Pág
1.	GENERALIDADES	
1.1	Antecedentes	1
1.2	Justificación técnico-económica	1
1.3	Objetivos	2
1.3.1	Objetivo general	2
1.3.2	Objetivos específicos	2
2.	MARCO TEÓRICO	
2.1	Turbinas	3
2.2	Tipos de turbinas hidráulicas	3
2.2.1	Turbina Pelton	4
2.2.1.1	Partes importantes de una turbina Pelton	4
2.2.2	Turbinas Francis	6
2.3	Fenómenos anómalos en las turbinas hidráulicas	9
2.3.1	Cavitación	9
2.3.2	Golpe de ariete	9
	Métodos operativos para la reconstrucción de los elementos	
2.4	hidromecánicos de las turbinas Francis y Pelton	10
2.4.1	Especificaciones técnicas	10
2.4.2	Métodos de limpieza	10
2.4.3	Procedimiento de inspección visual	11
2.4.4	Métodos de ensayos no destructivos	11
2.4.4.1	Inspecciones por líquidos penetrantes	11
2.4.4.2	Clasificación de los líquidos penetrantes	13
2.4.4.3	Normativa	14
2.4.5	Procedimiento para la inspección por partículas magnéticas	14
2.4.6	Métodos de desbaste	15
2.4.6.1	Discos de corte y desbaste	16
2.4.7	Métodos de transporte y movilización	17
2.4.7.1	Puentes grúa	17
2.4.7.2	Montacargas	17
2.4.8	Métodos de recuperación por soldadura	18
	Reparación de las partes de turbinas dependiendo de las	
2.4.8.1	fallas que presenten	18
2.4.8.2	Procedimiento de precalentamiento	19
2.4.8.3	Procedimiento de soldadura	19
2.4.8.4	Temperaturas entre pasos	21
2.4.8.5	Proceso de enfriamiento de la soldadura	21
2.4.8.6	Material de aporte para la soldadura	21

2.4.9	Métodos de pulido
2.4.9.1	Abrasivos utilizados
2.4.9.2	Selección de discos y piedras abrasivas
2.4.9.3	Clasificación del grano
2.4.9.4	Machotes abrasivos
2.4.9.5	Procedimiento para el amolado y pulido
2.4.10	Método de balanceo estático
2.4.10.1	Fuentes de desbalance
2.4.10.2	El balanceo estático
2.4.11	Tratamientos térmico
2.4.12	Método de metalizado
2.4.12.1	Preparación de las superficies a metalizar
2.4.13	Inspección final
2.4.14	Inspección visual
2.4.15	Inspección dimensional
2.4.16	Método de almacenamiento
2.4.17	Embalaje
	Efecto del tratamiento térmico post soldadura sobre la micro
	estructura del acero Inoxidable grado ASTM A743 CA6NM
2.5	para la rehabilitación de rodetes hidráulicos
2.5.1	Consideraciones metalúrgicas
2.5.2	Procedimiento
2.6	Proceso de producción
2.6.1	Diagramas de proceso
2.6.2	Flujogramas
2.6.3	Diagrama de flujo del proceso
2.6.4	Diagrama de recorrido
2.6.4.1	Colocación
2.6.5	Distribución de la planta
2.6.5.1	Principios básicos de la distribución
2.6.6	Tipo de fabricación
2.6.6.1	Distribución por componente fijo
2.6.6.2	Funcional o por proceso
2.6.6.3	Por producto o línea
2.7	Distribuciones parciales
2.8	Seguridad industrial
2.8.1	Definición de seguridad industrial
2.8.2	Definición de análisis de riesgos
2.8.2.1	Identificación de riesgos
2.8.2.2	Pasos para realizar una evaluación de riesgo
2.8.3	Normas
2.8.3.1	Normas de orden y limpieza en el lugar de trabajo
2.8.3.2	Manejo de materiales
2.8.3.3	Almacenamiento de materiales
4.0.5.5	11

2.8.3.4	Movimiento de materiales
2.8.4	Señalización de seguridad industrial
2.8.4.1	Definiciones generales
2.8.4.2	Formas geométricas de las señales de seguridad
2.8.4.3	Señales de prohibición
2.8.4.4	Señal de advertencia
2.8.4.5	Señales de obligatoriedad
2.8.4.6	Señales informativas
2.8.4.7	Señales suplementarias
2.8.4.8	Salida de emergencia
3.	ESTUDIO DE MERCADO
3.1	Identificación de la empresa (CELEC E.P.)
3.1.1	Antecedentes
3.2	Descripción de la central hidroeléctrica Agoyán
3.2.1	Embalse
3.2.2	Casa de máquinas
3.2.3	Subestación
3.2.4	Edificio de control
3.2.5	Ejecución
3.3	Marco de desarrollo
3.4	Planteamiento del problema y propuesta
3.5	Identificación del proyecto
3.5.1	Localización
3.6	Elementos hidromecánicos a reconstruirse de las turbinas Francis y Pelton
3.7	Identificación del producto y/o servicio (elemento hidromecánico reconstruido)
3.8	Documentación
3.9	Evidencias físicas del elemento hidromecánico para la reconstrucción
3.9.1	Cavitación
3.9.2	Erosión
3.9.3	Desgaste
3.10	Identificación del consumidor (empresas de generación hidroeléctrica)
3.11	Recolección de información
3.11.1	Plantas hidroeléctricas en el Ecuador
3.12	Segmentación de mercado
3.12.1	Centrales hidroeléctricas
3.12.2	Proyectos hidroeléctricos
	Evaluación del número de elementos hidromecánicos
3.13	(turbinas) que se encuentran fuera de servicio a cargo de CELEC E.P
3.13.1	Registros y controles

Consideraciones tecnicas sobre la vida util de los elementos hidromecánicos de la turbina Francis y Peltón	66
•	66
•	69
	69
v	70
	70
	71
	71
• •	73
	73
•	74
	74
Precios de la competencia. (Internacional)	75
ESTUDIO TÉCNICO	
Tamaño del proyecto	78
Capacidad de planta	78
Capacidad	78
Factores determinantes del tamaño	78
El mercado	78
La disponibilidad de los materiales	79
Materiales y equipos para relleno con soldadura	79
Análisis para la selección de electrodos	80
Especificaciones técnicas para el material base	80
Tecnología y equipos	82
Consideraciones técnicas	82
Tipos de sistemas utilizarse en la planta	82
Selección del compresor	83
Calculo para seleccionar el compresor	83
La ventilación natural	86
Selección de los tornos	88
Torno vertical	88
Centro de mecanizado	89
Torno horizontal	89
Montacargas	90
Camión grúa	90
	91
	91
	92
	92
	92
	93
Costos de maquinaria y equipos	93
	hidromecánicos de la turbina Francis y Peltón Comportamiento mecánico. Cambios climáticos. Horas de funcionamiento. Análisis de la demanda. Demanda. Demanda histórica. Demanda proyectada. Análisis de la oferta. Oferta. Oferta histórica. Oferta histórica. Oferta proyectada. Precios de la competencia. (Internacional). ESTUDIO TÉCNICO Tamaño del proyecto. Capacidad de planta. Capacidad. Factores determinantes del tamaño. El mercado. La disponibilidad de los materiales. Materiales y equipos para relleno con soldadura. Análisis para la selección de electrodos. Especificaciones técnicas para el material base. Tecnología y equipos. Consideraciones técnicas para el material base. Tipos de sistemas utilizarse en la planta. Selección del compresor. Calculo para seleccionar el compresor. La ventilación natural. Selección de los tornos. Torno vertical. Centro de mecanizado. Torno horizontal. Montacargas. Camión grúa. Puente grúa. Equipos para desbaste y pulido. Horno. Equipo para balanceo estático. Equipo para metalizado.

4.6	Localización de la planta	94
4.6.1	Macrolocalización	94
4.6.2	Microlocalización	96
4.6.2.1	Aplicación del método cuantitativo por puntos para determinar la localización del proyecto	97
4.6.2.2	Localización específica de la planta industrial	97
4.6.2.3	Método cualitativo por puntos	98
4.6.2.4	Información general de la localización del proyecto	98
4.6.2.5	Factores que influyen en la microlocalización	99
4.7	Ingeniería del proyecto	100
4.7.1	Terreno y construcciones	100
4.7.2	Análisis del terreno	101
4.7.3	Costos de los inmuebles administrativos	102
4.8	Proceso de producción	102
4.8.1	Proceso general de reparación de los elementos hidromecánic	102
4.8.2	Normas aplicables en la reconstrucción de elementos hidromecánicos	107
4.8.3	Determinación de la cantidad de soldadura por elemento hidromecánico	107
4.8.4	Diagramas de flujo de operación	110
4.8.5	Diagrama de proceso	110
4.8.6.	Diagrama de recorrido	115
4.9	Distribución de la planta	115
4.9.1	Clases de distribuciones de planta	116
4.9.1.1	Determinación de la clase de distribución	116
4.9.2.	Determinación de la clase de fabricación	116
4.9.3	Criterios para una buena distribución	117
4.9.4	Planteamiento y distribución de los puestos de trabajo	119
4.9.4.1	Área de almacenamiento	119
4.9.4.2	Cabina de pulido y desbaste	120
4.9.4.3	Cabina de soldadura	120
4.9.4.4	Torno Vertical	121
4.9.4.5	Torno horizontal	121
4.9.4.6	Torno CNC	121
4.9.4.7	Cabina horno	121
4.9.4.8	Cabina de metalizado	122
4.9.4.9	Área de balanceo estático	122
4.9.4.10	Bodega de herramientas	122
4.9.4.11	Cámara trasformador	122
4.9.4.12	Recinto compresor	123
4.9.4.13	Cabina de control (CNC control)	123
4.9.4.14	Accesorios y equipos (CNC)	123
4.9.4.15	Secretaria general y sala de espera	123
4.9.4.16	Oficina supervisión	123
4.9.4.17	Oficina jefe de planta	123
	- · · · · · · · · · · · · · · · · · · ·	

4.9.4.18	Diseño de planos	123
4.9.4.19	Instrumentación y metrología	124
4.9.5	Dimensiones de los puestos de trabajo	124
4.9.5.1	Superficie necesaria para la planta de mecanizado	125
4.9.6	Estudio de distribuciones parciales	126
4.9.6.1	Planteamiento de las distribuciones parciales	126
4.9.6.2	Relación de los lugares de trabajo	126
4.9.6.3	Tablas de doble entrada	126
4.9.6.4	Tabla ponderada	135
4.9.6.5	Resumen de movimientos	139
4.9.6.6	Diagrama de proximidad	139
4.9.6.7	Forma de planta	140
4.10	Distribución de planta propuesta	140
4.10.1	Distribución de planta (diseño en 2D)	140
4.10.1.1	Paseo virtual (diseño en 3D)	140
4.11	Seguridad industrial de la planta	141
5.	COSTOS DEL PROYECTO	
5.1	Costos	148
	Costos y gastos del mantenimiento anual y overhaul de la	
5.2	Central Agoyán	148
5.3	Solvencia económica de la central Agoyán	150
~ A	Costo anual para la reparación de dos grupos de turbinas	151
5.4	hidráulicas (Francis - Pelton)	151
5.4.1 5.4.1.1	Costos directos (Empresa INDURA)	151 151
5.4.1.1	Costos directos. (Empresa INDURA)	151
5.4.1.2 5.4.1.2.4	Reparación y mantenimiento	152
5.4.1.2.5	Depreciación	154
5.4.2	Costo de administración	155
5.4.3	Costo de venta	155
5.4.4	Costo financiero	155
5.5	Costo anual	156
5.6	Ingresos del proyecto	157
5.7	Presupuesto de ingresos y gastos	158
6.	ESTUDIO FINANCIERO	
6.1	Inversiones del proyecto	159
6.1.1	Inversión fija	159
6.1.2	Capital de trabajo	159
6.1.3	Cuadro de inversión del proyecto	159
6.2	Financiamiento	160
6.2.1	Fuentes de financiamiento	160
	Tabla de amortización (CORPORACION FINANCIERA	
6.2.2	NACIONAL	161

7.	EVALUACIÓN DEL PROYECTO	
7.1	Evaluación financiera	162
7.2	Tasa mínima atractiva de retorno (TMAR)	162
7.3	Valor actual neto (VAN)	163
7.4	Tasa interna de retorno (TIR)	164
7.5	Periodo de recuperación de inversión (PRI)	166
8.	CONCLUSIONES Y RECOMENDACIONES	
8.1	Conclusiones	168
8.2	Recomendaciones	169
REFERENCIA BIBLIOGRAI	AS BIBLIOGRÁFICAS	
LINKOGRAF		
ANEXOS		

LISTA DE TABLAS

1	Clasificación de líquidos penetrantes
2	Nomenclatura de los discos de corte y desbaste
3	Normativa UNE relacionada con los puentes grúas
4	Representación de proceso productivo (Flujograma)
5	Tipo de riesgos
6	Calificación de componentes según su magnitud de riesgo
7	Calificación del factor de riesgo
8	Acciones a tomarse frente a los riesgos
9	Colores de seguridad y su significado
10	Elementos hidromecánicos de las turbinas FRANCIS y PELTON
11	Centrales hidroeléctricas de empresas generadoras autoproductorasdistribuidoras
12	Potencia instalada de las centrales hidroeléctricas
13	Centrales hidroeléctricas de empresas autoproductoras
14	Centrales hidroeléctricas de empresas distribuidoras
15	Centrales hidroeléctricas de empresas generadoras
16	Centrales hidroeléctricas de CELEC EP
17	Turbinas FRANCIS y PELTON a cargo de CELEC E.P
18	Proyectos hidroeléctricos factibles
19	Elementos hidromecánicos (turbinas) fuera de servicio
20	Demanda histórica de los elementos hidromecánicos (turbinas) fuera de servicio
21	Demanda histórica de los elementos hidromecánicos (turbinas) fuera de servicio
22	Demanda proyectada de los elementos hidromecánicos (turbinas) fuera de servicio
23	Oferta histórica de servicio de rehabilitación de elementos hidromecánicos en el Ecuador
24	Oferta proyectada de los elementos hidromecánicos rehabilitado
25	Demanda insatisfecha del servicio de rehabilitación de elementos hidromecánicos en el Ecuador
26	Empresas que prestan el servicio de reconstrucción de elementos hidromecánicos a nivel internacional
27	Precios por reparación mecánica, maquinados
28	Precios por recubrimiento componentes
29	Comparación de normas internacionales para el acero inoxidable Cr-Ni 13/14
30	Selección de electrodos según su composición química
31	Elementos auímicos constitutivos del rodete PELTON

32	Elementos químicos constitutivos del electrodo UTP 309	81
33	Sistemas a utilizarse en la planta industrial de mecanizado	82
34	Relación de compresores de aplicación industrial	83
35	Consumo de aire comprimido	84
36	Torno vertical serie pesada (rodamiento hidrostático)	88
37	Centro de mecanizado	89
38	Torno horizontal	89
39	Montacargas	90
40	Camión grúa	90
41	Puente grúa	91
42	Equipo de soldadura	91
43	Equipos de desbaste	92
44	Horno	92
45	Equipo Balanceador	93
46	Equipo para metalizado	93
47	Costos de la maquinaria y equipos	93
48	Ubicación regional de las centrales hidroeléctricas a cargo de CELEC EP	94
49	Ubicación provincial de las centrales hidroeléctricas a cargo de CELEC EP	95
50	Método cualitativo por puntos para la localización especifica de la planta de mecanizado	98
51	Factores que influye en la microlocalización en el Cantón Baños de Agua Santa	99
52	Costo de la construcción de la planta de mecanizado	101
53	Costo del mobiliario administrativo para la planta de	
<i>J J</i>	mecanizado	102
54	Normas aplicable en la reconstrucción de elementos hidromecánicos	107
55	Determinación del tiempo de soldadura de los elementos hidromecánicos	109
56	Elementos hidromecánicos reconstruidos en el año	117
57	Superficie para la planta de mecanizado	125
58	Reconstrucción anual	126
59	Designación de los puestos de trabajo	126
60	Movimientos en la reconstrucción del rodete FRANCIS	127
61	Movimientos en la reconstrucción del rodete PELTON	128
62	Movimientos en la reconstrucción de la tapa superior FRANCIS	129
63	Movimientos en la reconstrucción de la tapa inferior FRANCIS	130
64	Movimientos en la reconstrucción del cono FRANCIS	131
65	Movimientos en la reconstrucción del alabe FRANCIS	132
66	Movimientos en la reconstrucción del aguja PELTON	133
67	Movimientos en la reconstrucción del asiento PELTON	134

68	Tabla ponderada relación de movimientos		
69	Tabla ponderada (resumen)		
70	Tabla ponderada relación de movimientos (resumen)		
71	Movimientos en la reconstrucción de los elementos hidromecánicos		
72	Relación de movimientos		
73	Identificación y evaluación de riesgos		
74	Protección individual		
75	Designación de la señalización en la planta		
76	Costos anuales de mantenimiento mayor -operación y mantenimiento (preventivo y predictivo)		
77	Costos de materiales y repuestos del mantenimiento mayor		
78	Costos de piezas nuevas para el mantenimiento mayor		
79	Precios por reparación mecánica		
80	Precios por recubrimiento contra la erosión		
81	Estado de pérdidas y ganancias		
82	Material directo		
83	Mano de obra directa		
84	Mano de obra indirecta		
85	Servicios		
86	Materiales indirectos		
87	Reparación y mantenimiento		
88	Depreciación		
89	Gastos de administración		
90	Gastos de venta		
91	Gasto financiero		
92	Costo anual		
93	Ingresos del proyecto		
94	Presupuesto de ingresos y gastos		
95	Cuadro de inversión del proyecto		
96	Tabla de amortización		
97	Calculo de flujos de efectivo		
98	Calculo del (VAN)		
99	Calculo del (TIR)		
100	Calculo del (PRI)		

LISTA DE FIGURAS

		Pág.
1	Esquema de una turbina	3
2	Turbina Francis y Pelton	4
_	Turbina Pelton de eje horizontal, con cuatro equipos de	
3	inyección	4
4	Esquema de un distribuidor	5
5	Detalles de un rodete Pelton	5
6	Componentes de una turbina Francis de eje vertical	6
7	Cámara espiral de una turbina Francis	7
8	Detalles posiciones, cerrado o abierto, de las palas directrices del distribuidor	7
0	Situación del tubo de aspiración en una turbina Francis de eje	8
9	vertical.	_
10	Secuencia del ensayo	12
11	Indicaciones típicas	13
12	Localización de defectos	15
13	magnéticos	115
14	Máquina amoladora manual de desbaste	16
15	Puente grúa	17
16	Etapas de relleno o reconstrucción con soldadura	20
17	Forma de limitar el relleno de soldadura	21
	Sistema estándar de marca para ruedas hechas de óxido de	
18	aluminio y carburo de silicio	23
19	Pulido del álabe móvil	24
20	Esquema de la balanceadora estática	26
21	Tratamiento térmico en álabes	27
22	Metalizado de rodetes PELTON	28
	Ensayos en probetas de acero inoxidable grado ASTM A743	
23	CA6N	29
24	Curva dilato métrica	30
25	Depósito de soldadura en acero CA6NM	33
	Micro estructuras con y sin tratamiento térmico después del	
26	depósito de soldadura sobre un acero CA6NM	33
27	Registro de máquinas o puestos de trabajo	38
28	Tabla de dobles entrada	39
29	Triangulo de resumen	39
30	Relación de movimientos	40
31	Diagrama de proximidad	40
32	Señal de prohibición	46

33	Señal de advertencia	46
34	Señal de obligatoriedad	47
35	Señal de informativa	47
36	Ubicación geográfica de HidroAgoyán	49
	Representación esquemática de la producción de energía	
37	eléctrica de las centrales Agoyán y San Francisco	51
38	Superficie afectada por fenómenos de erosión y cavitación	57
38	Distribución de las empresas hidroeléctricas	58
	Identificación y diferenciación de zonas de desgaste de las	
40	turbinas Francis y Pelton	60
41	Turbinas a cargo de CELEC EP	63
	Evidencias de cavitación en el cangilón del Rodete Pelton	
42	(Central Paute)	68
	Evidencias de erosión y cavitación en el perfil del Rodete	
43	Francis (Central Agoyán)	68
	Demanda histórica de los elementos hidromecánicos	
44	(turbinas) fuera de servicio	71
	Demanda proyectada de los elementos hidromecánicos	
45	(turbinas) fuera de servicio	73
46	Equipo Aire comprimido (compresor de tornillos)	85
47	Sistema de ventilación eólico	86
	Instalación de los ventiladores eólicos en la planta de	
48	mecanizado (vista superior)	87
49	Mapa de las Centrales hidroeléctricas a cargo de CELEC.EP	95
50	Mapa de la ubicación estratégica de la central Hidroeléctrica	06
50	Agoyán Mapa de la ubicación geográfica del Cantón Baños de Agua	96
51	Santa	99
52	Plano del terreno disponible para el proyecto de implantación de la planta de mecanizado	101
53	Alcance de brazos y altura ideal de trabajo	124
54	Diagrama de proximidad	139
55	Diseño en 3D de la planta	140
56	Tasa Interna de Retorno	166
-		0

LISTA DE ABREVIACIONES

ABNT Asociación Brasileira de Normas Técnicas

AGMA American Gear Manufactures Association

AISC American Institute of Steel Construction

ANSI American National Standards Institute

ASME American Society of Mechanical Engineers

ASTM American Society of Testing Materials

AWS American Welding Society

CELEC E.P Corporación Eléctrica del Ecuador (Empresa Pública).

CNE Código Nacional de Electricidad

CENACE Centro Nacional de Control de Energía.

CONELEC Consejo nacional de Electricidad.

EPP Equipo de Protección Personal.

IEC International Electro Technical Commission

INEN Instituto Ecuatoriano de Normalización

INECEL Instituto Ecuatoriano de Electrificación.

ISO International Standards Organization

Kw Kilo vatio.

Mw Mega vatio.

OSHA Seguridad Profesional y Salud Ocupacional.

PRI Periodo de Recuperación de Inversión.

SAE Society of Automotive Engineers

TIR Tasa Interna de Retorno.

TMAR Tasa Mínima Atractiva de Retorno.

VAN Valor Actual Neto.

LISTA DE ANEXOS

A	Análisis del terreno.
В	Diagramas de flujo de operación.
C	Diagramas de proceso.
D	Diagramas de recorrido.
E	Dimensiones de los puestos de trabajo.
F	Distribución de planta.
\mathbf{G}	Mapa de riesgos.
Н	Señalización de la planta.
I	Equipo de protección personal.
J	Proformas maquinaria.
K	Contrato empresa ANDRITZ.

RESUMEN

Se ha realizado el Estudio de Factibilidad para el Diseño de una Planta Industrial para la reconstrucción de Turbinas Francis y Pelton de Generación Eléctrica para la Empresa CELEC E.P. "UNIDAD DE NEGOCIO HIDROAGOYÁN" de la ciudad de Baños de Agua Santa, con el objetivo de realizar la recuperación de los elementos hidrodinámicos que están en contacto directo con el agua turbinada, mediante la aplicación de los respectivos métodos de reparación y bajo un estricto control de calidad que garanticen el trabajo realizado.

Se realizó la investigación de las diferentes centrales hidroeléctricas en el Ecuador, y de los conjuntos de turbinas que se encuentran fuera de servicio en cada una de ellas, tomando como prioridad, las centrales a cargo de la empresa **CELEC E.P**; en donde se encontraron que existe hasta el momento 22 conjuntos de elementos hidrodinámicos fuera de servicio entre turbinas Francis y Pelton.

Se procedió a realizar los diferentes estudios para llevar a cabo la consecución de este proyecto y la realización de diagramas importantes como diagramas de flujo, de proceso, de recorrido, distribución de planta, plano de planta, etc; necesarios para la reconstrucción de turbinas y el respectivo estudio financiero para determinar la viabilidad y rentabilidad del proyecto.

Con la implementación del centro de mecanizado de reconstrucción de turbinas se logrará un ahorro económico del 70% al reconstruir cada conjunto de turbina que al comprar sus elementos directamente al fabricante, por lo tanto es recomendable la ejecución del presente proyecto.

ABSTRACT

A Feasibility Study for the Design of an Industrial Plant for the Reconstruction of Francis and Pelton turbines of Electric Generation for the Enterprise **CELEC E.P.** "UNIDAD DE NEGOCIO HIDROAGOYÁN" of the Baños de Agua Santa city, has been carried out to perform the recovery of hidry-dynamic elements which are in direct contact with the turbine water through the application of the corresponding repair methods and under a strict control of quality guaranteeing the work.

The investigation of the different hydroelectric centrals in Ecuador and of the turbine conjuncts out of service was carried out taking into account as a priority the centrals of the enterprise **CELEC E.P** where it was found out that there are 22 conjuncts of hydrodynamic elements out of service between the Francis and Pelton turbines.

Different studies were conducted to carry out this project and the important diagrams such as flow, process, run, plant distribution plant design diagrams etc. necessary for the reconstruction of turbines and the corresponding finance study to determine the project feasibility and profitability.

With the implementation of the mechanized turbine reconstruction an economic saving of 70% will be reached upon reconstruction each turbine conjunct as compared to buying directly its elements to the manufacturer; therefore, the execution of the present project is recommended.

CAPÍTULO I

1. GENERALIDADES

1.1 ANTECEDENTES

Dentro de una visión ambiciosa por parte del estado ecuatoriano, varios proyectos del ministerio de electricidad y energía renovable se realizarán, entre los cuales podemos contar con la reparación de los elementos hidromecánicos de centrales hidroeléctricas, pudiendo así revalorar nuestros recursos tecnológicos.

Tomando en consideración la generación hidroeléctrica en el país, en donde las cuencas hidrográficas de nuestras aguas turbinadas, contienen un alto contenido de sedimentos sólidos y residuos, estos han desgastado las partes primarias de las turbinas que están en contacto directo con el agua a ser turbinada.

Estos elementos hidromecánicos han sido desechados en su totalidad, por lo cual se tiene como objetivo principal recuperar dichos elementos, con procesos adecuados de control, inspección, recuperación, etc. De esta manera se sugiere a La Unidad de Negocio HIDROAGOYÁN E.P. desarrolle un proyecto para la recuperación y/o rehabilitación de partes y elementos de turbinas hidráulicas generadoras.

2.1 JUSTIFICACIÓN TÉCNICO-ECONÓMICA

El requerimiento de una planta industrial con tecnología avanzada es menester e imprescindible para desarrollar el proyecto de recuperación de partes y elementos de turbinas generadoras, ya que en nuestro país, en su gran mayoría se compra en forma directa a los fabricantes de dichos elementos.

Determinar nuevos lineamientos de recuperación, siendo de resultado inmediato el ahorro de recursos y fundamentalmente al medio ambiente, es la prioridad del proyecto a desarrollarse.

3.1 **OBJETIVOS**

1.3.1 Objetivo general. Realizar el estudio de factibilidad para el diseño de una planta industrial de mecanizado para la reconstrucción de turbinas Francis y Peltón de generación eléctrica para la empresa CELEC E.P, UNIDAD DE NEGOCIO HIDROAGOYÁN.

1.3.2 *Objetivos específicos*

- Analizar la situación técnica actual de las partes hidromecánicas de las turbinas Francis y Peltón de las centrales hidroeléctricas a cargo de CELEC E.P.
- Realizar una investigación y estudio de los métodos de recuperación de los elementos hidromecánicos de las turbinas hidráulicas.
- Realizar el estudio de ingeniería de planta.
- Realizar la distribución general de la planta.
- Demostrar la viabilidad económica del proyecto.

CAPÍTULO II

2. MARCO TEÓRICO

2.1 Turbinas

En toda la investigación de turbinas, se centrará solamente en el estudio exclusivo de las denominadas turbinas hidráulicas, expresión que identifica a las máquinas motrices accionadas por el agua, instaladas en las denominadas Centrales Hidroeléctricas.

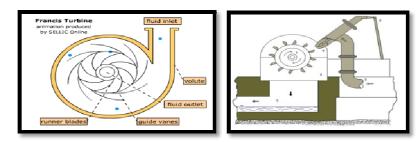
En base a la anterior consideración, turbina hidráulica es la máquina destinada a transformar la energía hidráulica, de una corriente o salto de agua, en energía mecánica, para finalmente a través de un generador convertirla en energía eléctrica.

Sistema de captación de agua

Desnivel

Figura 1. Esquema de una turbina.

El rendimiento de las instalaciones con turbinas hidráulicas, siempre es elevado, pudiendo llegar al 90% o más, después de tener en cuenta todas las pérdidas hidráulicas por choque, de caudal, de fricción en el generador mecánicas, etc.


2.2 Tipos de turbinas hidráulicas

En la presente investigación, se mencionará solo los dos tipos de turbinas hidráulicas que van a ser objeto de estudio, puesto que son las más utilizadas en el país y tienen los mejores resultados en la actualidad; de donde, de cada tipo se mencionará las características técnicas y de aplicación más destacadas que los identifican, la descripción de los distintos elementos que componen cada turbina, así como el principio de funcionamiento de las mismas.

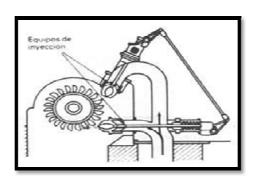
Los dos tipos de turbinas son:

- Turbinas PELTON
- Turbinas FRANCIS

Figura 2. Turbina Francis y Pelton

2.2.1 Turbinas Pelton. Las turbinas Pelton, se conocen como turbinas de presión por ser ésta constante en la zona del rodete, de chorro libre, de impulsión, o de admisión parcial por ser atacada por el agua sólo una parte de la periferia del rodete.

Figura 3. Turbina Pelton de eje horizontal, con cuatro equipos de inyección.


Su utilización es idónea en saltos de gran altura (alrededor de 200 m y mayores), y caudales relativamente pequeños (hasta 10 m³/s aproximadamente).

Por razones hidroneumáticas, y por sencillez de construcción, son de buen rendimiento para amplios márgenes de caudal (entre 30 % y 100 % del caudal máximo). Pueden ser instaladas con el eje en posición vertical u horizontal.

2.2.1.1 *Partes importantes de una turbina Pelton*. A continuación se hace una breve descripción de los elementos más importantes que lo componen:

a) El distribuidor está constituido por uno o varios equipos de inyección de agua. Cada uno de dichos equipos, formado por determinados elementos mecánicos, tiene como misión dirigir, convenientemente, un chorro de agua, cilíndrico y de sección uniforme, que se proyecta sobre el rodete, así como también, regular el caudal preciso que ha de fluir hacia dicho rodete, llegando a cortarlo totalmente cuando proceda hacerlo.

Figura 4. Esquema de un distribuidor.

- b) El rodete es la pieza clave donde se transforma la energía hidráulica del agua, en su forma cinética, en energía mecánica o, dicho de otra manera, en trabajo según la forma de movimiento de rotación.
- c) La rueda motriz está unida rígidamente al eje, montada en el mismo por medio de chavetas y anclajes adecuados. Su periferia está mecanizada apropiadamente para ser soporte de los denominados cangilones.
- d) Los cangilones también llamados álabes, cucharas o palas. Son piezas de bronce o de acero especial para evitar, dentro de lo posible, las corrosiones y cavitaciones. Están diseñados para recibir el empuje directo del chorro de agua. Su forma es similar a la de una doble cuchara, con una arista interior lo más afilada posible y situada centralmente en dirección perpendicular hacia el eje, de modo que divide al cangilón en dos partes simétricas de gran concavidad cada una, siendo sobre dicha arista donde incide el chorro de agua. En sección, el conjunto toma forma de omega abierta.

Figura 5. Detalles de un rodete Pelton

- e) El eje de la turbina se encuentra rígidamente unido al rodete, y situado adecuadamente sobre cojinetes debidamente lubricados, transmite el movimiento de rotación al eje del alternador.
- f) El principio de funcionamiento compete a la energía potencial gravitatoria del agua embalsada, se convierte en energía cinética, al salir el agua a través de dichos orificios en forma de chorros libres, a una velocidad que corresponde a toda la altura del salto útil, estando referida ésta, para el caso concreto de las turbinas Pelton, al centro de los chorros considerados. Se dispone de la máxima energía cinética en el momento en que el agua incide tangencialmente sobre el rodete, empujando a los cangilones que lo forman, obteniéndose el trabajo mecánico deseado. De este modo, el chorro de agua transmite su energía cinética al rodete, donde queda transformada instantáneamente en energía mecánica; la misma que va a ser aprovechada por el generador para producir energía eléctrica.
- **2.2.2** *Turbinas Francis*. Son conocidas como turbinas de admisión total ya que éstas se encuentran sometidas a la influencia directa del agua en toda su periferia del rodete.

El campo de aplicación es muy extenso, dado el avance tecnológico conseguido en la construcción de este tipo de turbinas. Pueden emplearse en saltos de distintas alturas dentro de una amplia gama de caudales (entre 2 y 200 m³/s aproximadamente).

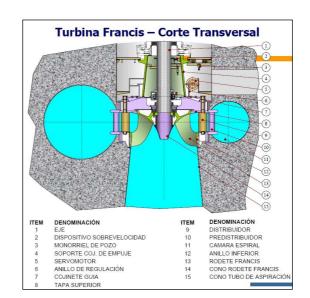


Figura 6. Componentes de una turbina Francis de eje vertical.

Al igual que las turbinas Pelton, las turbinas Francis pueden ser instaladas con el eje en posición horizontal, o vertical, siendo esta última disposición la más generalizada por estar ampliamente experimentada, especialmente en el caso de unidades de gran potencia. Para la presente descripción nos basaremos en turbinas de eje vertical.

A continuación se hace una breve descripción de los elementos más importantes que lo componen.

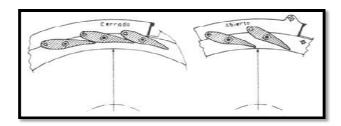
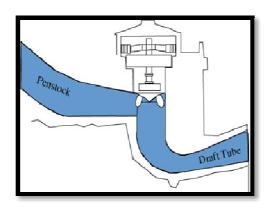

a) La cámara espiral está constituida por la unión sucesiva de una serie de virolas tronco-cónicas, cuyos ejes respectivos forman una espiral. Esta disposición se conoce como el caracol de la turbina, en el que, debido a su diseño, se consigue que el agua circule con velocidad aparentemente constante y sin formar torbellinos, evitándose pérdidas de carga.

Figura 7. Cámara espiral de una turbina Francis.

- **b**) En el distribuidor su función es la de distribuir, y regular o cortar totalmente, el caudal de agua que fluye hacia el rodete.
- c) Los álabes directrices pueden orientarse, dentro de ciertos límites, al girar en su eje respectivo, pasando de la posición de cerrado total, a la de máxima apertura que corresponde al desplazamiento extremo.


Figura 8. Detalles posiciones, cerrado o abierto, de las palas directrices del distribuidor.

Todos los álabes directrices, cuyo número oscila aproximadamente entre 12 para las turbinas pequeñas y 24 para las grandes, son exactamente iguales y conservan entre sí idénticas posiciones respecto al eje de turbina.

d) El tubo de aspiración consiste en una conducción, normalmente acodada, que une la turbina propiamente dicha con el canal de desagüe. Tiene como misión recuperar al máximo la energía cinética del agua a la salida del rodete.

Figura 9. Situación del tubo de aspiración en una turbina Francis de eje vertical

- e) El eje tiene ciertas peculiaridades cuando se encuentra instalado en posición vertical. Por medio del eje de turbina, al estar rígidamente unido mediante acoplamiento al eje del alternador, se transmite al rotor de éste el movimiento de rotación necesario para la generación de energía. En determinados grupos, y por características constructivas de los mismos referidas a condiciones de peso y sustentación, o aireación del rodete, el eje es hueco en su totalidad.
- En la mayoría de los casos, la instalación de este tipo de turbinas, se realiza en centrales para cuya alimentación de agua se requiere la existencia de un embalse. Otra particularidad en la ubicación de estas turbinas, radica en que el conjunto esencial de las mismas, es decir, cámara espiral distribuidor rodete tubo de aspiración, se encuentra, generalmente, a un nivel inferior respecto al nivel alcanzado por el agua en su salida hacia el cauce del río en dirección aguas abajo.

2.3 Fenómenos anómalos en las turbinas hidráulicas [1]

Las turbinas hidráulicas, al ser máquinas expuestas a la influencia directa del agua, tienen que soportar efectos hidráulicos desfavorables para su correcto funcionamiento, como son erosiones, corrosiones, etc. Así mismo, ha de tenerse en cuenta el efecto abrasivo que ejerce la arena contenida en el agua, sobre las piezas situadas en su camino. Principalmente los dos fenómenos que influyen negativamente en el funcionamiento idóneo de las turbinas, si no se adoptan las medidas adecuadas para eliminarlos o, por lo menos, reducirlos al máximo tenemos:

- Cavitación.
- Golpe de ariete.
- 2.3.1 Cavitación. Consiste en la formación, dentro de las masas líquidas, de espacios huecos o cavidades llenas de gas o vapor, producidas por una vaporización local debida a acciones dinámicas. Técnicamente, el fenómeno es más complejo, y se debe a reducciones de presión dentro del seno de los líquidos, cuando se mueven a grandes velocidades, manteniendo la temperatura ambiente, condiciones que favorecen la vaporización. El fenómeno de cavitación reduce la velocidad a que pueden funcionar las máquinas hidráulicas, disminuyendo su rendimiento, por la acumulación de burbujas de vapor que perturban la afluencia normal de las masas liquidas. Además de producir ruidos y vibraciones, es causa de una rápida y constante erosión de las superficies en contacto con el líquido, aun cuando éstas sean de hormigón, hierro fundido, aleaciones especiales, etc.

Ejemplos: Erosiones en palas fijas, palas directrices, álabes, etc.

2.3.2 Golpe de ariete. El golpe de ariete se presenta en las tuberías siempre que se realizan maniobras rápidas en los dispositivos que abren, cierran o regulan el paso de agua, como son válvulas, compuertas de tomas, etc. Igualmente se produce cuando existen disminuciones bruscas de la potencia solicitada al generador debido a la repentina disminución del caudal de agua en respuesta a la actuación de los equipos de regulación.

2.4 Métodos operativos para la reconstrucción de los elementos hidromecánicos de las turbinas Francis y Pelton [2]

2.4.1 Especificaciones técnicas. Para la recuperación de partes de turbinas Francis y Pelton, los procesos involucrados son variados y exigentes para garantizar el trabajo óptimo, estos procesos deben estar respaldados con un control de calidad en el proceso y en producto, en todas sus etapas de reconstrucción. Por lo tanto se debe realizar bajo especificaciones técnicas de ejecución que garanticen la calidad de la parte o elemento reconstruido.

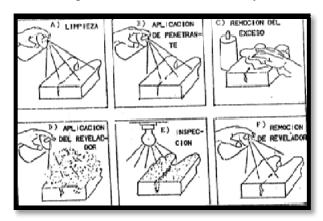
Las especificaciones técnicas para la reparación de los elementos o partes de las turbinas deberán seguirse de acuerdo a lo indicado por los diseñadores y manuales respectivos, en conformidad a las normas correspondientes.

- A.S.T.M.
- A.S.M.E
- A.N.S.I.
- S.A.E.
- I.S.O.
- A.W.S.
- A.G.M.A.
- A.I.S.C.
- C.N.E.
- I.E.C.
- A.B.N.T.
- I.N.E.N.

2.4.2 *Métodos de limpieza*. [3] La primera etapa a ser ejecutada en los elementos a reconstruirse es la verificación de sus condiciones superficiales. En caso de que la superficie sea lisa, no habrá necesidad de una preparación previa.

Las superficies deben estar limpias y secas, libres de polvo, óxidos, cascarillas, pintura, aceites, grasas u otras impurezas que dificulten la segura determinación de la falla.

Es por tanto necesario que en estos casos haya una preparación previa por medios mecánicos tales como: cepillos, lijas, rasquetas, etc.


En este caso de inspección manual, la limpieza se obtiene rápidamente al utilizar el solvente, que es parte de los kits de ensayo o solvente en galón, generalmente Thiñer o similares. En este caso se debe dar un tiempo mínimo de 15 minutos de secado, para que el solvente utilizado se evapore de las eventuales fallas. Para mejores resultados, se aplicara aire comprimido seco y limpio. El tiempo de secado dependerá de la temperatura ambiente.

- **2.4.3** Procedimiento de inspección visual. El primer procedimiento correcto básico para encontrar defectos, es la inspección visual, después de una buena limpieza. El objeto de este procedimiento es la determinación de fallas en la superficie, mediante personal experimentado. A esta deberá dársele la importancia y la calidad que requiere. Para realizarse es necesario tener:
- Buenas condiciones de iluminación.
- Limpias las áreas a inspeccionar.
- Disposición adecuada.
- Ayudarse con lupas e instrumentos multiplicadores.

La prueba visual y de limpieza se efectúa como primera medida, antes de las demás pruebas y tiene por objeto determinar fallas mayores visibles desde un principio.

- **2.4.4** *Métodos de ensayos no destructivos*. [4] La garantía de un trabajo de recuperación será determinante en los ensayos no destructivos, en ellos determinaremos: dureza, presencia discontinuidades, tolerancias geométricas, tolerancias dimensionales. Los ensayos que se realizarán con mayor prioridad son por líquidos penetrantes y partículas magnéticas, de los cuales se hará un estudio minucioso de estos ensayos.
- **2.4.4.1** *Inspecciones por líquidos penetrantes*. La inspección por líquidos penetrantes es un tipo de ensayo no destructivo que se utiliza para detectar e identificar discontinuidades presentes en la superficie de los materiales examinados.

Figura 10. Secuencia del ensayo

- a) Procedimiento de limpieza: Para obtener buenos resultados en la aplicación de dicho procedimiento, se debe realizar anteriormente una buena limpieza de las superficies a ser analizadas. Las superficies excesivamente rugosas o porosas tal como las superficies cavitadas, requieren una preparación previa, pues las irregularidades superficiales pueden perjudicar la correcta aplicación del penetrante; estas, además, provocarán el enmascaramiento de los resultados.
- **Forma y aplicación del penetrante:** El penetrante será aplicado con spray, pinceles o pistolas con aire comprimido, cuando la superficie esté totalmente limpia y seca. El tiempo de penetración del líquido será de un mínimo de 10 minutos.
- c) Temperatura de la superficie y líquido penetrante: Durante la ejecución del examen, la temperatura debe estar dentro de un rango de 16°C a 52°C..
- d) Remoción del exceso de líquido penetrante: Para penetrantes removibles con agua, el exceso de penetrante deberá ser removido con pulverización de agua sobre la superficie en examen; la temperatura del agua no debe exceder de 46°C, con una presión máxima de 50 PSI. Para penetrantes removibles con solvente, el exceso de penetrante debe ser removido, inicialmente, con trapos limpios y secos; posteriormente, se utilizarán trapos levemente humedecidos con removedor. Los trapos utilizados no deben soltar hilos, ni contener aceites y grasas. No se debe usar exceso de removedor sobre la superficie en examen, pues, esto diluiría el líquido penetrante aplicado.

- e) Tiempo de secado antes de la aplicación del revelador: Antes de aplicar el revelador deberá esperarse un mínimo de 5 minutos, para que la superficie quede completamente seca, por evaporación natural.
- **Aplicación del revelador:** El revelador líquido debe aplicarse mediante botes tipo spray o, en superficies muy grandes, con pistola y aire comprimido, formando una película adecuada para el examen.
- Inspección de indicaciones: Entre 10 y 30 minutos después de aplicado el revelador debe realizarse una inspección de las indicaciones que aparezcan. Para hacer estas inspecciones, la iluminación mínima para penetrantes coloridos o rojos debe ser de 350 luxes, lo que hace necesario, entonces, una lámpara de 60 Watt, a una distancia de 40 cm. de la superficie en inspección. Si los líquidos fueran fluorescentes, la iluminación debe ser de 32 luxes con lámpara de luz negra filtrada.

CONTINUA INTERRUPIDA REDONDEADAS E INTERRUPIDAS

FINAS GRUESAS

Figura 11. Indicaciones típicas

2.4.4.2 Clasificación de los líquidos penetrantes. Los líquidos penetrantes se clasifican de acuerdo con los métodos o tipos conforme a la tabla siguiente:

Tabla 1. Clasificación de líquidos penetrantes

TIPO	CLASIFICACIÓN			
	EN CUANTO A VISIBILIDAD	CON AGUA	AGUA, DESPUES EMULSIFICADO	CON SOLVENTE
FLUORESCENTE	A	A-1	A-2	A-3
COLORANTE	В	B-1	B-2	B-3

Tipo A: Penetrante fluorescente

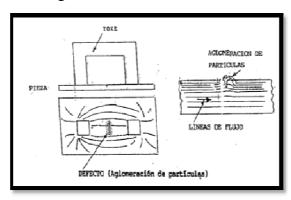
Tipo A-1: Removible con agua

Tipo A-2: Removible con agua luego emulsificado

Tipo A-3: Removible con solvente

Tipo B: Penetrante

Tipo B-1: Removible con agua


Tipo B-2: Removible con agua luego emulsificado

Tipo B-3: Removible con solvente

2.4.4.3 *Normativa*

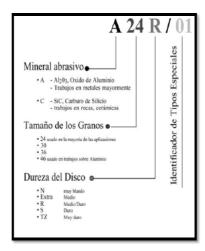
- ASTM E165 Standard Test Method for Liquid Penetrant Examination.
- ASTM E1417 Standard practice for Liquid Penetrant Examination.
- IRAM 760 Ensayos no destructivos. Acero fundido. Examen por líquidos penetrantes.
- IRAM-CNEA Y 500 1001 Ensayos no destructivos. Inspección con líquidos penetrantes. Principios generales.
- IRAM-CNEA Y 500 1004 Ensayos no destructivos. Líquidos penetrantes.
 Calificación y evaluación de los productos para el ensayo.
- **2.4.5** Procedimiento para la inspección por partículas magnéticas. Este método sirve para detectar la presencia de fisuras y recubrimientos, rayones, inclusiones y discontinuidades semejantes en materiales ferro magnético, como el hierro y el acero. El método detectará discontinuidades de la superficie demasiado finas para apreciarse a simple vista y también detectará discontinuidades ligeramente por abajo de la superficie aproximadamente, a 3 mm.
- a) Limitantes de aplicación: Este método de prueba es aplicable, únicamente, materiales ferro magnéticos.
- b) Descripciones del método: La inspección por partículas magnéticas se lleva a cabo mediante la magnetización del área a ensayarse, cubriéndola con finas partículas magnéticas (polvo de hierro). La presencia de una discontinuidad se evidencia por la formación y adherencia de un arreglo característico de las partículas sobre la discontinuidad en la superficie del área de ensayo. Este arreglo recibe el nombre de indicación y adquiere la forma aproximada de la proyección superficial de la discontinuidad.

Figura 12. Localización de defectos.

c) Generación del campo magnético: Generalmente, se trabaja con corriente alterna, aunque hay modelos de máquinas para la generación del campo magnético, capaces de rectificar la corriente alterna en corriente directa. La corriente directa es más sensible que la alterna para detectar discontinuidades no abiertas a la superficie; la corriente alterna se utiliza, exclusivamente, para detectar discontinuidades abiertas a la superficie.

Figura 13. Máquinas portátiles (Yokes) para detectar discontinuidades superficiales y sub-superficiales en materiales ferro magnéticos.

2.4.6 *Métodos de desbaste*. [5]Los procedimientos de desbaste y pulido de superficies desgastadas son procesos contemplados en todo el proceso de reconstrucción, por lo tanto el tipo de herramientas serán manuales eléctricas y/o neumáticas, contando con un compresor para el abastecimiento de aire a presión, y la elección de abrasivos acordes a los materiales a ser recuperados.

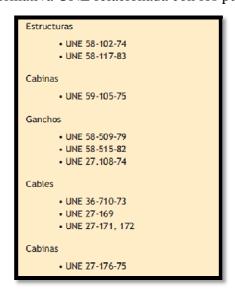

Figura 14. Máquina amoladora manual de desbaste

2.4.6.1 *Discos de corte y desbaste.* Esta sección está dedicada a tratar todos aquellos aspectos relacionados con la correcta selección de los discos de corte y de desbaste. Para ello primeramente tratamos lo relativo a las convenciones utilizadas en la identificación de los discos. Finalmente se trata lo relativo al tamaño de los discos en relación a las piezas trabajadas y la situación operacional.

- Nomenclatura: Todo disco de corte y desbaste viene identificado por un grupo de letras y números que definen básicamente.
- **El mineral abrasivo:** El tipo de grano abrasivo con que fueron elaborados los discos, este puede ser de carburo de silicio o con mucha frecuencia de óxido de aluminio (corindón).
- c) El tamaño de los granos: Comúnmente se ven en discos de desbaste y corte los granos 24, 30, 36 y 46.
- d) La dureza de la matriz abrasiva: La dureza se identifica con letras, que van desde la "N" para matrices suaves hasta la "TZ" para matrices muy duras. En la tabla siguiente se ilustra lo explicado anteriormente.

Tabla 2. Nomenclatura de los discos de corte y desbaste

2.4.7 *Métodos de transporte y movilización.* Es importante y necesario, constar con los equipos y medios necesarios para la movilización de los elementos a reconstruirse, tomando en consideración que son elementos que tienen dimensiones y pesos elevados.


Los puentes grúas son muy peligrosos, si no se les manipula correctamente de acuerdo a las normas de seguridad correspondientes, por lo que es necesario tener un conocimiento amplio sobre la manipulación de este equipo.

2.4.7.1 *Puentes grúa.* [6] El puente grúa en cuestión será utilizado para tareas de movilización de las partes a ser reconstruidas en la planta industrial, siendo esta tarea de máxima exigencia dadas las características del trabajo a realizar.

Figura 15. Puente grúa.

Tabla 3. Normativa UNE relacionada con los puentes grúas.

2.4.7.2 *Montacargas*. [7] Los montacargas de obra están constituidos en esencia por una plataforma que desliza por una guía lateral rígida o por dos guías rígidas paralelas;

en ambos casos ancladas a la estructura de la construcción. Se utilizan para subir o bajar materiales, pudiendo detenerse la plataforma en las distintas plantas de la obra.

2.4.8 *Métodos de recuperación por soldadura*. Para la reconstrucción de los elementos hidromecánicos de las turbinas hidráulicas se aplicara procesos de soldadura de acuerdo a las fallas que presenten en sus superficies; fallas que se conocerán en la aplicación de los END (Ensayos no Destructivos).

Se aplicará el material de aporte de acuerdo al material base y al proceso de soldadura utilizado. En algunos procesos se complementa con tratamientos térmicos, para aliviar tensiones ocasionadas con los procesos de soldadura y mecanizado estos deben ser controlados y evaluados continuamente. Es necesario controlar la temperatura de soldadura en los diferentes tramos de relleno. El no alterar la estructura del material base se debe tener sumo cuidado y mantener en márgenes establecidos en los procesos de soldadura de acuerdo al material base y material de aporte. La recuperación de su perfil hidrodinámico y dimensional se lo realizara bajo dos procesos de soldadura como:

- SMAW, también denominado MMAW. Este corresponde a soldadura normal con electrodo revestido.
- GTAW, denominado vulgarmente TIG. Corresponde a soldadura por arco con protección gaseosa, y electrodo no consumible.
- **2.4.8.1** Reparación de las partes de turbinas dependiendo de las fallas que presenten. El análisis de fallas debe hacerse con base en la clasificación y evaluación de indicaciones de los líquidos penetrantes y partículas magnéticas ya realizadas; considerándose la clase a la que corresponden.

Se debe considerar cuatro parámetros importantes:

- Área
- Posición
- Profundidad

2.4.8.2 Procedimiento de precalentamiento. Para obtener reparaciones libres de fisuras en el ACERO INOXIDABLE MARTENSÍTICO ASTM A743 CA 6-NM es necesario un precalentamiento en el área a soldar; el propósito es tener el material base arriba de la temperatura martensítica de transformación (cerca de 200°C) durante la soldadura. La temperatura de precalentamiento depende en primera instancia del tipo, la superficie y la posición del defecto. Defectos pequeños, tales como porosidades e inclusiones, los cuales se presentan después de cierto tiempo de operación de la turbina, en áreas de baja tensión mecánica, pueden ser soldados sin más precaución que un precalentamiento a una temperatura de 150°C a 200°C. Para este caso, no es necesario un alivio de tensiones.

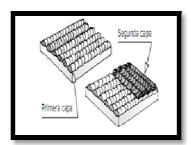
Cuando se efectúan reparaciones en áreas altamente tensionadas en los rodetes se deben tomar en cuenta las fisuras por fatiga, daños por los sólidos, posible erosión y cavitación en alabes fijos y móviles. En estos casos, la temperatura de precalentamiento debe ser aumentada de 200°C a 300°C, de manera que se pueda reducir la tendencia de fisuras por soldadura. En este caso, se recomienda un alivio de tensiones después de la reparación.

La temperatura de precalentamiento requerida y su necesidad se definen con base en relaciones experimentales con el tipo de material, el espesor y la forma de la pieza. La zona de precalentamiento debe extenderse, por lo menos, a unos 100 mm a partir de los bordes a soldar.

Puede usarse el soplete de oxiacetilénico para el precalentamiento; la antorcha de gas propano, que es liviana y ajustable, es la más adecuada, ya que con ella se logra evitar más fácilmente el sobre-calentamiento local.

2.4.8.3 *Procedimiento de soldadura*. El procedimiento de soldadura se realiza utilizando los parámetros y valores establecidos para su ejecución. En la práctica industrial, para la ejecución de reparaciones mayores, es requisito indispensable cumplir con las actividades previas.

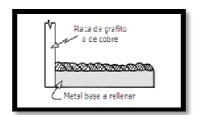
La calificación del procedimiento de soldadura, con el cual se hacen todos los ensayos y comprobaciones necesarias para cerciorarse de la calidad del procedimiento.


La calificación del soldador se determina después de una adecuada práctica, mostrando la habilidad necesaria para ejecutar soldaduras de calidad con el procedimiento establecido. Desde un punto de vista práctico, es conveniente atenerse al procedimiento de soldadura especificado para ejecutar los trabajos.

Convencionalmente se pueden clasificar las soldaduras de reparación del rodete de la siguiente forma:

- a) Soldaduras menores: Se consideran soldaduras menores en el elemento hidromecánico aquel que, encontrándose fuera de las zonas críticas de esfuerzos, requieren muy pocos milímetros de aporte.
- **Soldaduras de importancia:** En forma convencional, se consideran como tales aquellas que superen los 5 mm de profundidad y se encuentre fuera de las zonas críticas de esfuerzos.

A continuación se describe las técnicas de rellenado (almohadillado) o reconstrucción. Es importante tener un dominio de las técnicas explicadas hasta aquí porque el relleno y reconstrucción requiere de capas sucesivas de soldadura. Para que el trabajo quede bien realizado, se deberá procurar evitar poros en las costuras en donde pueden quedar atrapados restos de escoria de la capa anterior.


Figura 16. Etapas de relleno o reconstrucción con soldadura

Esta técnica se utiliza en el relleno o reconstrucción de partes gastadas. Se van sumando capas sucesivas de soldadura hasta llegar a la altura de relleno necesaria. Las capas entre sí deberán estar rotadas 90°, y de esta forma se logra una superficie más lisa y se limita la posibilidad de que queden poros en la capa de relleno. Cuando se realiza el relleno en las cercanías de los bordes de la pieza, el aporte de soldadura tiende a

"derramarse". Para evitar este efecto, se utilizan como límites placas de cobre o grafito sujetas al borde a rellenar. La placa puesta como límite no interviene ni se funde por los efectos del calor producido en el proceso de soldadura.

Figura 17. Forma de limitar el relleno de soldadura

Este método resulta de suma utilidad para lograr bordes de relleno rectos, ahorrando bastante trabajo de mecanizado posterior.

Existen cuatro aspectos que el soldador debe controlar con habilidad:

- Largo del arco.
- Angulo del electrodo.
- Velocidad de avance.
- Amperaje.
- **2.4.8.4** *Temperaturas entre pasos*. Para soldar materiales base de ACERO MARTENSITICO ASTM A743 CA 6-NM o, composición similar, de cualquier espesor, la temperatura entre pasos debe ser de 180 a 210°C, manteniendo un arco corto.
- **2.4.8.5** Proceso de enfriamiento de la soldadura. Es necesario, durante la soldadura y después de ésta, cubrir el rodete con sacos o sábanas de asbesto, para propiciar un enfriamiento lento del rodete precalentado; de lo contrario, se produciría un enfriamiento brusco, ocasionando fallas en la zona reparada. Los sacos o sábanas de asbesto tienen otra función importante, la cual consiste en proteger al soldador de la radiación del calor, facilitando su trabajo.
- **2.4.8.6** *Material de aporte para la soldadura*. Como material de aporte, para toda soldadura, debe seleccionarse aquel que posea una composición química igual o compatible con el material base, para obtener buenos resultados en la reparación.

El electrodo a utilizar es aquel que se ajusta a la norma AWS - 309 Mo. L16, para electrodo revestido y para soldadura TIG usamos el TGS-309.

El depósito es resistente a la oxidación y posee una elevada resistencia al desgaste por cavitación y erosión. Es muy apropiado para trabajos en ruedas de turbinas tipo Pelton y Francis.

Con este electrodo puede soldarse en todas las posiciones. La escoria se retira fácilmente y el depósito tiene poca tendencia a la fisuración.

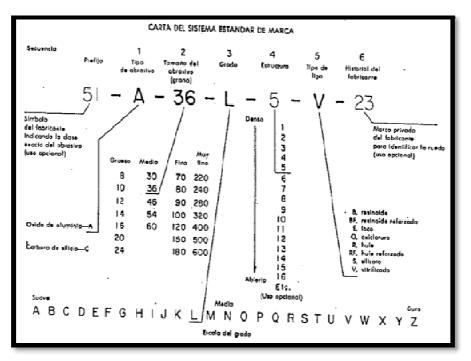
Rendimiento: alrededor de 150%; composición del depósito: C, Si, Mn, Cr, Ni, Mo.

2.4.9 *Métodos de pulido*. [5] Es una actividad que se lo realiza con el uso de piedras de esmeril o lijas rotativas de diferente grano, tamaño y forma. Dependiendo del defecto, se recomienda hacerlo para reparaciones de poca profundidad para eliminar aristas vivas y en sitios en donde se justifique un buen acabado. Por amolado y pulido se entiende el trabajo de remoción de metal, actividad que se realiza en la superficie de los cangilones (Pelton) mediante el uso de piedras y materiales abrasivos.

Con el amolado y el pulido se persiguen, fundamentalmente, dos aspectos:

- Un perfil adecuado.
- Una buena terminación superficial.

Para la ejecución de los trabajos de amolado y pulido deben utilizarse los abrasivos que proporcionen mejores resultados. Para ello es preciso considerar tanto el acabado como el amolado, si es en frio o si calienta demasiado la superficie, así como otros aspectos prácticos de manejo.


2.4.9.1 *Abrasivos utilizados:* Los abrasivos más utilizados, para piedras de esmeril, son de dos tipos: Carborundum (carburo de silicio) y Aloxite (óxido de aluminio).

2.4.9.2 Selección de discos y piedras abrasivas: Esta depende de la dureza del material a desbastar. Para materiales duros como el acero, aceros inoxidables, hierro maleable, etc., se recomiendan los abrasivos de óxido de aluminio (Aloxite), puesto que este tipo de grano no tiende a achatarse fácilmente, dando mejores resultados para el desbaste de los mismos.

La razón obedece a que el carburo de silicio se fractura más satisfactoriamente en relación con el achatado de sus granos y sus filos cortantes se remueven conforme se necesita. Consecuentemente se puede afirmar que, para desbastar materiales duros se utilizan abrasivos de grano fino; los materiales suaves se desbastan con grano grueso.

La figura siguiente presenta la carta para la selección de los distintos abrasivos.

Figura 18. Sistema estándar de marca para ruedas hechas de óxido de aluminio y carburo de silicio.

Los cilindros y discos de lija son llamados, también, abrasivos revestidos. Se hacen con granos abrasivos, adhesivo y respaldo; el adhesivo puede ser goma o resina, para mantener unidos los granos en el respaldo de papel, tela o plástico. Los abrasivos revestidos (lijas) se encuentran disponibles en hojas, cintas, rollos, conos, cilindros, y discos, de diferentes tamaños.

2.4.9.3 Clasificación del grano. Está muy extendida la clasificación del tamaño de los granos abrasivos de un sistema de numeración que corresponde al número de agujeros que tiene el tamiz, que los clasifica, por pulgada lineal. Así se tienen, entre otros, los tamaños:

Granos gruesos: 14, 18. 20 24 y Granos finos: 70, 80, 90, 100 y 120 Granos muy finos: 150, 180, 220 240 y

2.4.9.4 *Machotes abrasivos*. Es frecuente, para la ejecución de trabajos de pulido fino, la fabricación de machotes abrasivos; los cuales consisten en polvo abrasivo fino adherido a machotes filamentosos, por medio de aglutinantes flexibles de resina. Estos machotes se adaptan a los cabezales de las amoladoras para obtener acabados superficiales de muy buena calidad en los trabajos.

2.4.9.5 Procedimiento para el amolado y pulido. Seguido de seleccionar el abrasivo más adecuado, se ofrece una serie de pasos a seguir para iniciar el amolado y pulido del elemento a reconstruirse. Se puede decir que el amolado y pulido de los rodetes, específicamente; es una práctica de arte, pues, el amolador deberá contar con bastante experiencia, ya que debe ser muy cuidadoso en el desarrollo del trabajo para no ocasionar desperfectos que induzcan a una falla hidráulica o falla en el material propio.

Figura 19. Pulido del álabe móvil

Para el proceso de amolado y pulido deberá contarse con los equipos, materiales y herramientas adecuadas, entre estos es muy importante disponer de una serie de plantillas de las partes a reparar, las cuales deberán ser solicitadas al fabricante o, en todo caso, se podrán fabricar tomando como base las partes de reserva para el caso que existiera o los planos respectivos con las medidas de las mismas.

Los pasos a seguir son los siguientes:

- a) Seleccionar las plantillas de las diferentes partes a ser pulidas.
- **b**) Verificar las medidas y determinar las áreas soldadas a pulir, tomando como referencia las plantillas de cada parte.
- c) Desbastar el exceso de material en las áreas indicadas por las plantillas, utilizando una amoladora angular y discos abrasivos para desbaste de aceros de alta dureza.
- d) Separación de defectos por soldadura, tales como porosidad, socavaciones, etc., si existieran, para lo cual deben utilizarse fresas de acero (este tipo de fresa sirve para profundizar y ampliar los poros que deja la soldadura) luego, efectuar un nuevo aporte de material. Además, al inicio de la reparación se utilizan estas fresas para agrandar los agujeros ocasionados por desprendimientos de material, debido a la cavitación; antes de efectuar la primera aportación de soldadura.
- e) Acabado de las superficies reparadas con piedras abrasivas de alta velocidad y amoladora recta.
- f) Pulido final con discos de lija y amoladora angular, cilindros de lija y amoladora reta. Este pulido debe ser de muy buena calidad. Los mejores acabados se logran utilizando granos de las lijas del mediano al fino.

Durante este procedimiento es necesario efectuar pruebas de medición, constantemente, con las plantillas, con el propósito de no sobrepasar la cantidad de material a desbastar. De lo contrario, eventualmente, se presentará la necesidad de hacer nuevos aportes de soldadura, lo cual incrementa los costos de reparación.

2.4.10 *Método de balanceo estático*. [2] Consiste en alterar la distribución de la masa de un rotor con el objeto de eliminar las vibraciones debidas al desbalance que se producen sobre los puntos del mismo.

2.4.10.1 Fuentes de desbalance. La causa principal del desbalance en las turbinas hidráulicas se produce por la pérdida de masa del rodete, la misma que es producida por los diferentes fenómenos anómalos que le afectan directamente al cuerpo; comúnmente la erosión es la que más afecta a los rodetes seguido de la cavitación, produciendo con el tiempo fuertes vibraciones si no son corregidos a tiempo.

2.4.10.2 El balanceo estático. Para el caso de balanceo de rodetes, La manera de balancear estáticamente este sistema es bastante sencilla. Se coloca el rodete sobre unos rieles como se muestra en la figura.

Figura 20. Esquema de la balanceadora estática.

Como la masa de desbalance del rodete tiende a quedar en línea vertical hacia abajo, la masa de balanceo de coloca en posición opuesta. La magnitud y posición de la masa de balanceo se hace por tanteos, hasta que se obtiene el estado de balance, que es cuando el disco queda en equilibrio independientemente de la posición en que se coloque sobre los rieles.

Este método se basa en que, cuando un sistema esta balanceado estáticamente, la suma de momentos con respecto a un eje cualquiera que pase por su centro de rotación debe ser cero.

2.4.11 *Tratamientos térmicos.* [8] El proceso de soldar crea tensiones internas en el material, las cuales, dependiendo de su magnitud y de las características del material, pueden convertirse en un grave peligro y provocar fallas en la turbina.

Figura 21. Tratamiento térmico en álabes.

El tratamiento término de revenido, cuando se realiza adecuadamente, permite reducir la concentración de tensiones creadas con la soldadura y mejora las propiedades de la misma, haciéndola menos frágil y más blanda.

La velocidad de calentamiento, la velocidad de enfriamiento, la temperatura y la duración del alivio son factores muy importantes en el tratamiento término o alivio de tensiones.

2.4.12 *Método de metalizado*. [9] La metalización es el método más conocido y difundido para obtener el recubrimiento metálico por medio de la pulverización gasotérmica.

La metalización consiste en la proyección, sobre la superficie de las piezas, de diminutas partículas de metal de 0.0015 a 0.020 mm, fundidas por acero eléctrico (metalización eléctrica) o por una llama oxiacetilénico (metalización autógena) y pulverizadas mediante un chorro de aire comprimido a 6 atm de presión.

Estas partículas, al chocar con la superficie a metalizar lo hacen con gran velocidad (de 100 a 250 m/s) gracias a esto se adhieren formando una capa solida y resistente al desgaste.

Figura 22. Metalizado de rodetes PELTON

No se someten a la metalización los ángulos de las aristas, escalonados agudos, así como las superficies sobre las cuales no se pueden dirigir el chorro del metal bajo un ángulo de 45⁰.

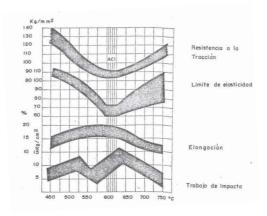
- **2.4.12.1** Preparación de las superficies a metalizar. La preparación de las superficies consiste en su limpieza de grasa y otras suciedades. Para todas las piezas metalizadas se realiza la limpieza manual con trapos, el lavado con disolventes como queroseno, gasolina, dicloroetano y otros, así como también, tratamiento en máquinas de lavar.
- **2.4.13** *Inspección final.* [5] Al finalizar las reparaciones y una vez enfriado el cangilón a la temperatura ambiente, deberá inspeccionarse al 100% elaborándose los reportes correspondientes basándose en las siguientes inspecciones.
- **2.4.14** *Inspección visual*. Antes de las demás pruebas no destructivas finales, se efectúa la inspección visual, como primera medida, mediante personal experimentado, como se señaló con anterioridad.

El objeto de esta prueba es el de determinar fallas mayores desde un principio, dentro de lo posible, después de concluir los trabajos de reparación.

En las áreas sometidas a poco esfuerzo ésta será la única prueba y su realización debe considerarse suficiente, para efectos de comprobación.

2.4.15 *Inspección dimensional.* Después de los trabajos de reconstrucción de los cangilones, será necesario realizar una inspección dimensional minuciosa. Con ella se obtendrá la seguridad de que las medidas finales son las adecuadas.

2.4.16 *Método de almacenamiento*. [5] Una vez realizado la inspección final se procederá al respectivo almacenamiento de las partes reconstruidas, para lo cual es necesario conocer las respectivas técnicas de almacenamiento posibles.


Se define como almacenamiento la disposición que se le da a los materiales (materias primas, insumos, repuestos y productos en general) en un lugar determinado generalmente llamado almacén.

2.4.17 *Embalaje*. Un embalaje de calidad contribuye a mantener la cohesión de la carga, favoreciendo su estabilidad y aportando al la pieza mayor resistencia y protección.

Se debe tener especial cuidado con embalajes resbaladizos, así como con la pérdida del equilibrio de las cargas como consecuencia de vaciados accidentales de líquidos o granulados.

- 2.5 Efecto del tratamiento térmico post soldadura sobre la micro estructura del acero inoxidable grado ASTM A743 CA6NM para la rehabilitación de rodetes hidráulicos. [10]
- **2.5.1** Consideraciones metalúrgicas. Una reparación integral distorsiona la estructura del metal base y metal de aporte, formándose un acero martensita frágil con fuerte tendencia a fisuras, en el cual ni la más pequeña soldadura queda libre de este defecto, para conseguir un acero martensitico con las propiedades más resistentes, es necesario un revenido térmico.

Figura 23. Ensayos en probetas de acero inoxidable grado ASTM A743 CA6NM.

A 600 °C se tiene:

- De 85 a 92 Kg/Cm² de resistencia a la tracción.
- De 60 a 72 Kg/Cm² de limite de elasticidad.
- De 15 a 20 % de elongación.
- De 6 a 16 Kg/Cm² equivalente a 55 100 J de trabajo de impacto.

Con la siguiente curva dilatómetra puede interpretarse la transformación metalúrgica y la temperatura de revenido Térmico.

La transformación de martensita en Austenita (AC₁) comienza a los 600 °C y finaliza a los 800 °C (AC3) y a esta temperatura toda la estructura es austenítica. La transformación de austenita en martensita durante el periodo de enfriamiento, comienza a los 250 °C y finaliza a los 100 °C.

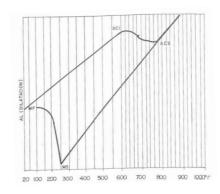


Figura 24. Curva dilato métrica

Si en el Revenido térmico se sobrepasa de los 600 °C se forma estructuras de austenicidad, la cual al enfriarse se transforma en martensita frágil propensa a fisurarse; por lo tanto este tratamiento térmico debe realizarse en la parte lineal de la curva dilatómetra hasta 580 °C para contar con un margen de 20°C por efectos de control en los hornos.

El horno debe contar con un control que permita maniobrar la temperatura y si es con un quemador no debe incidir directamente en el elemento hidromecánico especialmente en sus perfiles; por lo cual un horno eléctrico es el más recomendado.

En los tratamientos térmicos de **revenido** para aceros inoxidables martensíticos grado A743 CA6NM se busca obtener martensita revenida con un porcentaje de austenita

retenida de hasta un 20% para conseguir las propiedades mecánicas y tribológicas del material que lo hacen adecuado para la fabricación de dispositivos hidráulicos. Sin embargo, éstos presentan un desgaste considerable durante su servicio, razón por la cual es necesario repararlos por medio de soldadura y someterlos a tratamientos térmicos posteriores para obtener propiedades similares a las del material original.

En esta investigación se muestra el efecto de tratamientos térmicos post soldadura sobre el acero y una caracterización de la microestructura de la ZAT(zona afectada térmicamente) antes y después de los tratamientos.

Los ensayos fueron realizados en probetas a temperaturas 600°C y 580°C con sostenimientos de 20, 40 y 60 minutos, sometidas a pruebas de microdureza y análisis metalográfico.

El acero CA6NM, clasificado dentro de la norma ASTM A743, es ampliamente utilizado en la construcción dispositivos hidráulicos para la generación de energía eléctrica como turbinas, inyectores, tuberías, entre otros.

Los fenómenos determinantes en el deterioro de los rodetes son el desgaste por erosión, desgaste por cavitación y fatiga. Una vez que el elemento hidromecánico se encuentra suficientemente deteriorado, se realiza la reparación mediante la reconstrucción de los perfiles hidráulicos por medio de soldadura. Sin embargo, como los elementos hidromecánicos son altamente exigidos durante su funcionamiento, es necesario que después de la reparación la microestructura del material recupere en lo posible las condiciones y propiedades originales.

La aplicación de la soldadura implica cambios localizados en la microestructura, los cuales son causados por la alta tasa de calentamiento y enfriamiento de dicho proceso. Por lo tanto, la realización de tratamientos térmicos post soldadura es una alternativa para reducir los esfuerzos y recuperar la microestructura original de las zonas afectadas por el calor.

La temperatura del tratamiento térmico de revenido de una sola etapa, para los aceros CA6NM, debe estar preferiblemente en un rango entre 600 °C y 580 °C por encima de la temperatura de inicio de la transformación austenìtica del material la cual está alrededor de 520 °C. En estas temperaturas se consigue la mayor cantidad de austenita que permanece estable durante el posterior enfriamiento, que para este acero es del orden del 20 %; esta fase tiene la capacidad de aumentar la resistencia al impacto y el límite elástico. Por otro lado, temperaturas superiores a 600 °C promueven la generación de austenita que transforma a martensita fresca durante el enfriamiento. Con respecto al tiempo de sostenimiento, el cual depende del espesor de la pieza, se debe garantizar que éste sea suficiente para que se den las transformaciones difusionales esperadas.

2.5.2 Procedimiento. [10] Se utilizaron 2 discos de acero CA6NM con espesor de 12 mm y diámetro de 95 mm. El grosor seleccionado corresponde al espesor promedio de la arista media de un cangilón de una turbina tipo Pelton de 17 Ton de peso y 2.5 m de diámetro, lugar donde se presenta un desgaste considerable y por tanto una de las zonas sometidas con mayor frecuencia a reparaciones por soldadura.

Antes de la aplicación del cordón de soldadura, los discos fueron sometidos a un precalentamiento para la homogenización a 150 °C durante 2 horas con enfriamiento al aire para promover la uniformidad de la composición química y la microestructura, y un posterior tratamiento térmico de revenido a 580 °C durante 2 horas con enfriamiento al aire para liberar tensiones y obtener la mayor cantidad de austenita estable responsable del aumento en la tenacidad y el límite elástico del material.

Se realizó un depósito de soldadura a cada uno de los discos a través del proceso SMAW utilizando como variables esenciales una corriente directa de electrodo positivo CDEP entre 92 – 100 A, un voltaje de 28 V, un electrodo de 1/8" de diámetro clasificación UTP 309 mol recomendado para soldar el acero CA6NM la aplicación se realizó sin oscilación.

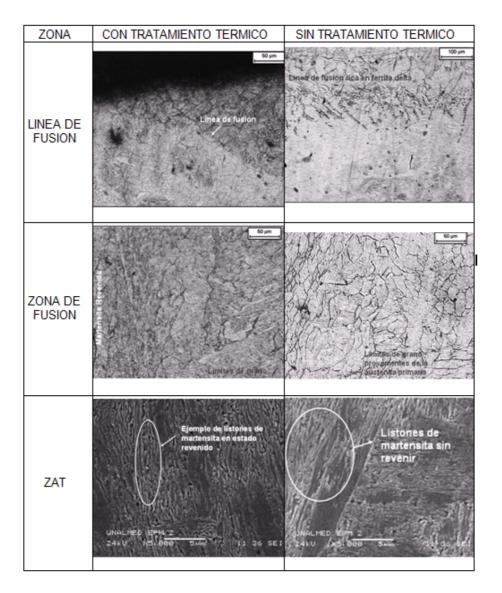

Después de la aplicación de la soldadura en el material se pueden diferenciar tres zonas: zona de fusión, zona afectada térmicamente (ZAT) y material base.

Figura 25. Depósito de soldadura en acero CA6NM.

En la Figura 26 se comparan las micrografías de la zona de fusión, línea de fusión y la ZAT con tratamiento térmico (REVENIDO) y sin éste.

Figura 26. Micro estructuras con y sin tratamiento térmico después del depósito de soldadura sobre un acero CA6NM.

El efecto de tratamiento térmico (REVENIDO) sobre el depósito de soldadura sobre el acero CA6NM ha sido estudiado.

Se encontró mayor homogeneidad de las microdurezas tomadas de las probetas con un tratamiento de 1 hora y 580 °C lo cual permite que el material en la zona afectada térmicamente adquiera una microestructura similar a la del material base y por tanto propiedades similares en su espesor.

Esta zona permanece aún después de los tratamientos térmicos post-soldadura. Luego del estudio metalográfico de un acero inoxidable ASTM A743 CA6NM se puede dar fe de la confiabilidad en los tratamientos térmicos aplicados a los elementos mecánicos.

2.6 Proceso de producción [11]

Es el procedimiento técnico que utiliza una unidad de producción o un proyecto para la obtención de bienes y servicios a partir de los insumos y se identifica como el proceso de transformación de una serie de insumos para convertirlos en productos mediante una determinada función de producción.

En este caso se selecciona una determinada tecnología de producción definiendo la forma en que una serie de insumos se transforman en productos, mediante la participación de una determinada tecnología, es decir la combinación de mano de obra, maquinaria, métodos y procedimientos de operación.

2.6.1 Diagramas de proceso. Un diagrama de proceso muestra la secuencia cronológica de todas las operaciones en taller o en máquinas; las inspecciones, márgenes de tiempo y materiales a utilizar en un proceso de fabricación desde la llegada de la materia prima hasta el empaque a arreglo final del producto terminado.

Para hacer constar en un grafico todo lo referente a un trabajo u operación resulta mucho más fácil emplear una serie de símbolos uniformes.

2.6.2 Flujogramas. [12] Hay varias maneras de representar un flujograma del proceso de producción en donde se presentan las fases de producción y sus interrelaciones, al mismo tiempo que se presenta la transformación evolutiva de las materias primas hasta el producto final. La representación simbólica del flujograma sigue el siguiente código:

Tabla 4. Representación de proceso productivo (Flujograma).

FLUJORAMAS			
	OPERACIÓN Significa un cambio o transformación en algún componente del producto ya sea por medios físicos, mecánicos o químicos.		
	TRANSPORTE	Es la acción de movilizar algún elemento en determinada operación de un sitio a otro o hacia algún punto de almacenamiento.	
	DEMORA	Se presenta generalmente cuando existen cuellos de botella en el proceso y hay que esperar turno y efectuar la actividad.	
	ALMACENAMIENTO	Puede ser tanto de materia prima de productos en proceso o de productos terminados	
	INSPECCIÓN	Es la acción de controlar que se efectúe correctamente una operación o un transporte o verificar la calidad del producto.	
	OPERACIÓN COMBINADA	Ocurre cuando se efectúa simultáneamente dos de las acciones	

- **2.6.3** Diagrama de flujo del proceso. Se aplica sobre todo a un componente de un ensamble o sistema para lograr la mayor economía en la fabricación, o en los procedimientos aplicables a una componente o a una sucesión de trabajos en particular. Este diagrama de flujo es especialmente útil para poner de manifiesto costos ocultos como distancias recorridas, retrasos y almacenamientos temporales. Una vez expuestos estos periodos no productivos, el analista puede proceder a su mejoramiento.
- **2.6.4** Diagrama de recorrido. [13] A veces se obtiene una visión mejor del proceso dibujando las líneas de recorrido en un esquema del edificio o zona en que tiene lugar el proceso.
- **2.6.4.1** *Colocación*. En este plano se dibujan líneas que representan el camino recorrido y se insertan los símbolos del diagrama del proceso para indicar lo que se está haciendo, incluyendo breves anotaciones que amplían su significado. A esto se lo llama diagrama de recorrido. En ocasiones ambos diagramas, el del proceso y el de recorrido, son necesarios para ver con claridad las fases seguidas en un proceso de fabricación, trabajo de oficina u otra actividad.

Estos diagramas de recorrido nos sirven para poder mejorar o cambiar la distribución de las máquinas, puestos de trabajo, almacenes y oficinas para obtener un menor tiempo de producción o una mejor distribución del trabajo, también se puede cambiar las rutas que

recorren las piezas, el producto o los hombres así como también montacargas, elevadores y máquinas de este tipo. Estos diagramas también pueden ser como los del proceso del tipo hombre o del tipo producto, al igual que los del proceso deben realizarse por separado.

- **2.6.5** Distribución de la planta. [14] La distribución de planta indica la disposición física de la planta y de las diversas partes de la misma, es decir es la ordenación de los espacios e instalaciones de una fábrica, con el fin de conseguir que los procesos de fabricación se lleven a cabo de la forma más racional y económica posible.
- **2.6.5.1** *Principios básicos de la distribución.* Con el fin de obtener una distribución más eficiente, es preciso considerar los siguientes seis principios básicos:
- a) Principio de la integración de conjunto: La distribución óptima será aquella que integre al hombre, materiales, máquinas y cualquier otro factor de la manera más racional posible, para que funcionen como un equipo único. No es suficiente conseguir una distribución adecuada para cada área, sino que debe ser también adecuada para otras áreas que tengan que ver indirectamente con ella.
- permita mover el material a la distancia más corta posible entre operaciones consecutivas. Al y trasladar el material se debe procurar el ahorro del tiempo, reduciendo las distancias de recorrido; esto significa que se debe tratar de colocar operaciones sucesivas inmediatamente adyacentes unas a otras.
- c) Principio de la circulación o recorrido: En igualdad de circunstancias será mejor aquella distribución que tenga ordenadas las áreas de trabajo en la misma secuencia en que se transforman o montan los materiales. Este es un complemento del principio de la mínima distancia y significa que el material se moverá progresivamente de cada operación a la siguiente, sin que existan retrocesos o movimientos transversales, buscando un progreso constante hacia su terminación sin interrupciones e interferencias. Esto no implica que el material tenga que desplazarse siempre en línea recta, ni limita el movimiento en una sola dirección.

- d) Principio del espacio cubico: En igualdad, será más económica aquella distribución que utilice los espacios horizontales y verticales, ya que se obtienen ahorros de espacio. Una buena distribución es aquella en la cual se utiliza las tres dimensiones en igual forma.
- e) Principio de satisfacción y seguridad: Será aquella mejor distribución la que proporcione a los trabajadores seguridad y confianza para el trabajo satisfactorio de los mismos. La seguridad es un factor de gran importancia, una distribución nunca puede ser efectiva si somete a los trabajadores a riesgos de accidentes.
- f) Principio de flexibilidad: La distribución en planta más efectiva, será aquella que pueda ser ajustada o reordenada con el mínimo de inconvenientes y al costo más bajo posible. Las plantas pierden a menudo dinero al no poder adaptar sus sistemas de producción con rapidez a los cambios constantes del entorno, de ahí que la importancia de este principio es cada vez mayor.
- **2.6.6** *Tipo de fabricación.* [15] Existen tres tipos de distribuciones de planta:
- Por componente fijo
- Funcional o por proceso
- En línea o por producto
- **2.6.6.1** Distribución por componente fijo. Se trata de una distribución en que el material que se debe elaborar no se desplaza en la fábrica, sino que permanece en un solo lugar, y que por lo tanto toda la maquinaria y demás equipo necesarios se llevan hacia él. Se emplea cuando el producto es voluminoso y pesado, y solo producen pocas unidades al mismo tiempo. Se requiere poca especialización en el trabajo, pero gran habilidad y obreros calificados.
- **2.6.6.2** Funcional o por proceso. En este tipo de distribución todas las operaciones de la misma naturaleza están agrupadas, se utiliza generalmente cuando se fabrica una amplia gama de productos que requieren de la misma maquinaria y se producen un volumen relativamente pequeño de cada producto. También cuando la maquinaria es costosa y no puede moverse fácilmente y cuando se tiene una demanda intermitente.

Las máquinas y puestos de trabajo están distribuidos por familias de máquinas homogéneas, desplazándose los materiales y semifabricados de unos grupos a otros. Las máquinas utilizadas son en general, universales.

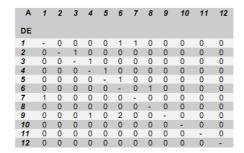
2.6.6.3 *Por producto o línea*. También denominada ""producción en cadena" en este caso toda la maquinaria y equipos necesarios para fabricar un determinado producto se agrupan en una misma zona y se ordenan de acuerdo con el proceso de fabricación. Es recomendable cuando la demanda es constante y cuando el suministro de materiales es fácil y continuo.

2.7 Distribuciones parciales [16]

Es un registro de todas las actividades que constituyen una planta y la relación existente entre ella. Además indica el grado de importancia de su proximidad y las razones de esta. Una vez recopilada la información necesaria y analizada, se procede a elegir en función del tipo de fabricación el tipo de distribución más adecuada.

Se describe la secuencia a seguir cuando en la empresa se realiza varios productos, siguiendo para este fin los siguientes procedimientos:

- a) Determinar qué productos elaborados por la empresa son los más importantes, los que tienen más demanda y por consiguiente representan mayor volumen de producción.
- **b**) Numerar las áreas y maquinaria de toda la planta.


Figura 27. Registro de máquinas o puestos de trabajo.

NUMERO	MAQUINARIA O PUESTO DE TRABAJO	
1	Área de Laboratorio	
2	Área de almacenaje principal 1	
3	Área de almacenaje principal 2	
4	Área temporal 1	
5	Área de materia prima	

Formar un cuadrado de doble entrada, en el que se deberá ubicar el número correspondiente a cada área de trabajo anteriormente elaborada, tanto en la primera fila

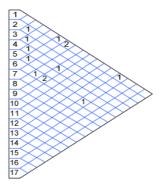

como en la primera columna, contando las veces que cada material se dirige de un área hacia otra y anotándola en el casillero correspondiente, se elabora para cada producto por separado.

Figura 28. Tabla de dobles entrada.

Con los datos obtenidos se forma las tablas triangulares para cada producto, con la suma de los movimientos en los dos sentidos, entre cada dos puestos de trabajo.

Figura 29. Triangulo de resumen.

Formar una nueva tabla triangular con la suma de los movimientos ponderados con porcentajes señalados, entre cada lugar de trabajo, en la fabricación de los productos, los valores obtenidos en las tablas triangulares de cada producto se multiplican por el porcentaje que cada uno representa en la empresa; de la suma se toman los resultados y se ubican en la tabla triangular, si estos tienen decimales 0.5 o más se asume el valor inmediato superior.

Realizar una tabla de resumen ordenando de mayor a menor el numero de movimientos.

Figura 30. Relación de movimientos

RELACIONES	MOVIMIENTOS	PORCENTAJE (%)
1 – 7	2	17%
1-6	1	8.3%
1 – 14	1	8.3%
2-3	1	8.3%
3 – 4	1	8.3%
4 – 5	1	8.3%
4 – 9	1	8.3%
5 – 6	1	8.3%
6-8	1	8.3%
6 – 9	1	8.3%
6 – 14	1	8.3%
10-11	0	0%
11-12	0	0%
12 - 13	0	0%
13 – 14	0	0%
16 – 17	0	0%
1 – 15	0	0%
TOTAL	12	100%

Iniciar el planteamiento de la distribución de los puestos de trabajo empleando hexágonos que representan cada uno de los puestos de trabajo.

Se debe procurar dejar en contacto los hexágonos que representen los puestos de trabajo que tengan los mayores movimientos de relación entre ellos, hacer varias combinaciones, escoger la mejor.

Figura 31. Diagrama de proximidad

Diagrama de proximidad CHITEFOL.

Las formas de las plantas pueden recordarse con el vocablo CHITEFOL, cada letra de este vocablo representa una forma de la planta. En forma de C, H, I (Una nave recta), F, E, T, O (rectangular) y de L.

2.8 Seguridad industrial [17]

2.8.1 Definición de seguridad industrial. La seguridad industrial es un conjunto de normas, procedimientos y técnicas aplicadas en las áreas laborables, que hacen posible la prevención de accidentes e incidentes para las personas así como en los equipos e instalaciones.

- **2.8.2** Definición de análisis de riesgos. Análisis de riesgo de las labores es el estudio de los procedimientos de trabajo, con el fin de determinar los riesgos mecánicos o físicos que existen o puedan existir, los actos o accidentes de las personas cuyo resultado podría ser un accidente.
- **2.8.2.1** *Identificación de riesgos.* La identificación de riesgos permite determinar:
- Los agentes que pueden estar presentes y en qué circunstancias.
- La naturaleza y posible magnitud de efectos nocivos para la salud.

vibracion, Electromagnéticos: Iluminación, electricidad, radiaciones **Físicos** ionizantes o no; Térmicos: incendio o explosión, ambiente érmico, humedad relativa. Máquinas, herramientas, superficies de trabajo, medios de Mecánicos izaje, recipientes a presión, espacios confinados, golpes, caídas, cortes, atrapamiento, trabajos en altura. Gases, partículas y vapores; aerosoles sólidos y líquidos, Químicos almacenamiento y manipulación de productos químicos En emplazamientos, diseños de puestos de trabajo, carga física y psíquica, ambiente de trabajo, organización y Ergonómicos distribución del trabajo, movimientos repetitivos Bacterias, virus, hongos, parásitos, rickettsias, derivados **Biológicos** orgánicos, animales ponzoñosos. Estrés laboral, acoso, monotonía, hastío, enfermedades sicosociales neuropsíquicas y psicosomáticas, velocidad del proceso. Emisiones gaseosas, vertidos líquidos y desechos sólidos Medio **Ambientales** provenientes de la industria.

Tabla 5. Tipo de riesgos

- **2.8.2.2** *Pasos para realizar una evaluación de riesgo*. Para llevar acabo una evaluación de riesgos se debe considerar los siguientes pasos:
- Paso 1.- Tomar en cuenta todas las tareas y situaciones.
- Paso 2.- Identificar los peligros que están presentes o pueden presentarse.
- Paso 3.- Identificar la exposición (el medio ambiente, exposición al peligro)
- Paso 4 y 5.- analizar el riesgo de la herida del impacto o la perdida por el peligro e identificar los riesgos significativos.

El riesgo se compone de la frecuencia, severidad y cantidad expuesta, se debe colocar cada una de estas variables en una columna, en una hoja de trabajo para evaluar los cuatro componentes que colectivamente componen el riesgo como se muestra en la tabla 6 cuando se incluye la cantidad, el resultado debe multiplicarse para dar el resultado final.

Tabla 6. Calificación de componentes según su magnitud de riesgo [11]

FRECUENCIA (A)		SEVERIDAD (B)
constante	5	Catastrófico por ejemplo, una fatalidad o un impacto de largo plazo a un medio critico como una fuente de agua potable
Frecuente	4	Mayor herida a largo plazo o un efecto en la salud, o un impacto de largo plazo a un medio critico, impacto fuera de las instalaciones
Ocasional	3	Moderado herida (incapacidad menos de 3 días) impacto a corto plazo.
Raro	2	Menor herida (1 día de incapacidad) impacto menor en las instalaciones.
No ocurre	1	Insignificante sin herida, sin impacto.

Tabla 7. Calificación del factor de riesgo.

CANTIDAD DE PERSONAS EXPU	PROBABILIDAD (D)		
9 o más personas	5	Constante/casi segura	5
7-8 personas	4	posible y probable	4
5-6 personas	3	posible	3
3-4 personas	2	improbable y remota	2
1-2 personas	1	raro, improbable	1

El factor de riesgo general se define usando la ecuación:

 $A \times B \times C \times D = factor de riesgo general$

Donde: A: Frecuencia

B: Severidad
C: Cantidad de personas expuestas
D: Probabilidad

Paso 6.- Evaluar los controles existentes y su efectividad.

Paso 7.- Analizar de nuevo el riesgo tomando en cuenta los controles existentes y su eficacia.

Paso 8.- Evaluar y actuar.

El resultado de la evaluación de riesgo debería identificar automáticamente si se requiere acciones posteriores. Como regla general se muestra las medidas que deberían tomarse.

Tabla 8. Acciones a tomarse frente a los riesgos

RESULTADO	ACCION A TOMARSE
51 o más	<i>Priodidad1</i> el riesgo es inminente e indica que la actividad debería detenerse hasta que el riesgo ha sido eliminado o controlado
1050	Prioridad 2 acción urgente para eliminar el riesgo los que requiere control adecuado.
menor de 10	Prioridad 3 sugiere un riesgo controlado o insignificante, sin embargo los riesgos con estos puntajes más bajos deben mantenerse bajo revisión para asegurarse que las medidas de control sean adecuadas.

Luego de identificar los peligros y decidir sobre el riesgo, hay que analizar el problema y tratar de eliminarlo. Si el peligro no puede eliminarse, existe un riesgo de daño ambiental o que alguna persona salga herida entonces hay que fijarse en todo lo que se ha hecho anteriormente para prevenir que el daño ocurra.

2.8.3 *Normas*.

- **2.8.3.1** Normas de orden y limpieza en el lugar de trabajo. [18] En cualquier actividad laboral, para conseguir un grado de seguridad aceptable, tiene especial importancia el asegurar y mantener el orden y la limpieza. Son numerosos los accidentes que se producen por golpes y caídas como consecuencia de un ambiente desordenado o sucio, suelos resbaladizos, materiales colocados fuera de su lugar y acumulación de material sobrante o de desperdicio. Se debe tomar en cuenta las disposiciones mínimas de seguridad y salud en los lugares de trabajo, por lo cual se dan puntos a seguir:
- a) Las zonas de paso, salidas y vías de circulación de los lugares de trabajo y, en especial, las salidas y vías de circulación previstas para la evacuación en casos de emergencia, deberán permanecer libres de obstáculos de forma que sea posible utilizarlas sin dificultades en todo momento.

b) Los lugares de trabajo, incluidos los locales de servicio, y sus respectivos equipos e instalaciones, se limpiaran periódicamente y siempre que sea necesario para mantenerlos en todo momento en condiciones higiénicas adecuadas. Se eliminaran con rapidez los desperdicios, las manchas de grasa, los residuos de sustancias peligrosas y demás productos residuales que puedan originar accidentes o contaminar el ambiente de trabajo. Eliminar lo innecesario y clasificar lo útil, acondicionar los medios para guardar y localizar el material fácilmente, evitar ensuciar y limpiar enseguida, crear y consolidar hábitos de trabajo encaminados a favorecer el orden y la limpieza.

2.8.3.2 *Manejo de materiales*

- a) Mantener los pasillos despejados todo el tiempo. Nunca deje obstáculos en los pasillos, ni por un momento.
- No dejar que los líquidos se derramen o goteen, si llegan a gotear o derramarse hay que limpiarlos rápidamente. Utilizar recipientes o bandejas con aserrín colocados en los lugares donde las máquinas o las transmisiones chorree aceite o grasa para evitar derrames y posibles lesiones provocadas por resbalones o caídas.
- Mantener ordenadas las herramientas en los lugares destinados para ellas.
 Utilizar para ello soportes, estantes o perchas.
- **d**) Mantener en buen estado la pintura de la maquinaria. Esto ayuda a conservar el orden de los locales de trabajo.

2.8.3.3 Almacenamiento de materiales

- a) Los pasillos de circulación demarcada deben estar constantemente libres de obstáculos. Permitir el fácil acceso a los extintores y demás equipos de lucha contra incendio.
- b) En caso de almacenamiento provisional que suponga una obstrucción a la circulación, se debe colocar luces de advertencia, banderas, vigilantes, vallas, etc. Los pasillos, hasta donde sea posible, deben ser rectos y conducir directamente a las salidas.

2.8.3.4 *Movimiento de materiales*. Hay que reconocer los elementos principales y el funcionamiento del equipo que se está utilizando, también hay que revisar el equipo de levantamiento antes de usarlo. Revise todos los elementos de amarre tales como los cables, cadenas, fajas, etc., deberán estar libres de nudos, cocas, torceduras, partes aplastadas o variaciones importantes de su diámetro.

2.8.4 Señalización de seguridad industrial. [19] La normalización de señales y colores de seguridad sirve para evitar, el uso de palabras en la señalización de seguridad. Esto es necesario debido al comercio internacional así como a la aparición de grupos de trabajo que no tienen un lenguaje en común. Por tal motivo nuestro país utiliza la norma INEN 439, cuyo objetivo es, establecer los colores de seguridad, las normas y colores de las señales de seguridad para identificar lugares, objetos, o situaciones que puedan provocar accidentes u originar riesgos a la salud

2.8.4.1 *Definiciones generales:*

Color de seguridad.- Es un color de propiedades calorimétricas y/o fotométricas especificadas, al cual se asigna un significado de seguridad. El cuadro 2.8.4.1 muestra el significado asignado para los colores de seguridad según la norma INEN 439.

Tabla 9. Colores de seguridad y su significado

COLOR	SIGNIFICADO	EJEMPLOS DE USO
	Alto prohibición	Señal de parada signos de prohibición utilizado para prevenir fuegos-marcar equipo.
	Atención cuidado peligro	indicación de peligro (fuego, explosión, envenenamiento)
Seguridad		Rutas de escape, salidas de emergencia, estación de primeros auxilios.
	Acción obligada información	Obligación de utilizar equipo de protección personal, localización de teléfono, información.

- **Símbolo de seguridad:** Es cualquiera de los símbolos o imágenes graficadas usadas en la señal de seguridad.
- **Señal de seguridad:** Es aquella que transmite un mensaje de seguridad en un caso particular, obtenida a base de la combinación de una forma geométrica, un

color y un símbolo de seguridad. la señal de seguridad puede también incluir texto.

- Color de contraste: El color de contraste es uno de los dos colores neutrales,
 blanco o negro, usado en las señales de seguridad.
- **2.8.4.2** Formas geométricas de las señales de seguridad. [18] La forma geométrica que tiene cada señal de seguridad varía de acuerdo a la necesidad, herramienta, máquina o lugar de trabajo, se tienen las señales de seguridad de prohibición, advertencia, obligatoriedad, informativas y suplementarias.
- **2.8.4.3** *Señales de prohibición*. La forma de las señales de prohibición es la indicada en la figura, el color del fondo debe ser blanco. La corona circular y la barra transversal rojas. El símbolo de seguridad debe ser negro, estar ubicado en el centro y no se puede superponer a la barra transversal. El color rojo debe cubrir, como mínimo, el 35% del área de la señal.

Figura 32. Señal de prohibición

2.8.4.4 *Señal de advertencia*. La forma de las señales de advertencia es la indicada en la figura, El color del fondo debe ser amarillo. La banda triangular debe ser negro y estar ubicado en el centro. El color amarillo debe cubrir como mínimo el 50% del área de la señal.

Figura 33. Señal de advertencia

2.8.4.5 *Señales de obligatoriedad.* La forma de las señales de obligatoriedad es indicada en la figura, el color de fondo debe ser azul. El símbolo de seguridad debe ser blanco y estar ubicado en el centro. El color azul debe cubrir, como mínimo, el 50% del área de la señal.

Figura 34. Señal de obligatoriedad

2.8.4.6 Señales informativas. Se utilizan en equipos de seguridad en general, rutas de escape, etc. La forma de las señales informativas deben ser cuadradas o rectangulares, Según convenga a la ubicación del símbolo de seguridad o el texto. El símbolo de seguridad debe ser blanco. El color del fondo debe ser verde. El color verde debe cubrir como mínimo, el 50% del área de la señal.

Figura 35. Señal de informativa

- **2.8.4.7** *Señales suplementarias*. La forma geométrica de la señal suplementaria debe ser rectangular o cuadrada. En las señales suplementarias el fondo debe ser blanco con el texto negro o bien el color de fondo debe corresponder al color de la señal de seguridad con el texto en el color de contraste correspondiente.
- **2.8.4.8** *Salida de emergencia*. Es una vía continua de desplazamiento desde punto de un edificio hasta un lugar seguro. Un lugar es seguro cuando está libre de peligro. Dependiendo del tamaño y complejidad del edificio el medio de salida se puede componer de las etapas acceso, salida y descarga.

CAPÍTULO III

3. ESTUDIO DE MERCADO

3.1 Identificación de la empresa (CELEC E.P)

3.1.1 Antecedentes. [20] A finales de 1998 -luego de 37 años- la vida del Instituto Ecuatoriano de Electrificación (INECEL), llega a su fin, en razón de las corrientes modernizadoras y privatizadoras de entonces, que inducían la segmentación de la cadena de actividades del servicio de energía eléctrica, la conformación de los denominados mercados eléctricos mayoristas como bolsas de negocio de este servicio, y la integración internacional de los mismos.

Como consecuencia de la extinción del INECEL, se crearon las nuevas empresas privadas de generación y transmisión, quedando con domicilio en la provincia de Tungurahua dos de ellas: La Compañía de Generación Hidroeléctrica, Agoyán - HIDROAGOYÁN S.A. y la Compañía de Generación Hidroeléctrica Pisayambo - HIDROPUCARÁ S.A., con el fondo de solidaridad como su único accionista.

En corto tiempo se produce la fusión por absorción entre estas dos empresas, y queda exclusivamente HIDROAGOYÁN S.A - inscrita en el Registro Mercantil el 27 de enero de 1999- para encargarse de la producción de energía en las centrales Agoyán y Pucará, ubicadas en los cantones de Baños y Píllaro respectivamente.

Durante 10 años, HIDROAGOYÁN S.A. operó como empresa privada autónoma, hasta que en el gobierno actual del Eco. Rafael Correa, se decide nuevamente reformar el sector eléctrico ecuatoriano.

El Fondo de Solidaridad como único accionista de varias empresas, lidera la fusión de: Electroguayas S.A., Hidroagoyán S.A., Hidropaute S.A., Termoesmeraldas S.A., Termopichincha S.A., y Transelectric S.A., en una sola empresa de generación y transmisión de energía denominada: Corporación Eléctrica del Ecuador - CELEC S.A., inscrita en el Registro Mercantil el 26 febrero de 2009. Finalmente, bajo el amparo de

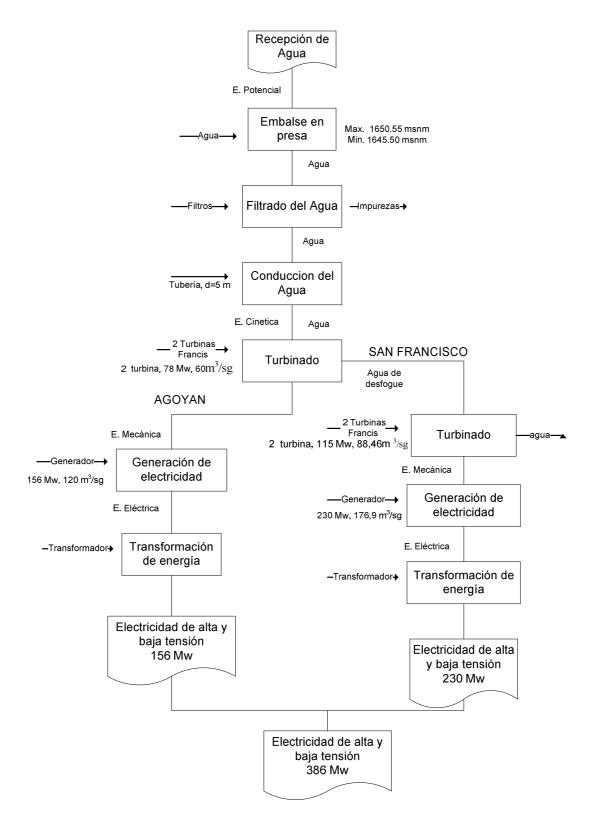
la ley de Empresas Públicas, se emite el Decreto Ejecutivo N° 220 del 14 de enero de 2010, que crea la Empresa Pública Estratégica **CORPORACIÓN ELÉCTRICA DEL ECUADOR - CELEC E.P.**, como resultado de la fusión de las empresas: Corporación Eléctrica del Ecuador - CELEC S.A. e Hidroeléctrica Nacional - Hidronación S.A.

En la actualidad, **HIDROAGOYÁN** es una de las siete Unidades de Negocio de **CELEC E.P.**, se encarga de la administración de la producción de las centrales Agoyán y Pucará, y mantiene un contrato con la Empresa Pública Estratégica HIDROPASTAZA E.P. para la operación y mantenimiento de la central San Francisco, también ubicada en el cantón Baños de la Provincia de Tungurahua.

3.2 Descripción de la Central Hidroeléctrica Agoyán

La Central Agoyán fue concebida para aprovechar el caudal del Río Pastaza, localizada en la provincia de Tungurahua a 180 Km. al Sureste de Quito y a 5 Km al este de la ciudad de Baños en el sector denominado Agoyán de la parroquia Ulba, en la vía principal de entrada al sector amazónico ecuatoriano.

Figura 36. Ubicación geográfica de HidroAgoyán


La cuenca del río Pastaza tiene una extensión de 8270 Km, en las provincias de Cotopaxi, Chimborazo y Tungurahua.

La extensión global de la zona de influencia de la Central es de 5.00 Km² con una producción media anual de 1.080 GWH. La presa es de hormigón de 43 m. de altura máxima y una longitud de 300 m. con un volumen de 178.000 m³ de agua.

- 3.2.1 Embalse. La presa cuenta con dos desagües de fondo de 9 m de ancho para la limpieza de sedimentos y vaciado del embalse, además cuenta con tres vertederos de exceso de 15 m de altura por 12 m de ancho, un estanque desarenador semi-natural de 150 m de largo por 90 m de ancho y un desagüe de fondo del desarenador y estructura de la toma. El túnel de carga cuya toma está ubicada en el cuerpo de la presa; tiene una longitud de 2378 m y 6 m de diámetro interno; conduce un caudal de 120 m³/s y la tubería de presión subterránea es vertical de 5 m de diámetro.
- **3.2.2** Casa de máquinas. Excavada en el corazón de la cordillera central donde se encuentran instaladas dos turbinas tipo FRANCIS de eje vertical, de 78.000 KW. cada una y dos generadores de 85.000 KVA, tiene 18 m de ancho, 50 m de largo y 34 m de altura, está conformada por 4 pisos:
 - 1- Piso principal
 - 2- Piso de generadores.
 - 3- Piso de turbinas.
 - 4- Piso de válvulas.
- **3.2.3** *Subestación.* La subestación está localizada en el exterior, patio de maniobras y edificio de control, está compuesta de una estructura de hormigón armado en cuya parte inferior están lejos los dos transformadores principales de 85.000 KVA cada uno.
- **3.2.4** Edificio de control. Ubicado junto a la subestación consta de 2 plantas, en la parte alta se encuentra la sala de control, desde la cual puede comandar remotamente las compuertas de la presa, arranque, operación y parada de las unidades generadoras de casa de máquinas y realizar las maniobras que sean necesarias en la subestación.
- **3.2.5** Ejecución. La central Agoyán entro en operación en 1987 y los 156.000 KW que genera alimentan al sistema nacional interconectado. La central hidroeléctrica Agoyán tiene varios años de funcionamiento y en el año 2007 se pudo realizar la interconexión con la central San Francisco aprovechando el mismo embalse para de esta manera aportar 386 MW a la interconexión nacional.

DIAGRAMA DE FLUJO DE PROCESO DE PRODUCCIÓN DE CENTRALES AGOYÁN, Y SAN FRANCISCO

Figura 37. Representación esquemática de la producción de energía eléctrica de las centrales Agoyán y San Francisco

3.3 Marco de desarrollo

Debido al potencial hídrico que existe en el país, la existencia de caudales favorables permite explotar, ya sea en pequeña o gran escala, la energía potencial del agua que se transforma en energía cinética debido a la conveniente topografía de la zona que le ofrece una altura suficiente para la generación eléctrica.

Ecuador tiene una capacidad eléctrica instalada de 3.6 GW y un déficit del 10% que es importada. A pesar del increíble potencial hidroeléctrico de 11.8GW (proyectos identificados) que reduce el impacto ambiental global. El 42% de la energía viene de centrales térmicas que expiden 11 millones de kilogramos de CO₂ diarios, contribuyendo a la causa principal del calentamiento global. Entonces, si se logra aprovechar al máximo este potencial hidroeléctrico, se podría abastecer sin problema alguno las necesidades energéticas del país sin necesidad de recurrir a la termo generación.

Por esta razón el estado está trabajando en la construcción de nuevas Centrales hidroeléctricas, entre ellas tenemos el proyecto Sopladora, Minas, Ocaña, Coca-Codo Sinclair, Toachi-Pilatón.

En la actualidad una de las funciones principales de las empresas hidroeléctricas es generar energía al costo más bajo, ya que no se utiliza combustible para la generación de la misma, como lo hacen las termoeléctricas.

De los sistemas hidroeléctricos en operación, el 88.32% de la energía proviene de grandes centrales hidroeléctricas, el 9,22% de medianos aprovechamientos y el 2,46% de pequeñas centrales para una potencia instalada total de 2153.6 MW.

3.4 Planteamiento del problema y propuesta

El mayor problema de las centrales hidroeléctricas, en relación con la calidad del agua, son los sólidos suspendidos que provocan un excesivo desgaste del equipo hidromecánico y el arrastre de sedimentos acorta la vida útil de los embalses.

Debido a que las centrales hidroeléctricas tienen un proceso de producción eléctrica continua trabajando las 24 horas, sus partes móviles se desgastan lentamente debido a la cavitación y a la erosión que produce el agua, por ello es necesario alargar la vida útil de las turbinas por medio de los mantenimientos predictivos, realizados diariamente, preventivos (trimestral-semestral-anual) y el overhaul realizado cada 7 y 8 años aproximadamente (el tiempo depende del estado de las partes hidromecánicas de la turbina).

En la Central Hidroeléctrica Agoyán según datos proporcionados por la misma nos indica que se realiza el overhaul cada 8 años aproximadamente, que significa remplazar los elementos electromecánicos e hidromecánicos más deteriorados por nuevos.

Lamentablemente los elementos hidromecánicos son extremadamente costosos y muestra de ello es la importación del rodete de la turbina FRANCIS de 76Mw de potencia para la Central hidroeléctrica Agoyán llegándole a costar al estado dos millones de dólares.

El problema es que con el pasar del tiempo las centrales hidroeléctricas en cada overhaul cambian los elementos hidromecánicos usados y los almacenan o los dejan a la intemperie, y por tratarse de mecanismos inoxidables con alto contenido de cromo y níquel no se deterioran.

Las empresas que se encargaron del diseño y la fabricación de la turbina son los encargados de proporcionar las nuevas partes, ahora la pregunta es ¿y qué ocurre con los elementos hidromecánicos de las turbinas que se encuentran fuera de servicio?, simplemente estas ocupan espacio ya que debido al material con las que fueron construidas no pueden ser fundidas ya que representaría una pérdida económica enorme.

En la actualidad se tiene conocimiento que las partes hidromecánicas, son las más costosas, y que existe la manera de reconstruirlas, pero el Ecuador no cuenta con la tecnología ni la maquinaria lo suficientemente grande para rehabilitarlas.

En nuestro país las centrales hidroeléctricas pertenecientes a la CORPORACIÓN ELÉCTRICA DEL ECUADOR Empresa Pública (CELEC E.P) que tienen la

disposición de poner nuevamente en funcionamiento las partes hidromecánicas deterioradas o para simplemente mantenerlas en stock para un posterior overhaul, las mandan al exterior para reconstruirlas topándose con problemas exclusivamente de transporte, trámites legales, económicos y tiempo.

Es por esta razón que nosotros sugerimos tener en nuestro país una planta de reconstrucción de partes hidromecánicas de turbinas de generación eléctrica, que este al servicio no solo de las empresas estatales pertenecientes a **CELEC E.P**, sino también de las empresas privadas de generación hidroeléctrica.

Debido al gran apoyo que ha recibido el sector hidroeléctrico por parte del estado en estos últimos años, nos vemos en la necesidad de proponer la creación de una planta de mecanizado para la reconstrucción de turbinas Francis y Peltón de generación eléctrica.

3.5 Identificación del proyecto

El proyecto en mención se encontrará ubicado en la provincia de Tungurahua, cantón Baños administrado y supervisado por la "UNIDAD DE NEGOCIO HIDROAGOYÁN" y se la denominará:

CERTHA CERTHA

3.5.1 Localización. Se va a encontrar ubicada en la provincia de Tungurahua en el cantón Baños de Agua Santa vía al Puyo Km 5, junto al estadio de las bodegas de la Central Agoyán.

3.6 Elementos hidromecánicos a reconstruirse de las turbinas Francis y Pelton.

En esta parte de la investigación solo de identificará los elementos a reconstruirse sin entrar en detalle acerca de los aspectos técnicos de los elementos hidromecánicos de las turbinas, ya que este tema se abordó en el capítulo II.

Cabe mencionar que los elementos hidromecánicos que necesitan rehabilitación son aquellos que se encuentran dentro de la turbina los cuales generan la energía mecánica y obviamente están en contacto con el agua.

En una turbina Francis y Pelton las partes hidromecánicas a ser reparadas o reconstruidas son las siguientes:

Tabla 10. Elementos hidromecánicos de las turbinas FRANCIS y PELTON

ITEM	TURBINA FRANCIS	TURBINA PELTON
1	TAPA SUPERIOR	RODETE
2	TAPA INFERIOR	INYECTORES
3	ÁLABES DIRECTRICES	ASIENTOS
4	RODETE	
5	CONO	

3.7 Identificación del producto y/o servicio (elemento hidromecánico reconstruido)

El Servicio de Reparación consiste en realizar los trabajos necesarios para devolverle a los elementos hidromecánicos de la turbina su condición de operatividad.

- a) Soldadura: La reparación consistirá en realizar rellenos de recuperación de medidas y acabados, en las zonas de desgaste por erosión y cavitación con soldadura de composición química igual al material del original, con intervalos prolongados para evitar la deformación de la pieza por exposición al calor, así mismo y por el mismo motivo sé utilizará electrodos delgados 3/16, 5/32, 1/8. El tratamiento térmico después de la aplicación de la soldadura será obligatorio, siendo a criterio del jefe de reconstrucción el método y detalles.
- **Acabados:** El acabado será pulido en todo el contorno y las caras laterales, la superficie se presentará uniforme, libre de rugosidades, y deberá permanecer con el brillo conseguido en el acabado. Las porosidades, fisuras y otros, efecto de la soldadura, serán eliminados íntegramente, la inspección con líquidos penetrantes será obligatoria y los resultados deben indicar ausencia de todo tipo de porosidades y fisuras.

- c) Pesaje: El elemento hidromecánico será pesado antes y después de la reconstrucción de tal manera que se pueda precisar el aporte con soldadura obtenida luego del maquinado en el torno, esmerilada y balanceada estáticamente.
- **Balanceo Estático:** El elemento, hidromecánico será sometido a un balanceo estático, luego del acabado final de la reparación, para comprobar el centrado de su masa al eje imaginario y real, así evitará excentricidades durante su montaje y posterior funcionamiento.

Se presentará un Informe Final con su correspondiente liquidación del servicio, acompañado de un registro fotográfico y los certificados de la soldadura empleada, del balanceo estático, de las pruebas END (ensayos no destructivos).

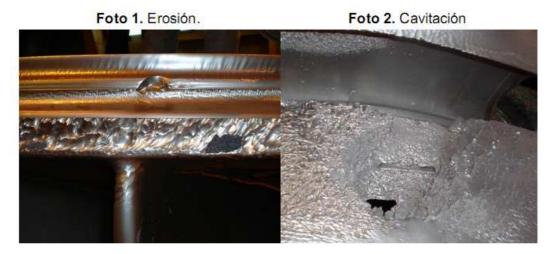
3.8 Documentación.

- a) Planos gráficos: Dibujo industrial que da todas las formas, dimensiones naturaleza de los materiales y otras indicaciones necesarias para fabricar la pieza representada.
- Plantillas: Tablilla, cartón o plancha recortada según la figura y dimensiones que ha de tener una pieza y que, aplicada sobre la materia, permite marcar las líneas por donde se ha de cortar o labrar. También deben presentar toda la información técnica como longitud, peso, composición química (aleaciones) dimensiones originales.

3.9 Evidencias físicas del elemento hidromecánico para la reconstrucción.

Las partes hidromecánicas deben presentar evidencias de:

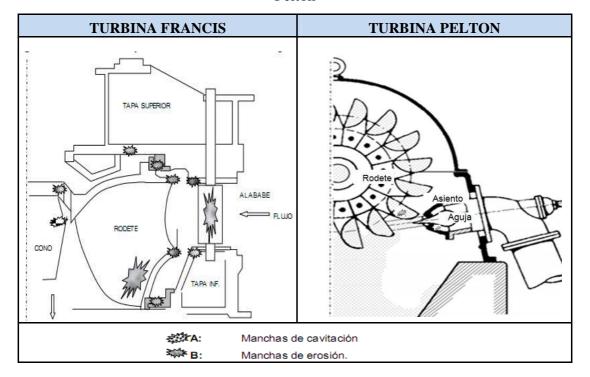
3.9.1 Cavitación. Este fenómeno de desgaste resulta de la rápida formación de burbujas de gas en un líquido, las cuales al chocar sobre superficies metálicas explotan, provocando un pequeño vacío, él que a su vez atrae una partícula del metal base, esto se ayuda por micro-fatiga, provocado por microondas que también impactan en la superficie.


3.9.2 Erosión. Acción de un fluido que desagrega una superficie metálica. Es una forma de abrasión en que las partículas abrasivas son transportadas por un fluido. El desgaste es por lo general más violento cuando el medio es turbulento, cuando cambia de dirección. La erosión se puede clasificar en dos mecanismos:

Erosión por deformación de impacto a ángulo de ataque de las partículas. Erosión por defecto cortante abrasivo, ángulo bajo de ataque de las partículas.

3.9.3 *Desgaste*. La pérdida de materia que experimenta superficialmente los cuerpos sometidos a frotamientos repetidos como resultado de una acción mecánica

En un acero inoxidable, la apariencia de una superficie afectada por erosión, es típica, se muestra como una superficie brillante con desprendimiento de material en forma de escamas de pescado y en la dirección del flujo de agua, en cambio una superficie afectada por cavitación tiene una apariencia opaca con desprendimientos de material perpendicular a su superficie y con muchas aristas diminutas.


Figura 38. Superficie afectada por fenómenos de erosión y cavitación.

ZONAS CRÍTICAS [21]

Las zonas que se encuentran sujetas a mayor desgaste erosivo, son aquellas en las que su paso del agua es más restringido y por ende su velocidad es más alta. En la figura 39 se identifica estas zonas, diferenciándolas si es erosión o cavitación.

Figura 39. Identificación y diferenciación de zonas de desgaste de las turbinas Francis y Pelton

3.10 Identificación del consumidor (empresas de generación hidroeléctrica)

El servicio de reconstrucción de elementos hidromecánicos de las turbinas les compete directamente a las centrales de generación hidroeléctrica que funcionen con turbinas Francis y Pelton. Las empresas pertenecientes a **CELEC EP**. Y otras empresas de generación hidroeléctrica estatales al igual que empresas privadas.

3.11 Recolección de información

3.11.1 *Plantas hidroeléctricas en el Ecuador.* [11] En el Ecuador se aprecia una gran cantidad de centrales hidroelectricas que según datos del **CONELEC** se dividen en:

- Generadoras
- Distribuidoras
- Autoproductoras

Información estadística de la generación hidroeléctrica en el ecuador. Periodo (1999-2010)

Tabla 11. Centrales hidroeléctricas de empresas generadoras---autoproductoras---distribuidoras

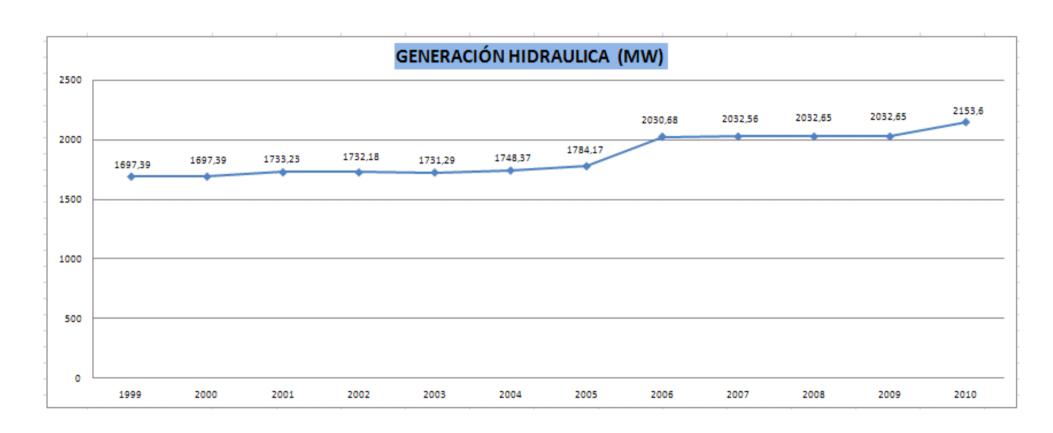
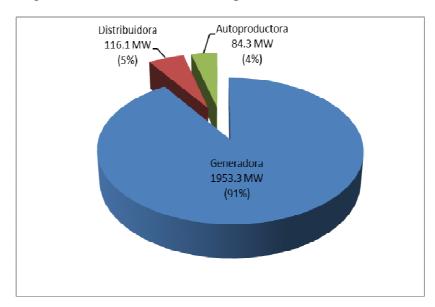



Tabla 12. Potencia instalada de las centrales hidroeléctricas [22]

CENTRALES HIDROELÉCTRICAS DEL	POTENCIA INSTALADA	
ECUADOR	EN MW	
Empresas Generadoras	1953,2	
Empresas Autoproductoras	84,3	
Empresas Distribuidoras	116,1	
	2153,6	

Figura 40. Distribución de las empresas hidroeléctricas

3.12 Segmentación de mercado

A pesar que las empresas generadoras son las que aportan con la mayor cantidad de energía son las que menor número de turbinas tienen debido a su gran tamaño, peso y sobre todo costo.

3.12.1 *Centrales hidroeléctricas.* En las siguientes tablas se indican los nombres de las centrales, el grupo al que pertenecen y la potencia instalada.

Tabla 13. Centrales hidroeléctricas de empresas autoproductoras.

	CENTRALES HIDROELÉCTRICAS	POTENCIA INSTALADA EN MW
1	Atuntaqui	0,3
2	Cotacachi	0,4
3	Perlabi	2,5
4	Vindobona	2,8
5	Noroccidente	0,2
6	Recuperadora	14,5
7	Papallacta	6,2
8	Sillunchi 1	0,3
9	Sillunchi 2	0,1
10	La Calera	1,8
11	Hidroabanico	38
12	Calope	17,2
		84,3

Tabla 14. Centrales hidroeléctricas de empresas distribuidoras

	CENTRALES	
	HIDROELÉCTRICAS	POTENCIA INSTALADA EN MW
1	La Playa	1,3
2	San Miguel De Car	3
3	San Gabriel	0,2
4	Ambi	8
5	Lumbaqui	0,2
6	Nayon	29,7
7	Cumbaya	40
8	Chillos	1,8
9	Pasochoa	4,5
10	Illuchi No 1	4,1
11	El Estado	1,7
12	Angarmarca	0,3
13	Peninsula	2,9
14	Catazacón	0,8
15	Chimbo	1,6
16	Rio Blanco	3
17	Alao	10
18	Nizag	0,3
19	Santiago	0,3
20	Carlos Mora	2,4
		116,1

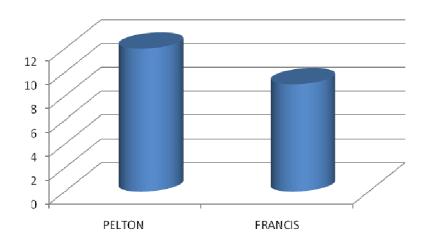
Tabla 15. Centrales hidroeléctricas de empresas generadoras.

	CENTRALES HIDROELÉCTRICAS	POTENCIA INSTALADA EN MW
1	Loreto	2,1
2	El Carmen	8,2
3	Pucará	70
4	Agoyán	156
5	San Francisco	216
6	Paute	1075
7	Saucay	24
8	Saymirin	14,4
9	Sibimbe	14,5
10	Marcel Laniado	213
11	Mazar	160
		1953,2

Del cuadro anterior podemos seleccionar o indicar las centrales hidroeléctricas que pertenecen a **CELEC E.P.**

Tabla 16. Centrales hidroeléctricas de CELEC E.P.

	CENTRALES HIDROELÉCTRICAS	POTENCIA INSTALADA EN MW
1	Paute	1075
2	San Francisco	216
3	Marcel Laniado	213
4	Mazar	160
5	Agoyán	156
6	Pucará	70
		1890


Realizando el análisis entre las tablas anteriores podemos concluir que las empresas a cargo de **CELEC E.P** son aquellas que disponen del 87.76% de potencia instalada a nivel nacional.

De acuerdo con la Investigación, el número de centrales hidroeléctricas que funcionan con turbinas Francis y Pelton a cargo de **CELEC E.P** se resume en la siguiente tabla.

Tabla 17. Turbinas FRANCIS y PELTON a cargo de CELEC E.P

CENTRALES	TIPO DE TURBINA		
HIDROELÉCTRICAS	PELTON	FRANCIS	
Paute - Molino	10		
San Francisco		2	
Marcel Laniado		3	
Mazar		2	
Agoyán		2	
Pucará	2		
	12	9	

Figura 41. Turbinas a cargo de CELEC E.P

La tesis centra su desarrollo alrededor de **CELEC E.P** pues representan las turbinas más grandes del país y obviamente las que producen mayor cantidad de energía eléctrica.

3.12.2 *Proyectos hidroeléctricos.* **[22]** Recopilación informativa del número de proyectos hidroeléctricos que funcionarán con turbinas Francis y Pelton en el país.

Tabla 18. Proyectos hidroeléctricos factibles.

	PROYECTO	N° UNIDADES	POTENCIA (MW)	CLASE DE TURBINA
1	Coca Codo Sinclair	8	1500	PELTON
2	Minas	3	285	PELTON
3	Ocaña	2	26	PELTON
4	Торо	2	17	PELTON
5	Abanico	2	15	PELTON
6	Sigchos	2	18	PELTON
7	Pilalo 3	2	11	PELTON
8	Victoria-Quijos	2	10	PELTON
9	San Jose De Minas	2	7,5	PELTON
10	Chorrillos	1	3,2	PELTON
11	Cuyuja	2	20	PELTON
12	Union	2	83,9	FRANCIS
13	Sisimbe	2	18	FRANCIS
14	Calope	2	15	FRANCIS
15	Tumiguina-Papallacta	2	1,8	FRANCIS
16		1	78	FRANCIS
17	Baba	2	45	FRANCIS
18	Quijos	2	39,6	FRANCIS
19	Sabanilla	2	19,9	FRANCIS
20	Jondachi	2	18,8	FRANCIS
21	Pilaton San Carlos	2	8	FRANCIS
22	S.J Del Tambo	2	7	FRANCIS
23	La Delicia	2	5,8	FRANCIS
24	Guapulo	2	3,2	FRANCIS
25	La Esperanza	4	6	KAPLAN
26	Poza Honda	2	3	KAPLAN
		59	2265.7	

En resumen se emplearán 25 turbinas Francis, 28 Pelton y 6 Kaplan. Que en conjunto tendrán una potencia instalada de 2265.7 Mw

Como conclusión en los cuadros anteriores tanto de las centrales pertenecientes a CELEC E.P como los futuros proyectos hidroeléctricos demuestran la existencia de una gran cantidad de elementos hidromecánicos de las turbinas Francis y Pelton de generación eléctrica que necesitan y necesitarán el servicio de reconstrucción una vez que dichos elementos se encuentren fuera de servicio.

En la actualidad **CELEC E.P** cuenta con 21 turbinas en funcionamiento, pero con el pasar de los años los elementos hidromecánicos de las mismas han sufrido deterioros importantes en sus partes internas como se explicará más adelante.

3.13 Evaluación del número de elementos hidromecánicos (turbinas) que se encuentran fuera de servicio a cargo de CELEC E.P

El fabricante de la turbina proporciona un manual de operación en el cual se pueden analizar los parámetros de funcionamiento. Para poder evaluar el número de elementos hidromecánicos de las turbinas, se debe tomar en cuenta los siguientes parámetros técnicos:

3.13.1 Registros y controles. [23] Una central hidroeléctrica lleva registros y controles de:

- Operación
- Mantenimientos
- Niveles de sedimentos en los embalses
- Incremento de ruidos en la turbina
- Incremento de temperatura en cojinetes
- Incremento de vibraciones en turbina-generador
- Perdida de eficiencia de la turbina

Estos parámetros indican mediante cuadros comparativos el estado de funcionamiento de la turbina, también determinan el rendimiento de la misma. Además indican el rango normal de funcionamiento de la turbina y en caso de que los parámetros se encuentren fuera de rango, la turbina tiene serios problemas y es necesaria su parada.

La experiencia en la Central Hidroeléctrica Agoyán, ha permitido establecer periodicidades de inspección de por lo menos cada tres meses, con lo que se ha podido en cierta forma controlar la agresividad del desgaste.

Las inspecciones se concretan en lo siguiente:

- a) Medición de espesores: La medición de espesores se lo hace en los alabes del rodete (Francis), cangilones (Peltón) con el fin de llevar un registro de la perdida de material por erosión y poder determinar en algún momento, la terminación de la vida útil del mismo.
- **Inspección visual superficial:** La inspección visual y la prueba con líquidos penetrantes, nos dan pauta para definir el tipo de reparación preventiva necesaria, o definitivamente la parada de la máquina para su mantenimiento mayor.
- c) Pruebas con líquidos penetrantes: Las pruebas con líquidos penetrantes nos sirven para poder detectar fisuras o roturas en los metales.
- d) Medición de vibraciones y ruido: Se nota cierta tendencia incrementar el nivel de vibraciones con el tiempo, síntoma de desgaste e incremento de las holguras entre la parte fija y la móvil. Con los alabes desgatados, para una misma potencia se requiere una apertura de alabes; es decir un mayor consumo de agua.; esto es debido a que la alta condición de regulación de caudal con los alabes es menos eficiente y existe perdidas y dispersión.
- e) Control de temperatura: La temperatura del cojinete es un gran indicativo del incremento del empuje y por ende del desgaste del rodete, de allí que su control debe ser continuo.
- 3.13.3 Consideraciones técnicas sobre la vida útil de los elementos hidromecánicos de la turbina Francis y Peltón. [23]
- **3.13.3.1** Comportamiento mecánico. La vida útil de un elemento hidromecánico está ligada principalmente al comportamiento mecánico del límite de esfuerzo por fatiga del acero fundido al Cr-Ni del cual están constituidos los rodetes, álabes y modernamente la totalidad de la maquinaria hidráulica.

La tendencia actual en la fabricación de elementos hidromecánicos es utilizar el acero Cr-Ni 13/4 por sus características de resistencia a la corrosión, abrasión, y básicamente por su soldabilidad. Existen algunos factores que inciden directa o indirectamente sobre la vida útil de las turbinas, los mismos que se manifiestan en un mayor o menor desgaste de las piezas hidromecánicas.

Entre ellas tenemos:

- El diseño de las partes hidromecánicas de la turbina
- Las condiciones de operación
- La calidad de agua turbinada

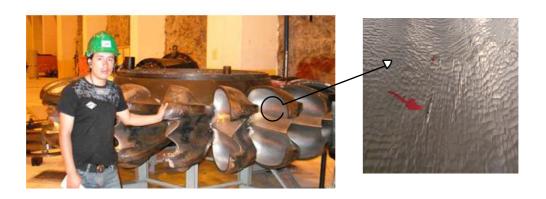
Pero de todos estos factores, el que realmente está fuera de control, es la calidad de agua que depende de:

• La cantidad, el tipo y la magnitud de los sólidos en suspensión

Con estos factores a pesar que exista un buen diseño de la máquina, que la operación se ajuste a las recomendaciones del fabricante, que se use materiales de mejor calidad, siempre aparecen afectadas las partes constructivas de la turbina.

El alto contenido de sólidos, su forma y características en el agua a ser turbinada ha hecho que el desgaste presentado en las turbinas sea agresivo.

Hay que tomar en consideración que los elementos hidromecánicos tienen diferente signo de desgate por cavitación y erosión, pues hay partes hidromecánicas en el interior de la turbina que son afectadas en mayor proporción que otras, haciendo que exista un desbalance de desgaste.


En la turbina Pelton los primeros elementos expuestos al desgaste son aquellos que pertenecen a los inyectores, particularmente el asiento y la aguja, que sirven para la formación del chorro a la salida del inyector, y en la turbina Francis los elementos expuestos son básicamente el caracol y los alabes móviles, esta alta velocidad a la que discurren también los sólidos en suspensión genera el desgaste en dichos elementos por la potencia del rozamiento con que inciden en ellos.

Luego de salir del inyector (Pelton) y caracol (Francis), el chorro va a incidir al alabe del rodete, donde se transforma la energía cinética en energía mecánica, y el chorro tiene una desviación de aproximadamente 180° esto implica una variación de velocidad

de las partículas del agua a lo largo de la superficie de los alabes determinando una superficie ondulada, ya que la potencia de rozamiento en cada punto es distinta de acuerdo a la velocidad y radio de la curvatura.

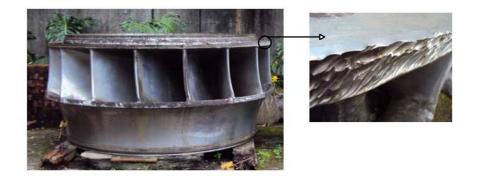

En la figura se puede notar que el desgaste provocado en la paleta del rodete Pelton de la Central Hidroeléctrica Paute presenta ondulaciones parecidas a las que deja el agua del mar sobre la arenada de la playa, por lo que la paleta ha perdido masa y por lo tanto es más delgado afectando su rendimiento.

Figura 42. Evidencias de cavitación en el cangilón del Rodete Pelton (Central Paute)

En esta figura se puede evidenciar que la erosión ha desprendido una parte importante de masa y de perfil hidráulico del rodete Francis de la central hidroeléctrica Agoyán, lo que afecta directamente en el trabajo y eficiencia de la máquina.

Figura 43. Evidencias de erosión y cavitación en el perfil del Rodete Francis (Central Agoyán)

La razón de que exista una diferencia considerable entre los desgastes está ligada principalmente a la calidad del agua como se explico anteriormente además, al material que arrastra, a las características constructivas de la central, y la zona geográfica de la ubicación de la misma.

3.13.3.2 Cambios climáticos. El sistema hidroeléctrico nacional esta sujeta a los cambios climaticos, teniendo en nuestro pais unicamente dos estaciones invierno y verano, que afectan en la produccion de energía hidroeléctrica y para citar un ejemplo, entre los meses de septiembre a febrero se evidencia un caudal minimo en la central Paute, que es la mayor generadora de electricidad en el pais, lo que lleva a suspender el funcionamiento de algunas turbinas con el fin de que las otras puedan funcionar normalmente aprovechando la presion hidroestatica disponible.

En estas suspenciones temporales se pueden realizar algunas inspecciones, controles a la turbina o realizar algun mantenimiento programado.

3.13.3.3 *Horas de funcionamiento*. Los elementos hidromecánicos de las turbinas tienen cierto número de horas de funcionamiento antes de realizar el overhaul.

Estas horas de operación son determinadas por los registros y controles de los desgastes presentados en las superficies de los elementos hidromecánicos de las turbinas y son los técnicos e ingenieros quienes determinan el tiempo de parada de la máquina para realizar el overhaul atendiendo principalmente a la caída de eficiencia de la turbina.

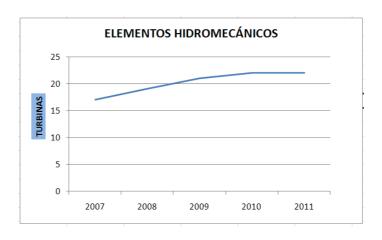
Luego de haber realizado la explicación técnica, se logró recopilar el número de unidades que es encuentran fuera de servicio manteniendo claro de que no todos los elementos hidromecánicos tienen una fecha específica para realizar el overhaul sino que dependen un gran número de parámetros (técnicos, climáticos, operación, y mantenimiento) además cabe mencionar que debe tenerse disponible los repuestos para el cambio oportuno.

Tabla 19. Elementos hidromecánicos (turbinas) fuera de servicio [24]

AÑO DE INICIO DE OPERACIÓN Y OVERHAUL TOTAL		1	AÑO DE INICIO	LIMIDADEC	
HIDROELÉCTRICAS TURBINAS Y OVERHAUL SERVICIO TOTAL 1987 1995 1 1996 1 1996 1 2003 1 1 2005 1 2005 1 1 1997 1 2000 2 1 <t< td=""><td>CENTED AT EC</td><td></td><td></td><td></td><td></td></t<>	CENTED AT EC				
PAUTE MOLINO 10 10 11 11 11 11 11 11 11 11 11 11 11		TUDDINAC			ТОТАТ
PAUTE MOLINO 10 10 10 2003 1 2000 2 2000 1 2 2000 2 2000 1 2 2 2000 1 2 2000 1 2 2 2000 1 2 2 2000 1 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2000 1 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2 2000 1 2 2000 1 2 2 2000 1 2 2000	HIDROELECTRICAS	TURBINAS		SERVICIO	TOTAL
PAUTE MOLINO 10 1996 1 2003 1 2005 1 1983 1991 1 2000 2 2001 2 2001 2 2002 1 2004 1 2005 1 2007 1 2008 1 MARCEL LANIADO 3 1998 1998 1998 1998 1998 1998 1998					
PAUTE MOLINO 10 10 2000 1 1 11					
PAUTE MOLINO 10 10 2005 1 1 1 2 2000 2 2 2001 2 2001 2 2002 1 2003 1 2004 1 2005 1 2007 1 2007 1 2008 1 1 2006 1 3 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2007 1 2008 1 1 2009 1 1 2009 1 2 2009 1 2 2009 1 2 2009 1 2 2007 2013 2008 1 2 2007 2013 2009 1 2 2010 2016 2016 2016 2016 2016 2016				1	
PAUTE MOLINO 10 10 1991 2000 2001 2001 2002 1 2003 1 2004 1 2005 1 2007 1 2008 1 1998 MARCEL LANIADO 3 2006 1 2007 1 2008 1 1978 1986 1 1978 1986 1 1994 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 MAZAR 2 2010 0 0			2003	1	
PAUTE MOLINO 10 10 2000 2 2001 2 2002 1 2003 1 2004 1 2005 1 2007 1 2008 1 MARCEL LANIADO 3 1998 1998 2006 1 2007 1 2008 1 1978 1978 1978 1986 1 1986 1 2002 1 1994 1 4 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 MAZAR 2 10 10 10 10 10 10 10 10 10			2005	1	
PAUTE MOLINO 10 2001 2002 1 2002 1 2003 1 11 11 2004 1 2005 1 2007 1 2008 1 MARCEL LANIADO 3 2006 1 2007 1 2008 1 1998 2006 1 2007 1 2008 1 1998 1998 1998 1 2006 1 2007 1 2008 1 1978 1986 1 1978 1986 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 MAZAR 2 2010 0			1983		
PAUTE MOLINO 10 2001 2002 1 2003 1 2004 1 2005 1 2007 1 2008 1 MARCEL LANIADO 3 2006 1 2007 1 2008 1 1998 2006 1 2007 1 2008 1 1998 1998 1998 1 1978 1986 1 1978 1986 1 2002 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2009 1 SAN FRANCISCO 2 2007 2013 0 MAZAR 2 2010 0			1991	1	
PAUTE MOLINO 10 2002 1 2003 1 2004 1 2005 1 2007 1 2008 1 1998 MARCEL LANIADO 3 2006 1 2007 1 2008 1 1998 2006 1 2007 1 2008 1 1978 1986 1 1986 1 1986 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 MAZAR 2 2016 0			2000	2	
PAUTE MOLINO 10 2003 1 2004 1 2005 1 2007 1 2008 1 1998 MARCEL LANIADO 3 2006 1 2007 1 2008 1 1998 1998 2008 1 1978 1978 1986 1 1986 1 1994 1 4 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 MAZAR 2 2010 0			2001	2	
2003 1 2004 1 2005 1 2007 1 2008 1 2008 1 2008 1 2008 1 2008 1 2006 1 3 2007 1 2008 1 2008 1 2008 1 2008 1 2008 1 2008 1 2009 1 2009 1 2009 1 2009 1 2009 1 2007 2013 2010 2016 20	DALIER MOLDIO	1.0	2002	1	
2004 1 2005 1 2007 1 2008 1 2008 1 2008 1 2008 1 2008 1 2006 1 3 2007 1 2008 1 2008 1 2008 1 2008 1 2008 1 2008 1 2008 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 1 2000 2000 1 2000	PAUTE MOLINO	10	2003	1	11
2005 1 2007 1 2008 1				1	
MARCEL LANIADO 3 1998					
MARCEL LANIADO 3 2006 1 3 2007 1 3 2008 1					
MARCEL LANIADO 3 2006 1 2007 1 2008 1 1978 1986 1 1986 1 1986 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 MAZAR 2 1998 2007 0 0 0					
MARCEL LANIADO 3 2006 1 2007 1 2008 1 PUCARÁ 2 1978 1986 1 2002 1 2002 1 2009 1 SAN FRANCISCO 2 2007 2013 2010 2016 MAZAR 2 2010 2016 2016				1	
MARCEL LANIADO 3 2007 1 2008 1 1 2008 1 1 2008 1 1 2008 1 1 2008 1 1 2008 1 1 2008 1 2 2002 1 2009 1 2 2009 1 2 2013 2 2013 2 2016 2 20				1	
2008 1 1978 1986 1 4	MARCEL LANIADO	3			3
PUCARÁ 2 1986 1 4 2 2002 1 2009 1 SAN FRANCISCO 2 2013 0 MAZAR 2 2016					
PUCARÁ 2 1986 1 4 2 2002 1 2009 1 SAN FRANCISCO 2 2013 0 MAZAR 2 2016				I	
PUCARÁ 2 1994 1 4 2002 1 2009 1 SAN FRANCISCO 2 2013 0 MAZAR 2 2016					
2002 1 2009 1 SAN FRANCISCO 2 2007 MAZAR 2 2010 0					
	PUCARA	2		1	4
SAN FRANCISCO 2 2013 0 MAZAR 2 2010 0				1	
SAN FRANCISCO 2 2013 0 MAZAR 2 2010 0			2009	1	
MAZAR 2 2010 0	SAN EDANCISCO	2	2007		0
MAZAR 2 2016	SAIN FRANCISCO		2013		
MAZAR 2 2016	MAZAD		2010		0
	MAZAK	2			U
		ı			22

3.14 Análisis de la demanda.

3.14.1 *Demanda*. Es la cantidad de bienes y servicios que el mercado requiere o solicita para buscar la satisfacción de una necesidad específica a un precio determinado; por lo tanto la fuente de potenciales ingresos de un proyecto; es la razón de ser del mismo.


Un aspecto fundamental del estudio de la presente tesis es la realización de un análisis de mercado en cual se revisará el estado de la oferta y la demanda en la rama de la reparación o rehabilitación de elementos hidromecánicos de las turbinas Francis y Peltón de generación eléctrica de una potencia instalada mínima de 35MW y máxima de 110 MW, además determinaremos su incremento anual aproximado, así como también la cantidad de plantas industriales existentes en el país que ofrecen este servicio.

3.14.1.1 *Demanda histórica*. Para la obtención de la demanda histórica se tomó como base, los datos de los elementos hidromecánicos por turbina que se encuentran fuera de servicio a cargo de **CELEC E.P.**

Tabla 20. Demanda histórica de los elementos hidromecánicos (turbinas) fuera de servicio.

AÑO	GRUPOS HIDROELÉCTRICOS	ELEMENTOS HIDROMECÁNICOS (TURBINAS)	DEMANDA HISTÓRICA
2007	INECEL	17	17
2008	INECEL	19	19
2009	INECEL	21	21
2010	CELEC.SA	22	22
2011	CELEC.EP	22	22

Figura 44. Demanda histórica de los elementos hidromecánicos (turbinas) fuera de servicio.

3.14.1.2 *Demanda proyectada*. Para el cálculo de la demanda proyectada se toma los datos obtenidos de la demanda histórica y luego aplicamos el método de regresión lineal. Este método implica la búsqueda de una línea que se "ajuste" en forma óptima a

la serie histórica. El método más común es el de mínimos cuadrados, o método de línea recta.

La ecuación de ajuste de la proyección tiene la siguiente forma:

$$Y = a + bX \tag{1}$$

En donde: Y=consumo aparente

a= parámetro o incógnita

b=parámetro o incógnita

X=tiempo centralizado

Sacamos las ecuaciones normales para poder calcular los parámetros y encontrar la función de proyección.

Luego se estructura un cuadro en el que se puede obtener las ecuaciones normales planteadas:

Tabla 21. Demanda histórica de los elementos hidromecánicos (turbinas) fuera de servicio.

DEMANDA HISTÓRICA				
AÑOS	Y	X	XY	\mathbf{X}^2
2007	17	-2	-34	4
2008	19	-1	-19	1
2009	21	0	0	0
2010	22	1	22	1
2011	22	2	44	4
Σ	101	0	13	10

Ecuación de la recta:

$$Y = a + bX$$

$$a = \frac{\sum Y}{n} = \frac{101}{5} = 20.20$$

$$b = \frac{\sum XY}{\sum X^2} = \frac{13}{10} = 1.3$$

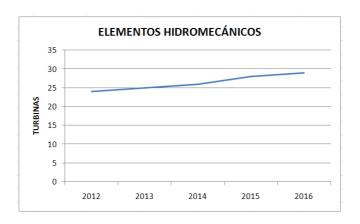
$$Y = 20.20 + 1.3X$$

Para: X = (3-4-5-6-7)

Y(2012) = 20.20 + 1.3(3) = 24

Y(2013) = 20.20 + 1.3(4) = 25

Y(2014) = 20.20 + 1.3(5) = 26


Y(2015) = 20.20 + 1.3(6) = 28

Y(2016) = 20.20 + 1.3(7) = 29

Tabla 22. Demanda proyectada de los elementos hidromecánicos (turbinas) fuera de servicio.

AÑO	ELEMENTOS HIDROMECÁNICOS -TURBINAS
2012	24
2013	25
2014	26
2015	28
2016	29

Figura 45. Demanda proyectada de los elementos hidromecánicos (turbinas) fuera de servicio.

3.15 Análisis de la oferta

3.15.1 *Oferta*. Es la cantidad de bienes o servicios que un cierto número de oferentes (productores) está dispuesto a poner a disposición del mercado a un precio determinado. El levantamiento de la oferta se realizara principalmente de fuentes primarias, procurando establecer la cantidad y calidad de producto o servicio disponible en el mercado.

Según la investigación en el Ecuador no existen plantas industriales que presten el servicio de reconstrucción o rehabilitación de elementos hidromecánicos de las turbinas Francis y Peltón.

3.15.1.1 *Oferta histórica.*

Tabla 23. Oferta histórica de servicio de rehabilitación de elementos hidromecánicos en el Ecuador

OFERTA HISTÓRICA				
AÑOS	Y	X	XY	X^2
2007	0	-2	0	4
2008	0	-1	0	1
2009	0	0	0	0
2010	0	1	0	1
2011	0	2	4	4
Σ	0	0	4	10

Tabla 24. Oferta proyectada de los elementos hidromecánicos rehabilitados

AÑO	ELEMENTOS HIDROMECÁNICOS –TURBINAS REHABILITADAS
2012	0
2013	0
2014	0
2015	0
2016	0

3.15.1.2 *Oferta proyectada.*

Tabla 25. Demanda insatisfecha del servicio de rehabilitación de elementos hidromecánicos en el Ecuador

AÑOS	OFERTA PROYECTADA	DEMANDA PROYECTADA	DEMANDA INSATISFECHA
2012	0	24	-24
2013	0	25	-25
2014	0	26	-26
2015	0	28	-28
2016	0	29	-29

El estudio de mercado demuestra claramente que existe una demanda insatisfecha razón por la cual existe el justificativo necesario para la instalación de la planta industrial de mecanizado.

A continuación se va analizar el servicio de reconstrucción de elementos hidromecánicos a nivel internacional.

3.16 Precios de la competencia. (Internacional) [25]

En el año 2009 LA CORPORACIÓN ELÉCTRICA DEL ECUADOR realizó una investigación de las empresas ecuatorianas que brinden el servicio de reconstrucción o rehabilitación de elementos hidromecánicos concluyendo lo siguiente:

Mediante una exhaustiva investigación en el Ecuador por parte del Doctor Jorge Luis González, director ejecutivo del instituto nacional de contratación pública, indico; "en referencia al pedido de verificación de existencia de producción nacional para la contratación de los servicios de rehabilitación de los componentes de las turbinas Francis y Peltón, el recubrimiento contra erosión para los componentes de las mismas, informando que NO se ha identificado producción nacional competitiva de acuerdo a las características técnicas".

Por lo tanto en el Ecuador no existe ninguna empresa que preste el servicio de reconstrucción de partes hidromecánicas de turbinas Francis y Peltón razón por la cual se optó por recurrir al mercado internacional.

Tabla 26. Empresas que prestan el servicio de reconstrucción de elementos hidromecánicos a nivel internacional.

PAIS	INDUSTRIA	
ALEMANIA	AES/CHIVOR	
SUECIA	IGINSA	
SUECIA	TURBAN	
CHILE	ANDRITZ CHILE LTDA	

En Latinoamérica la empresa ANDRITZ CHILE LTDA. Tiene un gran prestigio en lo referente a la reconstrucción de elementos hidromecánicos razón por la cual se requirió sus servicios para la reconstrucción de los rodetes, alabes directrices, tapa superior e inferior y el tubo de aspiración de las turbinas Francis de la Central Hidroeléctrica Agoyán que se justificó en lo siguiente:

Para el cabal cumplimiento de su objetivo social, CELEC E.P Unidad de Negocio HidroAgoyán requiere que todo su equipo de producción este en perfecto estado de funcionamiento dándole para el efecto el debido cuidado y mantenimiento, tal es el caso de las turbinas y sistemas mecánicos de la central Hidroeléctrica Agoyán, que luego de haber realizado un diagnostico pertinente, se estableció, conforme lo manifestado por el Ing. Mauricio Caicedo, Jefe de la Central Agoyán, la necesidad de mantener en stock repuestos para el mantenimiento mayor u overhaul de las unidades 1 y 2.

La cotización para tal fin fue solicitada a la Campania ANDRITZ CHILE LTDA. Por parte de HidroAgoyán mediante solicitud de cotización el 01 de agosto del 2009. En el contrato constan servicios que se detallan en los cuadros siguientes:

Tabla 27. Precios por reparación mecánica, maquinados [25]

ITEM	DESCRIPCIÓN	CANT	P.U	PRECIO TOTAL
1.1	Rehabilitación mecánica de los rodetes y cono de salida	2	524.200	1'048.400
1.2	Rehabilitación mecánica de la tapa superior del distribuidor de la turbina	1	327.600	327.600
1.3	Rehabilitación mecánica del juego de 20 álabes directrices móviles del distribuidor de la turbina.	20	10.810	216.200
1.4	Transporte marítimo de todos los componentes desde el Ecuador a Chile y viceversa, incluyendo todos los transportes terrestres especiales y los trámites aduaneros para la importación temporal a Chile y Reexportación a Ecuador	E	160.200	160.200
		PRECIO TOTAL		1'752.400

Tabla 28. Precios por recubrimiento componentes

ITEM	DESCRIPCIÓN	CANT	P.U	PRECIO TOTAL
1.1	Recubrimiento de protección de los rodetes según detalle en alcance de suministro	2	110.275	220.550
1.2	Recubrimiento de la tapa superior del distribuidor según detalle en alcance de suministro.	1	241.150	241.150
1.3	Recubrimiento de la tapa inferior del distribuidor según detalle en alcance de suministro	1	85.500	85.500
1.4	Recubrimiento del cono de la salida del rodete según detalle del alcance de suministro		12.000	12.000
1.5	Recubrimiento de un juego completo de 20 álabes directrices móviles, según detalle en el alcance de suministro		9.040	180.800
			ECIO	
		TOTA	L USD.	740.000

El precio pactado se fijó en dólares de los Estados Unidos de América llegando a costar \$ 2`492.400.

CAPÍTULO IV

4. ESTUDIO TÉCNICO

4.1 Tamaño del proyecto

Es la determinación de la máxima capacidad de producción que ha de instalarse, que desde luego irá de conformidad con la demanda del mercado. [26]

4.2 Capacidad de planta

Se suele considerar el tamaño de la planta como la capacidad instalada de producción, expresada en volumen, peso, valor, o número de unidades de producto elaboradas por año, ciclo de operación, mes, día, turno, hora, etc. En algunas ocasiones se expresa la capacidad instalada en función de la materia prima utilizada en el proceso.

4.3 Capacidad

Cuantifica el número de unidades de un proyecto que se fabricará en un periodo de tiempo.

No es posible determinar un tiempo estandarizado para la rehabilitación de los elementos hidromecánicos, pues el tiempo estará en función de la gravedad de los desgastes provocados por la erosión y desgaste.

4.4 Factores determinantes del tamaño

El tamaño de una nueva unidad de producción es una tarea limitada por las relaciones recíprocas que existen entre el tamaño y los siguientes aspectos:

4.4.1 El mercado. La demanda es uno de los factores más importantes para condicionar el tamaño de un proyecto. Como se analizó en el estudio de mercado del capítulo III, se tiene una demanda insatisfecha de 22 conjuntos de elementos hidromecánicos (turbinas) que se encuentran inactivos. Para determinar el tiempo de rehabilitación de los elementos hidromecánicos de cada una de las turbinas debemos basarnos en trabajos realizados en las centrales Agoyán, Pucará, Paute, Marcel Laniado,

pero cabe indicar que en estas centrales hidroeléctricas el mantenimiento programado a permitido únicamente realizar reparaciones locales sin desmontar la turbina realizando reparaciones pequeñas.

Los rodetes FRANCIS y PELTON son los elementos hidromecánicos, que mas rápido de deterioran por ser los generadores del movimiento mecánico hacia el estator y por recibir el impacto del agua en forma directa. Según la reconstrucción de los rodetes Pelton realizados en la Central Hidroeléctrica Mantaro en el Perú la rehabilitación de dos rodetes lleva un tiempo de 4 meses aproximadamente trabajando las 24 horas del día. [10] Con este antecedente podemos estimar una reconstrucción de 2 rodetes en el año aclarando que no todos los operadores se van a concentrar en un solo elemento hidromecánico, sino que estarán divididos en grupos de trabajo para abastecer la reconstrucción de otros elementos.

4.4.2 La disponibilidad de los materiales. El abastecimiento suficiente en cantidad y calidad de los materiales es un aspecto vital en el desarrollo del proyecto y tomando en cuenta que se deberá listar todas las materias primas e insumos necesarios para la rehabilitación de los elementos hidromecánicos.

El estado ecuatoriano cuenta con un gran número de empresas proveedoras de materiales e insumos para la rehabilitación de los elementos hidromecánicos.

A continuación se realizará un análisis del tipo de soldadura y electrodos a utilizar en la rehabilitación.

4.4.2.1 Materiales y equipos para relleno con soldadura

- a) Soldadura arco Manual: Se realizará mediante electrodo y su uso es el más generalizado, para hacer relleno, por la capacidad de depositar mayor material de aporte.
- **Soldadura Tig:** De reducida capacidad de aporte y su uso se limita a rellenado de pequeñas cavitaciones y la reparación del divisor de flujo en sitio en el rodete Peltón.

4.4.3 Análisis para la selección de electrodos. Para la Selección de los electrodos se tendrá que basar en la composición química de las aleaciones de los elementos hidromecánicos y en los trabajos realizados por parte del personal técnico de las centrales hidroeléctricas pertenecientes a **CELEC E.P.** Los rodetes de las centrales hidroeléctricas pertenecientes a **CELEC E.P** son de las mismas características químicas en cuanto a sus aleaciones, es decir una composición química Cr-Ni, según las normas internacionales de fabricación.

4.4.3.1 Especificaciones técnicas para el material base. Las piezas hidromecánicas casi en su totalidad fueron fundidas en una sola pieza, con un material de acero inoxidable Cr-Ni el más empleado en hidro-generación eléctrica. Esta combinación de cromo-níquel acero fundido, de gran pureza de aleación se caracteriza sobre todo por su gran resistencia a la corrosión y al desgaste, así como por su soldabilidad y grandes propiedades de imantación, necesarias para las pruebas de partículas magnéticas, su dureza promedio se encuentra entre 270 HB-310HB.

Tabla 29. Comparación de normas internacionales para el acero inoxidable Cr- Ni 13-4 [27]

PAIS	NORMA	DENOMINACION	
República		Nº material: 1,4313	
Federal de	DIN	X4CrNi13 4	
Alemania		G-X5 CrNi13 4	
Francia	AFNOR	Z4 CND 13,4M	
Trancia	AFNOR	Z8 CD 17-01	
Gran Bretaña	B.S.	425 C11	
Gran Bretana		425 C12	
Italia	UNI	GX6CrNi13 04	
Japón	JIS	SCS 5	
зароп	115	SCS6	
Suecia	SS	2385	
Estados			
Unidos	ASTM/SAE	A743 CA 6-NM	

Los electrodos dependen de la composición química del material base a ser reparado, y teniendo en cuenta que cada empresa distribuidora y productora de electrodos les designan su propio código de fabricación, nombre y logo.

Tabla 30. Selección de electrodos según su composición química.

ELEMENTO HIDROMECÁNICO	MATERIAL	ELECTRODO
Turbina Francis		
Rodete Francis	DIN G-X5 CrNi13/4	Chroma Weld309 MOL
Alabe Móvil	ASTM A743 CA6NM	Chroma Weld308 MOL
Tapa Superior	MT 41	Chroma Weld308 MOL
Tapa Inferior	MT 41	Chroma Weld308 MOL
Cono Rodete	DIN G-X5 CrNi13/4	Chroma Weld309 MOL
Turbina Pelton		
Rodete Pelton	DIN 17445 GX5 13-4 CrNi	Chroma Weld309 MOL
Aguja	DIN 17445 GX5 13-4 CrNi	Chroma Weld309 MOL
Asientos	DIN 17445 GX5 13-4 CrNi	Chroma Weld309 MOL

Como se indicó anteriormente los rodetes son los elementos con mayor presentación de desgaste por lo que a continuación se indicará un cuadro de la selección del electrodo con su debida comparación química.

Tabla 31. Elementos químicos constitutivos del rodete PELTON [28]

	COMPOSICIÓN QUÍMICA DEL MATERIAL DEL RODETE PELTON (DIN G-X5 CRNI13/4)		
C		0,08%	
Mn		0,50%	
Si		0,50%	
Cr		12,50%	
Ni		3,80%	
Mo		0,50%	

Tabla 32. Elementos químicos constitutivos del electrodo Weld 309 mol

COMPOSICIÓN	COMPOSICIÓN QUÍMICA DE LOS ELECTRODOS Weld		
	309 mol		
C	0,07%		
Mn	0,80%		
Si	0,40%		
Cr	13,00%		
Ni	4,20%		
Mo	0,70%		

Estos estudios fueron realizados por profesionales de las centrales Agoyán y Pucará.

Las empresas dedicadas a la fabricación de electrodos presentan un cuadro de composición química de cada uno de sus productos con su debida aplicación. Ahora para determinar el tiempo y temperatura a la cual deben estar expuestos los elementos hidromecánicos antes y después de la rehabilitación por soldadura se debe realizar el análisis metalográfico correspondiente.

4.5 Tecnología y equipos

4.5.1 Consideraciones técnicas. Se considera tapas, rodetes, conos, agujas, asientos y alabes directrices con dimensiones de mecanizado máximo de 5m de diámetro exterior, con una altura máxima de 1.5m y un peso máximo de 25tn para materiales de acero inoxidable martensítico. Los equipos necesarios para la rehabilitación de los elementos hidromecánicos de las turbinas Francis y Pelton se describen luego de analizar los sistemas a implementarse dentro de la planta de mecanizado.

4.5.2 *Tipos de sistemas utilizarse en la planta.*

Tabla 34. Sistemas a utilizarse en la planta industrial de mecanizado.

ITEM	PESO (Tn)	CORRIENTE ELÉCTRICA (V)	AIRE PRESURIZADO	VENTILACIÓN NATURAL	AGUA
Cabina de pulido	30	110/220	X	X	
Cabina de soldadura	30	110/220/480		X	
Cabina de metalizado	30	110/220/480	X	X	X
Cabina horno	30	480		X	
Galpón de almacenamiento	60	110/220			
Balanceo estático	30	110/220	X	X	X
Área de mecanizado					
Torno vertical	100	110/220/480	X	X	
Centro de mecanizado	20	110/220/480	X	X	X
Torno horizontal	20	110/220/480	X	X	
Bancos de trabajo	15	110/220	X	X	

4.5.2.1. *Selección del compresor*. **[29]** Los compresores se emplean para aumentar la presión de una gran variedad de gases y vapores para un gran número de aplicaciones. Un caso común es el compresor de aire, que suministra aire a elevada presión para transporte, pintura a pistola, inflamiento de neumáticos, limpieza, herramientas neumáticas y perforadoras.

Tabla 35. Relación de compresores de aplicación industrial.

Compresor de pistones	Compresor de tornillo
	Eles of Ele-
menor eficiencia	mayor eficiencia
 menor vida útil 	mayor vida útil
 menor calidad de aire 	 mejor calidad de aire
 alto desgaste de partes 	 desgaste mínimo de partes
 operación a altas temperaturas 	 operación a temperaturas moderadas
 aplicaciones pequeñas 	 todo tipo de aplicaciones
 elevado nivel de ruido 	 mínimo nivel de ruido
 alto consumo de energía 	 bajo consumo de energía
 menor costo inicial 	 mayor costo inicial

Luego de haber realizado esta comparación, se llega a determinar que la mejor opción es un compresor de tornillos.

4.5.2.2 Cálculo para seleccionar el compresor. [30] Para el cálculo del compresor en las herramientas neumáticas hay que distinguir:

- Consumo especifico
- Coeficiente de utilización o consumo
- Coeficiente de simultaneidad
- a) Consumo específico: Se llama consumo específico de una herramienta o equipo al consumo de aire requerido para servicio continúo a la presión de trabajo dada por el fabricante. Se expresa en aire libre (lt/min o m³/min). Ordinariamente las herramientas están diseñadas para una presión de 6-7 bar en la entrada misma de la herramienta, por consiguiente no debe confundirse con

la presión suministrada por el compresor, que deberá tener en cuenta las pérdidas de presión desde el compresor a la herramienta.

- **Coeficiente de utilización o consumo:** Por coeficiente de utilización entenderemos el margen de operación intermitente o factor de servicio; es decir, el tiempo que la herramienta esta parada por índole de su trabajo. En otras palabras, el tiempo que la herramienta esta en uso.
- c) Coeficiente de simultaneidad: Denominaremos coeficiente de simultaneidad al promedio de los coeficientes de utilización de cada una de las herramientas.

Facilitamos unos valores aproximados para el conjunto de equipos de una planta industrial.

Así, para:

Vamos a montar una sección neumática en el cual intervienen las siguientes herramientas:

Tabla 36. Consumo de aire comprimido [30]

MÁQUINAS	consumo en	consumo en	coeficiente de
HERRAMIENTAS	N m ³ /min	lt/min	simultaneidad 40%
Amoladora de 6" x 12 diam.			
Muela	1,13	1130	452
Amoladora de 8" x 12 diam.			
Muela	1,27	1270	508
Pulidora de disco 125 diam. mm	0,3	300	120
Pulidora de disco 80 diam. mm	0,65	650	260
Pulidora de disco 152 diam. mm	0,65	650	260
Martillo cincelador	0,22	220	88
Boquilla del metalizador	2,51	2.510	1.004
Soplete Standblastig	2,85	2.850	1.140
Centro de mecanizado	1,5	1500	600
Torno horizontal	0,85	850	340
Torno vertical	0,85	850	340
Bancos de trabajo	0,3	300	120
TOTAL		12.780	5.112

Multiplicamos por un 40% de coeficiente de simultaneidad, nos queda:

 $12.780Lt / \min x40\% = 5.112Lt / \min$

Si aplicamos la relación nemotécnica de: 1C.V =110 N lt/min de aire efectivo, tendremos que:

$$\frac{5.112Lt/\min}{110NLt/\min} = 46,47 \cong 47CV$$

En resumen precisaríamos de un compresor que nos proporcione 47 CV o 48 HP de motor con capacidad de 5.112 Lt/min, a una presión de 8/10 Bar.

Compresor.

Figura 46. Equipo Aire comprimido (compresor de tornillos)

Características técnicas

- Compresor de tornillos modelo CA-AIRBLOK50 de 50 HP con caudal de 5120 lt/min, presión máxima 10 BAR peso 715 Kg.
- Secador frigorífico DRY modelo CA-TDRY63 con paso de caudal de 6300 lt/min a 3°C y peso 73 Kg.
- Calderin vertical compuesto de: deposito, válvula de seguridad, manómetro, llave de salida de aire, llave de purga de la condensación modelo CA-LT900CE con capacidad de 900 lt. Medidas 800 x 2115, presión máxima de almacenaje 11 BAR. Y peso 210 Kg.

4.5.2.3 La ventilación natural. Los extractores Atmosféricos constituyen la solución ideal para problemas de ventilación estos pueden ser utilizados en bodegas, naves industriales etc.

Son ecológicos pues no necesitan de energía eléctrica para funcionar mantienen los lugares de trabajo mas limpios y frescos.

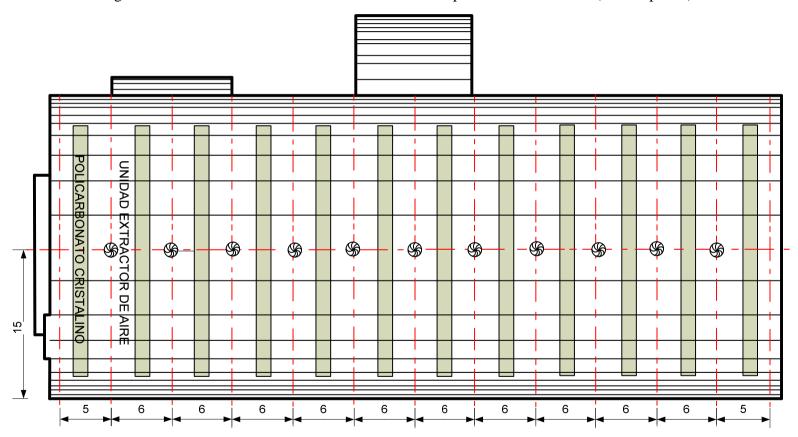
La ventilación natural puede ser aprovechada en toda la planta debido a su cubierta y los fuertes vientos que experimenta la región donde esta ubicada las bodegas de la central Agoyán.

El extractor se debe colocar en la parte más alta del recinto a ventilar y, lo más lejos posible de las entradas de aire de dicho ambiente por los procesos de reconstrucción que se lleven a cabo en el local o zonas criticas que producen la mayor cantidad de aire contaminado por humos, calor, vapores, gases, polvos en suspensión etc.

Funcionamiento bajo condiciones de viento:

El viento fresco mueve las aspas del extractor, las cuales, por su diseño aerodinámico, generan una fuerza de succión en el interior del aparato, que permite la extracción del Aire Caliente acumulado bajo la cubierta del inmueble.

Figura 47. Sistema de ventilación eólico


Revisando un catalogo de extractores tomamos el EXTRACTOR ATMOSFERICO Modelo VATM-30 lo suficientemente potente para cubrir las necesidades la planta.

A continuación se realiza la ubicación de los extractores sobre la cubierta de la planta.

Distribución de los extractores en la cubierta de la planta.

Vista superior

Figura 48. Instalación de los ventiladores eólicos en la planta de mecanizado (vista superior)

- **4.5.3** Selección de los tornos. Torno vertical para el mecanizado de un elemento hidromecánico con un diámetro máximo de 5m, con una altura de 1.5m y con un peso máximo de 25tn, será el elemento más grande a ser reconstruido. (Tapa Superior, Tapa Inferior, Rodete Francis y Rodete Pelton).
- **4.5.3.1** *Torno vertical.* En este gigantesco torno serán reconstruidos los perfiles hidromecánicos del Rodetes Francis, Rodete Pelton, Tapa superior y Tapa inferior.

El torno vertical serie pesada con dos columnas y el puente está equipado con un equipo de control numérico.

El giro de la mesa está asegurado por una caja de engranajes con ejes verticales movido por un motor SIEMENS de corriente alterna.

La mesa está provista de un sistema de rodamiento hidrostático. Con esta solución, la potencia del motor puede ser usada completamente y se obtiene una altísima precisión.

Tabla 37. Torno vertical serie pesada (rodamiento hidrostático).

Modelo	TITAN-TMG modelo Sc 50/65 Y –CNC-MS 01	Características técnicas		
		Pieza a mecanizar		
		máximo diámetro	6500 mm	
		máxima altura	2500 mm	
		máximo peso	80000 Kgs	
		Recorrido vertical del puente	1500 mm	
		Un RAM para torneado, mandrilado y roscado.		
		Un cambiador automático de herramientas de 12.		
		Equipamiento eléctrico Siemens y Schneider.		
		Motor principal Siemens A.C.		
		Control numérico SIEMENS SIN 840 D-sl.	UMERIK	
		Componentes hidráulicos Parker a Atos.		
A. Carlotte		Sistema de medición Heidenhain.		

4.5.3.2 *Centro de mecanizado*. Centro de mecanizado de tres ejes, cuya función será recuperar los perfiles hidrodinámicos no lineales de los álabes directrices de la Turbina Francis.

Tabla 38. Centro de mecanizado.

	C.M JOHNFORD		
Modelo	modelo SV-48	Características técnicas	
Acceptance of the second of th		control numérico FANUC 21i	
		Mesa	1300 x 700 mm
		Peso admisible de la mesa	1500 Kgs
		Curso longitudinal (eje X)	1220 mm
		Curso transversal (eje Y)	710 mm
		Curso vertical (eje Z)	630 mm
		Distancia mesa-nariz cabezal	100-730 mm
	Super	Distancia eje principal a	
VERTICAL STABLE		columna	740 mm
		Cono cabezal	BT 40
		Potencia motor principal C.A	20 HP
		Gama de revoluciones	60-10000 rpm
		Avances rápidos X,Y,Z	24/24/24 m/min
		Avances de trabajo X,Y,Z	1/12000 mm/min

4.5.3.3 *Torno horizontal*. Torno horizontal para el mecanizado de un elemento con un peso máximo de 1.5 tn y de diámetro máximo de 1m. (Cono, Aguja, y Asiento).

Tabla 39. Torno horizontal.

Modelo	C.M JOHNFORD modelo	Caractarísticas tácnicas	
Modelo	CS-12	Características técnicas Control numérico Mesa Peso admisible de la mesa Curso longitudinal (eje X) Curso transversal (eje Y) Distancia eje principal a columna Potencia motor principal C.A Gama de revoluciones Avances rápidos X,Y Avances de trabajo X,Y	1500 x 700 mm 1500 Kgs 1220 mm 710 mm 740 mm 20 HP 60-10000 rpm 24/24 m/min 1/12000 mm/min

4.5.4 *Montacargas*. Dentro de la planta será necesario para poder movilizar elementos pequeños como las Agujas, Asientos, y Alabes directrices.

Estas máquinas se desplazan por el suelo, por tracción motorizada, destinada fundamentalmente a transportar, empujar, tirar o levantar cargas. Para cumplir esta función es necesaria una adecuación entre el aparejo de trabajo de la carretilla y el tipo de carga.

Tabla 40. Montacargas.

Modelo	Modelo CB Características técr			
		Carretilla cuatro caminos		
		Capacidad 40.000 Kg		
		Funcionamiento eléctrico		
		Altura máxima de trabajo 7,5m		
		Neumáticos de goma		
11100		Desplazador lateral		

4.5.5 *Camión grúa*. El camión grúa es indispensable para del transporte fuera de la planta pues tendrá que trasladar los elementos hidromecánicos mas pesados (20tn) por reparar desde el galpón de almacenamiento, hasta el ingreso de la planta para posteriormente trasladar los elementos hidromecánicos reconstruidos desde la planta, hasta el galpón de almacenamiento.

Tabla 41. Camión grúa.

Modelo	IVECO GRÚA 26-420	Características técnicas		
		GORMACH. E Hidráulica		
Ŧ		Alcance 23m, tracción 6x2		
1		Eje trasero direcciónable Potencia 420 CV		
ė.				
		Capacidad 40000 Kg		
		Combustible diesel		

4.5.6 *Puente grúa.* Fundamental dentro de la planta, pues es el encargado de trasladar todos los elementos hidromecánicos mas pesados de una estación a otra.

El puente grúa debe estar a una altura máxima de 10m del piso al gancho de izaje, se considera 3m más para el cuerpo del puente grúa, continuando con la cubierta, que soportará el peso del puente grúa más el peso de izaje que sumaría 40Tn en su estructura.

Tabla 42. Puente grúa.

Modelo	CMAA clase D	Características técnicas		
		Puente grúa de dos vigas		
	The same of the sa	trocha (luz) de 24m		
	A STATE OF THE PARTY OF THE PAR	Sistema de izaje principal de dos		
		Carros de 30/10 tn		
		Aparejo monorriel 10tn		
		Gancho dinamómetro		

4.5.7 Equipos de soldadura. En la soldadura es necesario controlar la temperatura de soldadura en los diferentes tramos de relleno. El no alterar la estructura del material base se debe tener sumo cuidado y mantener en márgenes establecidos en los procesos de soldadura de acuerdo al material base y material de aporte.

Tabla 43. Equipo de soldadura.

Modelo	PRO EVOLUTION 4200	Características técnicas
	•	Voltaje 230 V
		Factor de potencia 0.93
		Rango de voltaje SMAW 10-420 Amp
		Rango de voltaje TIG 5-420 Amp
	Кемрома	Alimentador de alambre Promig 530 Evolution
A COL	2	Panel de control ML Promig 530
		Control MIG pulsada/sinérgica.
•		Control de parámetros de soldadura.
		Selector del método de soldadura.
		Control dinámico SAW/MIG.
		Visualización de parámetros de soldadura.
		Prueba de gas.

4.5.8 Equipos para desbaste y pulido. El desbaste y pulido será realizado de forma manual utilizando amoladoras neumáticas y eléctricas.

Tabla 44. Equipos de desbaste

Modelo	BOCH/DEWALL	Características técnicas		
		AMOLADORA BOSCH HSW-6238 eléctrica de 7in con potencia de 2 HP, velocidad máxima de 8300 rpm.		
		AMOLADORA BOSCH PSB9-1013 eléctrica de 7in con potencia de 2 HP, velocidad máxima de 6000 rpm.		
		AMOLADORA INDUSTRIAL OF-1912-RE neumática		
		7in con potencia de ½ HP, velocidad máxima de 6000 rpm.		
		AMOLADORA INDUSTRIAL OF-1912-RE neumática		
		cabezal horizontal 7in con potencia de ½ HP, velocidad máxima de 6000 rpm.		

4.5.9 *Horno*. Dentro del horno se realizará el precalentamiento y tratamiento térmico de todos los elementos hidromecánicos, y teniendo en cuenta la contaminación ambiental que producen los hornos por el uso de combustibles para su funcionamiento, se recomienda instalar un horno eléctrico.

Tabla 44. Horno

Modelo	Modelo FREDIZH Características técnicas		
		Horno de carga única.	
		Capacidad de 25000 Kg construido con	
		un carro aislado y móvil que puede	
		retirarse del horno para cargar y	
		descargar.	
		Sistema de calentamiento eléctrico.	
		Selle hermético con sistema que	
		permite el escape de gases.	

4.5.10 Equipo para balanceo estático. El rodete Francis, rodete Pelton y Cono, serán sometidos a balanceo estático ya que estos elementos dentro de la turbina giran a causa del impacto del agua y deben presentar un balance en todos los puntos de su periferia para no ocasionar daños a todo el conjunto mecánico.

Tabla 45. Equipo Balanceador.

Modelo	Balanceadora Serie IRD B-50	Características técnicas		
		Capacidad de hasta 25000kg. Constituido por dos rieles cepillados, paralelas, ancladas sobre pozo de concreto Integrada con sensores que determinan los puntos de desbalance.		

4.5.11 Equipo para metalizado. Todos los elementos hidromecánicos una vez reconstruidos serán sometidos a un metalizado para protegerlos contra la corrosión, resistencia al desgaste, abrasión, conductibilidad térmica o eléctrica utilizando el equipo de metalización por arco.

Tabla 46. Equipo para metalizado

Modelo	Metalizador ARC-SPRAY 300.	Características técnicas
	1	Potencia 15 KVA.
	ARC-APPAY 300	Corriente de arco 50-300 Amp.
		Aire comprimido requerido
		1000L/min.
		Peso 130 Kg.

4.5.12 Costos de maquinaria y equipos. A continuación se detallan la maquinaria y equipos necesarios para la planta.

Tabla 47. Costos de la maquinaria y equipos

ITEM	DETALLE	CANT.	C.U	COSTO TOTAL
1	Amoladora neumática/eléctrica	12	150	1.800
2	Equipo de soldadura	3	22.121	66.363
3	Camión grúa	1	120.000	120.000
4	Sistema Compresor de tornillos	1	120.000	120.000
5	Montacargas eléctrico	2	45.000	90.000
6	Puente Grúa	1	97.925	97.925
7	Centro de mecanizado	1	114.332	114.332
8	Torno vertical	1	2'887.729	2'887.729
9	Horno	1	250.000	250.000
10	Torno horizontal	1	110.000	110.000
11	Equipos para metalizado	1	65.000	65.000
	Equipos de ensayos no			
12	destructivos	1	35.000	35.000
13	Equipo de balanceo estático	1	85.000	85.000
14	kid de herramientas manuales	8	600	4.800
TOTAL		46	3'952.857	4'047.949

4.6 Localización de la planta

La localización comprende una de las partes más importantes de un proyecto, del cual se define el lugar más adecuado para ubicar una planta industrial proyectada y que permita obtener los mejores beneficios.

Para la determinación de la localización del proyecto generalmente se debe seguir dos pasos fundamentales como son:

- MACROLOCALIZACIÓN (Que se refiere al área geográfica en general).
- MICROLOCALIZACIÓN (Que se refiere al lugar preciso).
- **4.6.1** *Macrolocalización*. Se define la zona general y la ciudad en que se localizará la unidad de producción, para así reducir al mínimo los costos totales de transporte.

En la macrolocalización determinaremos en forma general la zona, región, provincia o área geográfica en donde se ubicará la planta industrial, tomando en consideración factores generales como transporte, disponibilidad de materia prima, seguridad, etc.

A continuación se muestra el proceso de selección de la región y provincia.

País: Ecuador

Tabla 48. Ubicación regional de las centrales hidroeléctricas a cargo de

CELEC E.P

ITEM	CELEC E.P	COSTA	SIERRA	ORIENTE	INSULAR
1	Marcel Laniado	X			
2	Agoyán		X		
3	Pucará		X		
4	San francisco		X		
5	Paute		X		
6	Mazar		X		
TOTA	L	1	5	0	0

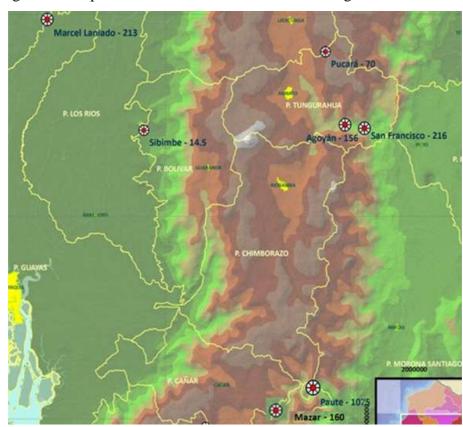


Figura 49. Mapa de las Centrales hidroeléctricas a cargo de CELEC E.P

La planta deberá ir ubicada en la región Sierra por tener el mayor número de centrales hidroeléctricas a cargo de **CELEC E.P.**

Tabla 49. Ubicación provincial de las centrales hidroeléctricas a cargo de **CELEC E.P**

ITEM	CELEC E.P	GUAYAS	TUNGURAHUA	AZUAY
1	Marcel Laniado	X		
2	Agoyán		X	
3	Pucará		X	
4	San francisco		X	
5	Paute			X
6	Mazar			X
TOTA	L	1	3	2

Del cuadro anterior se puede ubicar fácilmente tres centrales Hidroeléctricas en la provincia de Tungurahua de manera que nuestra planta debe ir ubicada en ella, además se encuentra en el centro del país por lo que no es demoroso el traslado de materiales, equipos pesados, elementos hidromecánicos y personal.

Es importante ubicar la planta de mecanizado lo más cerca posible a las centrales hidroeléctricas a cargo de **CELEC E.P** para evitar el alto costo por cuestión de transporte.

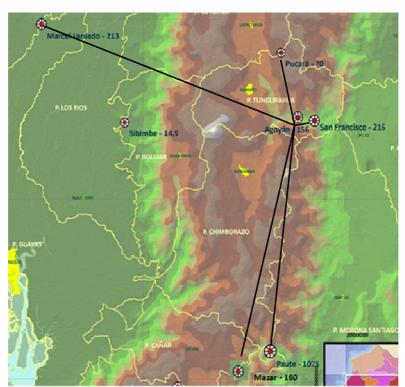


Figura 50. Mapa de la ubicación estratégica de la central Hidroeléctrica Agoyán

La complicada geografía de nuestro país dificulta el ingreso de maquinaria pesada hacia la central Hidroeléctrica Paute y Mazar debido a que esta zona se encuentra amenazada especialmente por deslaves. Además cabe indicar que se encuentra sumamente alejada de las demás centrales que tienen elementos Hidromecánicos por reparar.

4.6.2 *Microlocalización*. Es el estudio que se hace con el propósito de seleccionar la comunidad y el lugar exacto para instalar la planta industrial, siendo este sitio el que permite cumplir con los objetivos de lograr la más alta rentabilidad o producir al mínimo costo unitario. La ubicación más adecuada es uno de los factores más importantes para que una empresa o instalación obtenga los mejores resultados.

Es por esta razón que se realizó un estudio entre el cantón de Baños de Agua Santa y el cantón Ambato dando como resultado que la mejor ubicación para este proyecto es el cantón de Baños de Agua Santa debido a que el promotor de este importante proyecto es

la UNIDAD DE NEGOCIO HIDROAGOYÁN E.P, la misma que se encuentra en este cantón y cuenta con una amplia superficie de terreno propio con todos los servicios básicos disponibles para el funcionamiento de esta planta industrial.

Además en esta localidad se encuentran dos importantes centrales hidroeléctricas como lo son la Central Agoyán y la Central San Francisco que van a ser los principales beneficiarios de este importante proyecto para reconstruir sus partes de turbinas desgastadas.

4.6.2.1 Aplicación del método cuantitativo por puntos para determinar la localización del proyecto.

Para determinar la ubicación exacta para la planta industrial, se asignó valores cuantitativos a todos los factores más importantes, el procedimiento que se efectuó es el siguiente:

- 1. Desarrollar una lista de factores relevantes.
- 2. Asignar un peso a cada factor para indicar su importancia relativa. (Los pesos suman 1, y el peso asignado dependerá exclusivamente del criterio del investigador.
- 3. Asignar una escala común a cada factor (por ejemplo de 1 a 10) y elegir.
- 4. Calificar a cada sitio potencial de acuerdo con la escala designada y multiplicar la calificación por el peso.
- 5. Sumar la puntuación de cada sitio y elegir el de máxima puntuación.

4.6.2.2 Localización específica de la planta industrial. Para determinar el lugar más adecuado para la planta industrial en el cantón de Baños de Agua Santa, se escogió y se analizó dos lugares estratégicos, los cuales son los siguientes:

- Sector San Francisco
- Sector Agoyán

En donde se determinó que el lugar más adecuado para la Planta Industrial es en el sector de Agoyán, ya que cuenta con todos los factores importantes para su funcionamiento.

4.6.2.3 *Método cualitativo por puntos.*

Tabla 50. Método cualitativo por puntos para la localización especifica de la planta de mecanizado

FACTOR	BAÑOS I	DE AGUA	SANTA		AMBAT()
RELEVANTE	Peso asignado	Puntaje	Puntaje total	Peso asignado	puntaje	Puntaje total
Materiales	0,1	8	0,8	0,1	8	0,8
Mano de obra disponible	0,15	8	1,2	0,15	8	1,2
Cercanía al consumidor	0,3	10	3	0,3	6	1,8
Cercanía al proveedor	0,15	7	1,05	0,15	8	1,2
Vías de acceso	0,1	9	0,9	0,1	7	0,7
Servicios básicos	0,1	9	0,9	0,1	7	0,7
Seguridad	0,1	9	0,9	0,1	5	0,5
TOTAL	1		8,75	1		6,9

Las dos ciudades cumplen con todos los factores requeridos, pero el factor más importante es la cercanía al consumidor, en este caso las Centrales Hidroeléctricas Agoyán y San Francisco, obteniendo en la ciudad de Baños de Agua Santa una calificación ponderada de 8.75 a comparación de Ambato que no se encuentra cerca a ninguna central hidroeléctrica perteneciente a **CELEC E.P.** Por lo que recibe una ponderación de 6.9.

Por lo tanto el proyecto se localizará en Ecuador en la provincia de Tungurahua en el Cantón de Baños de Agua Santa vía al Puyo Km 5, junto a las bodegas de la Central Agoyán.

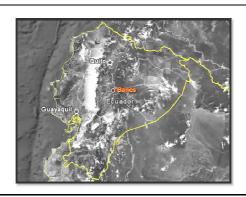

4.6.2.4 Factores que influyen en la microlocalización. La existencia de una gran cantidad de factores que influyen en la determinación de la localización, origina que varíen su importancia de una industria a otra y de cada región. Para cada empresa en particular, en función de sus estrategias y objetivos, se deben determinar los factores que tendrán que ser tomados en cuenta en cada nivel de análisis.

Tabla 51. Factores que influyen en la microlocalización en el Cantón Baños de Agua Santa

VARIABLES	Necesarias	Importantes	Indiferentes	Innecesarias
Materiales		1		
Legal	1			
Transporte		1		
C. Hospitalario	1			
Serv. Básicos		1		
Impacto social	1			
Mano de obra		1		
Infraestructura		1		
Canal de distribución		1		
Seguridad		1		
Expansión		1		
Clima				1
Insumos	1			
Medio ambiente			1	
Centros educativos			1	
Vías de comunicación		1		
Σ	4	9	2	1

4.6.2.5 Información general de la localización del proyecto.

Figura 51. Mapa de la ubicación geográfica del cantón Baños de Agua Santa.

PAIS: Ecuador.

CIUDAD: Baños de Agua Santa. CLIMA: Caliente y Húmedo. TEMPERATURA: 25°C. ALTITUD: 1800 msnm.

UBICACIÓN GEOGRAFICA: TUNGURAHUA – Cantón Baños localizado a 169Km desde Quito.

Ubicada en la zona centro del Ecuador, Baños de Agua Santa está localizado a 40km de la ciudad de Ambato, la ciudad principal de la provincia de Tungurahua. Baños tiene hermosos paisajes los cuales miles de visitantes vienen a admirar para tranquilidad espiritual y física. Baños se ha transformado en un centro de turismo para visitantes nacionales e internacionales, este es el lugar ideal para hacer ecoturismo y deportes extremos en la naturaleza.

Planta estará ubicada a 5 Km al este de la ciudad de Baños de Agua Santa en el sector de Agoyán de la parroquia Ulba.

4.7 Ingeniería del proyecto

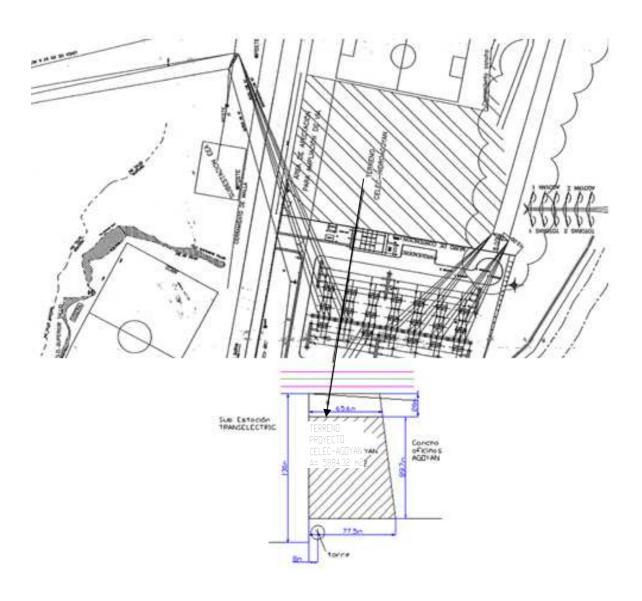
Esta parte del estudio tiene como objetivo determinar cuáles serán los requerimientos de construcción de obras civiles, es decir las necesidades de espacio físico para ubicar los demás activos fijos, como las maquinarias, equipos, muebles, y en general para que el proceso productivo y la administración de la planta se desarrollen con normalidad.

4.7.1 *Terreno y construcciones*. El proyecto necesita un terreno en donde se encuentren las instalaciones mínimas para operar y desarrollar la actividad económica a emprender.

Estos requerimientos pueden ser atendidos mediante la compra del terreno, y la construcción respectiva, o simplemente se alquila un local por el cual se paga un arriendo.

La central hidroeléctrica Agoyán no necesita de la compra de un terreno, pues junto las bodegas de la central existe un espacio lo suficientemente grande para instalarlo de aproximadamente 5884.32m² de área.

Esta área será distribuida de tal manera que en ella puedan instalarse la planta de mecanizado, un galpón de almacenamiento para los elementos hidromecánicos, parqueadero para vehículos pesados, parqueadero para empleados y visitas.


Dentro de la planta de mecanizado se instalarán los tornos, cabina de soldadura, balanceadoras estáticas, cabina para horno, cabina para desbaste y pulido, cabina para metalizado, cuarto de control CNC, bodega de herramientas, oficinas administrativas, sala de espera, vestidores y servicios sanitarios.

Dentro de la planta sobre sus bases se deslizará un puente grúa de capacidad 30/10 toneladas que es muy importante para la movilización de los elementos hidromecánicos que van a ser reconstruidos.

Tabla 52. Costo de la construcción de la planta de mecanizado

ITEM	DETALLE	CANT.	COSTO UNITARIO	COSTO TOTAL
	Construcción de la			
1	planta.	1	879.321	879.321
TOTAL			879.321	879.321

Figura 52. Plano del terreno disponible para el proyecto de implantación de la planta de mecanizado

4.7.2 *Análisis del terreno*. Es de mucha importancia realizar un estudio previo del terreno en donde se pretende implantar un proyecto, con el propósito de determinar características importantes del subsuelo en donde se va a construir.

Por lo tanto, en el Estudio de Mecánica de Suelos realizado a petición de la UNIDAD DE NEGOCIO HIDROAGOYÁN E.P en julio del 2010, se determinó las características importantes del terreno presentadas en el ANEXO A.

4.7.3 *Costos de los inmuebles administrativos.* Para el buen funcionamiento administrativo de la empresa se necesita contar con muebles y enseres.

Tabla 53. Costo del mobiliario administrativo para la planta de mecanizado

ITEM	DETALLE	CANT.	COSTO UNITARIO	COSTO TOTAL
1	Juego de sillones	2	400	800
2	Computador	12	980	11.760
3	Archivador	4	150	600
4	Escritorio	4	250	1.000
5	Anaquel	2	350	700
6	Sillas ejecutivas	4	250	1.000
7	Sillas espera	8	50	400
TOTAL		30	2.430	16.260

4.8 Proceso de producción

- **4.8.1** *Proceso general de reparación de los elementos hidromecánicos*
- a) Recepción y almacenamiento del elemento hidromecánico: Los elementos hidromecánicos son recibidos en el galpón de almacenamiento temporal con todas las plantillas, documentos técnicos, y planos, para poder realizar la evaluación técnica pertinente.
- **Inspección y control dimensional:** Este es un proceso muy importante, porque permite cuantificar la magnitud del desgate que presentan todas las superficies del elemento hidromecánico al igual que sus perfiles de diseño, en base a esta inspección es posible distinguir visualmente las zonas criticas y defectuosas que luego serán reparadas.
- c) Transporte (ingreso a la planta): Los elementos hidromecánicos que califiquen para la reconstrucción ingresan a la planta industrial directamente al área de pulido y desbaste.
- **d) Standblastig**: Esta actividad combina la acción mecánica del aire presurizado y arena, limpiando absolutamente todo lo referente a escorias, cascarillas

- provocadas por la cavitación, productos cerámicos (aplicados en reparaciones anteriores), lodos, impurezas etc.
- e) Desbastado: El desbastado es la actividad preliminar al proceso de rellenado y consiste en uniformizar la superficie para lograr un buen deposito de soldadura, esto se realiza con un desbroncado con piedra de esmeril plana y esférica dependiendo del perfil, eliminando las ondulaciones propias de la erosión y ablandando toda arista viva, esto permite controlar el efecto erosivo y un posible efecto cavitatorio. Esta operación siempre debe ser controlada con medición de espesores y chequeo de formas de los perfiles, para evitar que se llegue a los valores críticos.
- Inspección visual, control dimensional (medidas del elemento hidromecánico según el plano de referencia), partículas magnéticas y aplicación de tintas penetrantes para detectar posibles fisuras, si fuera el caso se debe repetir el paso (e). De persistir la fisura llegando a salirse de los valores críticos el elemento hidromecánico debe ser dado de baja.
- **Pesaje:** Con ayuda del puente grúa se puede determinar el peso del elemento hidromecánico y determinar tentativamente la cantidad de electrodos que se necesitaran para el relleno.
- h) Transporte (área de tratamientos térmicos): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el horno.
- i) Precalentamiento: Calentamiento del material base, tratándose de una estructura de acero inoxidable martensítico, es necesario precalentar el material base y mantenerlo caliente durante el soldeo para ello se debe contar con un horno de calentamiento con resistencias eléctricas, la temperatura del material base es de 100 °C 200°C. Este valor depende del tamaño del elemento.
- j) Transporte (área de soldadura): Con ayuda del puente grúa transportar el elemento hidromecánico hacia la cabina de soldadura.
- **k)** Soldado: Antes de iniciar el relleno es necesario secar y mantener calientes los electrodos. Para el secado del electrodo, es necesario calentar en un horno a unos 250°C durante 3 o 4 horas y mantenerlo a 100°C en un horno portátil, mientras se aplica la soldadura. El aporte de soldadura se realiza manualmente, con el método del arco eléctrico, regulando el amperaje de la máquina de acuerdo al diámetro del electrodo recomendado. Durante el proceso debe

efectuarse una limpieza de los depósitos de escoria, luego de cada cordón aplicado. Se debe tener sumo cuidado cuando se realiza el relleno en las cucharetas del rodete Pelton. Cuando se sueldan las aristas centrales y/o filos de ataque de las cucharas, para recuperar niveles de desgaste de 2 o 3 mm, se recomienda efectuar un post-tratamiento térmico, calentando con gas propano hasta 580°C y mantener el calor cubriendo con mantas de asbesto. Este proceso es decisivo para mantener el éxito de la reparación.

- Inspección visual, control dimensional (medidas del elemento hidromecánico según el plano de referencia), partículas magnéticas y aplicación de tintas penetrantes para detectar posibles fisuras, si fuera el caso se debe repetir el paso (h).
- m) Transporte (área de mecanizado): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el centro de mecanizado, torno vertical y torno horizontal.
- Mecanizado: Mecanizar las superficies lineales en el torno vertical, los elementos hidromecánicos (Rodete Francis, Pelton, tapas superior e inferior), en el torno horizontal se puede mecanizar los alabes móviles (Francis), inyectores y agujas (Pelton), en el centro de mecanizado gracias al CNC deberá mecanizarse los perfiles no lineales de los alabes directrices.
- o) Transporte (área de desbaste y pulido): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el área de pulido y desbaste.
- p) Desbastado: El proceso de esmerilado consiste en realizar el desbaste del elemento hidromecánico rellenado para obtener sus dimensiones originales el cual consiste en tres etapas:
- Desbastado grueso con piedras planas.
- Desbastado medio con piedras esféricas grano grueso y mediano.
- Desbastado fino o pulido con piedras grano fino.
 En este proceso se debe comprobar los perfiles con ayuda de las plantillas.
- **q) Inspección (Relleno de suelda):** En la superficie del elemento se realiza una inspección visual para detectar defectos de soldadura, si fuera el caso se debe repetir el paso (h).
- r) Ensayos no destructivos: Entre los desbastados grueso y medio se lleva a cabo la aplicación de tintes penetrantes para detectar defectos y fisuras.

- s) Transporte (área de tratamientos térmicos): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el horno.
- **Revenido:** El efecto de tratamiento térmico (REVENIDO) sobre el elemento hidromecánico crea homogeneidad a 580°C permitiendo que el material en la zona afectada térmicamente adquiera una microestructura similar a la del material base y por tanto propiedades similares en su espesor.
- u) Transporte (área de mecanizado): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el centro de mecanizado, torno vertical y torno horizontal.
- v) Mecanizado final: Mecanizar con la intención de retirar los carbonillos generados por el tratamiento térmico todas las superficies lineales en el torno vertical, los elementos hidromecánicos (Rodete Francis, Pelton, tapas superior e inferior), en el torno horizontal se puede mecanizar los alabes móviles (Francis), inyectores y agujas (Pelton), en el centro de mecanizado gracias al CNC deberá mecanizarse los perfiles no lineales de los alabes directrices.
- w) Transporte (área de desbaste y pulido): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el área de pulido y desbaste.
- x) Desbastado final: El proceso de esmerilado consiste en realizar el desbaste fino del elemento hidromecánico retirando todas las asperezas y carbonillos provocados por el tratamiento térmico.
- y) Transporte (área de balanceo estático): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el área de balanceo estático.
- z) Balanceo: Como equilibrado designamos el hecho de determinar y compensar un desequilibrio, es decir conseguir el centrado de las masas de un cuerpo, de tal forma que el eje de rotación coincida con el eje de inercia, consiguiendo así que el giro sea concéntrico.

Se instala el eje, en la brida del rodete, centrando en lo posible, para reducir el error de excentricidad, a continuación se limpia los rieles en la bancada y verifica su nivelación, para reducir el error debido al desnivel de los rieles.

Para ello se debe lubricar los rieles y el eje para reducir el error de resistencia al rodamiento. Se hace rodar al rodete sobre los rieles suavemente hasta que vuelva al reposo, luego se marca el punto más bajo de la periferia del rodete.

Posteriormente se repite el rodaje unas seis u ocho veces, si las marcas quedan al azar en lugares diferentes alrededor de la periferia de manera equiprobable, el rodete se encuentra equilibrado estáticamente, si las marcas tienden a coincidir el rodete se encuentra estáticamente desequilibrado y se debe volver a desbastar en los puntos de mayor peso. La máquina de balanceo debe marcar el desequilibrio indicando la magnitud y ubicación.

- **aa)** Levantamiento dimensional: Evaluar y tomar datos dimensionales.
- **bb**) **Transporte** (área de metalizado): Con ayuda del puente grúa transportar el elemento hidromecánico hacia el área de metalizado.
- **Metalizado:** El Metalizado por polvo hace uso de pistolas manuales junto a un proceso de llama oxiacetilénica, rociando todo el elemento hidromecánico aportando una capa fina de acero inoxidable para la protección contra la erosión.
- **dd) Pesaje y levantamiento dimensional:** Con ayuda del puente grúa se puede determinar el peso del elemento hidromecánico y comprobar con los datos proporcionados en los planos técnicos del elemento hidromecánico.
- **Embalaje:** Una vez terminada la reparación se procede a encajonar los elementos hidromecánicos en cajas de madera.
- ff) Transporte (área de almacenamiento): Con ayuda del puente grúa y un camión grúa transportar el elemento hidromecánico hacia el área de almacenamiento.
- **gg**) Almacenamiento temporal: Con ayuda del camión grúa o montacargas se almacena los elementos hidromecánicos en el galpón de almacenamiento temporal.

4.8.2 Normas aplicables en la reconstrucción de elementos hidromecánicos.

Tabla 54. Normas aplicables en la reconstrucción de elementos hidromecánicos

ITEM	NORMA	DESCRIPCIÓN	FUNCIÓN
1	ССН-70-3	Especificaciones para inspección de máquinas hidráulicas en aceros fundidos.	Controles rutinarios en rodetes
2	ASTM A743/a743M	Tratamiento térmico en aceros para rodetes de turbinas hidráulicas.	Mejorar propiedades mecánicas en rodetes, alabes directrices, cono turbina
3	SATM E709-80	Standard para el análisis de pruebas con partículas magnéticas	Criterios para evaluación resultados de análisis estructural (fisuras) en rodetes, alabes directrices, cono, rutinarios de la turbina
4	PT 70-3	Criterio de aceptación para pruebas con líquidos penetrantes	Inspección técnica de rodetes, alabes directrices, cono, controles, rutinarios de la turbina.
5	ASTM 01.01	STEELL- PIPING, TUBING, FITTINGS	Instalación de tuberías de aire, agua, aceite, capacidades de presión, dimensiones normalizadas.
6	ASTM 01.04	STEEL-STRUCTURAL, REINFORCING, PRESSURE VESSEL, RAILWAY	Instalación de recipientes a presión aire, agua, aceite.
7	ASTM 03.02	WEAR AND EROSION; METAL CORROSION	Análisis de desgaste en turbina por erosión, niveles tolerables de erosión.
8	ASTM 06.02	PAINT-PRODUCTS ANS APPLICATIONS; PROTECTIVE COATING; PIPELINE	Selección de pinturas y productos de recubrimiento para conservación, espesores recomendados

4.8.3 Determinación de la cantidad de soldadura por elemento hidromecánico. [10] Para determinar la cantidad de soldadura necesaria en cada elemento debemos saber el porcentaje de desgaste de los elementos antes de realizar el overhaul.

Este porcentaje de desgaste no es el mismo en todo el conjunto de la turbina pues como se indicó anteriormente los rodetes son los más afectados. Para ellos se estima un porcentaje de desgaste del 12%, mientras que para los demás elementos se considera del 7% y 5%.

Determinar la cantidad de soldadura en cada elemento es muy importante pues de estos datos se puede solicitar la cantidad de electrodos necesarios para la reparación.

Realizando una investigación de los trabajos realizados por los profesionales pertenecientes a **CELEC E.P** en relación a la reparación de rodetes se determina que; por cada 8 horas un soldador aporta 4Kg de suelda. [23]

Como los elementos a reparar son extremadamente grandes y pesados no se considera tener un solo turno, ni un solo soldador por cada rodete, sino tener tres turnos de 8 horas trabajando los 7 días de la semana contando con 2 soldadores por rodete.

Considerando el tamaño de la planta, la maquinaria, y el personal se realizará la reparación de 2 rodetes simultáneamente. Los alabes directrices, agujas y asientos por ser elementos pequeños pueden ser reparados sin ningún problema por dos operadores.

En lo que se refiere a las tapas superior e inferior pueden ser reparadas por dos operadores.

Tabla 55. Determinación del tiempo de soldadura de los elementos hidromecánicos

	TIRO DE TURBINA	HIDROMECANI	DIMÍ	, LINSON	Sleet Shell	11.1 0 kg/10/10/10/10/10/10/10/10/10/10/10/10/10/			100 00 00 00 00 00 00 00 00 00 00 00 00	MARCH COLOR	STIPO STIPO	NA POLICE OF STATE OF	JRA LILINE OOKES TELEVIS		John Hor	
	TAPA SUPERIOR	(Ø4,322)	X 1,185)	1	17,5	22000	5	1100	1100	1155	4	2	24	1155	48,1	1,60
	TAPA INFERIOR	(Ø4,322)	X 1,185)	1	17,5	22000	5	1100	1100	1155	4	2	24	1155	48,1	1,60
FRANCIS	ÁLABES DIRECTRICES	(0,850 X 2	1,745)	20	1,0	410	12	49,2	984	1033,2	4	1	12	2066,4	86,1	2,87
	RODETE FRANCIS	(Ø3,500 X	(1,370)	1	9,7	17200	12	2064	2064	2167,2	4	2	24	2167,2	90,3	3,01
	CONO	(Ø0,800 X	(1,250)	1	0,6	1400	7	98	98	102,9	4	1	12	205,8	8,6	0,29
	RODETE PELTON	(Ø3,200 X	(0,800)	1	6,5	17000	12	2040	2040	2142,0	4	2	24	2142	89,3	2,98
PELTON	AGUJA	(Ø0,300 X	(0,900)	6	0,1	220	7	15,4	92,4	97,02	4	1	12	194,04	8,1	0,27
	ASIENTO	(Ø0,350 X	(0,600)	6	0,1	250	7	17,5	105	110,25	4	1	12	220,5	9,2	0,31
				32												<u></u>

4.8.4 Diagramas de flujo de operación. Esta grafica representa los pasos que sigue la secuencia de actividades dentro de un proceso productivo, siguiendo la siguiente designación de símbolos:

Operación	
Transporte	
Inspección	
Demora	
Almacenaje	V
Actividad combinada	0

Los diagramas de flujo de operación de los elementos hidromecánicos se detallan en el ANEXO B.

4.8.5 *Diagrama de proceso*. Son las representaciones graficas de todas las actividades requeridas para la reconstrucción de los elementos hidromecánicos.

En la reconstrucción de los elementos hidromecánicos los diagramas de proceso son del **TIPO PRODUCTO**.

A continuación de detalla el diagrama de proceso para la reconstrucción general de un elemento hidromecánico, y de un Rodete Francis, los restantes se pueden observar en el ANEXO C.

Método Actu					<u>DI</u>	4 <i>G</i>	RAM	AMA DE PROCESO (TIPO PRODUCTO)				
Método Prop		X										
Sujeto del di	iagrama:							ERAL DEL ELEMENTO ICO (TURBINA)	FECHA: 2012-04-08			
El diagrama	empieza co	n la rec	cepción	del e	len	ent	.о	Hecho por:	DIAGRAMA: N° 01			
hidromecánio								Byron Sagñay	HOJA: Nº 01			
almacenamie	ento del ele	mento	reconsti	ruido				Leonardo Pilamunga	110071.11 01			
Distancia (m)	Tiempo (min.)	Síml	bolos d	lel D	iag	rar	na	Descripción del Proceso				
		\cap		\Box		D	V	Recepción y almacenamie	ento del elemento			
								hidromecánico				
		0	$ \Rightarrow \rangle$	0][∇	Inspección y control dime	nsional			
		0		$\overline{0}$		\square	∇	Ingreso a la planta al área	* *			
							∇	Desbastado con piedra de esférica.	esmeril plana o			
							∇	Ensayos no destructivos				
				m			∇	Pesaje del elemento hidro	mecánico			
		0					Ϋ́	Al área de tratamientos té	rmicos (horno)			
		8	\Box				Ť	Precalentamiento del mate	erial base			
		0		\Box			Ż	Al área de soldadura (cabi	· · · · · · · · · · · · · · · · · · ·			
		8					∇	Soldado y relleno del elen	nento hidromecánico.			
		<u>Q</u>	$ \Rightarrow $	\Box			∇	Ensayos no destructivos				
		0)					∇	Al área de mecanizado				
		3	\Box			ļD	∇	Mecanizado de las superfi	cies lineal, circular y			
				Ш	<u> </u>		∇	cuatro dimensiones Al área de pulido y desbas	ete.			
				0	H	卄	∇	Desbastado con piedras de				
		9	<u> </u>				٧	mediano				
		0	\Box	D			∇	Inspeccionado del relleno	de suelda			
		3					∇	Ensayos no destructivos				
		0)		\Box			∇	Al área de tratamientos té	rmicos (horno)			
				\Box		ĮΩ	∇	Revenido a 580°C				
		()	*_)_	\Box		\Box	V	Al área de mecanizado				
				\square	<u></u>	ĮΩ	∇	Mecanizado final retirand				
		(Q)	*		L	<u>[</u>	∇	Al área de pulido y desbas				
						ID L	∇	Desbastado con piedra de plana o esférica.	grano fino de esmeril			
		0.					∇	Al área de balanceo				
		8	\Box	\Box			$\dot{\nabla}$	Balanceo estático del elen	nento hidromecánico			
		\mathbf{Q}				\bigcap	Ż	Levantamiento dimension	al			
			>				∇	Al área de metalizado				
		5					∇	Metalizado del elemento l	nidromecánico			
		0	\Rightarrow	0			∇	Pesaje y levantamiento di	mensional			
							∇	Embalaje				
		Ŏ\		Ō			Ť	Al área de almacenamient	o temporal			
		\circ	ightharpoons				V	Almacenado temporal				
				سا	Ш		V .400	1				

Método Ac					Di	IAG	RA l	AMA DE PROCESO (TIPO PRODUCTO)					
Método Pr			X		ará v								
Sujeto del	diagrama:	1		'ARA NCIS		וט א	EL F	ΚO	DDETE (TURBINA FECHA: 2012-04-08				
El diagram	a empieza o	con la r				dete	;		Hecho por: DIAGRAMA: Nº 02				
Francis de									Byron Sagñay HOJA: N° 01				
almacenam	niento del el	lemento	reco	nstrui	do.				Leonardo Pilamunga				
Distancia	Tiempo	No.	Sím	bolos	del D	iagr	ama	ı	Descripción del Proceso				
(m)	(min)						_	Ц					
		1	0				1	1	Recepción y almacenamiento del Rodete Francis				
	120	1	0	Į	0			\sum	Inspección y control dimensional				
	5	1	•	\Rightarrow				Ż	Colocación de 2 cables de alambre de 3m con una capacidad de 20 toneladas en el disco del rodete.				
	5	2	Q	\Rightarrow				\setminus	Colocación del gancho del camión grúa en la unión de los cables para el izaje.				
111	5	1	0		0			V	<u> </u>				
	5	3	9	Û			\Box	7	1				
	10	2	0	5	0		\Box	7	7 Retiro del gancho del camión grúa y de los cables				
	120	4	6	\Rightarrow				7	7 Limpieza con agua utilizando una bomba de				
	30	5						_	alta presión. 7 Secado con aire de presión.				
			2		HH	┢	出	4	7 Eliminación de productos cerámicos, por				
	120	6	Y	<u> </u>				۷ ا	medio de un martillo cincelador neumático.				
	60	7	9	\Box	Ш		\Box	\	Arenado o Standblastig en los alabes del rodete				
	7200	8		ightharpoons				\setminus	Desbastado con piedra de esmeril cónica en los alabes.				
	7200	9	9	Î)				\setminus	Pulido con piedra de amolar plana la arista central de los alabes				
	180	3	0	\Box	0			7	Ensayos no destructivos (aplicación de tintas penetrantes)				
	10	4	0	\supset	-0			7	Colocación del gancho del puente grúa y de las cables para el izaje				
	10	10	Ó	\Rightarrow				7	Pesaje del rodete por medio del indicador de peso del puente grúa.				
	5	11			\Box		\Box	7	7 Registro de la pérdida de masa.				
	10	12			M	Ħ		7	Registro de fotografías múltiples de los alabes				
16	5	2			M		K	7	Al área de tratamientos térmicos (horno)				
	5	13	Q		Ŏ		$ \bar{\Box}$	$ \vec{\nabla}$	Colocación del Rodete sobre el carro móvil				
	10	5	0	\supset	0			7	del horno (posición horizontal) Retiro del gancho del puente grúa y de los cables				
	2	14		_	\Box		\Box	7	7 Activación del carro para el ingreso al horno				
	10	15		\vdash	置	┢	K	4	7 Precalentamiento del material base				
	840	1	7		TT	╄		7	7 En el horno a 200°C				
	2	16	A		HÖ		\Box	区	Activación del carro para la salida del horno				
	10	6	O		×0		Ď		Colocación del gancho del puente grúa y de los cables para el izaje				
12	5	3	0		М		\Box	7	7 Al área de soldadura (cabina)				
	5	17	Ŏ.		ă		ď	7	7 Colocación del rodete base metálica de trabajo (posición horizontal)				
	10	7	0	B	0		\Box	7	7 Retiro del gancho del puente grúa y de los cables				
L	[İ	1	1	I	040105				

Método Ac					DI	AG	RA	MΑ	A DE PROCESO (TIPO PRODUCTO)	
Método Pro	opuesto diagrama:	,	X REP	ΑΡΑ	CIÓN	J DI	71 I	3O	DETE (TURBINA FECHA: 2012-04-0	18
Sujeto dei	ulagi allia.	'		NCIS		וטי	ا بان	XO.	PECHA: 2012-04-0	76
El diagram	a empieza	con la r				dete	;		Hecho por: DIAGRAMA: Nº 02	2
Francis de	teriorado y	finali	za coi	n el					Byron Sagñay HOJA: N° 02	
almacenam	niento del e	lemento	reco	nstrui	do.				Leonardo Pilamunga	
Distancia	Tiempo	No.	Sím	bolos	del Di	iagra	ama	ı	Descripción del Proceso	
(m)	(min)				I ——	_	_	Ļ	7 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
	130032	18	9	Û/	Ш		\Box	V	7 Soldado y relleno utilizando el electrodo UTF 6824 mol de 3/32 in y 1/8 in.	Р
	3600	1	0	\Rightarrow		_	\Box	∇	Control de porosidades y grietas durante la soldadura	
	3600	19	•	\Rightarrow			D	∇	Eliminación la escoria y porosidades en cordones de soldadura luego de cada pasada.	
	120	20	9	Û/				∇	Ensayos no destructivos (tintas penetrantes: para determinar grietas y fallas)	
	360	2	0			V	D	∇		
	1200	2	0	\Rightarrow				∇	7 Sobre la base de soldadura mientras baja de temperatura a 80°C	
	10	3	0	\Box			D	∇		
	10	8	0		0		D	∇	7 Colocación del gancho del puente grúa y de los cables para el izaje	
20	5	4			П	\vdash		7	7 Al área de mecanizado (torno vertical)	
	5	21		<u> </u>	H	H	K	₹	7 Colocación del rodete en el torno vertical	
	10	9	O		Ó		Ď	V	Retiro del gancho del puente grúa y de los cables	
	10080	22			П		\Box	7	7 Mecanizado del perfil circular del rodete.	
	2280	10	O	B	0		\Box	Ž	7 Inspección y control de medidas	
	10	11	0		0		$ \bar{\Box}$	V	Colocación del gancho del puente grúa y de los cables para el izaje	
34	5	5	0					\Box	Al área de pulido y desbaste.	
	5	23						V	7 Colocación del rodete sobre la base metálica de pulido (posición horizontal).	
	10	12	0	D				∇	Retiro del gancho del puente grúa y de los cables	
	7200	24	9	①/	/			∇	Desbastado con piedras de grano grueso y mediano utilizando un esmeril neumático horizontal	
	360	4	0	\Rightarrow		ļ		∇	- v	;
	360	5	0	\Rightarrow	Ш		\Box	∇	r	
	120	25	6	T)			\Box	∇	penetrantes)	
	10	13	0		0		\Box	∇	7 Colocación del gancho del puente grúa y de los cables para el izaje	
16	5	6	0					$ \nabla$	7 Al área de tratamientos térmicos (horno)	
	5	26	9				D	V	7 Colocación del Rodete sobre el carro móvil del horno (posición horizontal)	
	10	14	0	S	0			∇	Retiro del gancho del puente grúa y de los cables	
	2	27		\Box			\Box	\Box	Activación del carro para el ingreso al horno	
	10	28	9					V	Precalentamiento del material base	

Método Actual Método Propuesto			•	DIAGRAMA DE PROCESO (TIPO PRODUCTO)								
Sujeto del diagrama:			X RE	PARA	CIÓN	N DI	EL I	RO	ODETE (TURBINA FECHA: 2012-04-08			
				ANCI								
El diagrama empieza con la r					el Ro	dete	;		Hecho por: DIAGRAMA: Nº 02			
Francis deteriorado y finali almacenamiento del elemento					: 4 -				Byron Sagñay HOJA: Nº 03			
aimacenan	rec	onstru	ido.				Leonardo Pilamunga					
Distancia (m)	Tiempo (min)	No.	Sín	ímbolos del Diagrama				ı	Descripción del Proceso			
	5460	3	0	\Rightarrow			-	7	En el horno alivio de tensiones tratamiento			
	2	29				-		_	térmico Revenido a 580'C			
			7	H	HÄI	┡	出	7	Colocación del gancho del puente grúa y de			
	10	15					10	١ ١	los cables para el izaje			
30	5	7	Ω	4	m		\Box	7	Al área de mecanizado (torno vertical)			
	5	30	Ğ				\Box	7	Colocación del rodete en el torno vertical			
	10	16	0		0			7	Retiro del gancho del puente grúa y de los cables			
	960	31	9	\Rightarrow				7	Mecanizado final retirando carbonillos del perfil circular del rodete			
	120	17	0		0		\Box	7	☐ Inspección y control de medidas			
	10	18	0					7	Colocación del gancho del puente grúa y de los cables para el izaje			
34	5	8	0		\Box		\Box	7	Al área de pulido y desbaste			
	5	32	9					7	Colocación del rodete sobre la base metálica			
			0		>0			7	de pulido (posición horizontal)			
	10	19						۱ ۱	cables			
	2880	33		Û				7	Desbastado con piedras de grano fino utilizando un esmeril neumático horizontal			
	10	20	\cap		0		\Box	7				
	10			/					los cables para el izaje			
9	5	9	LQ.		ТÖ	<u> </u>	Ю	7	Al área de Balanceo estático			
	5	34	9	令				\	Colocación del rodete sobre el pedestal de balanceo (posición vertical)			
	10	21	0		Q		\Box	7	Retiro del gancho del puente grúa y de los			
	7500	35				\vdash	$\overline{}$	7	cables ∇ Balanceo del rodete			
			7	K	忧	┢	K	H	Colocación del gancho del puente grúa y de			
	10	22						L \	los cables para el izaje			
26	5	10	LQ					\Box	Al área de Metalizado			
	5	36	9			L		7	Colocación del rodete sobre la base metálica de metalizado			
	10	23	0		9			7	Retiro del gancho del puente grúa y de los cables			
	14400	37	9	 	0		D	7	Metalizado de los alabes y del conjunto en general			
	10	24	0	\Rightarrow	P		D	7	Colocación del gancho del puente grúa y de los cables para el izaje			
	5	25		\Rightarrow	0		D	7	Pesaje , levantamiento dimensional y registro fotográfico			
	60	38			m	\vdash	\Box	7	Embalaje colocando el rodete dentro de la			
	00	30		\searrow				Ľ	caja de madera soportándose en 4 puntos.			
	10	26	0		>0			[Retiro del gancho del puente grúa y de los cables			
	60	39		egiliar				LŢ	Sellado de la caja con clavos de 3"			

Método Ac	tual		DIAGRAMA					MA	A DE PROCESO (TIPO PRODUCTO)		
Método Propuesto			X								
Sujeto del diagrama:			REPARACIÓN DEL RO					RO	DETE (TURBINA	FECHA: 2012-04-08	
		FRA	NCIS	5							
El diagram	ecepción del Rodete						Hecho por:	DIAGRAMA: Nº 02			
Francis deteriorado y finaliza con				on el Byron Sagñay						HOJA: Nº 04	
almacenam	reconstruido.						Leonardo Pilamunga				
Distancia	Tiempo	No.	Símbolos del Diagrama			ama		Descripción del Proceso			
(m)	(min)										
	10	27			.0			\setminus	Colocación del gancho	del camión grúa y de	
	10	21		<i>'</i>]	•	los cables para el izaje		
46	5	11	$\langle \rangle$				\bigcap	abla	Al área de almacenamiento temporal		
	10	40		Ú			J	Ţ	Colocación de la caja en el área designada		
		2	Ŏ	\Rightarrow			Ò	Ž	Almacenado temporal		
			40	11	27	5	3	2			

ACTIVIDAD	NÚMERO	TIEMPO(min)	DISTANCIA(m)
OPERACIÓN	40	191865	
TRANSPORTE	11	55	354
INSPECCIÓN	5	4690	
OPERACIÓN	27	2925	
COMBINADA	21	2925	
DEMORA	3	7500	
ALMACENAJE	2	0	
TOTAL	88	207035	354

Tiempo: 207035 min= 3450.58 horas= 143.77 días= 4.79 meses

4.8.6 Diagrama de recorrido. A veces se obtiene una visión mejor del proceso dibujando las líneas de recorrido en un esquema del edificio o zona en que tiene lugar el proceso.

En la reconstrucción de los elementos hidromecánicos los diagramas de recorrido son del TIPO PRODUCTO. Los diagramas de recorrido se encuentran en el ANEXO D.

4.9 Distribución de la planta

Es la ordenación de los espacios e instalaciones de una fábrica, con el fin de conseguir que los procesos de fabricación se lleven a cabo de la forma más racional y económica posible.

- **4.9.1** Clases de distribuciones de planta. Existen tres tipos de distribuciones de planta:
- Por componente fijo
- Funcional o por proceso
- En línea o por producto
- **4.9.1.1** Determinación de la clase de distribución. Las máquinas y puestos de trabajo están distribuidos por familias homogéneas, desplazándose los elementos hidromecánicos de unos grupos a otros, contando con maquinaria de tipo universal, las mismas que trabajan saturadas, ya que se programan las reparaciones de manera que las mantengan a plena producción. Entonces luego de realizar un estudio minucioso, creemos lógico que tenemos una DISTRIBUCIÓN FUNCIONAL O POR PROCESO.
- **4.9.2** *Determinación de la clase de fabricación.* En principio y según las clases de fabricaciones son las siguientes:
- Fabricaciones de tipo continuo
- Fabricaciones de tipo repetitivo o fabricación en serie
- Fabricación intermitente o bajo pedido

Luego de realizar el análisis de cada tipo de fabricación se llegó a determinar que la planta de reconstrucción, se caracteriza por rehabilitar pocas unidades al año, desplazándose los elementos de una estación de trabajo hacia otra, por lo que es ideal una FABRICACIÓN INTERMITENTE O BAJO PEDIDO.

El número de piezas reconstruidas en el año van a ser de 2 grupos de turbinas (Francis y Pelton), teniendo en total 37 elementos hidromecánicos.

Tabla 56. Elementos hidromecánicos reconstruidos en el año

TIPO DE TURBINA	ELEMENTO HIDROMECÁNICO	CANTIDAD
	Rodete	1
	Alabe Directriz	20
Francis	Tapa Superior	1
	Tapa Inferior	1
	Cono	1
	Rodete	1
Pelton	Aguja	6
	Asiento	6
2 grupos de turbinas	TOTAL	37

La distribución funcional requiere maquinaria universal y emplea operarios de más categoría e invierte más tiempo por cada operación.

4.9.3 *Criterios para una buena distribución*

- a) Flexibilidad máxima: Nuestro tipo de distribución puede modificarse para afrontar circunstancias cambiantes, pues con el pasar del tiempo con la mejora de los procesos de reconstrucción, tendremos la posibilidad de extender la planta para incluir nuevos puestos de trabajo y en un futuro cercano ser capaces de fabricar nuestros propios elementos hidromecánicos.
- **Coordinación máxima:** De acuerdo con una distribución funcional tenemos que la coordinación nos resulta más fácil, al receptar y enviar los materiales a los diferentes puestos de trabajo, teniendo una organización en conjunto que beneficia a todos.
- c) Utilización máxima del volumen: En este caso dentro de la planta de mecanizado, el espacio aéreo será ocupado por un puente grúa y en el área de almacenamiento los elementos hidromecánicos serán apilados uno sobre otro aprovechando el espacio. Los elementos hidromecánicos deben circular normalmente gracias a una buena distribución, sin que el operario haga esfuerzos sobrehumanos por ello evitaremos movimientos exagerados para el operario, ganando tiempo y comodidad por medio de los montacargas, camión grúa y puente grúa.

- **d) Visibilidad máxima:** Como la planta es de un solo piso todos los operarios y materiales son fácilmente observables en todo momento a excepción del puesto de almacenamiento y bodega de materiales.
- e) Accesibilidad máxima: Todos los servicios van a tener una buena accesibilidad para que los operarios se encuentren a gusto y el servicio de mantenimiento se basa principalmente en la limpieza y una revisión visual continúa de la maquinaria.
- **Distancia mínima:** Esta distribución ayudará a disminuir al mínimo la distancia de los transportes de materiales y como consecuencia las distancias también se reducen entre los puestos de trabajo.
- g) Incomodidad Mínima: Al ser la infraestructura de una sola planta la ventilación, la iluminación artificial y la luz natural son excelentes. Las máquinas universales (tornos) y máquinas manuales (amoladoras) causan ruido de aproximadamente 85 Dba por lo que se debe tener los elementos de protección auditivos adecuados. Ver ítem 4.11 (seguridad industrial). (ANEXO I). El horno y los montacargas funcionan con electricidad para evitar la formación de dióxido de carbono dentro de la planta.
- h) Seguridad inherente: En cada puesto de trabajo los operarios deberán utilizar su EPP adecuado ver ítem 4.11 (seguridad industrial) (ANEXO I), las máquinas tendrán sus respectivas protecciones para evitar cualquier tipo de accidentes al operario, pegándonos estrictamente en los manuales de operación y mantenimiento de cada una de las máquinas.
- Seguridad Máxima: Dentro de la planta se contará con la instalación de un sistema contra incendio para precautelar la seguridad de los operarios. Además de la puerta principal, se contará con dos puertas de salida de emergencia con su debida señalización. Ver ANEXO H. La empresa HidroAgoyán cuenta con un dispensario médico en caso de accidentes, y por encontrarse cerca de la ciudad de Baños de Agua Santa tiene la facilidad de contar con el hospital, cuerpo de bomberos y policía.
- j) Flujo Unidireccional: El flujo de material dentro de la planta tenderá a una sola dirección, pues las áreas de trabajo estarán distribuidas de la mejor manera para cumplir con este objetivo. Además se debe tener muy en cuenta que no deben cruzarse las rutas de trabajo con las de transporte.

- k) Rutas Visibles: Los recorridos serán marcados, implementando una señalización que debe ser respetada para evitar cualquier tipo de inconvenientes por mínimos que sean estos. Ver ANEXO H.
- l) Identificación: En este caso los operarios deberán ser calificados en cada área de trabajo sin cruzarse en las actividades que no le competen.
- **4.9.4** Planteamiento y distribución de los puestos de trabajo. El taller industrial en estudio forma una unidad totalmente cubierta e intercomunicada.
- **4.9.4.1** Área de almacenamiento. Esta área es una de las más amplias, deberá estar ubicado junto a la planta de mecanizado para facilitar el ingreso de los elementos hidromecánicos, la razón de que no se encuentre dentro de la planta es la cantidad de elementos y debido a su tamaño sería mejor dejarlos dentro de un galpón en el exterior de la planta.

El rodete Francis, las tapas superior e inferior se colocarán sobre pilotes de madera, (60 x 40 x 40) la superficie de apoyo debe ser lisa y completamente aislada de la humedad.

Los alabes directrices pueden ser apilados uno encima de otro pero de igual forma sobre una base grande de madera, esto obviamente antes de la reconstrucción luego de la misma los alabes deben ser empacados en cajas de madera de acuerdo a su medida y almacenadas temporalmente sobre pallets para poder transportarlos sin problema con un montacargas.

En lo que se refiere a los rodetes Pelton estos deben ser almacenados de tal forma que ninguna de sus paletas estén en contacto directo con el piso, para lo cual se sugiere tener soportes en donde los rodetes descansen verticalmente.

Las agujas y asientos por ser los elementos más pequeños estarán almacenados en estanterías, para de ese modo aprovechar mejor el espacio disponible dentro del galpón.

4.9.4.2 *Cabina de pulido y desbaste.* Dentro de esta cabina se realizará la limpieza inicial de los elementos hidromecánicos por medio del Standblasting.

Aquí se realizará el pulido de los perfiles hidromecánicos (Tapa Superior, Tapa inferior, Cono, Rodetes Francis y Pelton) antes y después de la soldadura, para ello se instalará un soporte vertical para el rodete Pelton la medida de este soporte variará dependiendo de las dimensiones de los rodetes razón por la cual se deberá diseñar un soporte por cada uno.

Para el pulido del rodete Francis, cono, tapa superior e inferior es necesario el contar con soportes de acero de (60 x 40 x 40) cm.

Los alabes directrices por ser elementos pequeños en comparación con los rodetes, podrán ser mecanizados sobre un soporte horizontal regulable. (220 x 983 x 650) cm.

Para tener un trabajo eficiente por parte de los operadores y tener un manejo adecuado de los materiales, dentro de la cabina se instalará una percha de (150 x 180 x 50) cm en la cual pueden almacenar los materiales (piedras, abrasivos, lijas) equipos portátiles (ensayos no destructivos), máquinas herramientas (amoladoras neumáticas y eléctricas). Además se contara con un armario (80 x 50 x 110) cm para las herramientas pequeñas.

4.9.4.3 Cabina de soldadura. Dentro de esta cabina se realizará la correspondiente soldadura a todos los elementos hidromecánicos.

Para ello se instalará un soporte vertical para el rodete Pelton.

El rodete Francis, cono, tapa superior e inferior contarán con soportes de acero de (60 x 40 x 40) cm. Con esta medida el operario podrá soldar sin ningún inconveniente.

El aguja y asiento por ser elementos pequeños en comparación con los rodetes, podrán ser soldados sobre una mesa metálica (90 x 210 x 80) cm.

Los alabes directrices por ser elementos pequeños en comparación con los rodetes, podrán ser metalizados sobre un soporte horizontal regulable. (220 x 983 x 650) cm.

Para tener un trabajo eficiente por parte de los operadores y tener un manejo adecuado de los materiales, dentro de la cabina se instalará una percha de (150 x 180 x 50) cm en la cual pueden almacenar los materiales (electrodos, alambre) equipos portátiles (ensayos no destructivos), máquinas herramientas (boquillas, pistolas). Además se contará con un armario (80 x 50 x 110) cm para las herramientas pequeñas.

4.9.4.4 *Torno Vertical*. Esta máquina viene totalmente equipada para el mecanizado de los perfiles de los rodetes Pelton y Francis, tapas superior e inferior.

Las herramientas que necesita esta máquina son sumamente pesadas y para no utilizar el puente grúa innecesariamente, se instalará un malacate con capacidad de 2tn, además se contará con un estante para herramientas, equipos para ensayos no destructivos, y materiales.

4.9.4.5 *Torno horizontal*. Esta máquina viene totalmente equipada para el mecanizado de los perfiles de los alabes directrices, cono, aguja y asiento. Se instalará un malacate con capacidad de 1tn, además se contará con un estante para herramientas, equipos para ensayos no destructivos, y materiales.

4.9.4.6 *Torno CNC*. Esta máquina viene totalmente equipada para el mecanizado de los perfiles de los alabes directrices. Se instalará un malacate con capacidad de 1tn, además se contará con un estante para herramientas, equipos para ensayos no destructivos, y materiales.

4.9.4.7 *Cabina horno.* Dentro de esta cabina se realizará el precalentamiento y tratamiento térmico de las piezas hidromecánicas.

Para ello se instalará un soporte vertical para el rodete Pelton.

El rodete Francis, cono, tapa superior e inferior contarán con soportes de acero de (60 x 40 x 40) cm.

Los alabes directrices serán colocados en forma vertical colgados de un riel para que soporte el peso.

4.9.4.8 *Cabina de metalizado*. Dentro de esta cabina se realizará el correspondiente metalizado a todos los elementos hidromecánicos.

Para ello se instalará un soporte vertical para el rodete Pelton. El rodete Francis, cono, tapa superior e inferior contarán con soportes de acero de (60 x 40 x 40) cm. Con esta medida el operario podrá metalizar sin ningún inconveniente.

EL aguja y asiento por ser elementos pequeños en comparación con los rodetes, podrán ser metalizados sobre una mesa metálica (90 x 210 x 80) cm. Los alabes directrices serán colocados en forma vertical colgados de un riel para que soporte el peso.

Para tener un trabajo eficiente por parte de los operadores y tener un manejo adecuado de los materiales, dentro de la cabina se instalará una percha de (150 x 180 x 50) cm en la cual pueden almacenar los materiales, equipos portátiles (ensayos no destructivos), máquinas herramientas (boquillas, pistolas). Además se contará con una gaveta (80 x 50 x 110) cm para las herramientas pequeñas.

4.9.4.9 Área de balanceo estático. En esta área se realizará el balanceo estático del cono, rodete Francis y rodete Pelton. Se instalarán sobre un eje que gira sobre el riel del equipo de balanceo. Las herramientas, accesorios y equipos necesarios para el funcionamiento de esta máquina estarán disponibles dentro de un perchero (150 x 180 x 50) cm.

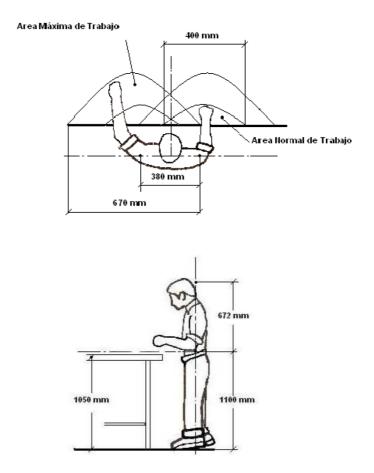
4.9.4.10 Bodega de herramientas. Esta planta industrial debe contar con una bodega (400 x 600) cm que es lo suficientemente grande para albergar todas las máquinas herramientas, herramientas, y materiales.

4.9.4.11 *Cámara trasformador.* Las máquinas herramientas utilizan diferentes rangos de voltaje por lo que se recomienda instalar un transformador fuera de la planta dentro de

un recito de (400 x 600) cm. Para precautelar la seguridad de las personas que laboren dentro de la planta.

- **4.9.4.12** *Recinto compresor*. Debido al tamaño de esta máquina y al ruido que produce, esta se aislará dentro de una cabina especial junto a la planta de mecanizado con una medida de (400 x 700) cm.
- **4.9.4.13** *Cabina de control (CNC control).* Para el control operativo óptimo de los tornos se designó una cabina con una medida de (700 x 400) cm para control de CNC.
- **4.9.4.14** Accesorios y equipos (CNC). La cabina con una medida de (400 x 600) cm será suficiente para almacenar los accesorios y equipos del CNC que deben ser manipulados con responsabilidad por su alto costo.
- **4.9.4.15** Secretaria general y sala de espera. Es imprescindible tener un lugar donde se de información general a todas los clientes y visitas.

Este sitio estará ubicado a la entrada de la planta de mecanizado y tendrá una medida general de (700 x 600) cm.


- **4.9.4.16** Oficina supervisión. Esta oficina la ocuparán los supervisores de planta, en este sitio se almacenaran los planos, fichas técnicas etc. La medida general es de (600 x 700) cm.
- **4.9.4.17** Oficina jefe de planta. Esta oficina la ocupará el jefe de planta, quien realizará la supervisión general de toda la rehabilitación de los elementos hidromecánicos, la medida general es de (400 x 800) cm.
- **4.9.4.18** *Diseño de planos*. En esta oficina se realizara todos los planos preparativos para la rehabilitación de los elementos hidromecánicos, ordenes de trabajo, planos en general, además contará con una biblioteca técnica. La medida general es de (300 x 700) cm.

4.9.4.19 *Instrumentación y metrología*. En este espacio se trataran los aspectos técnicos de instrumentación y metrología sobre la reparación de los elementos hidromecánicos, la medida general es de (600 x 400) cm.

4.9.5 Dimensiones de los puestos de trabajo. Las dimensiones del puesto de trabajo han sido diseñadas de manera que sea ergonómico, es decir que estos puestos se adapten a los operadores para que sea más confortable y se puedan desarrollar las actividades programadas de una manera eficiente.

A continuación se presentan las figuras en las cuales se representa las máximas distancias alcanzadas por una persona promedio, de manera que en base a esto se desarrollen los puestos de trabajo.

Figura 53. Alcance de brazos y altura ideal de trabajo

Los diagramas de los puestos de trabajo se los puede ver en el ANEXO E.

4.9.5.1 Superficie necesaria para la planta de mecanizado. Se calcula en base a los requerimientos técnicos de las máquinas, el espacio que necesitan los operarios, elementos auxiliares, armarios para herramientas y estantes para materiales.

Tabla 57. Superficie para la planta de mecanizado

	DISTRIBUCION DE MÁQUI	NAS-PUE	STOS DE T	ΓR	ABAJO	
ITE	MÁQUINAS Y PUESTOS DE		DI	ME	NSIONE	ES
M	TRABAJO	CANT.	Ancho	X	Largo	Máquina
1V1	TRADAJO		(m)	Λ	(m)	(m^2)
1	Galpón de almacenamiento	1	26	X	15	390
2	Cabina de pulido y desbaste	1	8	X	8	64
3	Cabina tratamientos térmicos	1	8	X	8	64
4	Cabina de soldadura	1	8	X	8	64
5	Torno horizontal	1	5	X	2	10
6	Torno vertical	1	18	X	12	216
7	Centro de mecanizado	1	4	X	5	20
8	Cabina metalizado	1	12	X	10	120
9	Área balanceo estático	2	6	X	6	72
10	Bancos de trabajo	3	3	X	1	9
11	Cámara del transformador	1	6	X	4	24
12	Compresor	1	6	X	4	24
13	Cuarto accesorios CNC	1	6	X	4	24
14	Cuarto CNC control	1	6	X	7	42
15	Bodega de herramientas	1	6	X	4	24
16	Espera y secretaria general	1	6,5	X	6	39
17	Oficina supervisor	1	6,5	X	6	39
18	Vestidores	1	4	X	8	32
19	Baños	1	5	X	4	20
	Mezanine				•	
20	Secretaria y oficina jefe de planta	1	8	X	4	32
21	Diseño planos	7	X	3	21	
22	Instrumentación y metrología	1	6	X	4	24
				Τ	OTAL	1372

La superficie total del terreno es de 5884.32 m² y la planta necesita 1372 m², a esta medida hay que agregarle las medidas generales de los pasillos, vías de circulación. La medida general de la planta de mecanizado será de 25 metros de ancho por 74 metros de largo teniendo un área de 2225 m². La medida del galpón de almacenamiento será de 26 metros de ancho por 15 metros de largo teniendo un área de 390 m². En total la planta requiere 2615m².

- **4.9.6** *Estudio de distribuciones parciales.*
- **4.9.6.1** Planteamiento de las distribuciones parciales. Es necesario establecer los porcentajes de participación de movimientos por cada elemento con respecto a la reconstrucción anual planificada para lo cual se toma en consideración la siguiente tabla:

Tabla 58. Reconstrucción anual

	RECONSTRUCCIÓN AN	UAL	
ITEM	ELEMENTOS HIDROMECÁNICOS	CANT.	%
A	Rodete Francis	1	2,7027027
В	Rodete Pelton	1	2,7027027
C	Tapa Superior (Francis)	1	2,7027027
D	Tapa Inferior (Francis)	1	2,7027027
E	Cono (Francis)	1	2,7027027
F	Alabe (Francis)	20	54,0540541
G	Asiento (Pelton)	6	16,2162162
Н	Aguja (Pelton)	6	16,2162162
	TOTAL	37	100

4.9.6.2 Relación de los lugares de trabajo.

Tabla 59. Designación de los puestos de trabajo

NÚMERO	LUGAR DE TRABAJO
1	Galpón de Almacenamiento
2	Cabina de pulido y desbaste
3	Cabina de tratamientos térmicos
4	Cabina de soldadura
5	Torno Horizontal
6	Torno Vertical.
7	Torno CNC
8	Cabina de metalizado
9	Balanceador estático

4.9.6.3 *Tablas de doble entrada.* Se forma un cuadro de doble entrada, en el que se habrán puesto, los números correspondientes a cada puesto de trabajo, y se cuentan las veces que va cada semi-elaborado de un lugar a otro anotando en la casilla correspondiente luego se forman tablas triangulares de cada producto con la suma de los movimientos en los dos sentidos basándose en las tablas de doble entrada entre cada dos puestos de trabajo.

PRODUCTO A RODETE FRANCIS

Tabla 60. Movimientos en la reconstrucción del rodete FRANCIS

A DE	1	2	3	4	5	6	7	8	9	1 1	
1	-	1	0	0	0	0	0	0	0	$\begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$	
2	0	1	2	0	0	0	0	0	1	3 0 0 0	THE PART OF THE PA
3	0	0	ı	1	0	1	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4	0	0	0	ı	0	1	0	0	0	5 1 0 0 0 0	
5	0	0	0	0	-	0	0	0	0	$\begin{array}{c c} 6 & 0 & 0 & 0 \\ \hline \end{array}$	
6	0	2	0	0	0	ı	0	0	0	7 0 0 0	Υ
7	0	0	0	0	0	0	-	0	0	8 0 0	11-111-1111
8	1	0	0	0	0	0	0	ı	0	9 1	
9	0	0	0	0	0	0	0	1	ı		

PRODUCTO B (RODETE PELTON).

Tabla 61. Movimientos en la reconstrucción del rodete PELTON

A DE	1	2	3	4	5	6	7	8	9	1 1 0	
1	ı	1	0	0	0	0	0	0	0	2 0	
2	0	ı	2	0	0	0	0	0	1	3 0 0 0	
3	0	0	1	1	0	1	0	0	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
4	0	0	0	-	0	1	0	0	0	5 1 0 0 0	
5	0	0	0	0	-	0	0	0	0	6 0 0 0	
6	0	2	0	0	0	ı	0	0	0	7 0 0 0 0	
7	0	0	0	0	0	0	-	0	0	8 0 0	
8	1	0	0	0	0	0	0	ı	0	9 1	
9	0	0	0	0	0	0	0	1	-		

PRODUCTO C (TAPA SUPERIOR FRANCIS)

Tabla 62. Movimientos en la reconstrucción de la tapa superior FRANCIS

A	1	2	3	4	5	6	7	8	9	1	
DE										$\frac{1}{2}$	
1	-	1	0	0	0	0	0	0	0	2 0	0 000
2	0	-	2	0	0	0	0	1	0	3 0 0 0	
3	0	0	-	1	0	1	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4	0	0	0	ı	0	1	0	0	0	5 1 0 1 0	
5	0	0	0	0	ı	0	0	0	0	6 0 0 0	
6	0	2	0	0	0	ı	0	0	0	7 0 0 0	
7	0	0	0	0	0	0	-	0	0	8 0 0	tona a
8	1	0	0	0	0	0	0	-	0	9 0	
9	0	0	0	0	0	0	0	0	-		

PRODUCTO D (TAPA INFERIOR FRANCIS).

Tabla 63. Movimientos en la reconstrucción de la tapa inferior FRANCIS

A DE	1	2	3	4	5	6	7	8	9	1	
1	-	1	0	0	0	0	0	0	0	$\begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$	
2	0	-	2	0	0	0	0	1	0	3 0 0 0	
3	0	0	-	1	0	1	0	0	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
4	0	0	0	-	0	1	0	0	0	5 1 0 1 0	
5	0	0	0	0	-	0	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6	0	2	0	0	0	ı	0	0	0	7 0 0 0	
7	0	0	0	0	0	0	-	0	0	8 0 0	
8	1	0	0	0	0	0	0	-	0	9 0	
9	0	0	0	0	0	0	0	0	1		

PRODUCTO E (CONO FRANCIS)

Tabla 64. Movimientos en la reconstrucción del cono FRANCIS

A DE	1	2	3	4	5	6	7	8	9	1 1 0	
1	-	1	0	0	0	0	0	0	0	2 0	
2	0	-	2	0	0	0	0	0	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3	0	0	1	1	1	0	0	0	0	$\begin{array}{ c c c c c c }\hline 4 & 1 & 0 & 0 \\\hline & 1 & 0 & 0 & 1 \\\hline \end{array}$	
4	0	0	0	1	1	0	0	0	0	5 0 0 0 0 0	
5	0	2	0	0	-	0	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6	0	0	0	0	0	-	0	0	0	7 0 0 0	
7	0	0	0	0	0	0	-	0	0	8 0 0	The state of the s
8	1	0	0	0	0	0	0	-	0	9 1	*3
9	0	0	0	0	0	0	0	1	-		

PRODUCTO F (ALABE FRANCIS).

Tabla 65. Movimientos en la reconstrucción del alabe FRANCIS

E	1	2	3	4	5	6	7	8	9
1	-	1	0	0	0	0	0	0	0
2	0	-	2	0	0	0	0	1	0
4	0	0	0	-	1 1	0	0	0	0
5	0	1	0	0	-	0	1	0	0
6	0	0	0	0	0	-	0	0	0
7	0	1	0	0	0	0	-	0	0
8	1	0	0	0	0	0	0	-	0
9	0	0	0	0	0	0	0	0	-

PRODUCTO G (AGUJA PELTON)

Tabla 66. Movimientos en la reconstrucción de la aguja PELTON

A DE	1	2	3	4	5	6	7	8	9	1	
1	-	1	0	0	0	0	0	0	0	2 0 0	
2	0	-	0	0	1	0	0	0	0	3 1 1 0	
3	0	0	-	1	1	0	0	0	0	4 3 0 0 0 1	
4	0	0	0	-	1	0	0	0	0	5 0 0 0 0	
5	0	0	2	0	-	0	0	1	0	$6 \times 0 \times 0 \times 0 \times$	The state of the s
6	0	0	0	0	0	-	0	0	0	7 0 1 0	The same of the sa
7	0	0	0	0	0	0	-	0	0	8 0 0	2000
8	1	0	0	0	0	0	0	-	0	9 0	the same of the same
9	0	0	0	0	0	0	0	0	-		

PRODUCTO H (ASIENTO PELTON).

Tabla 67. Movimientos en la reconstrucción del asiento PELTON

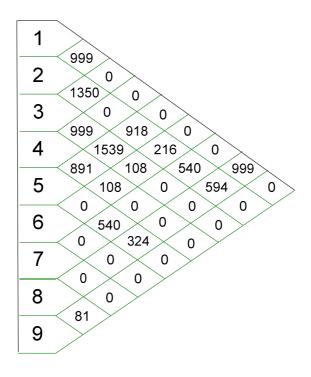
	1	2	3	4	5	6	7	8	9
1	-	1	0	0	0	0	0	0	0
2	0	-	0	0	1	0	0	0	0
3	0	0	-	1	1	0	0	0	0
4	0	0	0	-	1	0	0	0	0
5	0	0	2	0	-	0	0	1	0
6	0	0	0	0	0	-	0	0	0
7	0	0	0	0	0	0	-	0	0
8	1	0	0	0	0	0	0	-	0
9	0	0	0	0	0	0	0	0	-

4.9.6.4 *Tabla ponderada*. Se forma de una nueva tabla triangular con la suma de los movimientos ponderados con porcentajes señalados, entre cada área de trabajo, en la reconstrucción de los elementos hidromecánicos.

Los valores obtenidos en las tablas triangulares se multiplican por el porcentaje de rehabilitación de cada una. De la suma se toman los resultados y se ubican en la tabla.

Tabla 68. Tabla ponderada relación de movimientos

		RO FR				F	ROI	DETI	E PE l	LTON	J			SUF	PEROR CIS	T			NFI	ERIOR CIS	C	ON	I C	FR/	ANCIS				AE NC		1	AG	UJ.	A P	ELTON				IEN LT(OTO NC
				B=	=2,7%				D=	=2,7%				F	=2,7%				H	=2,7%				H	=2,7%				J=	54,0%				L	=16,2%				N	=16,2%
	MO			A*B	N	ИΟ	V.	C	C*D	N	10	V.	E	E*F	Μ	(O)	V.	G	G*H	M	OV		G	G*H	M	OV	7.	I	I*J	M	(O	V.	K	K*L	N	ИO	V	M	M*N	
1	_	2	2	1	0,027	1		2	1	0,027	1		2	1	0,027	1		2	1	0,027	1		2	1	0,027	1		2	1	0,54	1		2	1	0,162	1		2	1	0,162
2		3	3	2	0,054	2		3	2	0,054	2		3	2	0,054	2		3	2	0,054	2		3	2	0,054	2		3	2	1,08	2		5	1	0,162	2		5	1	0,162
6	<u> </u>	2	2 2	2	0,054	6		2	2	0,054	3		4	1	0,027	3		4	1	0,027	3		4	1	0,027	3		4	1	0,54	3		5	3	0,486	3		5	3	0,486
2	2	9)	1	0,027	2		9	1	0,027	4		6	1	0,027	4		6	1	0,027	4		5	1	0,027	4		5	1	0,54	3		4	1	0,162	3		4	1	0,162
3		4		1	0,027	3		4	1	0,027	6		2	2	0,054	6		2	2	0,054	2		5	2	0,054	5		7	1	0,54	4		5	1	0,162	4		5	1	0,162
3	-	6	5	1	0,027	3		6	1	0,027	3		6	1	0,027	3		6	1	0,027	3		5	1	0,027	7		2	1	0,54	5		8	1	0,162	5		8	1	0,162
4		6	5	1	0,027	4		6	1	0,027	2		8	1	0,027	2		8	1	0,027	2		9	1	0,027	3		5	1	0,54	8		1	1	0,162	8		1	1	0,162
9		8	3	1	0,027	9		8	1	0,027	8		1	1	0,027	8		1	1	0,027	9		8	1	0,027	2		5	1	0,54										
8		1		1	0,027	8		1	1	0,027											8		1	1	0,027	2		8	1	0,54										
																									·	8		1	1	0,54										


Tabla 69. Tabla ponderada (resumen)

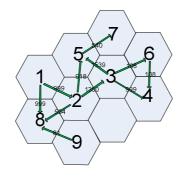
1 - 2 1	0,027	3 4 1 0,027	5 7 1 0,54
1 - 2 1	0,027	3 - 4 1 0,027	0,54
1 - 2 1	0,027	3 - 4 1 0,027	
1 - 2 1	0,027	3 - 4 1 0,54	5 8 1 0,162
1 2 1	0,027	3 4 1 0,027	5 8 1 0,162
1 2 1	0,54	3 4 1 0,027	0,324
1 - 2 1	0,162	3 - 4 1 0,162	
1 - 2 1	0,162	3 - 4 1 0,162	6 2 2 0,054
	0,999	0,999	6 - 2 2 0,054
			6 - 2 2 0,054
2 = 3 2	0,054	3 - 5 1 0,027	6 2 2 0,054
2 - 3 2	0,054	3 - 5 1 0,54	0,216
2 - 3 2	0,054	3 - 5 3 0 ,486	_
2 - 3 2	0,054	3 - 5 3 0,486	7 - 2 1 0,54
2 - 3 2	0,054	1,539	0,54
2 = 3 2	1,08		
	1,35		8 1 1 0,027
		3 6 1 0,027	8 1 1 0,54
2 = 5 1	0,54	3 6 1 0,027	8 1 1 0,162
2 = 5 1	0,162	3 6 1 0,027	8 - 1 1 0,162
2 - 5 1	0,162	3 6 1 0,027	8 1 1 0,027
2 - 5 2	0,054	0,108	8 1 1 0,027
	0,918		8 1 1 0,027
		4 - 5 1 0,027	8 1 1 0,027
2 - 8 1	0,027	4 - 5 1 0,54	0,999
2 - 8 1	0,027	4 - 5 1 0,162	
2 - 8 1	0,54	4 - 5 1 0,162	9 - 8 1 0,027
	0,594	0,891	9 - 8 1 0,027
l			9 8 1 0,027
2 - 9 1	0,027	4 6 1 0,027	0,081
2 - 9 1	0,027	4 6 1 0,027	
2 - 9 1	0,027	4 6 1 0,027	
	0,081	4 6 1 0,027	
		0,108	

Tabla 70. Tabla ponderada relación de movimientos (resumen)

1	2	0,999	*	1000	999
2	3	1,35	*	1000	1350
2	5	0,918	*	1000	918
2	8	0,594	*	1000	594
2	9	0,081	*	1000	81
3	4	0,999	*	1000	999
3	5	1,539	*	1000	1539
3	6	0,108	*	1000	108
4	5	0,891	*	1000	891
4	6	0,108	*	1000	108
5	7	0,54	*	1000	540
5	8	0,324	*	1000	324
6	2	0,216	*	1000	216
7	2	0,54	*	1000	540
8	1	0,999	*	1000	999
9	8	0,081	*	1000	81

Tabla 71. Movimientos en la reconstrucción de los elementos hidromecánicos

4.9.6.5 Resumen de movimientos


Tabla 72. Relación de movimientos

RELACIONES	MOVIMIENTOS	PORCENTAJE (%)
3-5	1539	14,97
2-3	1350	13,13
1-2	999	9,72
3-4	999	9,72
8-1	999	9,72
2-5	918	8,93
4-5	891	8,67
2-8	594	5,77
5-7	540	5,24
7-2	540	5,24
5-8	324	3,14
6-2	216	2,09
2-9	108	1,04
4-6	108	1,04
2-9	81	0,79
9-8	81	0,79
TOTAL	10287	100

FUENTE: Autores.

4.9.6.6 Diagrama de proximidad. Mediante el diagrama de proximidad se ubica las áreas de trabajo para obtener una distribución tentativa, la cual se analizará para determinar si cumple con el proceso de reconstrucción. Se inicia empleando hexágonos que representan cada uno de los puestos de trabajo procurando dejar en contacto los hexágonos que representen los puestos de trabajo que tengan los mayores movimientos de relación entre ellos en este caso los puestos 3-5, 2-3, luego se distribuye el resto de puestos manteniendo la relación de movimientos.

Figura 54. Diagrama de proximidad

4.9.6.7 *Forma de planta*. Las plantas pueden recordarse con el vocablo CHITEFOL, cada letra de este vocablo es una forma de planta. En forma de C, H, I (nave recta) de F, E, T, O (rectangular) y de L. para la planta de mecanizado se tiene una forma de O, por lo que la planta debe ser rectangular.

Una vez decidida la distribución que mejor le conviene al a la planta, se realizará la ubicación de los diferentes equipos mecánicos.

4.10 Distribución de planta propuesta.

Luego de realizar el análisis conjuntamente con los diagramas de proximidad se llegó a determinar la mejor distribución dentro de la planta de forma que los puestos de trabajo están distribuidos de manera que el puesto mas concurrido se encuentra en el centro para de esa manera minimizar los transportes de una estación de trabajo a otra.

4.10.1 *Distribución de planta (diseño en 2D).* La distribución de planta se encuentra en el ANEXO F.

4.10.2 Paseo virtual (diseño en 3D). Con la utilización del software AUTOCAD y SOLIDWORKS se puede realizar el paseo virtual de la planta industrial de mecanizado. (Ver presentación en CD.)

Figura 55. Diseño en 3D de la planta

4.11 Seguridad industrial de la planta

El conjunto de normas, procedimientos y técnicas aplicadas en las áreas laborables de la planta de mecanizado previenen los accidentes e incidentes para las personas así como averías en los equipos e instalaciones, para ello es fundamental determinar los riesgos existes dentro de la planta, al igual que indicar la señalización dependiendo del lugar de trabajo.

Podemos ubicar el mapa de riesgos y la señalización de la planta en los ANEXOS (G-H)

Planificación de actividades.

- 1. Identificación y evaluación de los riesgos existentes.
- 2. Selección del EPP adecuado y necesario de acuerdo con las particularidades de los trabajos a realizarse.
- 3. Señalización de áreas de trabajo.
- 4. Delimitación de áreas de trabajo que así lo requieran o presenten riesgo alguno.

Tabla 73. Identificación y evaluación de riesgos

AREA	PELIGROS	FACTOR DE RIESGO	CONSECUENCIA	MEDIDAS CORRECTVAS Y
BALANCEO	atrapamiento	mecánico	fracturas en el cuerpo	Mantener siempre la concentración durante el periodo de su tarea.
	golpes contra la cabeza	mecánico	golpes/traumas	Utilizar el EPP adecuado
ESTATICO	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.
OFICINA- SALA DE	Moviendo repetitivos	Ergonómicos	Cansancio, lesiones lumbares	limitar la exposición frente al computador
CONTROL- SECRETARÍA	cortocircuitos	Físico	Desconocimiento de actuación, ante la emergencia	Mantenimiento de cables eléctricos. Implementar plan de contingencias

AREA	PELIGROS	FACTOR DE RIESGO	CONSECUENCIA	MEDIDAS CORRECTVAS Y
	paso montacargas	mecánico	arrollamiento	concentración durante el periodo de su tarea.
	golpes contra la cabeza	mecánico	golpes/contusiones	Utilizar el EPP adecuado
ALMACENAMIENTO	paso camión grúa	mecánico	arrollamiento	concentración durante el periodo de su tarea.
	zona carga y descarga	mecánico	Caídas, arrollamientos	concentración durante el periodo de su tarea.
	Ruido, vibraciones	Físico	Sordera, estrés	Utilizar el EPP adecuado
	cortocircuitos	Físico	Desconocimiento de actuación, ante la emergencia	Mantenimiento de cables eléctricos. Implementar plan de contingencias
	Exposición a proyección de limallas	Fisico	ceguera	Utilizar el EPP adecuado
PULIDO Y DESBASTE	Exposición a altas temperaturas	Físico	Quemaduras	Utilizar el EPP adecuado
	Partículas suspendidas en el aire	Químico	Dificultad al respirar	Utilizar el EPP adecuado
	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.
	riesgo de incendio	Físico	Quemaduras	Mantener cerca el extintor
	Ruido	Físico	Sordera, estrés	Utilizar el EPP adecuado
	cortocircuitos	Físico	Desconocimiento de actuación, ante la emergencia	Mantenimiento de cables eléctricos.
	V 0110 V1V41 00			Implementar plan de contingencias
	Exposición a altas temperaturas	Físico	Quemaduras	Utilizar el EPP adecuado
SOLDADURA	Radiaciones ultravioleta	Químico	Efectos en el cuerpo a largo tiempo	Utilizar el EPP adecuado
	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.
	riesgo de incendio	Físico	Quemaduras	Mantener cerca el extintor
	Sustancias nocivas	Químico	Dificultad al respirar	Utilizar el EPP adecuado

AREA	PELIGROS	FACTOR DE RIESGO	CONSECUENCIA	MEDIDAS CORRECTVAS Y PREVENTIVAS
	Ruido	Físico	Sordera, estrés	Utilizar el EPP adecuado
	paso de montacargas	mecánico	arrollamiento	Mantener siempre la concentración durante el periodo de su tarea.
METALIZADO	Exposición a altas temperaturas	Físico	Quemaduras	Utilizar el EPP adecuado
	Sustancias nocivas	Químico	Dificultad al respirar	Utilizar el EPP adecuado
	proyección de particulas	mecánico	perdida de la vista	Utilizar el EPP adecuado
	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.
	Ruido, vibraciones	Físico	Sordera, estrés	Utilizar el EPP adecuado
			Desconocimiento de	Mantenimiento de cables eléctricos.
	cortocircuitos	Físico	actuación, ante la emergencia	Implementar plan de contingencias
	golpes contra la cabeza	mecánico	golpes/traumas	Utilizar el EPP adecuado
MECANIZADO	maquinas en movimiento	mecánico	golpes/fracturas	Mantener siempre la concentración durante el periodo de su tarea.
	atrapamiento	mecánico	fracturas en el cuerpo	Mantener siempre la concentración durante el periodo de su tarea.
	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.
	proyección de particulas	mecánico	perdida de la vista	Utilizar el EPP adecuado
	Ruido	Físico	Sordera, estrés	Utilizar el EPP adecuado
	cortocircuitos	Físico	Desconocimiento de actuación, ante la	Mantenimiento de cables eléctricos.
			emergencia	Implementar plan de contingencias
TRATAMIENTOS TERMICOS	Exposición a altas temperaturas	Físico	Quemaduras	Utilizar el EPP adecuado
	golpes contra la cabeza	mecánico	daño cerebral	Utilizar el EPP adecuado
	zona carga y descarga	mecánico	Caídas, arrollamientos	Mantener siempre la concentración durante el periodo de su tarea.

Tabla 74. Protección individual (ANEXO I)

EQUIPOS DE PROTECCIÓN INDIVIDUAL				
Clase	Equipo	Tipo de protección que deben ofrecer		
De cabeza	Casco	 Contra caída de objetos sobre la cabeza. Contra golpes contra elementos fijos o móviles. 		
De ojos y cara	Gafas y pantallas faciales	Contra proyecciones y salpicaduras.Contra proyecciones de partículas.		
De oídos	Protectores auditivos	- Contra el ruido.		
De vías respiratorias	Respiradores	Contra material de partículas.Contra vapores orgánicos.		
De manos y brazos	Guantes	Contra golpes, cortes y punciones.Contra el agua y productos químicos.Contra microrganismos.		
De pies y piernas	Calzado – Botas Pescadores	Contra el agua.Contra golpes y caídas de objetos.Contra la perforación de la suela.Contra el deslizamiento.		
De cuerpo entero	Ropa de trabajo – Impermeables	 Contra el agua. Contra atropellos de vehículos (alta visibilidad). Equipos de salvamento mediante izado (arneses, lazos y cuerdas). 		

Tabla 75. Designación de la señalización en la planta

UBICACIÓN/ AREA	SEÑALETICA	DESCRIPCIÓN
ALMACENAMIENTO	Obligación	uso obligatorio de guantes de seguridad uso obligatorio de casco de seguridad uso obligatorio de chaleco reflejante uso obligatorio de ropa de trabajo uso obligatorio de calzado de seguridad
	Advertencia	peligro paso de montacargas peligro paso de camión grúa precaución zona de carga y descarga
	Prohibición	prohibido el ingreso al personal no autorizado
	Información	AREA DE ALMACENAMIENTO

UBICACIÓN/ AREA	SEÑALETICA	DESCRIPCIÓN
PULIDO Y	Obligación	uso obligatorio de guantes de seguridad uso obligatorio de protección respiratoria uso obligatorio de casco y protección auditiva uso obligatorio de protector facial
DESBASTE	Advertencia	uso obligatorio de ropa de trabajo uso obligatorio de calzado de seguridad Peligro proyección de partículas Peligro área de ruido Peligro riesgo de incendio precaución zona de carga y descarga
		prohibido el ingreso al personal no
	Prohibición	autorizado
	Información	AREA DE PULIDO Y DESBASTE
SOLDADURA	Obligación Advertencia	uso obligatorio de guantes de seguridad uso obligatorio de protección respiratoria uso obligatorio de casco y protección auditiva uso obligatorio de mascara de soldar uso obligatorio de mandil y mangas uso obligatorio de calzado de seguridad Peligro proyección de partículas Peligro alto voltaje
		peligro materiales tóxicos
		Radiaciones ultravioleta en soldadura Peligro riesgo de incendio precaución zona de carga y descarga
	Prohibición	prohibido el ingreso al personal no autorizado
	Información	AREA DE SOLDADURA
METALIZADO	Obligación	uso obligatorio de guantes de seguridad uso obligatorio de protección respiratoria uso obligatorio de casco y protección auditiva uso obligatorio de protector facial uso obligatorio de mandil y mangas uso obligatorio de calzado de seguridad

UBICACIÓN/ AREA	SEÑALETICA	DESCRIPCIÓN
		Peligro proyección de partículas
		Peligro riesgo de incendio
	Advertencia	peligro materiales tóxicos
METALIZADO		precaución zona de carga y descarga
	Prohibición	prohibido el ingreso al personal no autorizado
	Información	ÁREA DE METALIZADO
		uso obligatorio de guantes de seguridad
		uso obligatorio de casco y protección auditiva
	Obligación	uso obligatorio de lentes de seguridad
		uso obligatorio de ropa de trabajo
MECANIZADO		uso obligatorio de calzado de
		seguridad
	Advertencia	Peligro proyección de partículas
		Peligro área de ruido
		precaución riesgo de atrapamiento
		Atención máquinas en movimiento
		precaución zona de carga y descarga
	Prohibición	prohibido el ingreso al personal no autorizado
	Información	ÁREA DE MECANIZADO
	mormacion	uso obligatorio de guantes de
		seguridad
		uso obligatorio de protección
		respiratoria
		uso obligatorio de casco y protección auditiva
		uso obligatorio de ropa de trabajo
		uso obligatorio de calzado de
TRATAMIENTO	Obligación	seguridad
TÉRMICOS	Congueron	Peligro alto voltaje
		peligro materiales tóxicos
		Atención alta temperatura
		Peligro riesgo de incendio
		precaución zona de carga y descarga

UBICACIÓN AREA	SEÑALETICA	DESCRIPCIÓN
TRATAMIENTO	Prohibición	prohibido el ingreso al personal no autorizado
TÉRMICOS	Información	ÁREA DE TRATAMIENTOS TÉRMICOS
DAL ANCEO	Obligación	uso obligatorio de guantes de seguridad uso obligatorio de ropa de trabajo uso obligatorio de casco de seguridad uso obligatorio de calzado de seguridad
BALANCEO ESTÁTICO	Advertencia	precaución riesgo de atrapamiento precaución zona de carga y descarga
	Prohibición	prohibido el ingreso al personal no autorizado
	Información	ÁREA DE BALANCEO ESTÁTICO
	Obligación	uso obligatorio de manual de instrucciones mantener la puerta cerrada
OFICINA-SALA DE	Advertencia	Peligro riesgo de incendio Precaución piso resbaladizo
CONTROL-		SECRETARIA Y ESPERA
SECRETARIA		OFICINA
	Información	S.S.H.H
	miormacion	ACCESORIOS CNC CENTRO DE MECANIZADO
		CNC CONTROL

CAPÍTULO V

5. COSTOS DEL PROYECTO

5.1 Costos

La determinación de los costos surge como consecuencia lógica y fundamental del propio estudio técnico puesto que éste permitirá estimar y distribuir los costos del proyecto en términos totales y unitarios, con lo cual se estará determinando la cantidad de recursos monetarios que exige el proyecto.

En un proyecto industrial se pueden distinguir cuatro funciones básicas: producción, administración, ventas, y financiamiento.

5.2 Costos y gastos del mantenimiento anual y overhaul de la Central Agoyán

La central hidroeléctrica Agoyán tiene una solvencia económica muy buena para cubrir los costos de operación, mantenimiento preventivo, programado y overhaul, esto debido a los ingresos que percibe por venta de energía. En la siguiente tabla se puede analizar el costo del overhaul de la primera unidad que es de 7'056.652,47 realizado en 4 meses, mientras el costo de la segunda unidad por cuestiones de operación y mantenimiento es de 1'663.451,56.

Tabla 76. Costos anuales de mantenimiento mayor -operación y mantenimiento

ITEM	COMPONENTES	OVERHAUL	OPERACIÓN Y MANTTO.		COSTO
	DEL COSTO	OVERHAUL	OPERACIÓN	MANTTO.	TOTAL
1	Mano de obra directa	180.211,20	129.982,64	127.832,62	438.026,46
2	Materiales y repuestos	6'630.038,78	0,00	860.000,00	7'490.038.78
3	Mano de obra indirecta	83.191,90	75.865,77	234.160,65	393.218,32
4	Materiales indirectos Otros costos de	43.513,14	0,00	24.331,00	67.844,14
5	mantenimiento	3.360,00	0,00	10.080,00	13.440,00
6	Gastos generales	116.337,45	39.781,68	161.417,20	317.536,33
	Total	7'056.652,47	245.630,09	1'417.821,47	8'720.104,03

La empresa internacional ENERGY THINK TANK ETT C.A es la encargada de la fabricación de los elementos hidromecánicos previa solicitud de construcción tomándoles aproximadamente 2 años.

En el año ha realizarse el overhaul la empresa HidroAgoyán debe realizar un gasto de 8'720.104,03 dólares. Esta cifra es bastante alta pues se debe comprar los elementos hidromecánicos que sufren mayor desgaste por ende deben ser remplazados.

Como se dio a conocer anteriormente los elementos de la turbina Francis son: Rodete, cono, tapa superior, tapa inferior y alabes directrices, que equivalen aproximadamente un 85% del costo total del mantenimiento mayor u overhaul.

Materiales, repuestos y piezas nuevas. Comprende el costo de todos los materiales, repuestos y piezas a restaurar en el proceso de cambio o reposición en el mantenimiento mayor.

Tabla 77. Costos de materiales y repuestos del mantenimiento mayor

ITEM	DESCRIPCIÓN	COSTO TOTAL
1	Materiales	437.698,97
2	piezas nuevas	6'192.339,81
	TOTAL	6'630.038,78

A continuación se indica un desglose de los elementos hidromecánicos necesarios para el overhaul.

Tabla 78. Costos de piezas nuevas para el mantenimiento mayor

ITEM	DESCRIPCIÓN	CANT.	COSTO UNITARIO	COSTO TOTAL
1	Rodete Francis	1	2'336.987,22	2'336.987,22
2	Alabes directrices	20	40.628,45	812.568,96
3	Tapa Inferior	1	868.612,00	1'072.445,00
4	Tapa superior	1	868.612,00	1'868.612,00
5	Cono	1	101.726,63	101.726,63
	TOTAL			6'192.339,81

Cabe indicar que los elementos hidromecánicos citados en el cuadro anterior no tienen ninguna protección contra la erosión.

En el contrato realizado con la empresa ANDRITZ ver (ANEXO K) constan servicios que se detallan en los cuadros siguientes:

Tabla 79. Precios por reparación mecánica

ITEM	DESCRIPCIÓN	CANT.	COSTO UNITARIO	COSTO TOTAL
1	Rodete Francis	1	524.200	524.200
2	Alabes directrices	20	10.810	216.200
3	Tapa superior	1	327.600	327.600
	TOTAL			1'068.000

Tabla 80. Precios por recubrimiento contra la erosión

ITEM	DESCRIPCIÓN	CANT.	COSTO UNITARIO	COSTO TOTAL
111711	DESCRIPCION	CANT.	UNITARIO	IUIAL
1	Rodete Francis	1	110.275	110.275
2	Alabes directrices	20	9.040	180.800
3	Tapa superior	1	241.150	241.150
4	Tapa inferior	1	85.500	85.500
5	Cono de rodete	1	12.000	12.000
	TOTAL			629.725

Teniendo en cuenta que no se repararon mecánicamente la tapa inferior y el cono de rodete para los mismos investigamos el valor de reconstrucción obteniendo un valor aproximado de 200.000, más 160.200 por transporte, la suma total por la rehabilitación de un conjunto de turbina Francis es de 2'057.925 dólares americanos.

Si se compara los dos precios tanto de compra como de reconstrucción podemos determinar fácilmente un ahorro de 4'134.414 que equivale al 66.76%.

5.3 Solvencia económica de la Central Agoyán

HidroAgoyán, por su solvencia económica, está en capacidad de cubrir con sus propios recursos económicos por lo que no necesita de financiamiento externo.

Tabla 81. Estado de pérdidas y ganancias (Central Agoyán)

ESTA	ESTADO DE PERDIDAS Y GANANCIAS (CENTRAL AGOYÁN)									
Ingresos	Año 2006	Año 2007	Año 2008	Año 2009	Año 2010					
ingresos por operación	20'776.950,48	18'425.784,00	20'116.902,00	18'224.814,56	19'264.388,68					
Costos y Gastos Costos de										
producción Costos de	4'799.475,56	4'256.356,33	4'647.004,36	4'209.932,16	4'450.073,79					
comercialización Costos	141.283,26	125.295,33	136.794,93	123.928,74	130.997,84					
administrativos Gastos	1'928.101,00	1'709.912,76	1'866.848,51	1'691.262,79	1'787.735,27					
financieros	764.249,25	611.399,40	458.549,55	305.699,70	152.849,85					
Depreciaciones	6'519.807,06	6'519.807,06	6'519.807,06	6'519.807,06	6'519.807,06					
TOTAL DE										
COSTOS Y										
GASTOS	14'152.916,13	13'222.770,88	13'629.004,41	12'850.630,45	13'041.463,81					
UTILIDAD										
NETA	6'624.034,35	5'203.013,12	6'487.897,59	5'374.184,11	6'222.924,87					

5.4 Costo anual para la reparación de dos grupos de turbinas hidráulicas (Francis-Pelton)

5.4.1 Costos de reconstrucción

5.4.1.1 Costos directos. (Empresa INDURA)

Tabla 82. Material directo

DENOMINACIÓN	CANTIDAD	UNIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Influx 410 NiMo T1	200	Kg	53	10600	127200
Chroma Weld 308LT1	220	Kg	59	12980	155760
Chroma Weld 309LT1	240	Kg	36	8640	103680
TOTAL			148	32220	386640

La mano de obra indirecta se divide en tres grupos de trabajando en tres turnos rotativos de 8 horas cada uno.

Tabla 83. Mano de obra directa

DENOMINACIÓN	CANTIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Operador Soldador	15	886	13.296	159.551
Operador Pulidor	15	886	13.296	159.551
Operador Standblastig	3	820	2.460	29.516
Operador camión grúa-montacargas	3	820	2.460	29.516
Operador de CNC Operador para torno Vertical-	3	886	2.659	31.910
horizontal	6	886	5.318	63.820
Operador metalizador	6	820	4.919	59.033
Operador balanceo estático	6	820	4.919	59.033
TOTAL	57	6.825	49.327	591.930

5.4.1.2 *Costos indirectos.*

Tabla 84. Mano de obra indirecta

DENOMINACIÓN	CANTIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Jefe de planta	1	2.283	2.283	27.393
Supervisor	3	1.485	4.454	53.453
Laboratista END	3	886	2.659	31.910
Asistente técnico de archivo	1	820	820	9.839
Transportista	3	820	2.460	29.516
Técnico electromecánico	1	886	886	10.637
Ayudante de limpieza	2	620	1.241	14.890
TOTAL	14	7.801	14.803	177.638

Tabla 85. Servicios

DENOMINACIÓN	CANTIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Agua	1	200	200	2.400
luz	1	5.000	5.000	60.000
Teléfono	1	300	300	3.600
TOTAL		5.500	5.500	66.000

Tabla 86. Materiales indirectos

			COSTO	COSTO		COSTO
DENOMINACIÓN	CANT.	UNIDAD	UNITARIO	MENSUAL	CANT.	ANUAL
	011111	01,12112	(USD)	(USD)	ANUAL	(USD)
Piedras de esmeril						
rectas Ø 6x1x1"	1.50	/	1.7	255	10	2.060
grano grueso Piedras de esmeril	150	c/u	1,7	255	12	3.060
esférica 1/2x3.1/8 "						
grano grueso	100	c/u	1,7	170	12	2.040
Piedras de esmeril						
esférica 1/2x3.1/8 "	4.0	,			40	000
grano mediano Piedras de esmeril	40	c/u	1,85	74	12	888
esférica 1/2x3.1/8 "						
grano fino	40	c/u	1,85	74	12	888
Piedras de esmeril			ĺ			
cónicas 1/2x1.3/4x3						
" grano grueso Piedras de esmeril	30	c/u	1,8	54	12	648
cónicas 1/2x1.3/4x3						
" grano mediano	40	c/u	1,85	74	12	888
Piedras de esmeril			,			
cónicas 1/2x1.3/4x3						
" grano fino	60	c/u	1,85	111	12	1.332
Disco de desbaste 7x1/4x7/8"	26	c/u	3,64	94,64	12	1.135,68
Disco de corte de	20	C/ u	3,04	94,04	12	1.133,00
4x1/8x7/8"	14	c/u	2	28	12	336
Juegos de frascos de						
Líquidos penetrantes	50	c/u	15	750	12	9.000
Disco de alúmina #100	120	c/u	0,78	93,6	12	1.123,2
Disco de alúmina	120	C/ u	0,78	73,0	12	1.123,2
#120	120	c/u	0,78	93,6	12	1.123,2
Disco de lijas						
pequeño	80	c/u	0,5	40	12	480
Lijas #180	100	c/u	0,35	35	12	420
Lijas #400	100	c/u	0,38	38	12	456
Lijas #1500	100	c/u	0,38	38	12	456
Mascarilla 3M	71	c/u	1,5	106,5	12	1278
Guantes 3M	71	par	5 7	355	12	4260
Orejeras Mandil	71	c/u		497	4	1988
Mandil	30	c/u	25	750 5250	6 2	4500 10500
Casco automático	15 71	c/u	350 45	5250 3105	2	6390
Botas de seguridad Lentes de seguridad	71	par c/u	45	3195 497	12	5964
Delantal de cuero	30	c/u c/u	25	750	2	1500
Mascara de	30	C/U	23	730	<i>L</i>	1300
protección	30	c/u	23	690	2	1380
Casco de seguridad	71	c/u	18	1278	2	2556
TOTAL			542,91	15391,34		64590,08

5.4.1.3 Reparación y mantenimiento. El costo estimado por reparación y mantenimiento de maquinaria y equipos es del 2% del valor instalado y para el edificio – construcciones, muebles y enceres es el 1% del valor.

Tabla 87. Reparación y mantenimiento

DENOMINACIÓN	CANTIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Construcción de la planta	1	1.466	1.466	17.586
Maquinarias y equipos Muebles y enceres	1	6.747 10	6.747 10	80.959 120
TOTAL	1	8.222	8.222	98.666

5.4.1.4 *Depreciación.* Es el desgaste que han sufrido los activos fijos por uso o el transcurso del tiempo.

En el presente proyecto se efectuaron las siguientes depreciaciones:

$$Valor Depre\, ciaci\'on = \frac{Costo - Valor \; \text{Re } sidual}{numero - de - a\~nos}$$

Depreciaci ón =
$$\frac{12020 - 1202}{5}$$
 = 2163.6

Tabla 88. Depreciación

CUADRO DE DEPRECIACIONES								
DETALLE	V. ADQUISICIÓN	V. RESIDUAL	AÑOS DE VIDA ÚTIL	V. DEPREC. ANUAL	V. DEPREC. MENSUAL			
Construcción de la planta Maquinarias y	879.321,9	87.932,2	40	19.784,7	1.648,7			
equipos Muebles y	4.027.949	402.794,9	20	181.257,7	15.104,8			
enceres	12020	1.202,0	5	2.163,6	180,3			
TOTAL				203.206,0	16.933,8			

5.4.2 *Costo de administración.*

Tabla 89. Gastos de administración

DENOMINACIÓN	CANTIDAD	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Secretaria	2	886	1.773	21.273
Servicio de seguridad	3	300	900	10.800
Útiles de aseo	1	30	30	360
Útiles de oficina	1	50	50	600
TOTAL		1.266	2.753	33.033

5.4.3 *Costo de venta.*

Tabla 90. Gastos de venta

DENOMINACIÓN	CANT.	COSTO UNITARIO (USD)	COSTO MENSUAL (USD)	COSTO ANUAL (USD)
Combustible	1	400,00	400,00	4.800,00
Publicidad internet (CENACE-CELEC EP)	1	150,00	150,00	1.800,00
Servicio técnico	1	750,00	750,00	9.000,00
TOTAL		1300	1300	15600

5.4.4 *Costo financiero*. Son los intereses que se deben pagar en relación con los capitales obtenidos en préstamos, entre los principales rubros de este costo estarían: Intereses a corto plazo, Intereses a largo plazo, descuentos bancarios, etc.

Para poner en marcha el proyecto y mantenerla funcionando durante un largo período es necesaria una inversión de aproximadamente 7`000.000 de dólares.

La empresa realizará un aporte del 43% de la inversión total que equivale \$ 3'000.000 dólares.

El préstamo a realizar sería de \$4'000.000 de dólares, al 15% anual teniendo una deuda por intereses de \$ 600.000 dólares a un plazo de 10 años.

Tabla 91. Gasto financiero

DENOMINACIÓN	CANTIDAD	COSTO MENSUAL(USD)	COSTO ANUAL (USD)
Banco de crédito	1	50.000	600.000
TOTAL		50.000	600.000

5.5 Costo anual

Tabla 92. Costo anual.

COSTOS CERTHA (CENTRO DE RECONSTRUCCIÓN DE TURBINAS HIDRÁULICAS AGOYÁN)					
1 COSTOS DE RECONSTRUCCIÓN	,	1'588.270			
Costos Directos		978.570			
Materiales Directos	386.640				
Mano de Obra Directa	591.930				
Costos Indirectos	•	609.700			
Materiales Indirectos	64.590				
Mano de Obra indirecta	177.638				
Servicios	66.000				
Reparación y Mantenimiento	98.666				
Depreciación	203.206				
2 COSTOS DE ADMINISTRACIÓN		33.033			
Gastos de Administración		33.033			
Secretaria	21.273				
servicio de seguridad	10.800				
Útiles de aseo	360				
Útiles de Oficina y Papelería	600				
3 COSTO DE VENTA			15.600		
GASTO DE VENTA	•	15.600			
Combustible	4.800				
Publicidad internet (CENACE-CELEC E.P)	1.800				
Servicio técnico	9.000				
4 COSTO FINANCIERO			600.000		
Gastos Financieros		600.000			
Interés	600.000				
COSTO TOTAL = Reconstrucción + Administración + Ventas + Financiero					
COSTO TOTAL = 2'236.903					

5.6 Ingresos del proyecto

El material, la mano de obra y todos los gastos citados en el cuadro anterior han sido calculados para reparar dos grupos hidromecánicos de turbinas en un año.

costo total anual= 2'236.903

Precio reconstrucción = costo total + %de utilidad utilidad del 70%

3'802.735 Precio reconstrucción =

Precio unitario = precio reconstrucción/#servicios 2 grupos hidromecánicos

Precio unitario = 1'901.368 **CERTHA**

> Incluido el transporte 2'057.925 **ANDRITZ** marítimo y terrestre

156.557 Ventaja competitiva.

Es un asunto delicado el proyectar una reconstrucción de más de dos grupos de turbinas, puesto que cada elemento lleva un largo tiempo en ser rehabilitado.

Entonces no se va incrementar el número de elementos hidromecánicos reparados al año, sino vamos a tener un aumento de costos por cuestión de la inflación que consideramos del 3%, más un 1% de nivel de riesgo por la inestabilidad política del Ecuador. En conclusión nivel de inflación anual será del 4%.

Con esta aclaración realizamos la siguiente proyección de ingresos para diez años.

Tabla 93. Ingresos del proyecto.

	INGRESOS DEL PROYECTO							
AÑOS	CANTIDAD	PRECIO UNITARIO	VAL					
1	2	1'901.368	3'802.735					
2	2	1'977.422	3'954.845					
3	2	2'056.519	4'113.038					
4	2	2'138.780	4'277.560					
5	2	2'224.331	4'448.662					
6	2	2'313.304	4'626.609					
7	2	2'405.837	4'811.673					
8	2	2'502.070	5'004.140					
9	2	2'602.153	5'204.306					
10	2	2'706.239	5'412.478					

5.7 Presupuesto de ingresos y gastos

Tabla 94. Presupuesto de ingresos y gastos

ESTADO PROFORMA DE PERDIDAS Y GANANCIAS (vida útil 10 años)										
RUBROS/AÑOS	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Ventas netas	3'802.735	3'954.845	4'113.038	4'277.560	4'448.662	4'626.609	4'811.673	5'004.140	5'204.306	5'412.478
(-)Costo de producción	1'588.270	1'651.800	1'717.872	1'786.587	1'858.051	1'932.373	2'009.668	2'090.055	2'173.657	2'260.603
(=) Utilidad Bruta	2'214.466	2'303.044	2'395.166	2'490.973	2'590.611	2'694.236	2'802.005	2'914.086	3'030.649	3'151.875
(-) Costos de administración	33.033	33.033	33.033	33.033	33.033	33.033	33.033	33.033	33.033	33.033
(-)Costos de ventas	15.600	15.600	15.600	15.600	15.600	15.600	15.600	15.600	15.600	15.600
(-) Costos financieros	600.000	570.449	536.465	497.383	452.440	400.754	341.316	272.962	194.356	103.958
(=) Utilidad del ejercicio antes 15%	1'565.832	1'683.962	1'810.068	1'944.956	2'089.539	2'244.848	2'412.056	2'592.490	2'787.660	2'999.284
(-) 15% participación trabajadores	203.558	218.915	235.309	252.844	271.640	291.830	313.567	337.024	362.396	389.907
(=)Utilidad del ejercicio antes 25%	1'362.274	1'465.047	1'574.759	1'692.112	1'817.898	1'953.018	2'098.489	2'255.466	2'425.264	2'609.377
(-)25% Impuesto a la renta	272.455	293.009	314.952	338.422	363.580	390.604	419.698	451.093	485.053	521.875
(=) Utilidad neta del ejercicio	1'089.819	1'172.038	1'259.807	1'353.689	1'454.319	1'562.414	1'678.791	1'804.373	1'940.211	2'087.502

CAPÍTULO VI

6. ESTUDIO FINANCIERO

6.1 Inversiones del proyecto

- **6.1.1** *Inversión fija*. Son aquellos recursos tangibles (terreno, muebles y enseres, maquinarias y equipos, etc.) y no tangibles (gastos de estudios, patente, gastos de constitución, etc.), necesarios para la realización del proyecto
- **6.1.2** *Capital de trabajo.* Son aquellos recursos que permiten que la empresa pueda iniciar sus actividades, entre lo que tenemos efectivo, insumos, etc.
- **6.1.3** *Cuadro de inversión del proyecto*. Es la suma de las inversiones fijas + capital de trabajo.

Tabla 95. Cuadro de inversión del proyecto

CUADRO DE INVERSIONES							
INVERSIONES FIJAS			5'030.531				
a) Inversiones activos fijos							
	Construcción	879.322					
	Maquinaria	4'047.949					
	Muebles y enceres	16.260					
b) Inversiones activos nom	inales						
	Gastos de estudios generales	17.000					
	Gastos instalación de equipos	65.000					
	capacitación personal	10.000					
	Imprevistos	15.000					
CAPITAL DE TRABAJO)		1'869.431				
	Material directo	386.640					
	Material indirecto	64.590					
	Mano de obra directa	591.930					
	Mano de obra indirecta	177.638					
	Costos de administración	33.033					
	Costos financiero 600.000						
	Costos de ventas	15.600					
INVERSIÓN TOTAL	6'899.962						

6.2 **FINANCIAMIENTO**

6.2.1 Fuentes de financiamiento. Una empresa está financiada cuando ha pedido

capital en préstamo para cubrir cualquier necesidad económica. Al conseguir dinero al

menor interés, es posible demostrar que ayudará a elevar el rendimiento sobre su

inversión.

El monto que necesita este proyecto de inversión para la creación de la planta de

mecanizado "CERTHA" es de 7'000.000 de dólares, pero como la empresa aportará

3'000.000 de dólares, los 4'000.000 de dólares restantes serán prestados por una

entidad financiera nacional en este caso la (CORPORACION FINANCIERA

NACIONAL) en el cual se va a contemplar los siguientes aspectos:

• Tasa de interés fija.

• Cantidad de monto solicitado.

• Garantías que solicitan.

• Formas de pago.

• Tiempo de trámite.

• Valores por rubro administrativos, colocación y servicio.

• Paquetes financieros.

• Cobertura (Local, Regional).

• Plazos establecidos (mínimo y máximo).

Interés por mora.

A continuación se presenta la información básica y el procedimiento que una de

estas entidades realizará el estudio del financiamiento para este proyecto.

Capital: \$ 4'000.000

Interés: 15%

Años plazo pactado: 10 años

Frecuencia: 10

Cobro al año: 1

Forma de pago: anual

160

Tipo de cuota: fija

Garantía que solicita: hipotecario.

6.2.2 Tabla de amortización (CORPORACIÓN FINANCIERA NACIONAL).

Tabla 96. Tabla de amortización

	TABLA DE AMORTIZACIÓN									
monto	4'000.000									
tasa de inter	tasa de interés 15% anual									
plazo	10 años									
AÑOS	DEUDA	INTERÉS	AMORTIZACIÓN	CUOTA	SALDO					
0					4'000.000					
1	4'000.000	600.000,00	197.008,25	797.008,25	3'802.991,75					
2	3'802.991,75	570.448,76	226.559,49	797.008,25	3'576.432,26					
3	3'576.432,26	536.464,84	260.543,41	797.008,25	3'315.888,85					
4	3'315.888,85	497.383,33	299.624,92	797.008,25	3'016.263,93					
5	3'016.263,93	452.439,59	344.568,66	797.008,25	2'671.695,27					
6	2'671.695,27	400.754,29	396.253,96	797.008,25	2'275.441,31					
7	2'275.441,31	341.316,20	455.692,05	797.008,25	1'819.749,26					
8	1'819.749,26	272.962,39	524.045,86	797.008,25	1'295.703,39					
9	1'295.703,39	194.355,51	602.652,74	797.008,25	693.050,65					
10	693.050,65	103.957,60	693.050,65	797.008,25	0,1					

Análisis: Se puede concluir que en el periodo de 10 años las cuotas fijas serán de 797.008,25 dólares, la suma por interés serán de 3'970.082,50 dólares, el total a pagar durante los diez años de préstamo será de 7'970.083 dólares.

El interés se cobra sobre el saldo capital y la sumatoria de la amortización durante este periodo es de 4'000.000 dólares.

CAPÍTULO VII

7. EVALUACIÓN DEL PROYECTO

7.1 Evaluación financiera

Para iniciar con el análisis del estudio económico es importante conocer sobre los flujos de efectivos los cuales se detalla a continuación:

El flujo de efectivo son las entradas y salidas de dinero del proyecto.

Su fórmula es:

FE = Utilidad Neta + Depreciaciones + Amortizaciones + Tasa residual

CÁLCULO DEL FLUJO DE EFECTIVO FLUJO DE **UTILIDAD** TASA **EFECTIVO** AÑOS DEPRECIACIÓN AMORTIZACIÓN RESIDUAL INVERSIÓN **NETA** (BN) 6'899.962 0 203.206 1'089.819 10.700 1'303.725 1 203.206 1'172.038 10.700 1'385.944 2 203.206 1'259.807 10.700 1'473.713 3 1'353.689 203.206 10.700 1'567.595 4 203.206 1'454.319 10.700 1'668.225 5 203.206 1'562.414 10.700 1'776.320 6 203.206 1'678.791 10.700 1′892.697 7 203.206 1'804.373 2'018.279 10.700 8 203.206 1'940.211 10.700 2'154.117 9 203.206 2′087.502 2'793.761 10.700 10 492.353

Tabla 97. Cálculo de flujos de efectivo

7.2 Tasa Mínima Atractiva de Retorno (TMAR)

Parte de la tasa bancaria pasiva que ofrece las instituciones bancarias dependiendo del tipo de inversión y luego con el trabajo del proyectista se logra determinar el TMAR. Esta tasa sirve como instrumento para evaluación económica financiera de los proyectos productivos los mismos que analizan variables como el VAN, el TIR las cuales utilizan

formulas que permiten descontar los flujos generados o una taza que reconozca el costo de oportunidad del dinero.

$$TMAR = 4\% ----- Inflación$$

$$8\% ---- Tasa - bancaria - pasiva.$$

$$TMAR = 12\% ---- Fijada - por - el - proyectista$$

7.3 Valor Actual Neto (VAN)

El valor actual neto es la sumatoria de los valores actualizados (a una tasa atractiva mínima de rendimiento,) a una tasa conveniente para el inversionista del flujo neto de fondos (Utilidades).

Aplicar la siguiente fórmula:

$$VAN = -Io + BN_1(1+i)^{-n_1} + BN_2(1+i)^{-n_2} + BN_3(1+i)^{-n_3} + BN_4(1+i)^{-n_4} + \dots + BN_{10}(1+i)^{-n_{10}}$$

Donde:

Io= inversión inicial

 BN_1 = flujo neto del primer período

BN₂ = flujo neto del segundo período

BN_n = flujo neto del último periodo período

i= tasa de descuento considerado del 12%

n= años

$$\begin{split} VAN = &-Io + BN_1(1+i)^{-n_1} + BN_2(1+i)^{-n_2} + BN_3(1+i)^{-n_3} + BN_4(1+i)^{-n_4} + \dots + BN_{10}(1+i)^{-n_{10}} \\ VAN = &-6'899.962 + 1'303.725(1+0,12)^{-1} + 1'385.944(1+0,12)^{-2} + 1'473.713(1+0,12)^{-3} + 1'567.595(1+0,12)^{-4} + 1'668.825(1+0,12)^{-5} + 1'776.320(1+0,12)^{-6} + 1'892.697(1+0,12)^{-7} + 2'018.279(1+0,12)^{-8} + 2'154.117(1+0,12)^{-9} + 2'793.761(1+0,12)^{-10} \end{split}$$

Tabla 98. Cálculo del VAN

	CÁLCULO DEL VALOR ACTUAL NETO									
AÑOS	INVERSIÓN	UTILIDAD NETA	FLUJO DE EFECTIVO (BN)	FLUJO DE EFECTIVO ACTUALIZADO BN $(1+i)^{-n}$ i=12%						
0	6'899.962									
1		1'089.819	1'303.725	1'164.040						
2		1'172.038	1'385.944	1'104.866						
3		1'259.807	1'473.713	1'048.960						
4		1'353.689	1'567.595	996.235						
5		1'454.319	1'668.225	946.596						
6		1'562.414	1'776.320	899.939						
7		1′678.791	1′892.697	856.160						
8		1'804.373	2'018.279	815.149						
9		1'940.211	2'154.117	776.796						
10		2′087.502	2'793.761	899.516						
Σ 9'508.258										

VAN = -6'899.962 + 9'508.258

VAN = 2'608.295

Análisis: El VAN es mayor que cero, es decir 2'608.295; entonces el proyecto es viable.

7.4 Tasa Interna de Retorno TIR

Esta técnica al igual que la anterior convierte los beneficios futuros a valores presentes, sólo que en lugar de utilizar un porcentaje fijo determina el rendimiento de la inversión expresando éste como una tasa de interés (por ciento). Es la tasa de ganancia anual que solicita ganar el inversionista para llevar a cabo el proyecto.

La tasa interna de retorno es el interés máximo por el cual el proyecto podría endeudarse, para encontrar el TIR se utiliza la misma ecuación que utilizamos para calcular el VAN, pero se cambia el valor de **i** hasta que la diferencia entre la inversión inicial y el VAN sea lo más cercana a cero.La tasa de retorno ayuda a determinar si el proyecto es factible. TIR > TMAR.

$$VAN = 0 = -Io + BN_1(1 + TIR)^{-n_1} + BN_2(1 + TIR)^{-n_2} + BN_3(1 + TIR)^{-n_3} + \dots + BN_{10}(1 + TIR)^{-n_{10}}$$

Tabla 99. Cálculo del TIR

	CÁLCULO DE LA TASA INTERNA DE RETORNO (TIR)										
AÑOS	INVERSIÓN	FLUJO									
ANOS	INVERSION	NETO	9%	12%	15%	18%	19.58%	21%	24%	27%	30%
0	- 6'899.962										
1		1'303.725	1'196.078	1'164.040	1'133.674	1'104.852	1'090.250	1'077.459	1'051.391	1'026.555	1'002.866
2		1'385.944	1'166.521	1'104.866	1'047.972	995.363	969.227	946.618	901.368	859.287	820.085
3		1'473.713	1'137.977	1'048.960	968.990	896.947	861.852	831.873	772.944	719.452	670.784
4		1'567.595	1'110.524	996.235	896.278	808.548	766.644	731.295	663.051	602.586	548.859
5		1'668.225	1'084.232	946.596	829.403	729.196	682.267	643.173	569.044	504.936	449.301
6		1'776.320	1'059.162	899.939	767.952	658.005	607.521	565.990	488.642	423.349	368.011
7		1′892.697	1'035.370	856.160	711.535	594.165	541.329	498.406	419.884	355.185	301.632
8		2'018.279	1'012.906	815.149	659.779	536.939	482.726	439.236	361.084	298.230	247.420
9		2'154.117	991.816	776.796	612.335	485.659	430.853	387.437	310.795	250.632	203.132
10		2'793.761	1'180.115	899.516	690.575	533.788	467.293	415.275	325.067	255.948	202.654
		Σ	10'974.700	9'508.258	8'318.493	7'343.464	6'899.962	6'536.762	5'863.271	5'296.160	4'814.745
		VAN	4'074.738	2'608.295	1'418.531	443.501	0	- 363.200	- 1'036.692	- 1'603.802	- 2'085.217

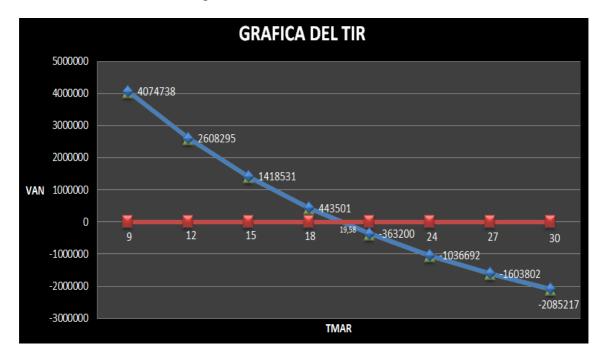


Figura 56. Tasa Interna de Retorno

 $Cuando\ _VAN = 0\ __TIR = 19,580405....\%$

TIR > TMAR

Análisis: Realizando la comparación el retorno del 12% con el nivel máximo de endeudamiento del 19.58 % concluimos que nuestro proyecto es factible de acuerdo al criterio del VAN y el TIR.

7.5 Período de Recuperación de Inversión (PRI)

A continuación se tiene un cuadro donde se resume el valor del capital que va desde el año de inicio hasta 10 años de proyección, a su vez se detalla el valor de las utilidades previstas (de los flujos de efectivo proyectados) multiplicados por el factor de actualización del 12%.

El análisis económico también tiene como objetivo determinar el número de años en que se recupera la inversión, mediante la resta sucesiva de los flujos netos anuales

descontados del monto de la inversión, hasta el punto en que se iguala o sobrepasa dicha inversión.

Tabla 100. Cálculo del (PRI)

(CÁLCULO PARA EL PERÍODO DE RECUPERACIÓN DE INVERSIÓN (PRI)									
		FLUJO	VAN	PRI						
AÑOS	AÑOS INVERSIÓN		(12%)	(A)	(B) VAN					
		NETO	(1270)	INVERSIÓN	(12%)	C=(A+B)				
0	- 6'899.962									
1		1'303.725	1'164.040	- 6'899.962	1'164.040	-5'735.922				
2		1'385.944	1'104.866	- 5'735.922	1'104.866	-4'631.056				
3		1'473.713	1'048.960	- 4'631.056	1'048.960	-3'582.096				
4		1'567.595	996.235	- 3'582.096	996.235	-2'585.861				
5		1'668.225	946.596	- 2'585.861	946.596	-1'639.265				
6		1'776.320	899.939	- 1'639.265	899.939	- 739.326				
7		1'892.697	856.160	- 739.326	856.160	116.834				
8		2'018.279	815.149	116.834	815.149	931.983				
9		2'154.117	776.796	931.983	776.796	1'708.779				
10		2'793.761	899.516	1.708.779	508.361	2'217.140				

 $PRI = 7 - a\tilde{n}os$

Análisis: El capital que se invertirá en el proyecto será recuperado en siete años aproximadamente después de empezar a funcionar la planta de mecanizado.

CAPÍTULO VIII

8. CONCLUSIONES Y RECOMENDACIONES.

8.1 Conclusiones.

- Con la presente investigación, se puede apreciar claramente que existe una demanda de 22 conjuntos de elementos hidromecánicos (turbinas) entre Francis y Pelton que se encuentran fuera de servicio y que necesitan reconstruirse.
- En el año se reconstruirán 2 grupos de turbinas (Francis y Pelton).
- Los procesos de soldadura son por arco SMAW, por la capacidad de depositar mayor material de aporte y el proceso de soldadura GTAW de reducida capacidad de aporte y su uso se limita a rellenado de pequeñas cavitaciones.
- La maquinaria seleccionada es de tipo universal de la más moderna tecnología.
- Para determinar la localización de la planta se utilizó el método cualitativo y
 cuantitativo por puntos y se concluye que el lugar idóneo es la provincia
 Tungurahua, cantón Baños de Agua Santa, Km 5 vía al Puyo, junto a las
 bodegas de la Central Hidroeléctrica Agoyán.
- La central hidroeléctrica Agoyán tiene un espacio lo suficientemente grande para instalar la planta de aproximadamente 5884.32m². En total la planta requiere 2615 m².
- Se realizó los diagramas de flujo de operación, diagramas de proceso, diagramas de recorrido que en este caso son de tipo producto. Las máquinas y puestos de trabajo están distribuidos por familias homogéneas, desplazándose los elementos hidromecánicos de unos grupos a otros y de acuerdo al estudio de distribuciones parciales se determinó la distribución de planta.
- En este estudio de proyecto se estableció los costos anuales que hacienden a \$2'236.903, por la rehabilitación de 2 grupos de turbinas cuyo valor por servicio de reparación haciende ha \$3'802.735 con un 70% de utilidad. En el primer año se obtendrá \$1'089.819 y en el decimo año se obtendrá \$2'087.502.
- **CELEC E.P** realizó una investigación de servicios de reconstrucción de elementos hidromecánicos a nivel internacional contando con una cotización

por parte de la empresa ANDRITZ S.A la misma que por la reconstrucción de un grupo de turbina Francis obtuvo un costo de \$2'057.925, con este valor se pudo determinar el costo por cada conjunto hidromecánico reconstruido por parte de CETRHA que haciende a \$1'901.368 obteniendo una ventaja competitiva de \$156.557.

- Para este proyecto se ha calculado una inversión inicial de \$ 6'899.962 de la cual la empresa HidroAgoyán aportará el 43%, y el 57% por financiamiento de la Corporación Financiera Nacional.
- En la evaluación financiera se pudo determinar el flujo de efectivo de los diez años de proyección, y con un tasa mínima atractiva de retorno TMAR del 12%, el mismo que nos sirve para determinar el Valor Actual Neto (VAN) que en este caso es de \$2'608.295, obteniendo una Tasa Interna de Retorno (TIR) del 19,58% y un periodo de recuperación de inversión en el séptimo año que da la factibilidad a este proyecto.

8.2 Recomendaciones.

- La planta industrial de mecanizado es técnica y financieramente viable por lo que se recomienda a la empresa HidroAgoyán lo ejecute en el menor tiempo posible.
- La utilización de un horno eléctrico y montacargas eléctrico ayudan a disminuir la contaminación ambiental, además cuidan la salud del personal de la planta.
- Con la implementación de esta planta se puede iniciar con la construcción de nuevas piezas hidromecánicas con la implementación de una planta de fundición.
- Al revalorar nuestros recursos técnicos-económicos el país puede construir sus propias turbinas hidráulicas y dejar de depender de los países desarrollados.

REFERENCIAS BIBLIOGRÁFICAS

- [1] GREIN, H Anomalías en Centrales Hidroeléctricas. España: 1998. (doc.) pág. 120.
- [2] BURGHERR O. Gut k. and Werner A. Repair Welding of Turbine Runners. Parte I Brasil: 1994. (doc.) pág. 235-257.
- [3] http://bib.us.es/como_encuentro/normas-ides-idweb.html
- [4] ABENDE (Associacao Brasileira de Ensaios nao Destrutivos). Brasil: 1999. (doc.) Pág.23-38.
- [5] COMA, Eric y Salvans. Operación y Mantenimiento de Turbinas Hidráulicas. México: Limusa, 1998. Pág. 78.
- [6] http://www.estrucplan.com.ar/producciones/entrega.asp?identrega=113
- [7] http://www.sorrento.com.ar/montacargas.htm
- [8] http://www.balancetechnology.com/pdf/Basicosdelbalanceo.pdf
- [9] http://www.vigra.es/folletos/ficha_metalizado.pdf
- [10] CIER- Comité peruano- SOMSE-XIV Jornadas-1988 Recuperación Integral de Rodetes Pelton de la Central Hidroeléctrica Del Mantaro. Perú: 1998 (doc.) Pág.23
- [11] BACA, U. Introducción a la Ingeniería Industrial. México: Limusa, 1999 Pág. 214.
- [12] RIGGS, James.-Sistemas de Producción, planeación, análisis y control. 3ra.ed. México: Limusa, 1998. Pág. 337.
- [13] HODSON, Maynard.- Manual del Ingeniero Industrial. 2da.ed. México: Limusa, 1998 Pág. 152.
- [14] FUERTES, Marcelino.- Ingeniería de Plantas. Ecuador: 2006. (doc.) Pág. 20.
- [15] NIEBEL, B Ingeniería Industrial: Métodos, estándares y diseño de trabajo.10ma.ed. México: Alfaomega, 2011 Pág. 35,36.

- [16] ASFAHL.-Seguridad industrial.3ra.ed. argentina: Prentice, 2008. Pág. 120.
- [17] Guía de evaluación de riesgos aplicables en "Ecuador Botting Company". Pág.12.
- [18] www.estrucplan.com.ar_"Orden y limpieza en lugares de trabajo"
- [19] NORMA NTE INEN 439:1984 Colores, señales y símbolos de seguridad pág.152.
- [20] Tomado de la Reseña historia de CELEC, CONELEC.
- [21] CAICEDO Mauricio.-Manual Técnico de Procedimientos para la Ejecución de un Mantenimiento Mayor de una Unidad de Generación Hidroeléctrica, Tipo Francis de Eje Vertical, de la Central Hidroeléctrica Agoyán. pág.145.
- [22] http://www.conelec.gov.ec/www.meer.gov.ec_
- [23] CENTRAL AGOYÁN. Manual de mantenimiento de la Central Hidroeléctrica Agoyán. Ecuador: 2004. Pág.120-330
- [24] Informes de mantenimiento mayor CONELEC-CENACE.
- [25] CENTRAL AGOYÁN. Contrato No 52-2009 prestación de servicios para la reparación mecánica de los componentes de las unidades 1 y 2 de las turbinas de la central Agoyán. Ecuador: 2009, (doc.). pág 17-34.
- [26] ARBOLEDA, V.G; Proyectos Formulación, Evaluación y Control. México:1999, (doc.) Pág.17.
- [27] MURRAY García.- "Controles de calidad en la fabricación de los rodetes hidráulicos". Pág.36.
- [28] CENTRAL PÚCARA. Mantenimiento de la Central Hidroeléctrica Púcara.
- [29] GUILLÉN, A. Introducción a la Neumática. México: 2000. (doc.) Pág.7.
- [30] CARNICER, R.E. Sistemas de Aire Comprimido 2da.ed. México: 2005. Pág.72.

BIBLIOGRAFÍA

- ABENDE (Associacao Brasileira de Ensaios nao Destrutivos). Brasil: 1999.(doc.)
- ARBOLEDA, V. G. Proyectos Formulación, Evaluación y Control. México: 1999.
- ASFAHL, C.R. Seguridad Industrial. 3ra.ed. Argentina: Prentice, 2008.
- ÁVILA, F. Memoria de Grado Mantenimiento y Reparación de las Turbinas de la Central Agoyán. Ecuador: 2004.
- BACA, U. Introducción a la Ingeniería Industrial. México: Limusa, 1999.
- BURGHERR O. Gut k. and Werner A. Repair Welding of Turbine Runners. Parte I II. Brasil: 1994. (doc.).
- BURGHERR O. Gut k. Repair Welding of Turbine Runners. London: 1995.(doc.)
- CAICEDO M. Manual Técnico de Procedimientos para la Ejecución de un Mantenimiento Mayor de una Unidad de Generación Hidroeléctrica,

 Tipo Francis de Eje Vertical de la Central Hidroeléctrica Agoyán. Ecuador: 2005.
- CARNICER, R.E. Sistemas de Aire Comprimido. 2da.ed. México: Paraninfo, 2005.
- CENTRAL AGOYÁN. Manual de Mantenimiento de la Central Hidroeléctrica Agoyán. Ecuador: 1998.
- CENTRAL PUCARÁ. Manual de Mantenimiento de la Central Hidroeléctrica Púcara. Ecuador: 2000.
- CIER- Comité Peruano- SOMSE-XIV Jornadas-Recuperación Integral de Rodetes Pelton de la Central Hidroeléctrica del Mantaro. Perú: 1988.
- COMA, Eric y Salvans. Operación y Mantenimiento de Turbinas Hidráulicas. México: Limusa, 1998.
- FUERTES, M. Ingeniería de Métodos. Ecuador: 2006. (doc.)
- GILE. Manual de Soldadura y Materiales. México: Mc Graw-Hill, 1998.
- HODSON, M. Manual del Ingeniero Industrial. 2da.ed. México: Limusa, 1998.
- NIEBEL, B. Ingeniería Industrial: Métodos, estándares y diseño de trabajo. 10ma.ed. México: Alfaomega, 2001
- MURRAY G. Controles de Calidad en la Fabricación de los Rodetes Hidráulicos. Perú: 2000.
- RIGGS, J. Sistemas de Producción, planeación, análisis y control. 3ra.ed. México: Limusa, 1998.

LINKOGRAFÍA

TURBINAS

http://usuarios.multimania.es/jcuenca/Spanish/Turbinas/turbinas_hidraulicas.htm

2010-04-25

http://ingenieria-civil2009.blogspot.com/2009/05/tipos-de-turbinas-

hidraulicas.html

2011-04-23

http://bib.us.es/como_encuentro/normas-ides-idweb.html

2011-05-10

PUENTES GRÚA

http://www.estrucplan.com.ar/producciones/entrega.asp?identrega=113

2011-05-13

MONTACARGAS

http://www.sorrento.com.ar/montacargas.htm

2011-06-25

BALANCEO

http://www.balancetechnology.com/pdf/Basicosdelbalanceo.pdf

2011-07-24

METALIZADO

http://www.vigra.es/folletos/ficha_metalizado.pdf

2011-05-13

SEGURIDAD INDUSTRIAL

www.estrucplan.com.ar

2011-06-23

CONELEC

http://www.conelec.gov.ec/www.meer.gov.ec

2010-04-08