Baystate Health Scholarly Commons @ Baystate Health

Research and Education Posters

Presentations and Posters

6-2019

Pharmacy Posters - 2019

Adam Pesaturo

Follow this and additional works at: https://scholarlycommons.libraryinfo.bhs.org/ research_education

Part of the Medicine and Health Sciences Commons

Development and implementation of technology downtime simulations at

Baystate Medical Center

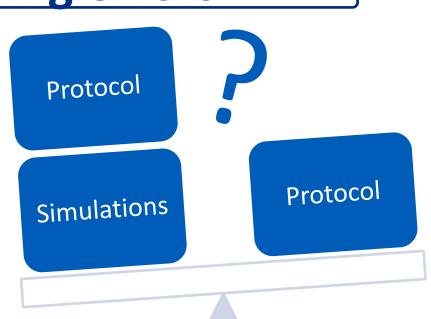
A. Rock; A. Pesaturo; S. Illig; Baystate Medical Center, Springfield, MA

BACKGROUND

Advancing hospital technology

Improvements in safety and patient care

Reliance on technology for daily workflow


Technology (

Inconsistent response to downtime events

Delays in care

Increased dispensing errors

Research Question: Do mock simulation based trainings in addition to creation of new protocols increase the selfsufficiency of frontline pharmacy staff during downtime events more so than new protocols alone?

METHODS

A gap analysis was performed to identify areas with and without downtime protocols in place. BD Pyxis™ Logistics Carousel was identified as an area without comprehensive downtime standard operating procedures.

8 – Point Assessment

Describe

- Where to find resources, to help triage carousel down time problems. Explain
- How to forward labels from this carousel printer A to carousel printer B or C.
- What order you would begin to manually enter a batch fill in the event of an extended time without the batch fill dropping?
- How many hours would you wait till manually entering the fill? Identify
- Who to contact and in what order for a mechanical obstruction.
- Where the carousel drill, clamp, downtime binder and paper inventory are.
- Where replacement batteries are for the scanners, and explain how to reset them.
- Where the key is to open drill access panel.

• How to open drill access panel, and explain how the drill is attached and functions.

METHODS

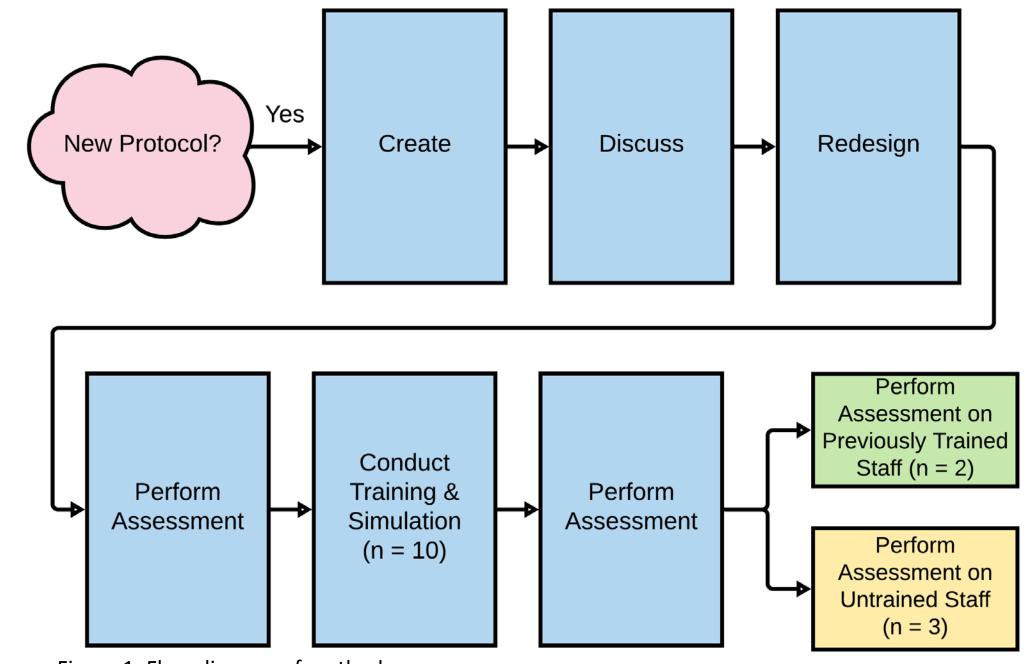


Figure 1: Flow diagram of methods

Technical Downtime

- 1. ADM : Carousel Interface
- 2. BD™ Logistics* Ordering Software Interface **2. Simulate**
- 3. Scanners
- 4. Printers
- 5. Batch fills not printing
- 6. Carousel PC error

Mechanical Downtime

- 1. Obstruction
- 2. Motor/Electric

Figure 2: Areas of potential carousel downtime and for

Thirty Minute Simulation:

- 1. Orient staff to the protocol
- Forwarding labels
- Running automated dispensing machine (ADM) inventory
- Resetting scanners
- Opening carousel drill panel
- Attaching carousel drill
- Finding the emergency order

RESULTS

Training	Score Before	Score After	Total Score
1	0	8	8
2	0	8	8
3	1	8	8
4	0	8	8
5	0	8	8
6	0	8	8
7	3	8	8
8	3	8	8
9	2	8	8
10	1	8	8
Average	1	8	8

Table 1: Scores before and after initial training

RESULTS

No Training	Score After	Total Score	Time (m)
1	4	8	20
2	6	8	12.5
3	7	8	13.5
Average:	5.67	8.00	15.33
% Successful:	70.83		
Training	Score After	Total Score	Time (m)
1	8	8	6
2	8	8	5.5
Average:	8	8	5.75
% Successful:	100		

Table 2: Reassessment scores and analysis of training

DISCUSSION

Limitations

- Number of staff trained and assessed (small numbers for analysis)
- Training causes interruptions in workflow
- Difficulty in capturing entire staff

Future Implications

- Downtime protocols should be implemented for all complex technology.
- The initial mock simulation based training of these protocols should occur during pharmacist and pharmacy technician training/orientation.
- Periodic planned mock simulations should be planned and additional staff scheduled to prevent workflow interruptions should be provided to accommodate these trainings.

CONCLUSIONS

- Simulated based training increases response rates and accuracy in response
- The results of this project could be extrapolated to other complex technology or operational systems

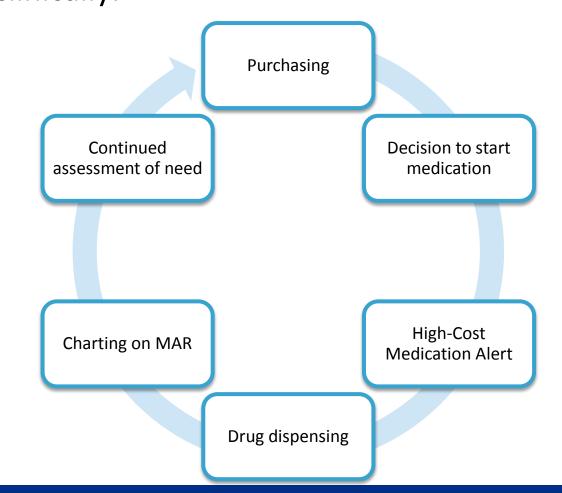
CITATIONS

- 1. State of Pharmacy Automation 2016 Vol. 13 No. 8 Page #18
- 2. Sarfati L. J Eval Clin Pract 2018;1-10. doi: 10.1111/jep.12883
- 3. James KL. J Phar Pract 2009;17(1):9-30. doi: 10.1211/ijpp.17.1.0004

Development of a cost containment strategy for high-cost medications at a tertiary teaching hospital

Kelly Nguyen, Pharm.D.; John Stiles, Pharm.D.; Kathleen Kopcza, Pharm.D., BCPS; Erica Housman, Pharm.D., BCPS (AQ-ID)

Contact Information: Kelly Nguyen, Pharm.D. PGY1 Pharmacy Resident Kelly.Nguyen@BaystateHealth.org Interests: Cardiology


BACKGROUND

With the continued rise in pharmaceutical drug costs, stabilizing pharmacy spend with cost-containment initiatives remain a strategic focus.

- Pharmacy leaders are guiding collaborative efforts to buy, manage, and use medications as cost-effectively as possible¹
- Clinical pharmacy services are able to provide an important foundation for a successful high-cost medication-utilization management program²
- * Baystate Medical Center (BMC) participates in the 340B Program as well as group purchasing organizations (GPO)

Three of the top ten drug expenses at BMC are hemostatic agents

- Hemostatic agents available at BMC through a consignment program:
- Advate® (recombinant factor VIII)
- **Bebulin**[®] (3 factor prothrombin complex concentrate)
- Benefix® (recombinant factor IX)
- **FEIBA**® (activated prothrombin complex concentrate)
- Humate-P® (vWF and factor VIII)
- Kcentra® (4 factor prothrombin complex concentrate)
- NovoSeven® (recombinant activated factor VII)
- Understanding the workflow of high cost medications, such as hemostatic agents, is important operationally and clinically:

OBJECTIVES

Identify and address areas of improvement in the process of drug procurement through administration and charging for hemostatic agents

METHODS

- ❖ A gap analysis was created and performed to identify areas of sufficiency and areas of improvement for high-cost medications
- Initial target medications:

Humate P®

- * Date range: Retrospective chart review of historical order data
- Humate P[®]: Sep. 2016 Oct. 2018
- FEIBA®: Jun. 2016 Jul. 2018
- **❖** Data collected:

Purchasing

- Least amount of drugs purchased from wholesale acquisition (WAC) account
- Drugs purchased from 340B in 340B eligible patients

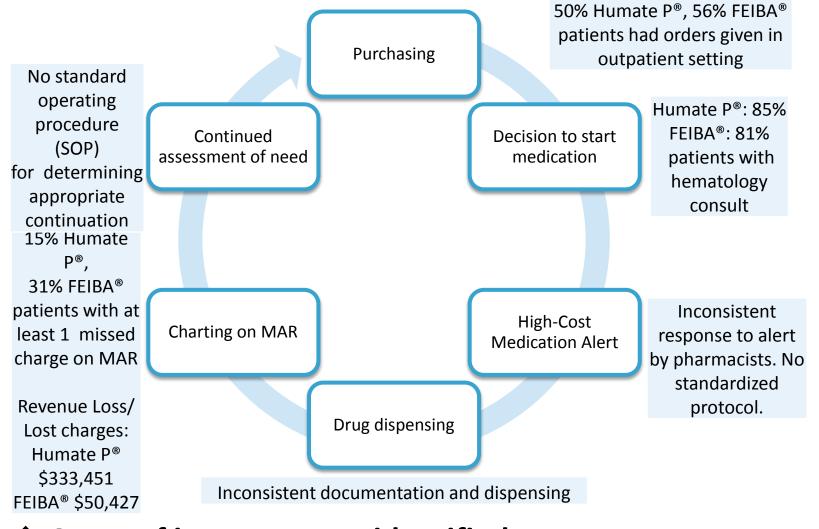
Stock/Storage

- Proper stock available on shelves
- Expiration dating done correctly

Clinical **Determination of Appropriate Use**

- Restrictions/ criteria for initiation
- Appropriate medication verification

Charted on the medical


- Continual Monitoring of **Appropriate Use**
- Pharmacist aware of patients on the high-cost medications to determine if still meet criteria
- administration record (MAR) Charging Amount of medications charged=amount of medications

re-nurchased

FEIBA® cost difference: \$0.65/unit \$0.65/unit x 29,500 outpatient units = **\$19,195** (Jun. 2016 - Jul. 2018)

OUTCOMES

Gap analysis results: Humate $P^{\otimes} \rightarrow n=20$ patients FEIBA® → n=16 patients

Areas of improvement identified:

1. Lack of awareness of predefined criteria related to ordering, verifying, and dispensing

- Standard operating procedure (SOP) created to address order entry, verification, and dispensing of hemostatic agents available on the BMC formulary
- SOP introduced to the pharmacy department through the Clinical Leadership Team
- SOP will be posted on the department's internal webpage
- An attestation form will be sent to all pharmacists

2. Lack of a standardized process for documenting hemostatic agents dispensed

- SOP includes:
- New dose-rounding policy: Doses may be rounded DOWN or UP to the next appropriate dose and/or vial size by the pharmacist as a protocol order if the dose is $\leq 10\%$
- Standardized proper documentation of hemostatic agents in the CPOE system (computerized physician order entry)

. Unclear expectations for continued monitoring by clinical oharmacists

- High-Cost Medication Alert
- SOP describes expectations for clinical pharmacists to evaluate the need for continuation of the medication
- Ensure hematology consultation for continued use

Inaccurate medication charting, resulting in lost charges and ncreased risk for medication errors

- New real-time High-Cost Medication Hemostatic Agent Alert via email built for pharmacy purchasing team members
- Evaluation of proper documentation in the MAR

. Decision between cost-containment strategies: Consignment

- Humate P® cost difference: \$0.14/unit
- \$0.14/unit x 39,000 outpatient units = **\$5,460** (Sep. 2016 Oct. 2018)

DISCUSSION

- ❖ Lost charges from high-cost medications, such as hemostatic agents, can be costly to the department and institution
- * Lack of awareness of clear criteria for ordering, verifying and dispensing hemostatic agents increases risk for medication errors
- Cost-containment can be complex and requires highlevel strategic planning and extensive collaboration
- Successful drug cost management requires systematic attention to and integration of both clinical and operational approaches
- ❖ Total financial opportunity over 2 years= \$408,533
- Cost savings using 340B: **\$24,655**
- Revenue gained from accurate charge capture: \$383,878

FUTURE CONSIDERATIONS

- Repeat gap analysis for hemostatic agents in 6 months to assess compliance with SOP
- Consider implementing additional drugs into the highcost medication SOP

REFERENCES

- Maximizing pharmacy performance. Vizient. Web site. Available at: https://www.vizientinc.com//media/Documents/SitecorePublishingDo cuments/Public/MaxPharmPerfWhirePaper.pdf. Accessed September 18, 2018.
- American Society of Health-System Pharmacists. ASHP guidelines on medication cost management strategies for hospitals and health systems. Am J Health-Syst Pharm. 2008; 65:1368-84.
- Humate P. Canada: CSL Behring. 2018. https://ww.humatep.com/Professional/About-Humate-P/Default.aspx. Accessed November 17, 2018.
- FEIBA. Westlake Village, CA: Baxter Healthcare Corporation. 2005. http://www.baxter.com.pr/patients_and_caregivers/products/feiba_v

DISCLOSURE

Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation

Evaluation of AUC-based Vancomycin Dosing Practices in Patients with Bloodstream Infections Caused by Methicillin-Resistant *Staphylococcus aureus*

Rebecca R. Marcinak, PharmD¹; Seth T. Housman, PharmD, MPA¹,²; Lydia J. D'Agostino, PharmD, BCPS¹; Erica L. Housman, PharmD, BCPS (AQ-ID)¹

1. Baystate Medical Center; 2. Western New England University CoPHS – Springfield, Massachusetts

BACKGROUND

- Vancomycin is often considered the drug of choice for serious methicillinresistant Staphylococcus aureus (MRSA) infections, including bacteremias.
- Area under the curve/minimum inhibitory concentration (AUC/MIC) ratio is the pharmacodynamic parameter best associated with vancomycin's effectiveness in treating such infections.
- Current guidelines advocate for an AUC/MIC target of at least 400 to achieve optimal bactericidal effect against S. aureus.
- High trough levels have been associated with an increased risk of nephrotoxicity.
- Recent literature suggests:
 - Single trough levels offer little prediction of the AUC.
 - The goal AUC/MIC of >400 can be achieved with trough levels much lower than the recommended 15-20 mg/L.
- At Baystate Medical Center (BMC), vancomycin AUC-based monitoring is performed for patients with identified MRSA bacteremia.
 - On initiation of therapy, empiric AUC calculations are performed using population-based kinetics.
 - Once the patient is at steady state, a peak and trough level are obtained and patient-specific AUC is calculated.

OBJECTIVES

Primary:

 Correlation between empiric AUC calculations and patientspecific AUCs

- Percent of patients who met the AUC goal of ≥400 mg/L•hr⁻¹
- Mean initial trough concentration in those that met goal versus those that did not

METHODS

- All adult patients with bloodstream infections caused by MRSA treated with AUC-based vancomycin regimens from Jan 2018 to Feb 2019 were reviewed.
- Exclusion criteria:
 - Pregnant
 - Receipt of renal-replacement therapy while on vancomycin
 - Lack of two steady-state vancomycin concentrations
- Institutional review board approval was granted prior to data collection.
- Empiric vancomycin AUC and pharmacokinetic data, as calculated via Vancomycin Initial Dosing Calculator on vancopk.com, were collected.
- Patient-specific AUC and pharmacokinetic data were calculated using the trapezoidal equation-based approach.
- Vancomycin MICs were assumed to be 1 mg/L.

76 adult patients treated with vancomycin for MRSA bacteremia

Patients Excluded:

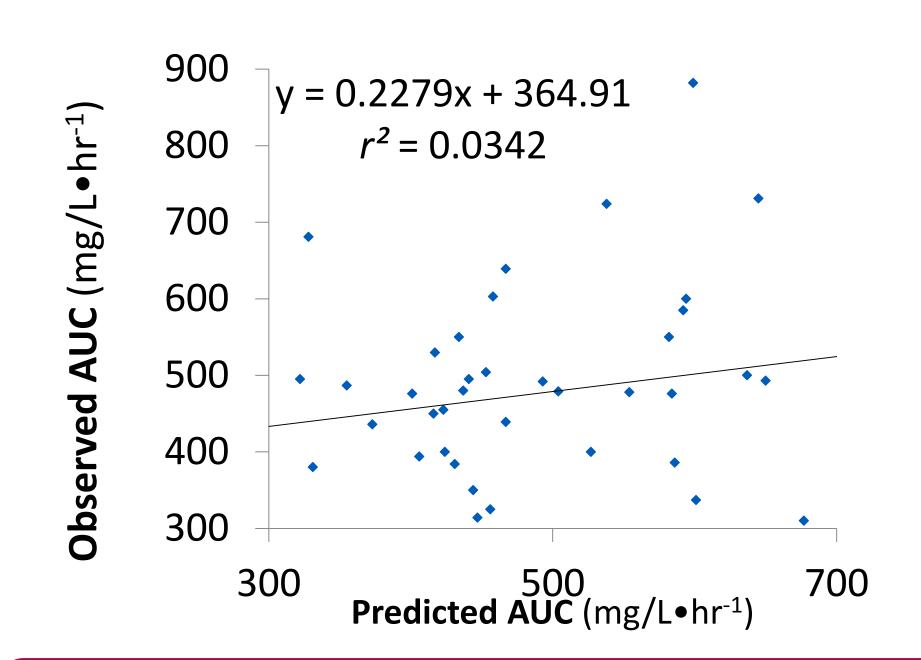
- Pregnant: 3
- Received renalreplacement therapy: 9
- Did not have two levels collected: 22

42 patients included for review

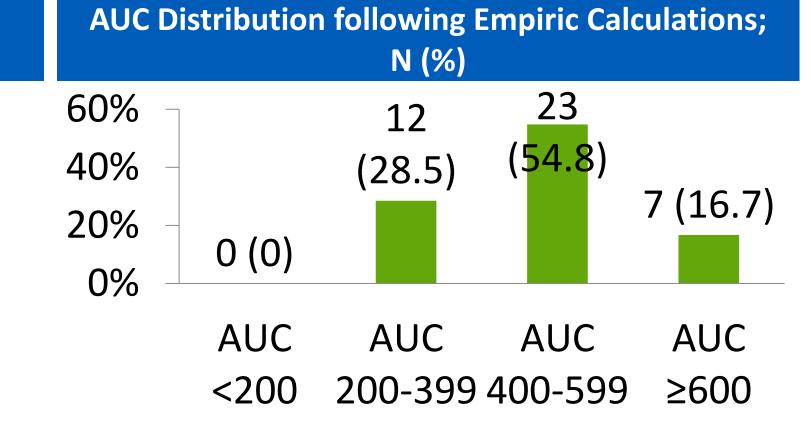
Demographics & Clinical Characteristics

Male

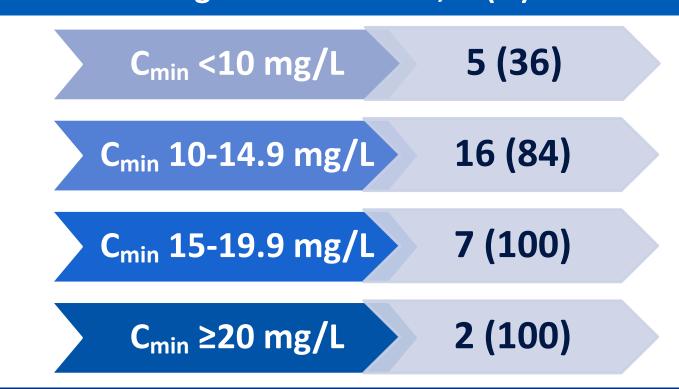
N (%)


25 (59.5)

CKD* Active IVDU**	5 (11.9) 20 (47.6)
 Source of Infection: Skin and soft tissue Endovascular Intravenous catheter Bone and joint Respiratory Other/unknown 	11 (26.2) 10 (23.8) 6 (14.3) 5 (11.9) 2 (4.8) 8 (19)
	Mean (± SD)
Age (yr) Height (cm) Total body weight (kg) Ideal body weight (kg) Adjusted body weight (kg) CrCl+ (mL/min) Total Daily Dose+ (mg/kg)	56 (± 20) 171.5 (± 10.2) 76.2 (± 18.6) 65.6 (± 11.3) 69.3 (± 12.2) 103 (± 54.4) 29.1 (± 13.3)
	N (%)
Vancomycin-induced nephrotoxicity 14-day mortality In-hospital mortality	7 (16.7) 2 (4.8) 3 (7.1)


*CKD, chronic kidney disease; **IVDU, intravenous drug use; †CrCl, creatinine clearance (Cockcroft-Gault); ‡based on total body weight

RESULTS



Significant difference in the mean initial trough concentration in patients who met the AUC goal vs. those who did not $(13.8 \text{ mg/L} \pm 4.6 \text{ vs. } 8.9 \text{ mg/L} \pm 2.4, \text{ p} < 0.001)$

mg/L•hr-1

Patients who met AUC Goal Stratified by Initial Trough Concentration; N (%)

DISCUSSION

- Empiric AUC calculations through population-based kinetics did not produce a strong correlation to patient-specific AUCs.
- Regardless, following the AUC-based empiric dosing strategy, most patients met the AUC goal of ≥400 mg/L•hr⁻¹.
- These findings are consistent with prior data that suggest the AUC goal of $\geq 400 \text{ mg/L} \cdot \text{hr}^{-1}$ can be attained in most patients that achieve a vancomycin trough concentration of $\geq 10 \text{ mg/L}$.

Limitations	Future Directions
Small sample size, inability to assess patient outcomes	Continue to collect data to increase sample size
Data regarding the use of concomitant nephrotoxic agents and attainment of source control were not collected	Assess patient-specific factors that may account for differences in predicted vs. observed AUCs
MICs were assumed to be 1 mg/L	

References:

- 1. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health-Syst Pharm. 2009;66:82-98.
- 2. Neely MN, Kato L, Youn G, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing.
 Antimicrob Agents Chemother. 2018;62(2):e02042-17.
- 3. Hale CM, Seabury RW, Steele JM, et al. Are vancomycin trough concentrations of 15 to 20 mg/L associated with increased attainment of an AUC/MIC ≥ 400 in patients with presumed MRSA infection? J Pharm Pract. 2017;30(3):329-335.

Identifying discrepancies within the discharge summary in the Acute Care for the Elderly (ACE) Unit

Kelly Sawyer, PharmD; Megan Carr, PharmD, BCPS, BCGP; Erica Housman, PharmD, BCPS (AQ-ID); Shawn Roggie, PharmD, MBA

Contact Information:
Kelly Sawyer, PharmD
PGY1 Pharmacy Resident
kelly.sawyer2@baystatehealth.org

INTRODUCTION

It is estimated that approximately 29%¹ of American adults take five medications or more.

At our institution, a pharmacist has been incorporated into the Acute Care for the Elderly (ACE) Unit since July of 2018.

- ACE is an evidence-based model of care with the goal to minimize stress and prevent functional decline in older adults (≥ 65 years) during hospitalization.
- There is currently no standardized process for pharmacist-review of discharge medications at our institution, yet studies have demonstrated reduced errors when pharmacists are involved in the medication reconciliation process.³

OBJECTIVES

Primary Objective:

Identify the prevalence of medication discrepancies within discharge medication notes for patients located on the Acute Care for the Elderly Unit Secondary Objective:

- Determine whether or not the implementation of a pilot project for pharmacist-led service is warranted to review medication lists prior to discharge
- Identify which patient populations may benefit from a pharmacist-led discharge service

METHODS

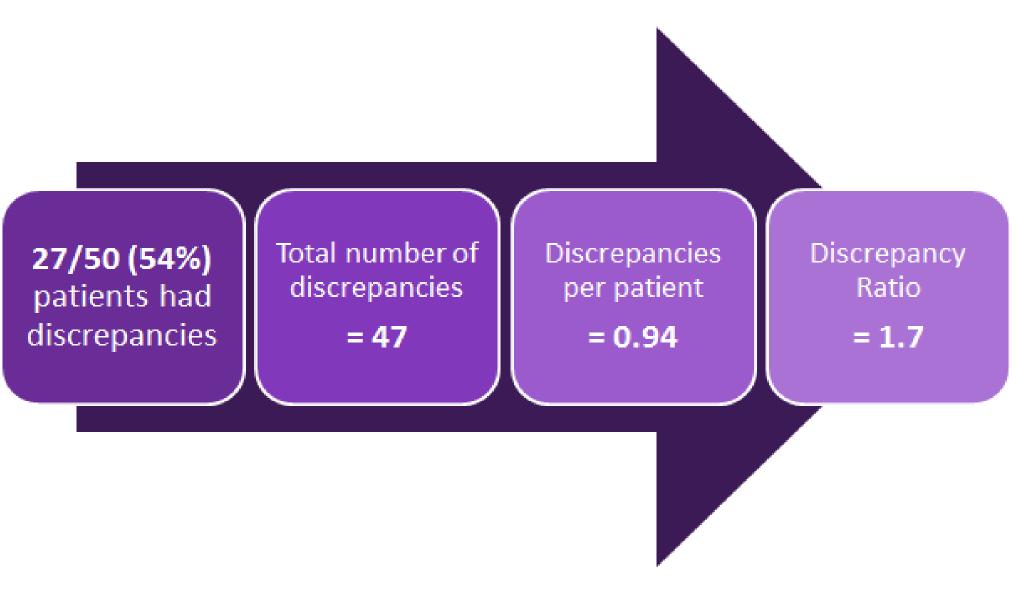
The physical discharge medication list was compared to the provider notes within the discharge summary to identify discrepancies.

within the discharge sammary to rachtily discrepancies.		
Primary Outcome:	Number of discrepancies per patient	
Secondary Outcomes:	 Therapeutic classes involved in discrepancies Frequency of discrepancy types Stratification of prevalence by subgroup: Number of discharge medications Medication reconciliation status Chronological Age 	
Inclusion Criteria	Admitted to and discharged from the ACE unit	
Exclusion Criteria	Chronological Age < 60 years	

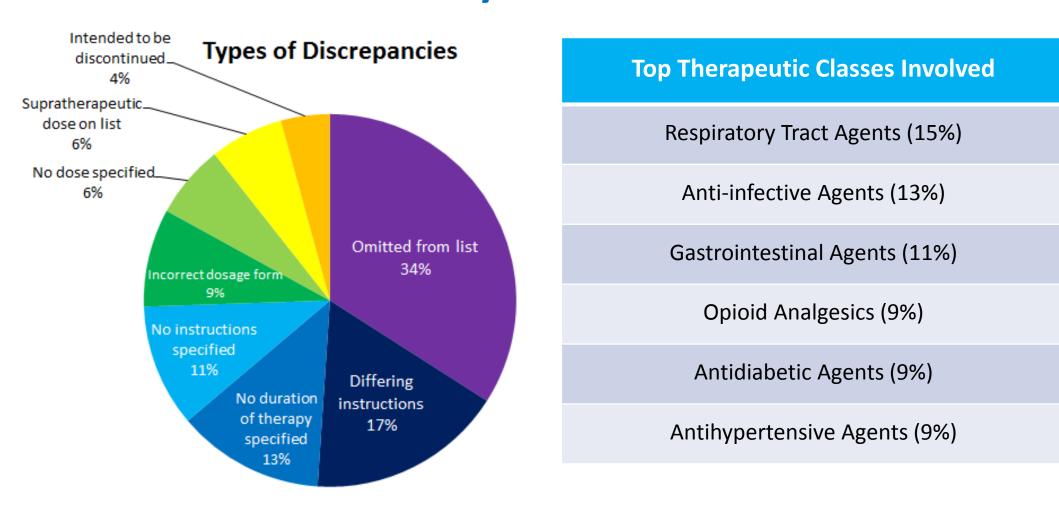
METHODS

Statistics:

Discrepancies Per Patient: # of discrepancies (total) / # of patients (total)


Discrepancies Incidence: # patients with discrepancies / # patients in group

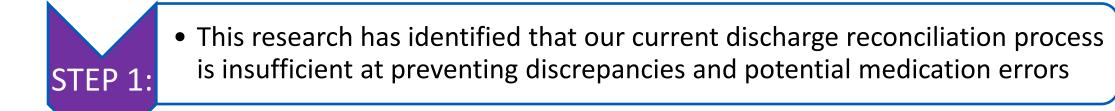
Discrepancy Ratio: # discrepancies in group / # patients with discrepancies in group


Data Collection Period: January 2019 to March 2019

RESULTS

Primary Outcome Results:

Secondary Outcome Results:


RESULTS

Discharge Medication Reconciliation:

Reconciliation Status

FUTURE DIRECTIONS

 Design and implement a pharmacy-led initiative to review medication lists prior to discharge within the ACE Unit

 Collect post-intervention data to assess impact and consider implementation on a larger scale.

REFERENCES

- Slone Epidemiology Center at Boston University. Patterns of medication use in the United States, 2006. https://www.bu.edu/slone/files/2012/11/SloneSurveyReport2006.pdf. Accessed October 16, 2018.
- 2. Cornish PL, Knowles SR, Marchesano R, et al. Unintended medication discrepancies at the time of hospital admissions. *Arch Intern Med*. 2005; 165(4):424-429.
- 3. Mekonnen AB, McLachlan AJ, Brien JE. Pharmacy-led medication reconciliation programmes at hospital transitions: a systematic review and meta-analysis. *Journal of Clinical Pharmacy and Therapeutics*. 2016; 41:128-144.

Impact of antibiotic review during transition from hospital to community

WESTERN NEW ENGLAND
UNIVERSITY

COLLEGE of PHARMACY and HEALTH SCIENCES

Anna Morien, PharmD¹; Erica Housman, PharmD, BCPS (AQ-ID)¹; Seth Housman, PharmD, MPA¹,²; Lydia D'Agostino, PharmD, BCPS¹

1. Baystate Medical Center, Springfield, MA; 2. Western New England College of Pharmacy and Health Sciences, Springfield, MA

BACKGROUND

- Antimicrobial stewardship (AMS) programs have largely focused on inpatient care
- ❖ The transition from hospital to community may be another opportunity for AMS services when antibiotic regimens need to be completed in the outpatient setting
- ❖ According to the Center for Disease Control (CDC), about 30% of antibiotics prescribed in both inpatient and outpatient settings are unnecessary or prescribed incorrectly¹
- Inappropriate antibiotic use leads to antimicrobial resistance, adverse drug effects, and increased costs
- Several retrospective studies that assessed antibiotic review on hospital discharge have shown that up to 70% of antibiotics are prescribed inappropriately²
- ❖ In an additional study, 70% of pharmacist recommendations were accepted, and prevented potential errors in 68% of patients³
- Common errors include duration, dose, and choice of antibiotics
- There is a need to extend AMS services beyond the inpatient setting to help bridge this gap in care

METHODS

- Single center, retrospective, quality improvement initiative
- ❖ Interventional group: January 2019 February 2019
- ❖ Historical control: January 2018 February 2018
- Inclusion criteria:
 - Patients at least 18 years of age
 - Admitted to general medicine floor
 - Plan for continuation of antibiotic after discharge

OBJECTIVE

❖ To evaluate the impact of antimicrobial stewardship review of antibiotic prescriptions upon transitions of care from hospital to community

INTERVENTION

AMS team to utilize discharge tracking board to identify patients potentially being discharged in the next 24-48 hours

The pharmacist will review the patients and assess for antimicrobials being prescribed at discharge

The pharmacist will make any interventions pertaining to the antibiotic when necessary (i.e., choice, dose, duration), prior to patient discharge

Primary Endpoint:

 Number of days of antibiotic therapy prescribed upon hospital

Secondary Endpoints:

- Number of interventions made
- Type of intervention made

• Intervention acceptance rate

4 most frequently prescribed outpatient

Type of Infection	Pre-intervention	Post-intervention
Influenza	36	25
Pneumonia	16	22
UTI	10	18
Bacteremia	11	13
Oseltamivir	36	25
Fluoroquinolones	18	18
Penicillins	15	22
Cephalosporins	15	7

	Pre-intervention Group (Jan-Feb 2018)	Post-intervention Group (Jan-Feb 2019)
Patients Discharged with Antibiotics, n	99	110
Sex, %	56.6% males	47.3% males
Age (Years) Median [IQR]	69 [54-78]	65.5 [54.3-77]
LOS (Days) Median [IQR]	4 [2-6] Range: 1-20	4 [2-6] Range: 1-30
PRIM	ARY FND	POINI

2018 Days of Outpatient Therapy	2019 Days of Outpatient Therapy
Median: 4	Median: 4
IQR: 2-7	IQR: 3-7
Range: 0.5-42	Range: 0-43
20	2010

	2018	2019
Total Inpatient +	Median: 9	Median: 9
Outpatient DOT	IQR: 6.5-13	IQR: 6-14

SECONDARY ENDPOINTS

- ❖ 14 interventions were made on 11 patients
- Intervention acceptance rate: 71.4%
- ❖ 3 interventions were not accepted due to patient already being discharged

Type of Intervention	Frequency
Change in Duration	8
	(25 total DOT avoided)
Change in Frequency	3
Antibiotics not Indicated/	2
Completed Therapy	
De-escalation of Therapy	1

Disclosure: Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.

	Any 30-day Re-admission Pre-intervention	Any 30-day Re-admission Post-intervention
Percentage of Patients	15% (n=15)	20% (n=22)
Infection-related Re-admission	26.7% (4/15)	59.1% (13/22)
Adverse Event- related Re-admission	1 severe diarrhea, <i>C. difficile</i> negative	1 patient possible allergic reaction to cephalexin

LIMITATIONS

- Single medical unit in single institution
- Sustainability
- AMS pharmacists have many other tasks throughout the day
- Time frame from discharge ordered to patient being discharged is variable
- Weekend and evening discharges
- Discharge unit open January and February

DISCUSSION

Clinical Impact:

❖ AMS pharmacists can have a positive impact on the transitions of care (TOC) process as seen by the 71.4% intervention acceptance rate

Future Directions:

- Continuation of AMS TOC interventions as time permits
- Potential role for care team pharmacists outside of AMS team to have an impact in this initiative with appropriate training
- Develop better strategy to identify patients
- Continue to offer PGY2 ID TOC elective rotation

REFERENCES

- Centers for Disease Control and Prevention. Antibiotic use in the United States, 2017: progress and opportunities. April 6, 2018. https://www.cdc.gov/antibiotic-use/stewardship-report/index.html
- 2. Scarpato, Sarah J., et al. "An evaluation of antibiotic prescribing practices upon hospital discharge." *infection control & hospital epidemiology* 38.3 (2017): 353-355.
- Su, Christy P., et al. "Use of an Anti-Infective Medication Review Process at Hospital Discharge to Identify Medication Errors and Optimize Therapy." *Journal of pharmacy practice* (2018): 0897190018761411.

Implementation of Pharmacist Driven Transitions of Care Services in the Emergency Department

WESTERN NEW ENGLAND
UNIVERSITY

COLLEGE of PHARMACY and HEALTH SCIENCES

Geena Eglin, PharmD¹; Jared Ostroff, PharmD, BCACP^{1,2}, BCGP; Melanie Conboy PharmD¹; Derek Charron, PharmD¹; Kevin Miller RPh¹

1. Baystate Medical Center; 2. Western New England University CoPHS – Springfield, Massachusetts

BACKGROUND

Based on studies looking at emergency department (ED) prescription noncompliance, the need for a transitions of care (TOC) pharmacist within this specialized area has been identified as a means to help address gaps in medication therapy and patient knowledge. The results are as follows:

- New medications are prescribed for 2 out of every 3 patients discharged from the ED.
- Up to 35% of patients are noncompliant with their ED discharge medications.
- Medication noncompliance has been shown to be the major contributing factor for as many as 22% of return ED visits.

OBJECTIVES

Primary Objective:

 Implement a standard process for transitions of care services, by a pharmacist, for patients who are discharged home

Secondary Objective:

- Track patient compliance to discharge prescriptions from the ED
- Assess the rate at which patients revisit fast track

METHODS

- The pharmacy resident, working as the TOC pharmacist, joined the fast track team consisting of doctors, midlevel practitioners, nurses, patient care technicians and scribes.
- The resident spent one day per week in fast track for 6 weeks;
 Monday was identified as the day with the highest patient census.

Inclusion Criteria

- Patients seen in fast track and pharmacist consulted for TOC services
- English and non-English speaking patients

Exclusion Criteria

- Patients seen in fast track without TOC pharmacist intervention
- Patients seen outside of fast track

METHODS

Pharmacist Interventions

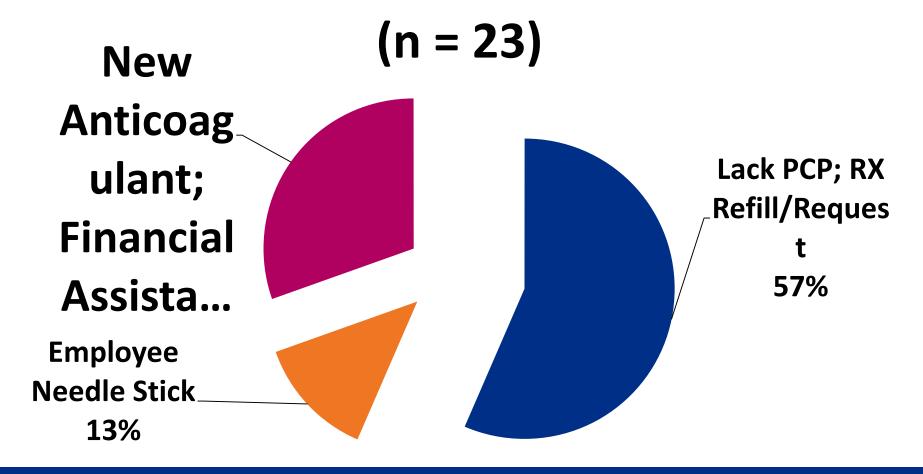
Access & Insurance

- Lack of PCP; RX refill/request
- Employee needle stick
- New anticoagulant; financial assistance

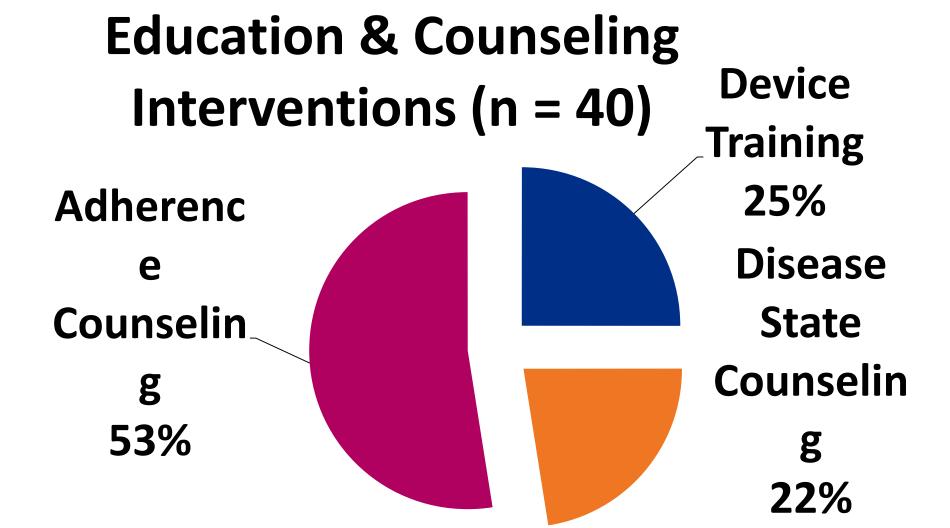
Education & Counseling

- Device training
- Disease state counseling
- Adherence counseling

Pharmacist
Clinical
Interventions


- Medication selection
- Prescription directions; drug-drug interactions
- Therapy appropriateness

RESULTS


- The TOC pharmacist spent a total of **37 hours** in fast track
- During this time, 138 patients were seen by the fast track team
- **55 patients (40%)** out of these total patients received an intervention by the TOC pharmacist

Access & Insurance	n = 23 (44%)
Education & Counseling	n = 40 (77%)
Pharmacists Clinical Interventions	n = 46 (90%)
Medication Reconciliation	n = 55 (100%)

Access & Insurance Interventions

RESULTS

Fast track prescriptions (n = 55)

- Baystate Pharmacy compliance: 100% (n = 26)
- Outside pharmacy compliance: 76% (n = 22)
- Overall compliance: 87% (n = 48)

30-Day fast track revisit rate = 18% (n = 10)

• Return for prescription refill = 2 patients

DISCUSSION

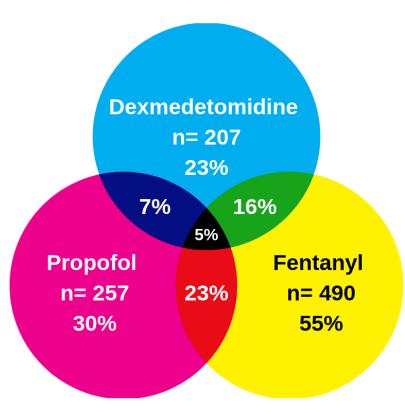
Addition of the TOC pharmacy resident to the patient care team within the fast track area of the ED lead to:

- Increased access to care
- Increased medication compliance
- Decreased fast track revisits

Limitations	Future Implications
High patient turnover	Application of TOC services in the ED
Single pharmacist operation	Expand TOC services in fast track
Medical team rotation	Retail ED dispensing pharmacy
Sustainability of TOC services	Mandated d/c prescription review

DISCLOSURES

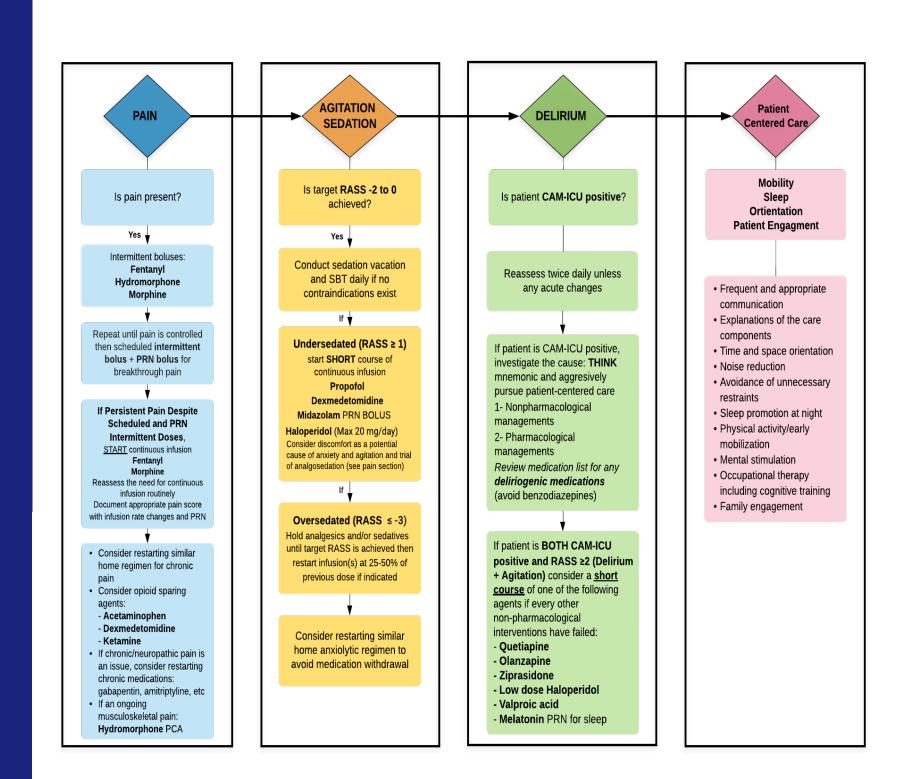
Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have direct or indirect interest in the subject matter of this presentation.


Pharmacist-driven Implementation of Guidelines for Management of Pain, Sedation, and Delirium in a Medical Intensive Care Unit

Mehrnaz Sadrolashrafi, PharmD; Hannah Spinner, PharmD, BCCCP; Adam Pesaturo, PharmD, BCPS, BCCCP

Baystate Medical Center

INTRODUCTION

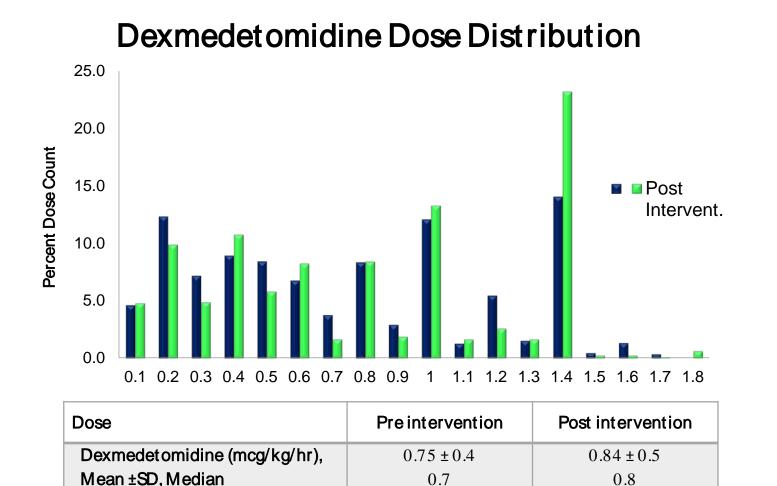

- Pain, agitation, and delirium (PAD) stewardship could be considered a coordinated program aimed at promoting evidence-based prescribing of opioids and sedatives
- Critical care pharmacists in a stewardship-type role can optimize an appropriate level of sedation and pain control in critically ill patients
- Retrospective evaluation of patients admitted to MICU from February 2018 to June 2018 (n=879)

METHODS

Primary Endpoint: to study the impact of the pharmacist's intervention on DOT/1000 Patient Days and unique administration of opioids and sedatives in mechanically intubated patients

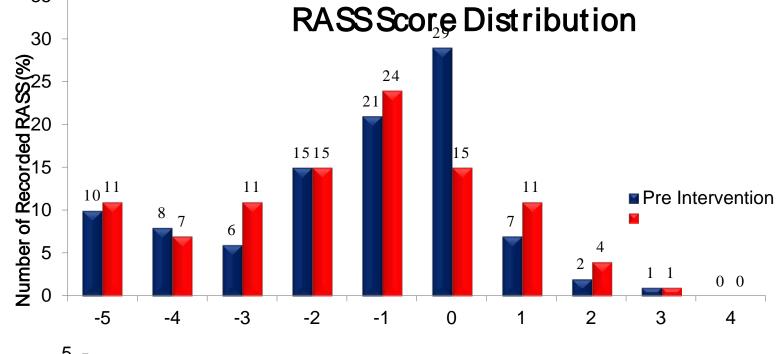
• Development of an institutional practice guidelines in line with SCCM PADIS guidelines

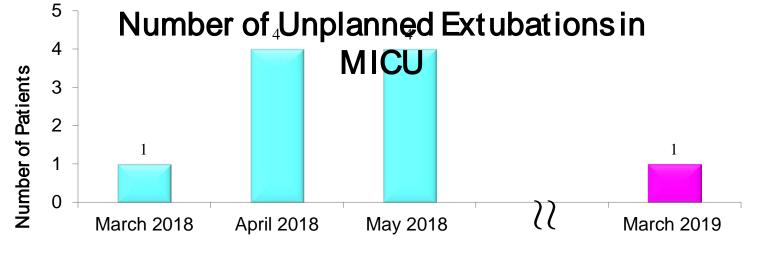
RESULTS

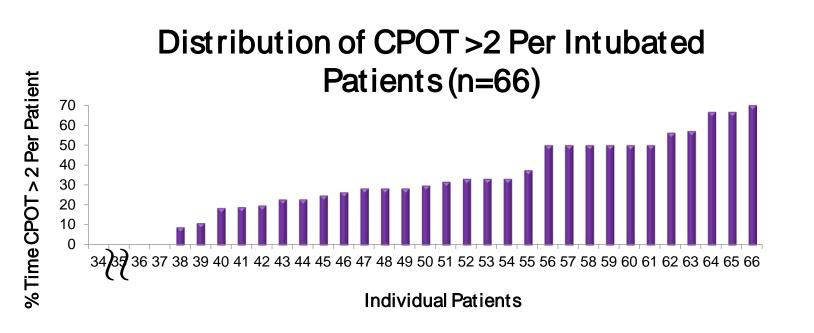

Characteristics	Preintervention (n=217)	Post intervention (n=66)
Age, yr, mean ± SD	62 ± 15	64 ± 15
Malen (%)	112 (52)	41 (62)
Race n (%)		
Black	24 (11)	6 (9)
Hispanic	14 (6)	7 (11)
White	162 (75)	49 (74)
Not specified/Disclosed	17 (8)	4 (6)
Indication for mechanical ventilation, n (%)		
Alcohol/drug overdose	19 (9)	5 (7)
Cardiac Arrest/PEA	23 (11)	9 (13)
CHF/pulmonary edema	10 (5)	3 (4)
COPD/asthma	11 (5)	5 (7)
Gastrointestinal bleed	9 (4)	4 (6)
Pneumonia and/or ARDS	47 (22)	13 (19)
Seizure	15 (7)	3 (4)
Trauma	1 (<1)	2 (3)
Other	82 (38)	25 (36)

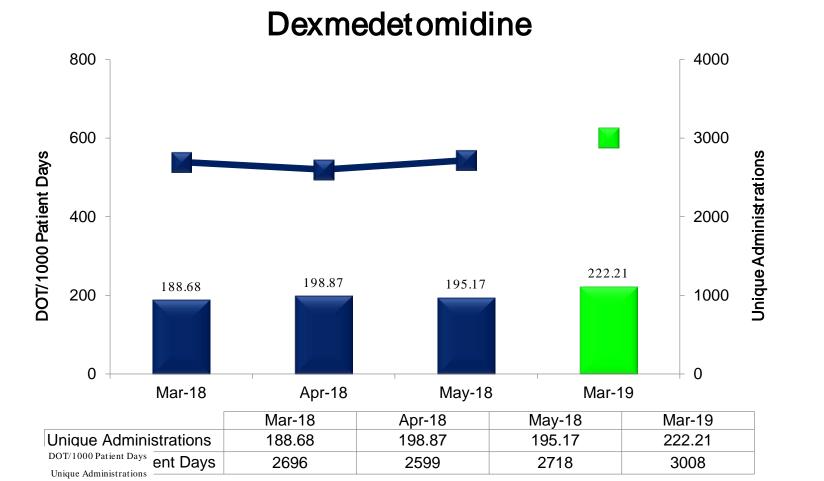
	Pre intervention (n=217)	Post intervention (n=66)
Length of mechanical intubation, hr, median, (IQR)	36 (12-113)	43 (23-104)
Length of ICU stay, hr, median, (IQR)	64 (30 – 136)	81 (47 – 131)

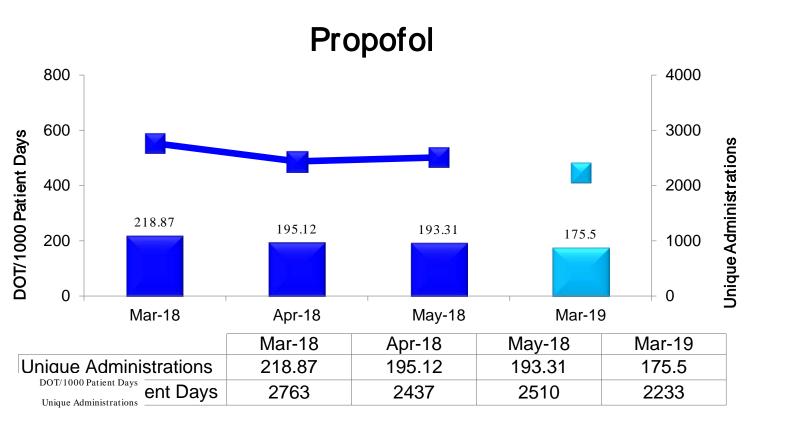
	Preintervention (n=217)	Post intervention (n=66)
Patients with recorded CAM-ICU positive n (%)	114/217 (53)	38/66 (58)

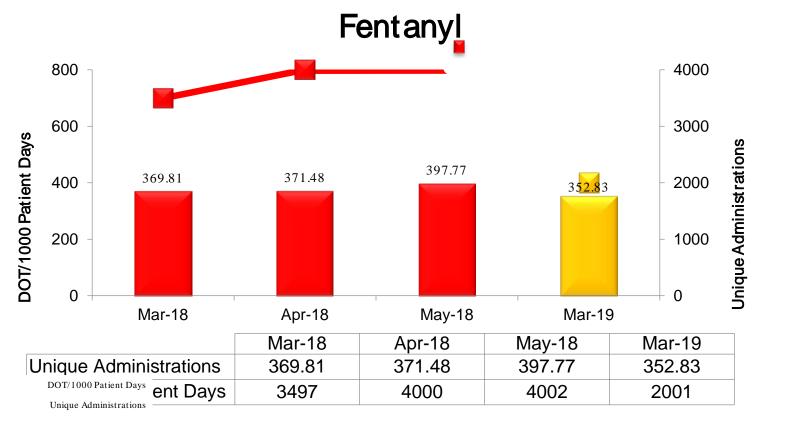

	Preintervention (n=217)	Post intervention (n=66)
Haloperidol n (%)	11 (5)	3 (5)
Quetiapine n (%)	21 (10)	5 (2)
Olanzapine n (%)	2 (0.9)	1 (2)


Pharmacist Intervention (n = 83)	n (%)
Discontinue opioid continuous infusion	16 (20)
Decrease infusion rate of opioid	1 (1)
Add intermittent opioid bolus	22 (27)
Add as needed adjunct non-opioid agent for pain	8 (10)
Start continuous infusion of opioid	9 (11)
Discontinue sedative agent	10 (12)
Decrease infusion rate of sedative	5 (6)
Add sedative agent	3 (4)
New initiation/dose titration of typical/atypical antipsychotic	4 (5)
Discontinue antipsychotic	4 (5)




50.00	Propofol Dose Distribution	
45.00	r repeter best bistribution	
40.00		
35.00		
30.00		
25.00		■ ■ Post
20.00		Interven
15.00		
10.00		
5.00		


, , , , , , , , , , , , , , , , , , ,			
Dose	Pre intervention	Post intervention	
Propofol (mcg/kg/min) Mean ±SD,	25 ± 16	22 ± 13	
Median	20	0.8	



DISCUSSION

• Daily interventions by a critical care pharmacy resident who implemented the institutional PADIS guideline led to a 50% reduction in the number of unique doses of fentanyl administered over the duration of this study

Future Directions

- Complete the second phase of the study until May 2019 and conduct the secondary data analysis
- Addition of the management of PADIS to an onboarding training for all incoming PGY1 and PGY2 residents in order to offer this service 7 days a week
- Expand this practice guideline to other ICUs within the institution (surgical, neuro, cardiac)

Pharmacists Defining High-Risk Opioid Use Patient **Populations at Baystate Medical Center**

Catherine Chatowsky, PharmD; Melanie Conboy, PharmD; Evan Horton PharmD, BCPPS; Shawn Roggie, PharmD, MBA

BACKGROUND

- 2016: MA ↑ Drug Overdose Death Rate ➤ Driven by heroin and synthetic opioids ➤ Deaths: 23.5 per 100,000 population ➤ 2017: 24.5 per 100,000 (4.3% change)
- BMC Pharmacy New FTE Approved ➤ Pain Management Pharmacist ➤ Anticipated to start September 2019
- CDC Guidelines: Prescribing Opioids for Chronic Pain > Clinicians should avoid increasing dosage, or carefully justify a decision to titrate dosage, to ≥90 Morphine Milligram Equivalents (MME/day) ➤ High Risk: May increase risk for overdose

OBJECTIVES

Define BMC's High-Risk Opioid-Using Patient Population:

BMC IRB Approval to Develop a Data Extraction Tool

Identify areas for BMC Pharmacy Pain Management Interventions

PATIENT SELECTION

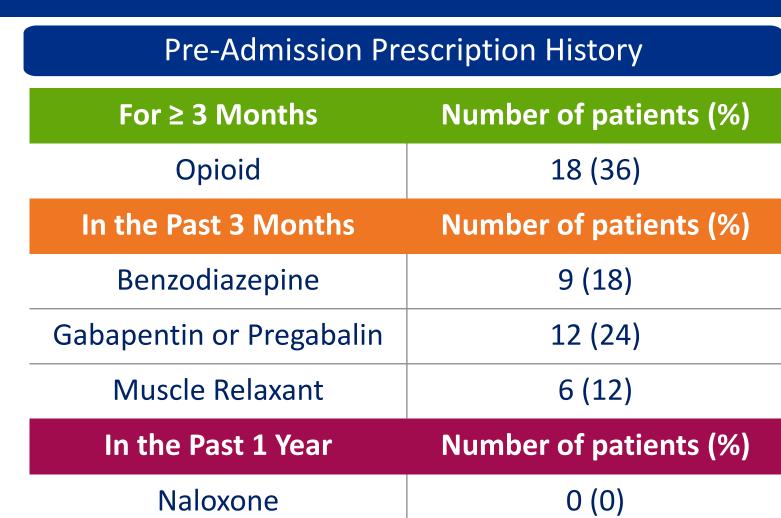
50 Adult Inpatients

Eligibility:

- Adult inpatients administered opioids ≥ 90 MME/day **Exclusion Criteria:**
- PCA pumps or continuous infusions
- ED or any ICU patients per day
- Cancer diagnosis
- Comfort Measures Only (CMO) Status

METHODS

- Identify 50 high-risk opioid using patients using data extraction tool ➤ Check tool daily for eligible patients ➤ Check eMAR to determine administration of ≥ 90 MME/Day ➤ Recheck patients the next day
- Retrospective Chart Review: **50 Patients ≥ 90 MME/Day**
- ➤ Baseline Characteristics (age, sex) ➤ Prior opioid use + selected medications ➤ Diagnosis or history of substance abuse ➤ Pain + primary discharge diagnosis >MME/Day: first 24 hrs, admission high, discharge
- ➤ Inpatient selected medications ➤ Naloxone orders: inpatient + discharge


Rules for Data Extraction Tool

Drug	Oral (mg/day)	IV (mg/day)
Morphine	≥90	≥30
Hydromorphone	≥22.5	≥4.5
Hydrocodone	≥90	
Oxycodone	≥60	
Codeine	≥600	
Fentanyl transdermal	≥50 mc	g/hr*

RESULTS Admission: Hospital Location Geriatric Genera Cardiac Surgical 15 **Number of Patients**

Opioid Use			
	Median (MME/Day)	Minimum (MME/Day)	Maximum (MME/Day)
First 24 Hours	120	0	960
Highest 24 Hours	178	95	960
Discharge Prescription	96	0	663

66% of Patients had Discharge Prescription(s) ≥ 90 MME/Day 8% of Patients Discharged without Opioid Prescription(s)

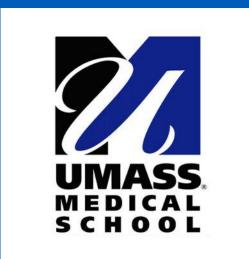
Number of Patients (%)	Outpatient Prescription (%
20 /40	0 (40)

Medications Administered with Opioids

	Patients (%)	Prescription (%)
Benzodiazepine	20 (40)	9 (18)
Gabapentinoids	16 (32)	12 (24)
Muscle Relaxants	7 (14)	6 (12)

Discharge Naloxone Prescription

DISCUSSION


- Identifying high-risk opioid users is difficult with the current electronic system and data extraction tool. This tool will need to be adapted and refined in the near future.
- An essential responsibility of the new pain management pharmacist will be to identify high-risk opioid using patients during periods of transitions of care to enhance pain care plans.

Limitations	Future Directions
Data extraction tool cannot detect drug administrations or MME/Day	Build a BMC Opioid Calculator: MME/Day
No BMC Opioid Calculator: MME/Day	Add a rule for opioid-use + benzodiazepines
May not be capturing all patients on the eMAR. Operating rooms use different eMAR.	Focus on surgical inpatient floors Evaluate surgical power-plans that allow for high MME/Day
Identification of opioid dependence is dependent on medical coding	Increase awareness and access to naloxone at discharge

Pharmacy Services at Baystate High Street Health Center

Melanie Conboy, PharmD, Geena Eglin, PharmD, Jennifer Glisson, PharmD, Carmen Lariviere, RPh, Kevin Miler, RPh, Eunice Lopez, CPhT

BACKGROUND

According to the Association of American Medical College, there is expected to be a physician shortage 121,300 physicians by 2030 in the US. Coupled with the current nursing shortage, it is becoming increasingly difficult for Primary Care to manage patients disease states effectively and provide access to care in a timely manner. About 157 million Americans (48% of the total U.S. population) live with a chronic condition. We established a clinical pharmacy presence within Baystate High Street Health Center — Adult Medicine (BHSHC-AM) to accommodate medication related needs of both patients and providers. The Pharmacy Consult Clinic is available 3 days per week and assists in bridging the provider shortage gap. By providing patients with access to our Pharmacy Consult Clinic, we have been able to show great benefits while obtaining positive outcomes of chronic disease states.

METHODS

Inclusion Criteria

Patients referred to Pharmacy Consult Clinic or consults during provider visit **Exclusion Criteria**

Patients seen
outside the
Pharmacy Consult
Clinic operation
hours

Chronic Disease Education

- **Diabetes:** Insulin teaching, glucometer training, complications, and interpretation of glucose readings/A1C
- **Hypertension:** complications, diet and exercise
- Asthma: inhaler/spacer training, monitor use of rescue inhaler, warning signs and avoidance of triggers

PHARMACIST INTERVENTIONS

Addition of therapy

Identify gaps of therapy

Discontinuation of therapy

Identify inappropriate medications or medications no longer needed

Dose change or change of medication

 Optimize therapy by decreasing pill burden with combination medications determine appropriateness of dosage forms
 Identify suboptimal or supratherapeutic dosing

Chronic disease education

• Diabetes, Hypertension, Asthma

Recommend laboratory testing

 Recommend labs based on medication guidelines (A1C, liver function tests, lipid panel, TSH, etc.)

Nutrition education

• Demonstration of proper portion sizes and carbohydrate counting

Referred to provider

Identify patients that need to be seen in clinic for an urgent visit

Smoking cessation education

• Assess readiness to quit, treatment options and continued support

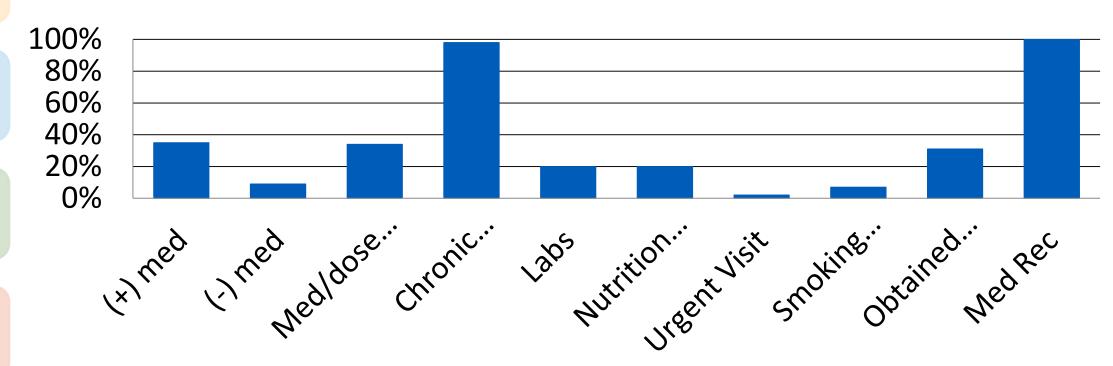
Obtain prescription refills

Refill prescriptions per clinic protocol and obtain refills from provider

Medication Reconciliation

 Obtain patient history, identify duplicate prescriptions, determine adherence, and update CIS medication lists

BASELINE CHARACTERISTICS


n = 75		
Age, mean years ± SD	61.6 ± 13.7	
Sex Male Female	33 (44) 42 (56)	
A1C < 7.0 7.0 − 9.9 ≥ 10	27 (36) 27 (36) 21 (28)	

RESULTS

The chart shows the percentage that each intervention is performed during a pharmacy consult visit. Along with addressing interventions we are able perform a complete medication reconciliation at all visits. The medication list in CIS is updated every time.

By providing this teaching and education, our results demonstrated that we were successfully able to decrease each patient A1C by an average of 0.81% after just one pharmacy consult visit.

Interventions

ENHANCED PHARMACY SERVICES

Free prescription delivery service began in April 2018. The number of prescriptions delivered continues to grow.

To date, over 4000 prescriptions have been delivered and patient and provider satisfaction has been enhanced. Due to this, prescription volume has increased in the pharmacy by 25%.

Prescriptions Delivered

DISCLOSURES

Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have direct or indirect interest in the subject matter of this presentation.

Transitions of Care: Longitudinal Pharmacy Resident Learning Experience

Melanie Conboy PharmD¹; Geena Eglin, PharmD¹; Jennifer Glisson, PharmD¹; Jared Ostroff, PharmD, BCACP¹,², BCGP

1. Baystate Medical Center; 2. Western New England University CoPHS – Springfield, Massachusetts

BACKGROUND

- The transitions of care (TOC) pharmacy learning experience was newly re-designed to have the pharmacy resident complete patient centered teaching and education surrounding the medication-use process.
- Pharmacy involvement throughout TOC helps to improve patient outcomes, reduce readmissions, and benefit patients' quality of life.

LEARNING OBJECTIVES

Complete admission and discharge medication reconciliations

Provide resources for patients to obtain prescribed medication therapy

Work to resolve medication access issues prior to hospital discharge

Identify language & literacy barriers and provide counseling for patients

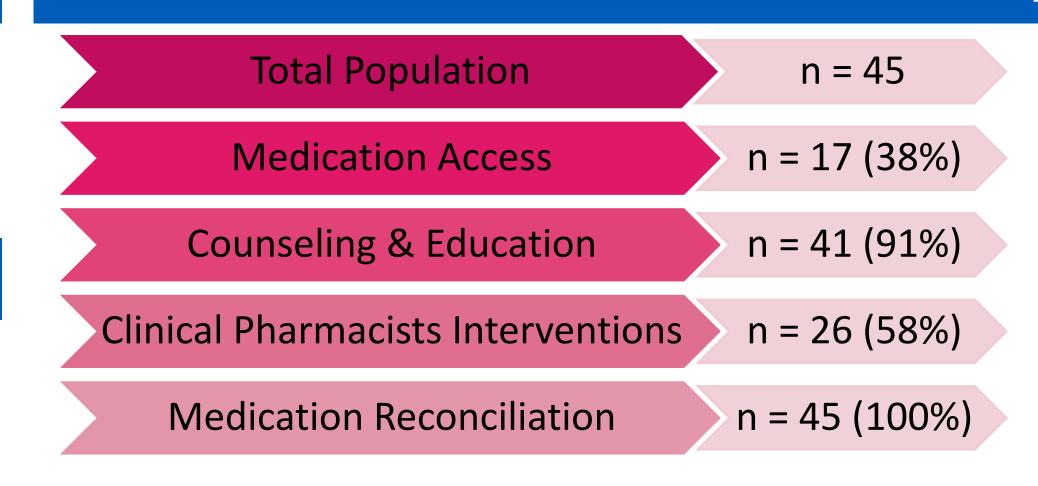
Follow up with patients in their assigned outpatient clinics

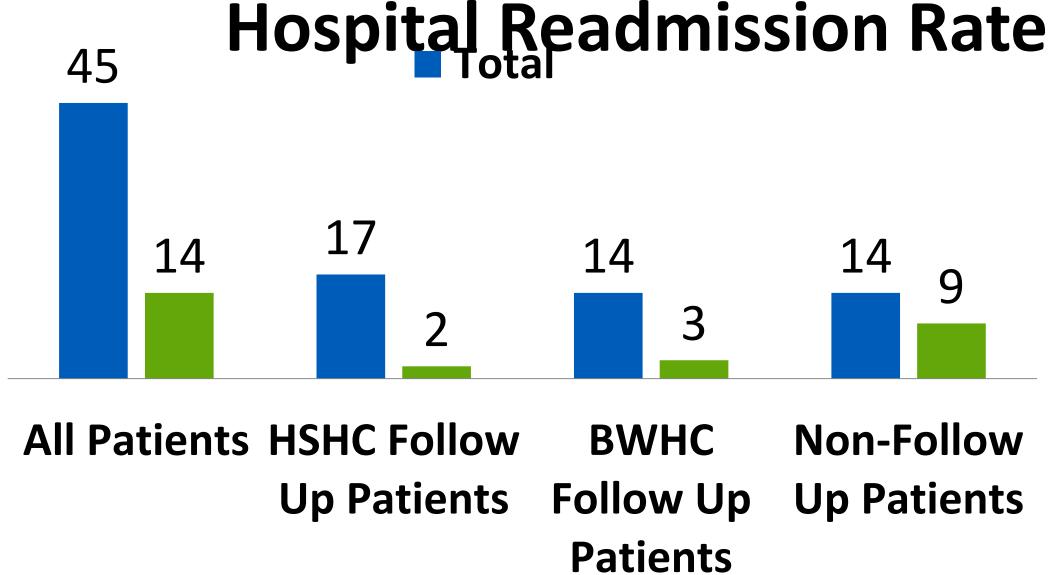
METHODS

Inclusion Criteria

- Admitted patients: 2 weeks prior to running the MIDAS report
- Brightwood Health Center (BWHC) or High Street Health Center (HSHC) patients
- Patients still admitted to the hospital; plans for discharge home

Exclusion Criteria

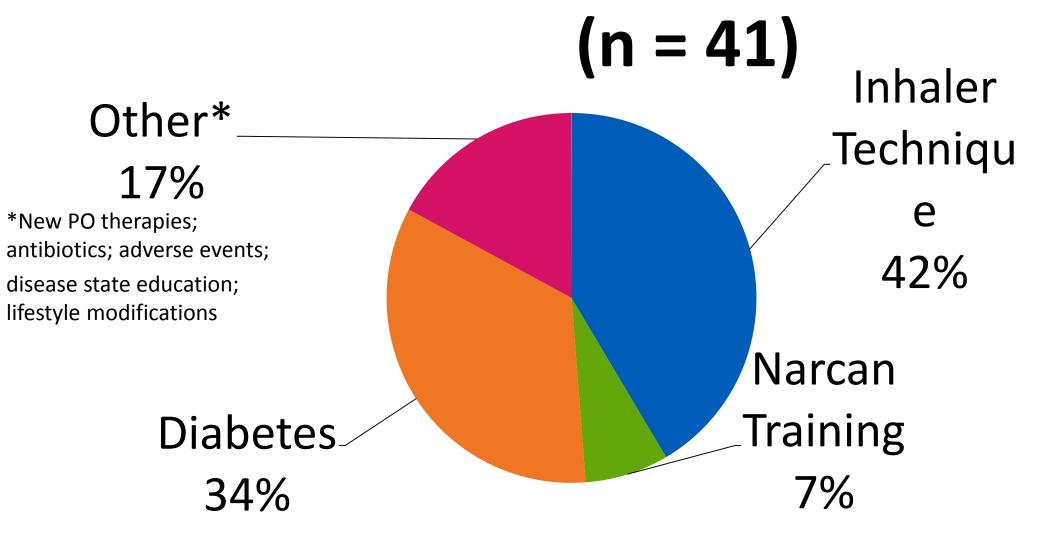

- Patients with planned discharge to a rehabilitation facility
- Patients already discharged from the hospital


RESULTS

Baseline Characteristics (n = 45)		
Average Age (±SD)	57.3 ± 16.3	
Male	22 (48.8)	
Average # of Home Medications	14.9	
Average # of Incorrect Medications*	5.79	

^{*}Medications incorrect from home list; needed to be changed

RESULTS


Hospital Readmission Rate

Patients were followed 30 days past their hospital discharge date to evaluate the efficacy of post discharge pharmacy follow up.

- HSHC follow up patients = 11.7%
- BWHC follow up patients = 21.4%
- Patients with no clinic follow up = 64.2%

Medication Access (n = 17) Sub C High Street 6% Delivery 12% Financial_ Assistance Copay 18% Cards; New Inhaler Anticoagula Coupons tion 23% 41%

Counseling & Education

DISCUSSION

The TOC pharmacy resident plays a vital role in patient centered care & has led to improved outcomes such as:

- Increased access to follow up care post hospital discharge
- Increased medication adherence
- Decreased hospital readmission rates

Financial Impact

Cost avoidance for medical readmission (~ \$ 1,020.00/pt.)

Cost avoidance for cardiac readmission (~ \$ 2,087.00/pt.)

TOC Pharmacist follow up = billable clinical services

Future Directions

TOC services to all units

FTE approval for TOC Pharmacists

Code 99495 & Code 99496 utilization