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Abstract – Coandă effect can be found in virtually all aerodynamic applications, and has drawn 

renewed interest for various applications, among others for generating lift and maneuvering impulses 

to be applied for unmanned air vehicles (UAV) and micro air vehicles (MAV). These air vehicles 

have the potential to revolutionize our sensing and information gathering capabilities, in homeland 

security and environmental areas. Sophisticated unmanned air vehicles for general applications have 

been developed rapidly across many different industries and interested researchers. In order to carry 

out a task, these air vehicles have to face many different challenges, due to the MAVs small size, 

flight regime, and modes of operation. This has led to the development of novel platforms that move 

away from traditional aircraft design in order to make them more capable. A good example is the 

Coandă MAV which uses the Active flow control–Coandă Effect. Improved aerodynamic 

performance of these air vehicles can lead to fast take off and slower landing speeds that can be 

related to reduce noise and crash survivability issues. The investigation and research in this field is 

rapidly rising and there are many concepts currently being considered around the world. This report 

provides an overview on the state of unmanned air vehicle and introduces the techniques of Active 

Flow Control ACF that could be potentially used for control of UAV. Furthermore, this paper may 

also focuses on the review research involved with the design modification and the generated flow 

phenomena of Micro air vehicle MAV. 
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Introduction 

The Coandă Micro air vehicles (MAVs) are unique version among many of the unmanned aerial 

vehicles currently deployed around the world, which do not have moveable parts. The Coandă micro 

air vehicles existing now a day could be related to the group of unmanned aerial vehicles (UAVs) that 
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include fully autonomous aircraft, remotely operated aircraft and remotely piloted vehicles (Nonami, 

2007). Unmanned Aerial Vehicles provide an excellent base for many aerospace applications. 

 

A survey of previous research pertinent to the current study of the Micro Air Vehicle with Coandă 

effect is elaborated in this section. The Coandă effect, as an active flow control, could be applied to a 

conventional fixed wing aircraft and unmanned aerial vehicle to improve lift, as well as other 

performance parameters, by a considerable factor. 

 

Flow control is an aerodynamic method of changing flows with the intention to accomplish a desired 

effect: such as enhance lift, delay of flow separation and drag reduction, noise reduction, increased 

combustion efficiency and so many other industrial applications, (Gad-el-Hak, 1998, 2007). 

   

During the last 20 years, many sophisticated unmanned air vehicles (UAV) for civil and military 

applications have increasingly been developed all around the world. The demands for information 

gathering capabilities in environmental monitoring, security and intelligence are spawning the 

development of a smaller next-generation UAV called the Micro Air Vehicle (MAV). The operating 

range of these small air vehicles is only for several kilometres and during flight time can transmits 

spontaneous information (photos Video) back to their portable base station, (Wilson,2000). Figure 1 

depicted different types of application of MAVs. The base station with several MAVs can be handled 

by a single person, an impossible scenario for other UAVs with larger sizes, on the basis of recent 

advancements in key technologies of flight control, propulsion, communications, and sensors. In order 

for a UAV to carry out a task, it has to overcome many challenges, due to the MAVs small size, flight 

regime, and modes of operation. This has led to the development of novel platforms that move away 

from traditional aircraft design in order to make them more capable. A good example of this type of 

craft is one which uses the Active flow control (Coandă Effect) to assist propulsion (Djojodihardjo & 

Ahmed, 2014). Focusing on the MAV design, many radially shaped (Saucer-Like) vertical take-off 

and landing aircraft model designs are using Coandă effect to generate the required vertical thrust to 

lift off the aircraft from its landing base. The principles and the performance of this system stand out 

as concept that needs to be elaborated. 
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Figure 1: Micro Air Vehicle MAV operation and Missions (Different resources) 

 

A high indication was raised during the last few years, that Coandă effect has been given considerable 

considerations for circulation control technique as reported by Gad-el-Hak, 1998, 2007, Jones et 

al.,2002, 2005; Englar , 2005 and Kweder et al., 2011 and Djojodihardjo et al. 2011, 2013 and 2014.  

 Generally, the porpoise of this paper is a review on the investigates of the active flow control with 

applicability in aerospace, UAVs and MAVs, and to determine if the use of Coandă  jets are useful in 

altering the aerodynamic characteristics of air vehicles will be designing for optimum performance. 

Furthermore this review is meant to provide updated review of Coandă MAV that have been designed, 

tested, and /or deployed in real missions and to indicate the applications and potential advantages of 

Coandă MAV over conventional MAV. 

 

Flow control technology 

The definition of Flow Control is firmly connected to the physical characteristics of flow around any 

aerodynamic body. Hence, Flow Control can be defined as a process to modify a flow field around the 

aerodynamic body, by some external means, such as aerofoil, flaps, ailerons, and other active flow 

controls (blowing and suction), etc., to meet some objective, (Gad-el-Hak 1998; Washburn, 2002 and 

Sellers et al., 2003).  

 

The science of flow control is strongly bonded with the boundary layer theory, introduced by Prandtl 

in 1904. He explained the physics of the separation phenomena, and the boundary layer control 

through the description of several experiments. A variety of flow control techniques for aerodynamic 

body performance enhancement has shown breakthroughs from conventional aerodynamic constraints 

and achieves drastic performance enhancement. Various flow control techniques (passive or active) 

have been used to accomplish desired effects: examples include delay or promote transition to 

turbulence, prevent or induce separation; or suppress or enhance turbulence, (Bushnell & McGinley, 

1989, Fiedler & Fernholz, 1990, Moin & Bewley, 1994 and Gad-el-HaK, 1996, 2007. Flow control 

refers to the ability to alter flows with the aim to achieve a desired effect: examples include drag 

reduction, lift enhancement, mixing improvement and noise suppression among many other industrial 
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applications. Specifically, the crucial facts of all flow control technology are depicted in details in 

figure 2. 

 
Figure 2:  Flow Control operation, scope and results 

        

Passive flow control generally involves geometry modifications to achieve a goal. Although the 

passive control systems are normally easy to design and simple to implement and require no external 

power supply, most passive control systems share some problems in practice. Walsh and Weinstein 

1978; Hefner et al. 1979 and 1990; Godard and Stanislas, 2006; and Tongchitpakdee,2006, 

investigated these complications and verified that apart from the weight penalties, drag penalties are 

other drawbacks. 

  

Active flow control is at the moment a new innovation and it is to some extent limited because of the 

complexity of the steady jet systems and large power requirements; details are found in Seifert et al., 

1996, Duvigneau, and Visonneau, 2004, 2006. In broad, active flow control techniques can be 

subdivided into predetermined and interactive flow control, Gad-el-Hak (2007). Details are 

schematically outlined in the flow chart of the flow control as depicated in figure 3. An example of 

predetermined control is circulation control of wings. Lift enhancement is achieved by blowing a jet 

over a rounded trailing edge creating a Coandă effect and changing the aerofoil Kutta condition, “A 

body with a sharp trailing edge which is moving through a fluid will create about itself a circulation of 

sufficient strength to hold the rear stagnation point at the trailing edge”. This phenomena has been 

reported by, Englar and Huson, 1983; Englar et al., 1993; Joslin and Jones, 2006 and Mirkov and 

Rasuo, 2010. Jee et al., 2008 have used the implementation developed by Gad-el-Hak, 2007 to 

perform numerical simulations of a controlled aerofoil  
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Figure 3: Classification of flow control methods (Gad-el-Hak, 2007). 

 

More the less, there are as many as fifteen devices have revealed potential for UAVs control, wind 

turbine and for future quality research. It is hard to make direct comparisons between these flow 

control devices, since all of them operating differently, both mechanically and aerodynamically, and 

are at different level of maturity, figure 4a. The most well known circulation control devices used 

during the long time to enhance the aerodynamic performance parameters are as proposed and 

presented in figure 4b. The labelling scheme follows that of Wood, 1990.
1
 

 

 
Figure 4:  a) mechanically and aerodynamically maturity control effectors b) circulation control 

devices as an Active flow control used nowadays (adapted from wood 2002) 

 

Blowing, suction and circulation controls 

The methodology of Blowing and Suction as an active control technique is to introduce high-

momentum air into the boundary layer on aerofoils which will contribute in overcoming adverse 

pressure gradients and postponing separation. Blowing and suction, as an active flow control methods, 

                                                      
1
 Devices technique; geometric device (G) or a fluidic device (F) or plasma actuators (P). Device Location; 

near the leading edge (LE), near the trailing edge (TE), or mid-chord (MC). Device adjusts the lift curve; 

increasing lift (I)  decreasing lift (D) delay stall (DS). Devices steady (S) and unsteady (U), (S/U) devices. 
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could be used at various locations of a wing for leading-edge vortices and breakdown. The most 

prospective positions for the use of these flow controls are at: (a) suction or blowing at leading-edge, 

(b) blowing at trailing-edge (c) along-the core blowing. Blowing technique employed by (Wood and 

Celik, 1990; Gu, Robinson and Rockwell, 1993), consequently, steady suction has been engaged with 

Gu, Robinson and Rockwell (1993) and McCormick, and Gursul, 1996. Several studies have been 

conducted to investigate the effect of trailing-edge jets on wing vortices and vortex breakdown, (Helin 

and Watry, 1994; Shih and Ding, 1996, Phillips, Lambert and Gursul, 2003, Shojaefard, 2005 and 

Wang and Gursul, 2005). A delay of vortex breakdown can be achieved by having a jet blowing at the 

trailing-edge which will modifies the external pressure gradient. The benefits of trailing-edge jet 

could be observed even in the presence of a fin, which produces a strong adverse pressure gradient for 

a leading-edge vortex as described by Helin and Watry, (1994). One of the technologies using this 

phenomenon (blowing and suction) is the co-flow jet CFJ technology, developed by Gecheng Zha et 

al. (2006, 2007) has shown promising results. A schematic of a CFJ aerofoil concept is shown in 

Figure 5. 

 
Figure 5: Schematic and concept of the co-flow jet CFJ aerofoil, Helin, and Watry, (1994) 

 

However, Circulation control (CC) is one concept derived from conventional blowing and suction 

research. Circulation control is one type of the active flow control, which is currently receiving 

significant consideration since it is a very operative method of producing ultimate lift coefficients 

necessary during take-off and landing. The Circulation control wing (CCW) has been under an 

extensive numerical and experimental investigations over many years (Liebeck, 1978; Englar and 

Huson, 1983; Englar et al., 1993; Englar et al., 1994; Moin and Bewley, 1994; Gad-El-Hak, 1998; 

Englar, 2000; Gad-El-Hak, 2007; Van Dam et al., 2007). For more effective designs of CCW, the 

trailing edge of the aerofoil was made to have a curved rounded edge with a larger radius. Circulation 

controls is implemented by tangentially injecting a jet sheet over a curved surface such as rounded 

wing trailing edge which energizes the boundary layer, increasing its resistance to separation and 

remain attached along the curved surface due to the Coandă effect (a balance of the pressure and 

centrifugal forces) and causing the jet to turn without separation. One draws of this modification was 

a high drag penalty while the jet was off. The solution was introduced by Tongchitpakdee (2007), by 

making the lower surface of the trailing edge a flat surface, while keeping a highly curved upper 

surface. Figure 6 shows a typical traditional CC aerofoil with a rounded trailing edge as given by 

Englar (2000) and Jones and Englar (2003). 
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Figure 6: Basics of Circulation Control Aerodynamics, Englar (2000) 

 

Coandă effect 

Coandă Effect is a classic phenomenon in fluid mechanics and one of the fundamental discoveries of 

the Romanian inventor Henri Marie Coandă (1886 -1972). Henri Coandă was a Romanian inventor, 

aerodynamics pioneer and the designer and the builder of the world's first jet powered aircraft, in 1910, 

(Coandă, 1932). Coandă has used this effect as a wing circulation control in the 1930s, (Coandă, 

1935). He came to the conclusion that the Coandă effect is due to a balance within the jet sheet 

between the pressure gradient normal to the surface and the centrifugal force caused by the streamline 

curvature. Coandă effect can be defined as that “the tendency of a fluid jet to attach itself to a curved 

surface or to be attracted to a nearby surface flaps or aerofoil”, (Bradshaw, 1990; Djojodihardjo & 

Ahmed, 2014). The profile has being characterized by a significant asymmetry as depicted in Figure 7. 

 

 
Figure 7: Henri Coandă propelling device, Coandă (1938) 

 

Coandă effect has always been referred to in the consideration of various flow control methods to 

enhance aerodynamic performance, i.e. to enhance lift, reduce drag, and delay stall at higher angle of 

attack, (Djojodihardjo & Thanagarajah, 2014). The technique of these system, engine thrust, or 

exhausted air, is directed across a wing surface or out the trailing edge to help the flow stays attached 

to Coandă Curved surface and generate additional lift. 

  

Studies carried out thus far by Jones & Englar (2003), Kweder (2011), Drăgan (2013), Djojodihardjo 

(2013) and Djojodihardjo & Ahmed (2014, 2015)  could enable us to identify a “Coandă jet as a 

relatively thin and slightly viscous jet flowing over a smooth curved surface and within the thickness 

of the prevailing boundary layer over that surface”. A detail of such jet flow is indicated in Figure 8. 
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The Coandă jet could be used for providing flight control to include stabilization and manoeuvring, 

potentially removing the need for moving control surfaces. 

 

        

 
 Figure 8: Behaviour of Coandă jet effect over curved          Figure 9: Schematization of                              

trailing edge surface, (Jones et al., 2005).                                        Newman’s case study. 

 

In 1936, Canada Effect was formulated in relation with three different phenomena associated with it 

and according to the studies carried out over the previous years, (Keller, 1957: Bradshaw, 1973 and 

Djojodihardjo, 2013).
 
These are a combination of three effects: first is the tendency of a fluid jet 

initialized tangentially on a curved surface to remain attached to that surface. Second, the ability of a 

free jet to attach itself to a nearby surface and third, the tendency of jet flows over convex curved 

surfaces to entrain some of the surrounding free flow and to flow more rapidly than that of plane wall 

jets. 

 

The scientific studies about the Coandă effect are characterized by fundamental studies by Von Glahn 

(1958),  Roderiek (1961),  Newman (1961) and Benner (1965). Newman (1961) investigated a two-

dimensional, uncompressible, and turbulent jet flow, flowing around a circular cylinder, (Figure 9). 

Coandă adhesion to a curved surface can be demonstrated as a consequence of the balance of the 

forces applied to the fluid, which are in equilibrium: the radial pressure force and the centrifugal force, 

(Newman & Carpenter, 1961; 1997). The main geometric parameters of the flow are the slot width (h), 

separation angle (θ) and the radius of curvature (R) and the dynamic quantities involved in the system 

as depicted in figure 9. Other related parameters are Reynolds number Re and the pressure differential 

(supply pressure ps− atmospheric pressure p∞). 

 

The Coandă effect can be attributed to the notion that if a thin film jet is positioned close to a wall, 

pressure forces change the path of the fluid elements, due to the low pressure between the jet and the 

surrounding pressure (Bernoulli principle) which then results in forces acting on the jet towards the 

solid surface. Since the wall prevents fluid inflow into the area between the jet and the wall, this area 

will have less pressure than the area away from the jet. Due to the momentum transport from the jet to 

the stationary or slowly moving fluid, also from the effect of viscosity, the flow in the vicinity of the 

jet is accelerated. The emerging pressure gradient normal to the wall generates a force, which moves 

the jet flow towards the wall. However, the surface pressure along the curved wall away from nozzle 

rises and gradually equates the ambient pressure. For such condition a detachment will occur between 

the curved wall and the fluid jet. Hence, Newman (1961) has defined the relation among the 
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separation angle θ, shown in Figure 9, and the dynamic quantities involved in the system and main 

geometric parameters of the flow as: 

 

 245 391
1 1 125

  


sep

h / R

. h / R
   (1) 

 

A comparison of the separation angle determined through the various empirical relations method as 

function of the jet slot thickness to body radius ratio (h/R) ratio is depicted in the figure 10. The 

Coandă effect will move the stagnation point aft, and delay the separation (see figure 10). Eventually, 

the adverse pressure gradient along the surface will increase, and the momentum within the jet and the 

boundary layer will decrease, hence this adverse pressure gradient is what eventually causes the jet to 

separate and leave the surface.  

 

 
Figure 10: a) Coandă flow over aerofoil TE and b) separation angle as of function of (h/R) ratio 

determined through various methods   

 

The feasibility and the benefits of using Coandă techniques to enhance aerodynamic performance of 

an air vehicle and to location of the separation point can be assessed by using the Coandă jet 

momentum coefficient, C (Mamou and Khalid, 2007; Djojodihardjo, 2011 and 2013), which are 

defined as: 
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where ṁ is the jet mass flow rate, VCoandă-jet is the Coandă jet velocity, ρ∞  and V∞ are  the free stream 

density and velocity respectively, and A is the aerofoil plan form area. 

 

There are a few near term applications of active flow control and biologically inspired technologies to 

flight vehicles, most of the technologies being researched have significant issues still to be addressed 

before they can be used regularly. For instance, some of the major barriers to the advancement of 

active flow control are inadequacies in energy efficient flow control actuators with sufficient authority 

and size and the need for small, robust sensors to measure time-dependent phenomena. Moreover, 

there is generally a lacking understanding of unsteady and non-linear aerodynamics and consequently, 
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analytical models to predict the interaction of the fluid mechanics with actuation have not been 

completely developed or validated. 

 

The active flow control promise tremendous advances in air vehicle performance and capability, 

especially when new vehicles are conceived around these technologies. Active flow control is of 

particular interest if the flow has to be optimized for diverse conditions and objectives. The objective 

and the efficiency of a flow control device has always to be evaluated in a global context when 

considering a practical application. 

 

Lately, the flow control is primarily focused in four general areas:  

 fundamental tool development,  

 performance enhancement, 

 maneuvering control and  

 noise attenuation. 

 

Research on nozzle demonstrated that a two parallel same speed and symmetric turbulent free streams, 

acting on symmetric Coanda surfaces system is not influenced Coanda surfaces and produces a 

straight synthetic jet. Any modification of the symmetry both in geometry and in fluid momentum can 

produce a deflection and that this deflection increasing the asymmetry or increasing the fluid dynamic 

asymmetry in terms of relative variation of the momentum between the two primary jets which forms 

the synthetic jet. 

 

Some actuation concepts in active flow control are synthetic jets, pulsed jets, active or vibrating 

small-scale structures and glow discharge or plasma devices. In many cases the major breakthroughs 

will probably be realized through better actuator and sensor packaging. Feasible routes using 

oscillatory flow-control systems (flow instability) as an efficiency enhancement tool are discussed as 

an emerging means to explain the physical phenomena of active flow-control and as a tool for control 

law design and development.  

 

Most often actuators are used that blow air from an orifice or a slot in the surface, either as steady or 

pulsed flow. Other actuator types include electromechanical and mechanical. The fast development of 

Micro Electromechanical Systems and their application in Flow Control System opens the 

perspectives of designing practical wing load control systems based on fluidic actuators, modifying 

local aerodynamic loads by inducing changes to flow. The potential advantages in comparison to 

classical devices include potentially shorter reaction time because of avoiding the necessity of moving 

large surfaces against high dynamic pressure, which is important in conditions of fast-changing loads 

in turbulent atmosphere. 

 

A relatively new type of actuator used for flow control are dielectric barrier discharge (DBD) plasma 

actuators, which are offering several benefits, such as fast reaction times due to the absence of 

mechanical parts. They induce a wall parallel jet by ionizing the air and thereby generating a plasma 

through an alternating high voltage applied to them. The design, construction and commissioning of 
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an Unmanned Aerial Vehicle (UAV) for flow control experiments with plasma actuators under 

realistic flight conditions is  considered the current and future direction of active flow control devices. 

Active flow control techniques can be implemented through various methods e.g., continuous 

blowing, continuous suction , pulsed blowing , oscillatory blowing and suction , vibrating ribbons , 

wall oscillations and net-zero mass flux actuators. Desired results are achieved by either removing the 

low energy carrying fluid from the boundary layer or by increasing the boundary layer momentum. 

Net-zero mass flux actuation and pulsed blowing additionally introduce vertical structures into the 

flow, which influence the mixing of the slow moving boundary layer with the free stream. 

 

The leading edge pulsed blowing showed a strong dependency of the actuator effectiveness on the jet 

momentum and the pulser frequency. The leading edge pulsed blowing had delayed the flow 

separation over the air foil on the other hand, the trailing edge jet flap was capable of generating 

significant roll moment at realistic jet momentum coefficients. The trailing edge jet actuators were 

also able to augment lift and demonstrate the roll control authority at low angle attacks at a cruising 

speed. 

 

The Coandă effect has many potential applications for both aircraft and ground vehicles, as well as 

high lift devices, due to its capability to entrain a large mass of air and bend it towards the ground to 

gain lift for the aircraft wing or wind turbine application. Moreover it has been used in other areas 

such as in marine technology, automotive industry, air conditioning system, medicine (as a ventilator), 

and meteorology. In the last decay the Coandă’s legacy was appreciated by many investigators around 

the world, mostly by modification, developments, and patents on MAVs and UAVs. 

 

The interesting capabilities of the Coandă effect were implemented on many other aircraft such as the 

Antonon  Izdelie181, Custer Channel Wing ,Englar, (2002), West Virginia University (WVU) flight 

demonstrator  “loth 1976”, Navy demonstrator aircraft “A-6/CCW” (1979) (Harris, 1981), Boeing 

YC-14(1976), Antonov An-72 “Coaler” (1977), Douglas YC-15, and C-17 “Globemaster III” (1991). 

 

   

   
Figure 11: Coandă Effect implemented on aircraft a) Antonov Izdeliye 181 b)WVU Flight 

Demonstrator  c) The Navy A-6/CCW demonstrator aircraft  d) Boeing's YC-14 (1976) (AMST)  

e) The Antonov An-72, and f) The Boeing C-17 Globemaster III  

https://da.wikipedia.org/w/index.php?title=Handiwork_181&action=edit&redlink=1
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Nowadays, Coandă effect is used mainly in helicopters as an anti-torque system that replace the rear 

rotor, as in NOTAR system. 

 

 
Figure 12: The NOTAR system  

 

Unmanned aerial vehicle UAV and micro air vehicles MAV 

Unmanned Aerial Vehicle UAV 

The first successful heavier-than-air flight test in human history was carried out by the Wright 

brothers, Orville and Wilbur, on 17 December 1903, using a powered vehicle, Pad field and Lawrence. 

In June 1914, another attempt by Lawrence Sperry together with his assistant/technician Emil Cachin 

in France-carried out a public demonstration of an aircraft whose control surfaces were managed by 

an elementary autopilot system, governed in turn by a gyroscope integrated in the fuselage. Since then, 

unmanned aerial vehicles have been called by many different names (pilotless aircraft, remotely 

piloted-vehicles (RPVs), drones, UFO, etc.) Unmanned Aerial Vehicles (UAVs) according to a 

widely accepted definition published in the US Department of Defence Dictionary of Military and 

Associated Terms can be considered as: 

“A powered aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide 

vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable "U.S. 

Department of Defence. 

 

Nowadays, UAVs may have different degree of ‘automatic intelligence’ according to their 

application’s and missions. Figure 13 depicted the UAV control system classification, (Yenne 2004). 

 
Figure 13: UAV Classifications (Lax1996) 

 



PJSRR (2017) 3(1): 113-137 
eISSN: 2462-2028  © Universiti Putra Malaysia Press 

 

125 
 

Most of the UAV systems developed over the last 20 years have been presented in several 

publications. Among those, one of the first is the review made by Howard and Kaminer in 1995. A 

more recent, extensive and detailed gallery can be found instead in the 2005-2030 Roadmap written 

by Cambone et al. (2005). They are very many uses to which these UAVs are, or may be, but, the 

most obvious uses in both military and civilian sectors being the following: 

 

Table 1: UAVs applications in Civilian and military sectors 
Civilian uses Military uses 

Airborne photography still,  video, film,  etc. Shadowing enemy fleets 

Agriculture crop spraying and herd monitoring  and  

driving 

Decoying missiles by the emission of artificial 

signatures 

Land monitoring and conservation pollution Electronic intelligence 

Customs  surveillance for illegal imports Relaying radio signals 

Coastguard search and rescue, sea-lane monitoring Guarding of ports from offshore assaults 

Police authorities searching missing persons, safety 

surveillance,  incident monitoring 

Placement and monitoring of sonar buoys and other 

forms of anti-submarine 

Forestry fire detection, fire incident control Electronic intelligence 

Local authorities survey, disaster control warfare 

Electricity power line inspection, oil and Gas supply 

companies, pipelines security 

Intelligence, surveillance, and reconnaissance (ISR) 

platform 

Information services,  news information and photos, 

feature pictures, e.g. wildlife 

Monitoring contamination of nuclear, biological or 

chemical (NBC). 

Lifeboat incident investigation, guidance and control Airfield base security and damage assessment 

Ordnance survey aerial photography for mapping Target designation and monitoring 

Weather-related services, sampling and analysis of 

atmosphere for forecasting, etc. 

Location and destruction of land mines 

Traffic monitoring, road traffic  control Longer range, higher altitude surveillance 

Water boards reservoir and pipeline monitoring Radar system jamming and destruction 

Rivers course,  flooding, and pollution control Elimination of unexploded bombs 

Survey organizations geographical, geological and 

archaeological survey. 

 

 

Micro air vehicles MAV 

It is true that distinguishing between UAVs and MAVs is significantly challenging to trace a clear 

demarcation line and, within MAVs, between “small”, “mini”, micro", “Nano" vehicles as they are 

often referred to across the literature. As has been highlighted by Mueller and DeLaurier, 2001; no 

researchers, so far have provided a clear and easy-to-use classification system yet. Most of the 

researchers and firms involved in MAVs design seem to adopt their own flexible and malleable 

definitions. The Defence Advanced Research Project Agency (DARPA) dominated definition of the 

MAV is; 

  “Micro air vehicles (MAV or µAV) are defined as semiautonomous airborne vehicles that 

are “six-degree-of-freedom aerial robots, whose mobility can deploy a useful micro payload 

to a remote or otherwise hazardous location where it may perform any of a variety of 

missions, including reconnaissance and surveillance, targeting, tagging and bio-chemical 

sensing. 
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Small and Micro UAVs can potentially operate in urban or cluttered environments which require a 

high manoeuvrability. In addition to the desired reduction in size and weight, it is required to reduce 

the minimum speed of the UAV. This will enhance manoeuvrability (Shyy et al., 1999), reduce the 

kinetic energy of the vehicle, and improve the durability and impact behaviour (Viieru et al., 2006). 

MAVs are categorized into four groups according to their concept and types, for instance, fixed wing, 

Rotary wing, flapping wing, and hybrid MAV as illustrated in figure 12,(Grasmeyer  and  Keennon, 

2001; Mueller  and  DeLaurier, 2001; Singh et al., 2005; Viieru et al., 2006 ;  De Croon et al., 2009; 

Nakata et al.,2011 and Yang, 2012). 

 

The range of applications for true MAVs is not yet comparable to the diversity of tasks in larger 

UAVs. The advantages of small size MAVs can be accountable in teams of requirements such as cost 

effective (Bronz et al., 2009), high manoeuvrability, low hazard potential (in terms of kinetic 

energy).The last two requirements are essential when operating in the urban environment or in close 

proximity with humans and creatures,(Green  and  Oh, 2009); (Vermeulen et al., 2013). Currently, the 

main farm duties for MAVs are mainly related to surveillance, chemical detection, damage 

assessment inside cities and buildings (Sarris, 2001). In addition to the enhanced manoeuvrability, 

these features render MAVs generally very attractive. 

 

 

Figure 14: UAVs and MAVs concept, and the relation of take-off weight, endurance and size 

(William Thielicke, 2014) 

 

Coandă micro air vehicles (MAVs) 

Capabilities and applications  

Coandă Micro air vehicles (MAVs) are unique version among many of the unmanned aerial vehicles 

currently deployed around the world, which do not have moveable parts. The Coandă micro air 

vehicles existing nowadays could be related to the group of UAVs that include fully autonomous 

aircraft, remotely piloted vehicles, and remotely operated aircraft (Nonami, 2007). Coandă Micro air 

vehicles provide an excellent base for many aerospace applications. These air vehicles have the 

potential to mature our sensing and the capabilities to information gathering in environmental 

monitoring and homeland security areas. 
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For Coandă MAVs, the performance in hover should be at least equal to that of a helicopter and in 

forward flight be at least equal to a fixed wing aircraft, Djojodihardjo and Ahmed (2014, 2015). This 

puts the concept in direct competition with the flapping wing MAVs or with the ducted fan MAVs.   

 

Figure 15: a) An impression of the possible Coandă MAV qualitative performance in comparison to 

other flight vehicles (Djojodihardjo and Ahmed (2015), as an adaption from Schroijen and Van 

Tooren, 2009); b) Flight Manoeuvring Structure (Djojodihardjo and Ahmed (2015), as an adaption 

from Frank and McGrewy, 2010). 

 

In contrast, Coandă MAV can peach, hover, and examine a field area, rotating to pan the cameras in 

different direction and altering zooming focus. 

 

A classic configuration of Coandă MAV usually referred to as a flying saucer like MAV (or a flying 

disc) is a term used to describe air vehicles with a disc or saucer-shaped body see Figure 16. 

 

 

Figure 16: Schematics of Coandă MAV 

 

Coandă MAV flying saucer has all the benefits of a conventional helicopter, and the additional benefit 

of a smaller footprint due to the elimination of a tail-rotor. In addition to these general features, there 

are many aspects of this platform configuration which make it an excellent choice as an urban MAV. 

Coandă effect offers greater potential at a micro-air vehicle scale with regard to fundamental 

performance parameter “L/D ratio” (Saeed, 2012; Djojodihardjo et al. 2013). Due to its configuration, 

Coandă UAV has the advantage of surviving low speed impact with the ground, buildings and other 

fixed objects, and has a better approach in landing, with the payload unaltered, in very different 

weather conditions or locations, even if the approaching manoeuvres are not well conducted, 

(Collins,2006; Hatton,2007 ; Barlow,2009; and Djojodihardjo and Ahmed, 2015). 

 

In last few years, the interest on Coandă Micro air vehicle has grown remarkably due the various areas 

of application especially in civilian fields such as aerial imaging, monitoring, and communications etc. 
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These features render Coandă MAVs generally very attractive. Future observation, may put the tasks 

for Coandă MAVs to be dominantly for surveillance mission, damage assessment and chemical 

detection inside cities and buildings, similar to the currently scope of the conventional MAVs (Sarris, 

2001). Further expectation for Coandă MAV in synergy with the developing technology, certainly 

will be capable for other missions that are currently the preserves of bigger UAVs. Coandă UAVs 

shall be able to carry out a large variety of missions such as: Forest and crops monitoring, fire fighting 

management, Emergency rescue, Law enforcement (Police, Civil Security), Border and Coastguard 

security, Oil, gas industry pipe lines and electricity towers security, infrastructure, network and 

Environmental monitoring, fishery protection and aerial inspection and  photography, mapping and 

Surveying etc. 

 

Coandă MAV background and progression 

In early 1910, the world first airplane, equipped with a jet reactive propulsion system in the world, 

was designed and built by the aerodynamics pioneer Henri Coandă, a revolutionary plane of the 20th 

century, and the first to use the phenomena of Coandă effect, (Coandă -1910 Aircraft). This plane 

exhibited at the Grand Palais on Champs-Elysees in Paris, hosted the second International 

Aeronautical Exhibition in 1910, See figure 17. 

 

 

Figure 17: COANDĂ-1910: Henri Coandă built and flew the world’s first jet aircraft “red airplane 

without a propeller” ((Henri Coandă -1910 Aircraft) 

 

In 1952, another attempt to design a Coandă effect aircraft was proposed by John Carver Meadows 

Frost, a British aircraft designer, to design a vertical take-off landing (VTOL) aircraft, called “VZ-9 

Avrocar”. Lift and thrust of the Avrocar was intended to be produce by exploiting the Coandă effect 

by using single "turborotor", blowing exhaust out the rim of the disk-shaped aircraft to provide 

anticipated VTOL-like performance, (Winchester, Jim, 2005). In late 1961, the famous American-

Canadian saucer Avro VZ-9V, figure 18 a, at the James Forrestal Center, Princeton University, New 

Jersey,  was tested and it had been beyond control when more than three feet above the ground, Rose 

et al. ( 2006). 

 

Astor kinetics-Dynafan made a VTOL Flight unit, designed by Miller in 1964, (Miller et al. (2005)) 

that was using the "Coandă effect" for vertical thrust. This invention relates to the new and useful 

improvement in VTOL flight units, figure 18b, aiming to provide a new and improved flight unit, 

having means therewith for creating a combination of different lifting forces sufficient for sustained 

vertical and horizontal flight.  
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Figure 18: Coandă effect air vehicles a) Avrocar at the National Museum of the US Air force b) 

the Astro Kinetics Corporation VTOL  

 

After 2000, a new class of aerial vehicles using mainly the Coandă effect, were developed by some 

aeronautics inventors such as Collins (2002), Geoffrey Hatton (2002) and Naudin (2006), or 

companies as GFS Projects Ltd (French company), AESIR Ltd (British company) and also a 

Romanian academic consortium, through MEDIAS project. These aerial vehicles named, the Coandă 

UAVs. It is unusual in terms of VTOL UAVs because it requires only one motor and propeller and 

has no external moving parts which means that collisions are much less of an issue. It utilizes the 

Coandă Effect to change the direction of the air flow from horizontal as it leaves the duct to 

downwards using only the UAV's curved exterior. In the last decade, inspired by Coanda legacy, 

aroused in Europe a wave of new UAVs. 

 

Table 2: Summary of Coandă UAVs developed, constructed for test or proficiently used 

according to date of performance. 
Name of Air 

vehicle 

Manufacturer, 

Year 
Details Models type 

Aerial Flying 

Device 

Blumlein HF 

Limited UK 

2002 

A nonconventional Coandă airspace platform 

MAV. An oval-shaped body with a ducted 

propeller on top.  

Coandă disc 

UAV with  

disk gas 

turbine(DGT) 

Blumlein HF 

Limited UK 

2007 

Coandă disc unmanned air vehicle with the 

Contra power unit, torque equalized disk Gas 

turbine Engine turbine (DGT) engine 

technology. Eliminate body rotation about its 

vertical axis  

Sweeper a 

UAV buried 

munitions 

location 

subsystem 

Robert Collins 

supported by 

Middlesex 

University 

2010 

Coandă MAV, two subsystems – 

“Groundhog”, which is a small, less than 

75cm diameter disk UAV, relying principally 

on vortex and wall attachment. 

“Retina”- a helmet mounted laser designator.  

Series of 

Coandă 

effect MAVs 

GFS 01-05 

Geoffrey 

Hutton 

(Geoff’s Flying 

Saucers) GFS 

Projects Ltd 

UK, 2002-2007 

Saucer-shaped aircraft prototypes, capable of 

flying outdoor, no stability problems. Most 

are octagonal shaped, with four control flat 

flaps. Patent, GB 2,424,405 /23.03.2005, 

(“Craft having flow-producing rotor and 

gyroscopic stability”). 

  

  

GFS-UAV 

(N01A- and 

N02) 

Jean-Louis 

Naudin, GFS 

projects Ltd, 

France &UK, 

2006 

Various l prototypes of  Coandă MAVs, based 

on the Geoff Hatton' design. Propelled by an 

electric engine and utilized the Coandă effect. 

UAV N-01, 60cm diameter, 533g total weight 

UAV N-02, 1 m diameter,1800g total weight  
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MEDIAS 

Florin Nedelcut  

& researchers 

from  Galaţi, 

Iaşi & Bacău, 

Romania 2008 

Produced a new version of Coandă MAV 

(VTOL), hybrid, modern, non-polluting, 

manoeuvrable, safe to the environment and 

people. Electrically driven propeller; optional 

solar energy and helium inflatable chamber  

EMBLER 

AESIR Ltd, 

Private 

company, UK, 

2009-2010 

60 cm diameter, with an improves electric 

engine, lighter carbon fibber airframe, 

military support MAV. 
 

VIDAR 
AESIR Ltd, 

2009-2010 

Small Coandă UAV, 30cm diameter, man 

portable craft designed to provide 

surveillance and situational awareness inside 

buildings. 15 minutes of flight time. It weighs 

400g total weight with 100g payload  

ODIN 
AESIR Ltd 

2009-2010 

Coandă effect VTOL-UAV, (1.5m diameter) 

powered by Wankel Rotary internal 

combustion engine, weighs up to 20kg 

(maximum payload 10kg), 60 min. endurance  

HODER 
AESIR Ltd 

2009-2010 

Heavy lift Coandă effect VTOL-UAV, cargo 

transport and resupply vehicle, multi-engines, 

1ton  payload for up to eight hours . 1.5 ton of 

weight  
  

Today, Coandă effect is used mainly in helicopters as an anti-torque system that replace the rear rotor, 

as in NOTAR system. By using this technique, it can be said that the dangerous tail rotor of the 

helicopter has been removed by a special and safer nozzle uses the Coanda effect. Most of 

investigations carried out include modification on the propulsion system as well as on the controls  for 

better performance, manoeuvrability and more efficient hover-capable MAVs.  

 

A new lift system for Vertical/Short Take-off and Landing (V/STOL) aircraft shown in Figure 19 was 

explored in Djojodihardjo et al. 2011 could be one of the future directions for active flow controls. 

The conventional gas turbine offers the most promise for a power unit for this class of UAV but being 

generally of a cylindrical configuration they are not best suited. The Coandă propulsion system might 

be able to provide both an efficient cruise phase and hovering capability. The performance in hover 

should be at least equal to that of a helicopter and in forward flight at least equal to a fixed wing 

aircraft. This puts the concept in direct competition with the flapping wing MAVs, however the 

Coandă propulsion concept could benefit from the reduced number of moving parts. 

 
Figure 19 Annular-wing around an integrated model of turbofan (Djojodihardjo, 2011) 

 

Until now, disk UAVs have not been advocated for use in hostile theatres due to a number of factors 

such as: limited endurance offered by electric power units, high noise signature associated with 
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internal combustion engine power units and lack of automatic attrition avoidance strategies due to 

mission endurance limitations. 

 

The research on the development and perfection of the Coandă UAV continue nowadays  with 

multiple investigations in different sectors to cover, such the propulsion system ,  the controls, profile 

shape , jet nozzle configurations and other related issues. 

 

Conclusion 

Progress and development of Circulation Control of Aerodynamic Surfaces, with particular reference 

to circulation flow control and Coandă effect have been reviewed and assessed, in view of their 

features and capabilities addressing requirements and trends of modern aircraft. In this conjunction, 

related and selected inventions that have been built are also reviewed and assessed. The main 

objectives are to gain an in-depth insight on the fundamental principles of various Circulation Control 

Techniques, with particular attention to Coandă effect, its feasibility, and practicability and to identify 

salient features essential for its optimal utilization. The Coandă effect principle, analysis of the flow 

circulation control using Coandă effect and various uses of Coandă effect in UAVs and MAVs, has 

been discussed. The Coandă effects are encountered in virtually all aerodynamic applications and 

found many applications in engineering. The Coandă effect application in MAVs would certainly 

have an excessive impact. A large review of the theoretical and applicative study on Coandă effect to 

fluid jet deflection has been presented. Many solutions have been historically developed to ensure 

Coandă deflection of a flux over a curved wall. It is well known that a fluid jet in contact with a 

curved surface tends to continue bond to that surface, according to forms and methods that are still 

today the object of scientific research. This phenomenon is defined as the Coandă effect, In particular 

the large bibliographic presented in this paper constitutes an important part of a Coandă Effect related 

activity which has produced a series of unmanned aerial vehicle UAVs and micro air vehicles MAVs, 

that are utilized Coandă effect in its best form. Coandă MAV is a powered aerial device able to ascend, 

descend, and move in any horizontal direction. The device may have a body of circular, oval or 

polygonal plan form with a convex curved upper surface. Air above the aerial device is drawn axially 

into a radial disk fan which is powered by a motor, and accelerated radially over the upper surface of 

the body and which attaches by Coandă effects to the upper surface resulting in lift being imparted to 

the aerial device. A motor torque cancellation and steering device is included as well as a localised air 

stream detachment means, which controls lift and horizontal propulsion. Coandă effect is an important 

fluid mechanics phenomenon that has not yet used at its full potential and capabilities. Coandă Effect 

applications developed so far proved to be very efficient from energetic point of view. 
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