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Abstract - Quantum dots-sensitized solar cell (QDSSC) is one of the third generation solar cell that is 

the most promising low cost, easy to manufacture and highly efficient solar cell. Compared to Dye-

sensitized solar cell (DSSC), quantum dots (QDs) of QDSSC has a narrow bandgap and possess 

excellent properties such as tunable band gaps, strong light absorption and high multiple electron 

generation. Titanium dioxide or titania (TiO2) is an oxides semiconductor material that is frequently 

used as a photoanode in this photovoltaic system due to high stability under visible light illumination. 

TiO2 is also known as a good photocatalyst and an excellent choice in environmental purification. The 

efficiencies of electron injection and light harvesting in QDSSC are affected by the nature, size 

morphology, and quantity of this nanomaterial. In this review, the concept and principles of the 

QDSSCs are reviewed. The preparation and fabrication method ofTiO2 electrode in QDSSC are also 

discussed. It is worthwhile to know the architecture of TiO2 in order to enhance the efficiency of 

QDSSC. 
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Introduction 

Sunlight continued to be harvested by technologies up to the early years of the industrial revolution. 

Since then, the temperature has risen by 0.6
o
C because of the global activities which cause the 

greenhouse effect whereby the quantity of carbon dioxide increases and eventually causing global 

warming (Du, Li, Brown, Peng, & Shuai, 2014; El Chaar, Lamont, & El Zein, 2011; Gong, Liang, & 

Sumathy, 2012). In recent years, renewable energy has attracted high interest due to these factors. As 

an alternative source of energy, the sun sends high quantities of light energy to the surface of the earth 

(Selinsky, Ding, Faber, Wright, & Jin, 2013). It is also completely renewable and definitely an 

abundant resource with rapidly declining conversion cost (Jun, Careem, & Arof, 2014). The energy 

provided by the sun for our planet is 10,000 times more than world demand whereby 10 % of the 

efficiency of the solar cell would fulfil global needs (Kouhnavard et al., 2014). A broad range of solar 

cell research is currently underway and  they include dye-sensitized solar cell (Abdullah & Rusop, 

2014), organic solar cell (Halim, 2012), silicon solar cell (Halim, 2012) and heterojunction solar cell 

(Church, Muthuswamy, Zhai, Kauzlarich, & Carter, 2013; Guo, Shen, Wu, & Ma, 2012). 

 

The photovoltaic technology (PV) is a highly potential candidate for an alternative or renewable 

source of energy in the current market. PV can be classified into first, second and third generation 

solar cell. Solar cells based on silicon wafer, so-called first generation technology solar cell, make up 
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the most number of solar cells present in the market and can reach as high a 27% solar cell efficiency 

(Green, 2002).Meanwhile solar cell utilized with inorganic film is the second generation solar cell 

which is cheaper to produce but has less than 14% solar cell efficiency (Jun, Careem, & Arof, 2013). 

Chronologically, the invention of the third-generation solar cell is to decrease cost by significantly 

increasing efficiencies as high as above 30% and at the same time maintain the economic and 

environmental cost advantage (Conibeer, 2007). Figure 1 shows the PV production per square meter 

against the efficiency of solar cell and the cost unit power. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Efficiency and cost projection for first (I), second (II) and third generation (III) (wafer-

based, thin films, and advanced thin film, respectively) 

 

 

Dye-sensitized solar cell (DSSCs) is the first third generation which has attracted much attention due 

to low fabrication cost and high efficiency, flexibility in colour, shape and transparency 

(Golobostanfard & Abdizadeh, 2014). However QDSSCs is the further improvement of dye-sensitized 

solar cell (DSSCs) in boosting the overall efficiency by coupling synthesized inorganic quantum dots 

(QDs) semiconducting materials as sensitizers (Prabakar, Minkyu, Inyoung, & Heeje, 2010).QDSSC 

based on semiconductor nanocrystal has attracted attention as an alternative to DSSCs owing to their 

great stability, good absorption over wider wavelength range and multiple exciton generation leading 

to the production of power efficiencies (Z) that are much higher than DSSC (Xu, Zou, Yu, & Zhi, 

2013; Yang, Chen, Roy, & Chang, 2011). All these unique characteristics of the QDSSC have raised 

high interest among researchers in renewable energy research field. 

 

Despite all of these good characteristics of QDSSCs, the power conversion efficiency is still not as 

impressive as DSSCs mainly due to several reasons such as bad charges separation, less efficient 

photo excited electrons and unsuitable sensitizers (Li, Yu, Liu, & Sun, 2015). The electrode also plays 

a critically important role in contributing to the high efficiency of the QDSSC performance. Photo 

anode with high strong light scattering, efficient electron transport, high QD loading and quick 

electrolyte is of great importance to the QDSSC system (Zhou et al., 2014). The unique textural and 

structural characteristic of nanostructured material such as TiO2, SnO2 and ZnO has attracted much 

interest in the past decade(Malekshahi Byranvanda, 2013). The unique textural and structural 

characteristics are particle size distribution, specific surface area, morphology, crystallinity and 

crystal structure (Hu et al., 2014). This review paper is focused on TiO2 as an electrode in QDSSC.  

 

During the past decade, TiO2 has become one of the most popular electrode materials and different 

methods apply to photovoltaic application and QDSSC specifically. In addition TiO2 is an eco-

friendly commercial product and has been known to be effective and is of great value(Liao et al., 
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2012). TiO2 is a semiconductor with wide band gap known to be n-type. It has three crystalline phases 

which are anatase (tetragonal), rutile (tetragonal) and brookite (orthorhombic).The most stable phase 

is rutile TiO2 whereby anatase and brookite TiO2 are metastable and they can be converted into rutile 

phase at high temperature that is, around 750
o
C (Wang, He, Lai, & Fan, 2014). Single crystal anatase 

is reported to be more effective than rutile phase in photovoltaic application (Bet-moushoul, 

Mansourpanah, Farhadi, & Tabatabaei, 2016). 

 

 

Basic principle of QDSSC 

QDSSCs have similar configuration with DSSCs and the only difference is that QDSSCs uses 

inorganic semiconductor quantum dots (QDs) as light absorbing material instead of molecular dyes, 

onto the surface of a thin film of nano-TiO2 electrode that acts as a working electrode (Song et al., 

2014). Similar to DSSCs, in QDSSCs, excitons are formed in quantum dots whereby the charge 

separation occurs in the QD molecule layer upon the photoexcitation as electrons are injected from the 

QD excited state into the conduction band of the nano-TiO2 and that eventually produces a 

photovoltaic effect as shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Operating principle of QDSSC 

 

QDs is restored through electron donation from the frequently used polysulfide electrolyte, which 

consist of (S
2-

/Sx
2-

) the redox system. The oxidized QD is then restored (hole is filled with electron) 

when it is reduced by S
2- 

from the electrolyte and in turn it is oxidized into Sx
2-

 that diffuses to the 

counter electrode. 

 

𝑆2− + 2ℎ+ → 𝑆           (1) 

 

𝑆 + 𝑆𝑥−1
2− → 𝑆𝑥

2−  (𝑥 = 2 − 5)           (2) 

 

The oxidized group 𝑆𝑥
2− are reduced to 𝑆2− occur on the counter electrode. 

 

𝑆𝑥
2− + 2𝑒− → 𝑆𝑥−1

2− + 𝑆2−         (3) 

 

In the electrolytes, voltage is generated in the Fermi levels between the electron in the photo electrode 

and the redox potential of 𝐼−/𝐼3
− .𝐼− ion reduced to 𝐼3

− at the counter electrode whereby platinum and 

carbon based materials coated on the substrate (Guo, Shen, Wu, Wang, et al., 2012; Lee & Chang, 
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2008; Yu, Lia, Qiu, Kuang, & Su, 2011). The efficiency of the solar cell can be determined by the 

equation below: 

 

𝜂 =
(𝐽𝑆𝐶×𝑉𝑂𝐶×𝐹𝐹)

𝑃𝑖𝑛
,          (4) 

 

where 𝐽𝑆𝐶 is the short circuit photocurrent density, 𝑉𝑂𝐶 is the open circuit voltage, 𝐹𝐹 is the fill factor 

and 𝑃𝑖𝑛 is the power intensity of the incident light. The 𝐽𝑆𝐶,𝑉𝑂𝐶 and 𝐹𝐹 values can be calculated from 

the direct current density-voltage (J-V) curves. 

 

 

TiO2 as an electrode 

The excellent properties of TiO2such as good chemical stability, low cost production, high corrosion 

resistance, non-toxicity, high photocatalytic activities and good charge transport properties play an 

important role in the performance of QDSSC (Barbe et al., 1997; Kong, Chang, & Jang, 2014; Ou & 

Lo, 2007). TiO2 nanostructure such as nanoparticles(Balis, Dracopoulos, Bourikas, & Lianos, 2013; 

Chen, Chappel, Diamant, & Zaban, 2001; Ito et al., 2007; Jung, Kim, Kim, Choi, & Ahn, 2012; 

Kongkan, Tvrdy, Takechi, Kuno, & Kamat, 2008; Zaban, Mic´ic, Gregg, & Nozik, 1998; Zhang et al., 

2009), nanotubes (Chen et al., 2009), nanorods (Gonfa et al., 2014), nanowires (Nikhil, Thomas, 

Amulya, Mohan Raj, & Kumaresan, 2014; Sun et al., 2012) and nanoflower (Yu, Li, Liu, Cheng, & 

Sun, 2014b) have been widely recognised as excellent photo anodes in QDSSC. The size of the TiO2 

building units, apparently in nanometer scale, highly influences the performance of QDSSC (Kavitha, 

Gopinathan, & Pandi, 2013). Table 1 shows the example of QDSSC and the solar cell efficiency 

performance based on nano- TiO2 as an electrode.  

 

Table 1: Example of QDSSC and the solar cell efficiency performance based on nano-TiO2 as an 

       electrode. 

 

TiO2 Sensitizer Counter electrode Efficiency Reference 

TiO2 nanoparticle CuInS2 Cu2S 1.05% (Gong et al., 2012) 

TiO2 sol CdSe Cu2S/CNT 1.05% (Golobostanfard & 

Abdizadeh, 2014) 

TiO2 nanoparticle CdSe Pt 3.65% (Prabakar et al., 

2010) 

TiO2 nanotube CdSexTe1-x Pt 0.588% (Xu et al., 2013) 

TiO2 beads CdS/CdSe Cu2S 4.33% (Zhou et al., 2014) 

TiO2 nanoparticle CdSe Pt 2.23% (Song et al., 2014) 

TiO2 nanoparticle CdS Pt 1.15% (Lee & Chang, 

2008) 

Mesoporous 

spherical TiO2 

powder 

CdS/CdSe Pt 0.29%/0.34

% 

(Kong et al., 2014) 

TiO2 sol gel InP Pt - (Zaba, Mic´ic´, 

Gregg, & Nozik, 

1998) 

TiO2 nanoparticle ZnS, CdS, CdSe Pt, CoS, CuS 2.7% (Balis et al., 2013) 

TNT/TNP CdSe  - (Kongkanand, 

Tvrdy, Takechi, 

Kuno, & Kamat, 

2007) 

TNP CdS Pt - (Jung et al., 2012) 

TiO2 nanoparticle CISe Cu2S 4.3% (Yang et al., 2013) 

TiO2 nanoparticle CdS/CdSe/ZnS NiS 2.97% (Kim et al., 2014) 
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TiO2 nanoparticle CdS Cu2S 

 

2.15% (Zhou et al., 2013) 

 

 

    

     

Table 1: Example of QDSSC and the solar cell efficiency performance based on nano-TiO2 as an 

                   electrode (continued). 

 

TiO2 Sensitizer Counter electrode Efficiency Reference 

TiO2 nanoparticle CdS/CdSe Pt/Cu2S/Graphite/ 

Carbon soot/ 

Reduced Graphene 

Oxide (RGO) 

1.2% (Jun, Careem, & 

Arof, 2014) 

TiO2 nanoparticle SnSe2 - 0.12% (Yu et al., 2012) 

TiO2 nanoparticle SnS Pt <0.1% (Miyauchi, 2011) 

TiO2 nanosheet CdS Pt/CuS 1.95% (Li et al., 2014) 

TiO2 nanoparticle Ag2Se Pt 3.6% (Tubtimtae, Lee, & 

Wang, 2011) 

TiO2 nanoparticle CdS NiS 3.6% (Li, Yang, Zhang, 

Zhang, & Li, 2014) 

TiO2 nanorod CdS/PbS Pt 2.0% (Jiao, Zhou, Zhou, 

& Wu, 2013) 

TiO2 nanoparticle CuInS2 Cu2S 1.85% (Peng, Liu, Shu, 

Chen, & Chen, 

2013) 

TiO2 nanodendrite 

array 

CuInS2 Cu2S 1.26% (Peng, Liu, Zhao, et 

al., 2013) 

TiO2 nanoparticle CdS/CdSe Brass plate 0.45% (Shen et al., 2015) 

TiO2 hollow sphere CdS/N719 Pt 4.66% (Cui et al., 2015) 

TiO2 nanowire PbSe - - (Győri, Kónya, & 

Kukovecz, 2015) 

TiO2 nanoparticle CdS CoS2/Pt 2.27% (Punnoose, Kim, 

Srinivasa Rao, & 

Pavan Kumar, 

2015) 

TiO2 nanotube CdS0.54Se0.46 Pt - (Gakhar, Smith, 

Misra, & 

Chidambaram, 

2015) 

TiO2 nanoparticle CdSxSe1-x/ 

Mn-CdS 

Cu1.8/CuS 3.26% (Li et al., 2015) 

TiO2 nanoparticle CdS/CdSe/ZnS NiS 3.03% (Gopi, Srinivasa 

Rao, Kim, 

Punnoose, & Kim, 

2015) 

TiO2 nanorods arrays CdSe/Mn-CdS Cu1.8S/CuS 2.40% (Yu, Li, Liu, 

Cheng, & Sun, 

2014a) 

     

 

 

Preparation of TiO2 as an electrode in QDSSC 

In QDSSC, TiO2 nanoparticles (example like commercial P25 nanoparticles) have been extensively 

studied as a photoanode due to their special characteristics as mentioned before (Zhou et al., 
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2014).Anatase, rutile and brookite are the three crystalline form of TiO2 whereby anatase is the most 

preferable in solar energy conversion. This is due to the ability to avoid charge recombination and 

efficient electron transport in photoanode (Byranvana, Bazarganb, & Kharat, 2012). In recent years, a 

lot of research have gone into preparing TiO2among them are in achieving low cost production and 

making them easily reproducible by using a simple method which is eventually imperative for the 

industrial manufacture of QDSSC (Zhang et al., 2009).The methods in preparing TiO2 such as the 

hydrothermal method (Gopinathan, & Pandi, 2008; Vijayalakshmi & Rajendran, 2012; Wu et al., 

2013), the sol gel method (Behnajady & Eskandarloo, 2013; Guo, Liu, Hong, & Jiang, 2005; 

Sabataitytė, Oja, Lenzmann, Volobujeva, & Krunks, 2006) and anodization (Tang et al., 2008) have 

been studied extensively in order to produce excellent characteristics of TiO2 as a photoelectrode. 

 

Sol-gel method 

The sol-gel method for TiO2 synthesis is a very useful tool for photo-induced molecular reaction due 

to the special variables such as particle size, incident light, phase composition and convenient 

preparation method (Karami, 2010). Titanium (IV) isopropoxide (TIPP) is usually used as a starting 

material in this method(Manoharan & Venkatachalam, 2015; Zeng, Chen, Su, Li, & Feng, 2014). The 

mixture will undergo an aging period and it is kept in the oven to obtain the colloidal solution (Zeng 

et al., 2014). Next the solution is dried and calcined to get TiO2 nanocrystal powder (Hu, Tang, He, 

Lin, & Chen, 2014; Laranjo et al., 2014; Zhu, Zhang, Gao, & Cao, 2000). Figure 3 shows TiO2 

nanoparticles prepared by the sol gel method at different levels of concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: SEM surface images of three different kinds of TiO2 concentrations of (a) 17 wt.%, (b) 20  

                 wt.%, and (c) 24 wt.% films on the SnO2:F glass after sintering process(Lee et al., 2009). 

 

 

Hydrothermal method 

Hydrothermal method is one of the most popular methods to prepare TiO2 nanostructure. Other than 

TiO2 nanoparticle, other nanostructures such as nanotube and nanorod can also be synthesized via the 

hyrothermal method (Lee, Lee, Rhee, & Park, 2014). One of the suggested methods is TIPP where it 

is mixed and stirred with nitric acid, ethanol and distilled water through the sol-gel method. The 

product produced from the sol-gel method will undergo hydrothermal treatment in the teflon-lined 

autoclave to produce TiO2 powder and the powder will receive further treatment for calcination to 
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achieve the desired size and crystallinity (Manoharan & Venkatachalam, 2015). Figure 4 shows SEM 

images of TiO2 nanorod arrays formed by the hydrothermal method by optimization of the seed layer.  

 

 

 

 

 

Figure 4: SEM images of TiO2nanorod arrays grown by hydrothermal method on (a) bare FTO,  

(b) FTO immersed in 0.05 M TiCl4 solution, (c) FTO immersed in 0.1 M TiCl4 solution, 

(d) FTO immersed in0.15 M TiCl4 solution, (e) FTO immersed in 0.2 M TiCl4 solution, 

respectively (Wang et al., 2013) 

 

Electrochemical method 

The Electrochemical method is an impressive technology to develop the nanotube or nanoporous layer 

as an electrode especially in QDSSC. TiO2 nanotube can be formed by an anodization of the titanium 

whose capability is strongly influenced by the variation of parameters. The quality and ability of TiO2 

nanotubes also depends on their very own properties such as crystallite size, morphology and the 

lattice strain. Yulian Zhang et al.,(2015)reported the frequent used of ammonium fluoride (NH4F) as 

an electrolyte and indicated that high NH4F concentration is beneficial to the growth of ribs around 

the nanotubes. Figure 5 shows the FESEM images of surface morphologies and cross-section of TNTs 

obtained in electrolytes with different NH4F concentrations. Meanwhile, Munirathinam, Pydimukkala, 

Ramaswamy, & Neelakantan (2015) reported on the development of TiO2 nanotubes by the 

anodization process using the two electrode system whereby titanium was used as anode and a 

stainless steel plate as a cathode at a specific distance. In this research, two different electrolytes 

which are hydrofluoric acid, HF (acidic medium) and sodium sulfate, Na2SO4 (neutral) were used and 

then followed by annealing at 450
o
C for 2h. The result clearly indicated nanotubes formed from the 

neutral bath are four times longer than the ones synthesized from the acidic bath. 
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Figure 5: FESEM images of  surface morphologies and cross-section of TNTs obtained in electrolytes 

with NH4F concentrations of (a) (d) 0.2 wt%, (b) (e) 0.4 wt%, (c) (f) 0.6 wt%, 

respectively (Zhang et al., 2015) 

 

Approach in improving TiO2photoanode in QDSSCs 

Although QDSSC raised tremendously high attention among researchers in order to improve solar cell 

performance, energy conversion efficiency remains under 10% as reported in figure 1. A lot of work 

has been done in the approach to improve QDSSC. One of the important approaches to increase the 

energy conversion efficiency yield is the architecture of the photoanodes. This is because photoanode 

material like TiO2 has wide band gap (3.20 eV for anatase and 3.02 eV for rutile TiO2) that limit its 

usage at UV light region(Maheswari & Venkatachalam, 2015). Other than that, optimal nanoparticle 

interconnection and pores size can control the charge carrier transport to ensure an efficient 

electrolyte penetration (Yacoubi, Samet, Bennaceur, Lamouchi, & Chtourou, 2015).  

  

Among studies that have been done recently are doping TiO2 electrode with Ni (Maheswari & 

Venkatachalam, 2015), Au (Liu et al., 2014), Co (Brigham, Achey, & Meyer, 2014; C. Wang et al., 

2014), Fe (Wang et al., 2014) and Mn (Wang et al., 2014). Doping TiO2 with impurities dopants will 

broaden the use of the PV to the visible region and at the same time provide a good surface for the 

deposition of QDs (Maheswari & Venkatachalam, 2015; Yacoubi et al., 2015). The dopants also act 

as a light harvesting material which means the light will be scattered and trapped in order to increase 

the effective path length of incident light of the absorption of the semiconductor (Liu et al., 2014). 

Some dopant like Fe have been reported as having the ability to increase charge carrier density of 

TiO2 leading to good carrier transportation and separation and relatively long electron lifetime(Wang 

et al., 2014). 

 

Beside dopants, surface modification also play an important role in order to avoid or reduce 

recombination of excited electron whereby it is a major problem in QDSSC(Kim et al., 2012). TiCl4is 

usually applied on the substrate at multiple times of immersion, followed by annealing at 450
o
C for 30 

min before depositing TiO2 paste (Kim et al., 2012). Nevertheless, TiCl4 treatment decreases average 
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pore size whereby it can lower the recombination and increase the current (Guo et al., 2014). 

Recently, a study focused on the treatment of TiO2 hydrolysed by hydrochloric acid (HCl) in 

preparation of TiCl4 stock solution has been reported for the synthesis of nanosized crystalline TiO2 

(Lee & Yang, 2005). The result from this study showed that the brookite phase was transformed to the 

rutile phase with increase reaction time, while through a heat treatment, it was transformed to rutile 

via anatase phase (Lee & Yang, 2005). 

 

Previously, there were so many efforts made to optimize TiO2 structures to enhance QDSSC 

performance. The first effort made was by creating large pore size distribution of TiO2 to make the 

loading process of quantum dots much easier due to the small size of quantum dots (Salant et al., 

2012). Secondly, the surface area of TiO2 was increased in order to increase quantum dots loading. 

Moreover, high surface area of photoanaode may improve the quantum dots coverage and retard 

unnecessary interface recombination (Song et al., 2012). Thirdly, an additional layer of coating was 

also added to improve the electron transport path in order to enhance the QDSSC performance. 

However, previous researches reported that an additional layer of TiO2 can hardly balance the 

required qualities of TiO2 (Wu et al., 2015). Therefore, further studies on optimization of TiO2 should 

be done to meet the demand in QDSSC. For example, Wu et al. (2015) designed a multi-dimension 

titanium dioxide made up of mesoporous nanoribbons consisting of oriented aligned nanocrystal. This 

impressive development resulted in increased surface area of TiO2 that led to a high photocurrent 

efficiency of 4.15%. Meanwhile, in another study an attempt has been done by doping TiO2 

nanocrystal with two dimensional graphene in order to improve the photovoltaic performance owing 

to the graphene unique characteristics such as good thermal conductivity, good mobility charge 

carriers and specific surface area (Chen, Tuo, Rao, & Zhou, 2014). The incorporation of graphene 

with TiO2 increase the photocurrent efficiency by 37% compared to the pure TiO2 and eventually 

increased the QDSSC performance. 

 

 

Conclusions and future directions 

The review on TiO2 as a working electrode in QDSSC demonstrated high potential inorder to increase 

energy conversion efficiency in a novel QDSSC system. The study of photoanode configuration is 

critically important because the significance can be of high impact particularly in providing high QD 

loading, strong light scattering, quick electrolyte diffusion and efficient electron transport (Zhou et al., 

2014). Different nanocrystal structure such as nanotubes, nanorods and nanowire have been 

developed whereby particular control is given to recombination and this eventually improves PV 

performance. Currently, a lot of studies are focused on developing low cost high ability nanocrystal 

material for PV application and this will no doubt raise its potential when developed and applied in 

the academia and industry. The low cost nanocrystal material used make the current price of QDSSC 

cheaper than DSSC ($3/Wp–$4/Wp) and silicon solar cell ($3/Wp) (Kalowekamo & Baker, 2009). 

Future work should be focused on improving the solar cell efficiency as mentioned in this review 

paper. Many modifications on QDSSC have been developed however, they are still in their early 

stages and many other new developments can be done in order to improve the efficiency, robustness 

and potential of the thin-film-type material. No doubt, as the understanding of the topic continues, 

more possible ideas can be conceived to improve QDSSC potential. 
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