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Abstract – Naturally, plant habitats are exposed to several potential effects of biotic and different 

abiotic environmental challenges. Several types of micro-organisms namely; bacteria, viruses, fungi, 

nematodes, mites, insects, mammals and other herbivorous animals are found in large amounts in all 

ecosystems, which lead to considerable reduction in crop productivity. These organisms are agents 

carrying different diseases that can damage the plants through the secretion of toxic-microbial poisons 

that can penetrate in the plant tissues. Toxins are injurious substances that act on plant protoplast to 

influence disease development. In response to the stress effect, plants defend themselves by bearing 

some substances such as phytoalexins. Production of phytoalexins is one of the complex mechanisms 

through which plants exhibit disease resistance. Several findings specifically on phytoalexins have 

widen the understanding in the fields of plant biochemistry and molecular biology. However, this 

review reports the interaction of toxins and phytoalexins in plant-pathogen cycle, research progress on 

the association of phytoalexins with plant disease resistance as well as the role of the phytoalexins in 

plant disease control. 
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Introduction  

Vascular plants are consistently exposed to biotic factors such as bacteria, fungi, virus and mites both 

within and above the soil, with only a few number causes serious diseases. Actually, microorganisms 

(susceptibility) living together with the host is an exception in the nature, while incompatibility 

(resistance) is the rule (Cézilly et al., 2014). Generally, after an attack, no apparent sign of micro-

organisms attack as the microorganism neglects to set up itself because of a need in actuation of 

pathogenicity works or to exceedingly effective plant defence mechanisms. Others leave a 

confirmation of an exceptional host-pathogen interaction that in the end brings about the confinement 

of the pathogen (Delaney, 1997). The ability of a pathogen to infect and invade a compatible host may 

be facilitated by the production of toxins that induce cell death in the proximity of the invading 

organism (Dangl and Jones, 2001). These toxic substances were additionally answered to assume vital 

parts in hindering the physiological procedures in cells encompassing the purpose of infection, 

empowering the spread of the illness (Cézilly et al., 2014). A few pathogens would be unsuccessful if 

the toxin did not execute the cells ahead of time of the fungus and allow it to build up itself constantly 

on dead or kicking the bucket cells and create more toxins. The harmfulness of a life form is some of 

the time improved by its capacity to deliver phytotoxins that kill cells in the tissue encompassing the 

purpose of disease. Also, host tissues regularly activated their response functions that synthesized 
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antimicrobial enzymes, substances and structural reinforcement to hinder the growth of pathogen 

(Dixon & Lamb, 1999). 

 

The activation of inbuilt defence mechanisms in plants happens immediately when a disease-causing 

pathogen attempts to attack the host, for this reason in healthy plants tissues under normal 

circumstances either the infection-induced mechanisms are absent, or present in lower amounts 

compared to detections under incompatible interactions. These, however, gives a better approach for 

what is happening in cellular signalling, and to assess the function of a specific defence mechanisms 

in resistance (Smith, 1996). Different form of disease resistance in plants were reported which include 

the age of the plant, induced or acquired, organ-specific, resistance to a non-host, parasite and race-

specific resistance (Russell, 2013). These forms of disease resistance could be exploited further by 

studying the physical and biochemical factors responsible to hinder pathogen penetration and 

development in the host tissue after infection. The physiological/biochemical basis of resistance of 

plants to fungal, Oomycete, and bacterial pathogens has been associated with both preformed and 

infection induced antimicrobial compounds (Russell, 2013). For example, preformed antimicrobial 

compounds are involved in the resistance of Oats to Gaumanomyces graminis f. sp. Tritici (Mert-Turk 

et al, 2003) and onion bulbs to Colletotrichum circinans (Kiehr et al., 2012). Be that as it may, the 

declaration of resistance (i.e. defence) in most plant-pathogen connections can't be clarified by the 

nearness of preformed inhibitors. Most research on protection systems has demonstrated that the plant 

utilizes resistances that are enacted after disease to stop pathogen improvement (Russell, 2013). 

Numerous biochemical changes happen in plants after disease, and some of these have been related 

with the declaration of safeguard since they have movement against pathogens in vitro. 

 

One kind of biochemical reaction that is firmly connected with defence is the collection of 

Phytoalexins, which are characterized as low-atomic weight antimicrobial compounds that are 

synthesized after infection (Jeandet et al., 2013). The possibility that defences can be enacted after 

disease was solidified by the phytoalexin theory of Muller and Borger (1940), and the investigation of 

phytoalexins has been a piece of the texture of plant resistance inquires about from that point onward. 

Phytoalexins have gotten much consideration in the course of recent years. In this survey we 

introduce the key highlights of this diverse group of molecules, to be specific their compound 

structures, biosynthesis, elicitors and regulatory mechanisms. 

 

Toxins: A Biochemical Pathogen Induced Changes 

Concept of Toxins 

Toxins are injurious substances secreted by micro-organism host complex that acts on living host 

protoplast to affect disease symptoms (Meena et al., 2017). The idea that a toxin plays a role in death 

of cells was first enunciated by the scientist De Bary in 1886 who claimed that oxalic acid secreted by 

Sclerotinia spp. was responsible for killing of cells. Smith (1996) supported this by implicating oxalic 

acid secreted by Botrytis cinerea, in causing death of living cells. However, Xing et al. (2015), 

working with the same fungus, reported that oxalic acid was found at low levels in the mycelia and 

the maltose medium, though it was found at high states in the mycelia and sucrose medium. After 

sclerotial separation, oxalic acid accumulated at high states in both the sclerotia and the sclerotial 

exudate. Oxalic acid was thusly found to hinder P. umbellatus sclerotial formation. Information about 

the role of toxins in disease caused by insect, mites, nematodes, and parasitic phanerogams is 

negligible. It is unlikely that viruses, because of their very nature, would produce toxins in the strict 

sense of the world. Toxins are readily produced by fungal and bacterial pathogens in a variety of 

environments (Meena et al., 2017). 

 

In plant pathology, the concept of toxin is not limited to one group of compounds. All kinds of 

substances such as Botulinum neurotoxins (Proft, 2009), produced by the pathogen, which are capable 

of reproducing symptoms similar to that found in natural infections, are toxins. These are simple 

molecules with low molecular weight, in contrast to the high molecular weight toxins of human 

pathogen. Because of the small size, they are extremely mobile and easily reach the sub cellular level 

of the host. 
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Role of Toxins in Plant Disease 

Chaube and Pudhnir (2005) claimed that micro-organisms are pathogenic only if they are toxigenic. 

Toxins can be defined as low molecular weight, non-enzymatic microbial products toxic to higher 

plants. Toxins are different from enzymes in the fact that they do not attack the structural integrity of 

the tissues but affect the metabolism in a subtle manner. It is the subtility of action that differentiates 

toxins from enzymes (Kumar & Hayward, 2005). 

 

Toxins are substances that act directly on the protoplast of the cells, but some enzymes for example 

toxin of Clostridium welchii, lecithinase is a toxin because of its disruption of cell membrane 

(Ravichandra, 2013). In general, enzymes are equal to “aggressins” of mammalian pathology, which 

are defined as metabolites that enhance virulence of pathogens but are not directly toxic to the host. In 

recent classification, toxins are divided into two categories (Ravichandra, 2013). The first is host-non-

specific (non-selective) which may affect many unrelated plant species in addition to main host of the 

pathogen producing toxin; it includes phytotoxin and vivotoxin. Phytotoxin is any compound 

produced by a micro-organism which is toxic to plant while Vivotoxin is characterized as a substance 

produced in the attacked host by the pathogen or potentially its host, which works in the creation of 

disease however isn't itself the underlying affecting operator of disease, example is the Fusaric acid 

(Ravichandra, 2013; Adam et al., 2015). The second is host-specific (selective) which affects only the 

specific host of the pathogen; it includes pathotoxins. Toxins in general, interact with cell membrane 

or organelles (mitochondria or chloroplast) and alter their permeability. Some important non-host-

specific and host-specific toxins are shown in tables 1 and 2. 

 

Table 1: Some important host-non-specific toxins 

Toxin Pathogen Disease Chemical Nature References 

Cercosporin Cercospora spp. -do- Benzoperyline 

derivatives 

Newman and 
Townsend (2016); 

Chaube and Pundhir 

(2005) 

Fumaric acid Rhizopus spp Almond hull rot 

disease 

Fumaric acid Das (2016) 

Oxalic acid Sclerotium and 

Sclerotinia spp. 

Rots in various 

crops 

Oxalic acid Bennett (2015) 

Ten toxin Alternaria 

alternata 

Chlorosis of 

seedlings in many 

plants 

Cyclic tetrapeptide Li et al. (2016) 

Syringotoxin Ps.Syringae 

pv.syringe 

Citrus plant _ Chaube and Pundhir 

(2005); Awada et al. 

(2014) 

Coronatine Ps.Syringae 

Pv.atropuspurea 

Infected 

soyabeans and 

grasses 

_ Chaube and Pundhir 

(2005) 

Diaporthin Cryphonectria 

parasitica 

Chestnut blight Isocoumarin de Medeiros et al. 

(2018) 

Cerato-ulmin Ceratocystis ulmi Dutch elm disease Large M 

carbohydrate 

Zhang et al. (2018) 

Alternaric acid Alternaria spp. Leaf spot disease 

of various crops 

Hemiquinone 

derivatives 

Templeton (2016) 
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Table2: Some important host-specific toxins 

Toxin Pathogen Target Site Host Range Disease References 

ATC-toxin Aternaria 

tenuissima 

_ Pigeon pea Alternaria leaf spot 

of pigeon pea 

Ostry (2008) 

AM-toxin 

I,II and III 

Alternaria 

alternata 

Chloroplast and 

plasma 

membrane 

Apple (red, 

gold and 

starking 

Alternaria blotch 

of apple 

Takashi 

(2013) 

PM-toxin 

A,B,C, and 

D 

Phyllosticta 

maydis 

Mitochondrion Maize Yellow leaf blight 

of maize 

Kohmoto and 

Yoder (2012) 

 

 

Phytoalexins: An induced biochemical defence mechanism 

The induced biochemical changes in host plants are the last line of host defence (Glazebrook & 

Ausbel; Ausubel, 1994). This may condition a plant or plant tissue from susceptible to resistant to 

immune status as per their genetic potential. Phytoalexins are antimicrobial and often antioxidative 

substances synthesized de novo by plants that accumulate rapidly at areas of pathogen infection 

(Jeandet et al., 2013). As an important component of overall active defence strategy of plants, 

effective concentrations of these substances produced rapid production/suitable modification and/or 

accumulation of chemicals toxic to pathogens. Singh (2002) suggested that to establish the role of a 

biochemical factor in host defence it must possess the four attributes and match the following “Koch’s 

postulates” for pathogenicity (modified) (Fredericks & Relman, 1996).  

 

1. The substance is related with insurance against infection at the site where protection happens  

2. The substance can be isolated from the host indicating assurance against the disease  

3. Introduction of isolated substances to the suitable susceptible host gives protection  

4. The nature of protection so actuated looks like that of the natural agents of a resistant plant  

 

Slow accumulation of similar chemicals has been reported in susceptible host plants also (compatible 

interaction) (Pusztahelyi et al., 2015; Jeandet et al., 2013). These substances include; phenolic 

compounds, phytoalexins, new protein synthesized, inactive of enzymes and toxins and altered 

biosynthetic pathways Pusztahelyi et al., 2015; Jeandet et al., 2013). 
 

Concept of Phytoalexins 

In 1940, Muller and Boger proposed that plants produced defensive substances, called Phytoalexins, 

in response to infection. The term was derived from Greek to mean “warding off agents in plants”, 

and proposal was made after deliberating two important phenomena in plant pathology. First, the 

active response of the cells of many plants to attempted infection; second, the acquisition of resistance 

by plants after exposure to an infecting organism. Compounds that acts against micro-organisms from 

plants are generally divided into two main classes: phytoantipicins and phytoalexins (Mansfield, 

1999). Phytoantipicins are described as "low molecular weight, antimicrobial compounds that are 

present in plants before challenge by micro-organisms, or are produced after infection solely, from 

pre-existing precursors". Phytoalexins are defined as "low molecular weight, anti-microbial 

compounds that are both synthesized and accumulated in plants after exposure to micro-organisms or 

abiotic agents" (Purkayastha, 2017). Phytoalexins is one of the substances or compound that catalyzed 

the induced defence mechanisms employed by plants including lytic enzymes such as chitinases and 

glucanases, oxidizing agents, cell wall lignifications and a number of pathogenesis-related (PR) 

proteins and transcripts of unknown functions (Dixon & Lamb, 1999). It is imperative to note that the 

gradual increase of phytoalexin may be part of a co-ordinated defence approach, in which any one 

factor may alone be unable to account for restriction of the potential pathogen (Purkayastha, 2017; 

Mansfield, 1999). 
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Elicitors of Phytoalexins Accumulation 

The biosynthesis of phytoalexins compounds after being attacked by the pathogen was believed to be 

either triggered by the substance produced by the pathogen or the host-pathogen interaction. A 

number of different pathogen and plant-produced molecules, referred to as elicitors (Ahuja, 2012), 

will triggered phytoalexins and other defence responses. Several research have been reported for the 

possibility of plant cells having receptors for these elicitors (Horsfall, 2012). Some elicitors have been 

reported to have the same specificity as the pathogen has with its host while most elicitors showed a 

lack of any specific connection to the outcome of a host-parasite interaction (Ahuja, 2012; Horsfall, 

2012). The cutting edge synthesis of the gene-for-gene theory expresses that protection happens just 

when the result of a pathogen avirulence gene interacts with the result of a plant resistance gene 

(Purkayastha, 2017). On account of the high level of specificity, gene-for-gene system give a decent 

structure to decide whether the result of the avirulence gene can likewise go about as a race-/cultivar-

specific elicitor of defence response like phytoalexins accumulations (Ahuja, 2012; Purkayastha, 2017) 

 

The molecular compounds that informed plants to start the production of phytoalexin are referred to 

elicitors. Elicitors of biotic inception might be associated with the communication of plants and 

potential pathogens, while abiotic elicitors are not engaged with typical host-pathogen interaction 

(Purkayastha, 2017). In common conditions, the boost is given by the nearness of the micro-

organisms and its perception by the host starts the chain of processes prompting phytoalexin synthesis. 

Biotic elicitors may come from the attacking organism, in which case they are called "exogenous", 

though "endogenous" elicitors are of plant origin and are produced by the communication between 

micro-organism and plant. Particles with elicitor action have been recognized over an extensive 

variety of structural kinds including polysaccharides, glycoproteins, lipids, lipopolysaccharides, 

oligosaccharides and even enzymes, however their action can be credited to their impact in 

discharging elicitor-active segments from the cell wall of the pathogen or host (Bostock et al., 1992; 

Alghisi & Favaron, 1995). Abiotic elicitors form a different accumulation of molecules that are not 

gotten from natural sources, for example, the tissues of the pathogen or host. Under ordinary 

conditions, they would not be experienced by the plant. The group include compounds, for example, 

fungicides; salts of heavy metals, for instance Cu2+ and Hg2+; the cleansers, essential molecules, for 

example, polylysine and histone; reagents that are intercalated DNA (Purkayastha, 2017). Treatment 

of plant tissues with factors that cause stress, for instance rehashed solidifying and defrosting, injuring 

or introduction to UV light (Liu et al., 2015; Mert-Türk et al., 1998) can likewise instigate 

phytoalexin synthesis. 

 

Role of Phytoalexins in Plant Disease Control 

Most basic reaction of plants to pressure, biotic (pathogen/insects) or abiotic (injuring), is the 

generation and amassing of substrates that can restrain the development and exercises of the biotic 

factors or may help in recuperating process. Hammerschmidt, 1999 reported that in plants continuous 

irritation by pathogen is essential for production of effective amount of these phenolic compounds. 

Kuc (1995) defined phytoalexins as antibiotics produced in plant-pathogen interactions or as result 

response to injury or other physiological stimulation. Wide variety of toxic chemicals was reported to 

increase in concentration in response to infection, thus phytoalexins are now considered as low 

molecular weight antimicrobial compounds produced de novo in plants as a result of infection or 

abiotic stress. This excludes the pre-existing phenols, example chlorogenic acid, caffeic acid and 

scopoletin. The phytoalexins have demonstrated in wide variety of plants belonging to families 

Gramineae (Oats, rice, sorghum, and sugarcane), Solanaceae, Leguminaceae, Chenopodiceae, 

Convolulaceae, Compositae, Malvaceae and Umbellifera (Table 3). Members of Orchifaceae are 

known for production of phytoalexins. Chemical structures of some phytoalexins cited in this work 

(Figure 1). 
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Table 3: Common phytoalexins reported in host-pathogen interaction 

Phytoalexin Host Fungal Pathogen References 

Capsidol Nicotinia clvelandi, N 

tabacum 

Tobacco necrosis virus 

(Capsicum) 

Chaube and Pudhnir 

(2005) 

Pistin Pea (endocarp) pods, 

leaves 

Monilinia fructicols non 

pathogen 

Mazid et al. (2011) 

Glutinosone Nicotina glutinosa T.M.V Burden et al. (1975) 

Ipomeamarone Sweet potato Ceratocystis fimbriata Mawalwa et al. 

(2014) 

Wyerone Pea Botrytis fabae Slusarenku et al. 

(2012) 

Triflorrhizin Trifolium pratense Monilia fructicola Chaube and Pudhnir 

(2005) 

Glyceollin Soyabean Pytophthora 

megasperma var. sojae 

Ng et al. (2011) 

Rishitin, Phytuberin Solanaceae fungal sterol, ergosterol Tugizimana et al. 

(2014) 

Sativan, Vestitol  Alfalfa, Lotus 

corniculatus 

Helminthosporium 

turcicum Pass 

 

Bonde et al. (1973) 

Isocoumarin  Carrot - Lafuente et al. 

(1996) 

Vergosin and 

Hemigossypal  

Cotton - Chaube and Pudhnir 

(2005) 

Avenalumin I,II and III  Barley Puccinia caronata f.sp. 

avenae 

Chaube and Pudhnir 

(2005) 
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Figure 1: Chemical structures of some phytoalexins cited in this work: Glutinosone (a), glyceollin (b), 

Ipomeamarone (c), phytuberin (d), wyerone (e) and capsidol (f). Source: National Center 

for Biotechnology Information. PubChem Compound Database; 

https://pubchem.ncbi.nlm.nih.gov/compound (accessed Apr. 14, 2018). 

 

Resistance to Fungi 

The available evidence concerning the contribution of phytoalexins to the restriction of fungal growth 

at different stages of colonization include; 

 

Inhibition on plant surfaces: Fungal spores often fail to germinate following their deposition on leaf 

surfaces (Friend, 2012). A striking example of this concern is the behaviour of saprophytes in the 

phyllosphere. Ahuja (2012) have described the increased growth of epiphytic fungi coincident with 

the onset of senescence. The ability to produce phytoalexins declines during senescence (Friend, 2016) 

a. b. 

c. d. 

e. f. 
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and it has been proposed that fungal growth on young leaves may be restricted by phytoalexins 

produced by underlying cells in response to fungal metabolites diffusing from germinating spores 

(VanWees et al., 2003). However, the limited evidence available does not support this attractive 

hypothesis. Thus, Mansfield et al., 1982 found that germination of saprophytes Aureobasidium 

pullalans, Cladosporium herbarum and Epicoccum nigrum on pea leaves did not induce formation of 

the phytoalexin pisatin. The apparent lack of influence of phytoalexins on fungal development in the 

pyllosphere may be explained if the cuticle acts as a barrier preventing the diffusion to underlying 

cells of compounds eliciting phytoalexin biosynthesis. 

 

Inhibition during attempted penetration into plant cells: Protection from fungi is as often as possible 

communicated by the failure of disease hyphae to enter into or through plant cell walls (Mellersh and 

Heath, 2003). Different sorts of deposit (Papillae) have been found to aggregate inside living cells 

underneath destinations of endeavored entrance. It has been proposed that papilla development and 

other confined changes in cell wall structure including lignification (Friend, 2016) and silicification 

(Mellersh and Heath, 2003) may give simply physical boundaries to the continued advance of 

attacking hyphae. Friend (2016) isolated a fungitoxic flavonoid (which may be considered a 

phytoalexin) from papillae formed in resistant barley leaves in response to Erysiphe graminis f. sp. 

Hordei. It is possible that other phytoalexins may also be incorporated into papillae or cell walls, 

thereby producing a localized, fungitoxic barrier to penetration. 

 

Inhibition after penetration: Following penetration of resistant plants, fungal growth may be restricted 

at a number of sites: within the partially degraded walls of epidermal cells (for example Botrytis spp. 

in non-host plants); intracellularly, either within the epidermis (Colletotrichum spp in non-host plants 

or resistant cultivars) or in mesophyll cells (restricted development of hautoria of rust fungi); in 

intercellular spaces (Cladosporium fulvum in resistant tomato leaves; and within xylem vessels 

(Verticillium and Fusarium spp. in wilt resistant plants). In other to prove whether or not inhibition of 

hyphal growth at these sites is caused by phytoalexins, it would necessary to measure the 

concentrations of inhibitors to which hyphae are exposed at the time they stop growing and also to 

examine the activity of what may be a mixture of phytoalexins at the site of exposure (Mansfield, 

1999).  

 

Botrytis spp and Vicia faba: The production of phytoalexins by tissues of Vicia faba in response to 

infection by Botrytis had been examined for several years before attention was paid to the precise 

timing of phytoalexins accumulation and the cessation of fungal growth during resistant reactions 

(Mansfield, 1999). Colletotrichum lindemuthinum spores on French bean germinate within 48hours of 

inoculation and produce similar numbers of appressoria on resistant and susceptible plants (Wheeler, 

2012). Other example is the Phytophthora infestance and potato tissues (Wheeler, 2012) 
 

Resistance to Bacteria 

Studies in the role of phytoalexins in resistance to bacteria have been mainly concerned with the 

restriction of bacterial multiplication within intercellular spaces. 

 

Pseudomonads and French bean and soyabeans. The most detailed studies of the involvement of 

phytoalexins in bacterial infections concern the French bean plant and the resistance of leaves of 

certain cultivars to halo blight caused by Pseudomonas phaseolicola and of pods to avirulent isolates 

of P.syringae. The multiplication of compatible and incompatible races of P.phaseolicola in bean cv. 

Red Mexican and the timing of symptom appearance are established (Schmelz et al., 2014). The 

compatible race is to multiply rapidly causing water-soaked lesions to develop between two and four 

days after inoculation; these lesions become brown and desiccated after five days. The incompatible 

race multiplies less rapidly and causes a hypersensitive reaction, inoculation sites collapsing to form 

localized desiccated brown lesions within two days. Collapse of tissue during the hypersensitive 

reaction is closely associated with the cessation of bacterial multiplication (Schmelz et al., 2014). 
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Resistance to Nematodes 

Researchers have studied the resistance of legume roots to nematodes. For example, lima bean roots 

exhibit a hypersensitive resistance response to Pratylenchus scribneri. Jeandet et al. (2014) found that 

tissue bearing necrotic lesions caused attempted feeding of the nematode in the epidermis and cortex 

accumulated the fluorescent isoflavonoids coumestrol and psoralidin. These compounds were present 

only in low concentrations in uninoculated roots. Coumestrol inhibited the motility of P.scribneri at 

concentrations less than those found within infected roots leading Jeandet et al. (2014) to conclude 

that induced accumulation of the coumestan phytoalexin is probably the chemical basis for the 

resistance of lima bean roots to P.scribneri.  The role of glyceollin in the expression of varietals 

resistance of soyabean cv. Centennial to the root knot nematodes Meloidogyne incognita has also been 

examined. 

 

Resistance to Viruses 

Antifungal phytoalexins accumulate during the production of local necrotic lesions by viruses in 

leaves of legumes and Nicotiana spp. but they are absent from systematically infected plants (Jeandet 

et al., 2012). There have been few attempts to determine if phytoalexins suppress viral replication and 

thereby restrict lesion size. Hammerschmidt (1999) found that incubation of tobacco necrosis virus 

(TNV) in soyabean leaf extract containing low concentrations of glyceollin had no effect on viral 

infectivity. They suggested, however, that the presence of the phytoalexin in tissues immediately 

surrounding lesions might indirectly render them unsuitable for further virus multiplication. 

Glyseollin was not translocated and was not involved in systemic protection against TNV afforded by 

the prior inoculation of soybean leaves with the virus. 

 

In spite of the work done on phytoalexins and amount of evidences presented, there are certain 

questions to be satisfied before establishing direct role of phytoalexins in vivo containment of 

pathogen (Jeandet et al., 2014). The significant role of phytoalexins in plant defense mechanisms has 

long been debated addressing both the actual antimicrobial activity of phytoalexins under the 

conditions found within plant tissues and their localization around invading organisms (Mansfield, 

1999; Hammerschmidt, 1999). These immovable cross examinations are in reality urgent to their 

proposed part as microbial growth regulators in infected plant tissues. Regardless there is impressive 

confirmation that these compounds show in vitro toxicity crosswise over a great part of the biological 

range, prokaryotic and eukaryotic. 

 

Generally, phytoalexins accumulate at infection sites and they restrain the growths of fungi and 

bacteria in vitro in this way, it is legitimate to consider them as conceivable plant-defence mixes 

against diseases caused by fungi and bacteria. Contingent on the phytoalexin, fungus and bioassay, the 

EC50 for fungi is for the most part 10-3 to 10-5 M (Kuc, 1995). In this manner they are similarly 

powerless as antifungal agents. In spite of the fact that there is no confirmation that phytoalexins are 

translocated. Localization at the disease site may allow the pathogen to encounter concentrations far 

in overabundance of the EC50 at early stages in the in the infection process (Mert-Türk, 2002). 

 

There are additionally cases that phytoalexins aggregated amid perfect plant-pathogen 

communications. These incorporate the induction of pisatin by the harmful Oomycete Aphanomyces 

eutiches (Pueppke and VanEtten, 1976) and by the pathogenic strains of the fungus Nectria 

hematococca and induction of spirobrassinin by virulent races of Leptosphaeria maculans (Howlett et 

al., 2001). Likewise, Glazebrook and Ausubel (1994) reported that the harmful pathogen 

Pseudomonas syringae pv. maculicola evokes the synthesis of large amounts of camalexin in 

Arabidopsis thaliana. Mert-Türk et al., (1998) additionally demonstrated that camalexin gathered 

amid both compatible and incompatible communication in A. thaliana when tested with an Oomycete, 

Peronospora parasitica. On the off chance that the outcomes exemplified are translated, in 

incompatible interactions, phytoalexin collection limits or stops pathogen development, in this way 

presenting protection to the plant. In compatible interactions, the pathogen evidently, endures the 

amassed phytoalexins, detoxifies them, stifles phytoalexin gathering or abstains from phytoalexin 

production (Mansfield, 1999). 
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Conclusion 

Phytoalexins as they gather both in susceptible and resistant plants, the genuine inquiry is that 

whether they are supporters of defence or simply the final result of pathogen-or stress-actuated 

metabolism. More indisputable methodologies could be utilized to answer the inquiry. One of them 

could be to generate phytoalexin biosynthetic mutants that never again produced phytoalexins, at that 

point to evaluate them whether phytoalexin deficiency causes increased susceptibility. There are two 

greatly basic focuses here that ought to be remembered. This approach ought to incorporate 

hereditarily examination utilizing a framework in which the biochemical and physiological proof 

contends unequivocally for a key part for phytoalexins in resistance. Second point is that the plants 

must be assessed for changes in different defence mechanisms that may make up for the loss of 

phytoalexin production. Because of advances in molecular, much better perspective of the part of 

phytoalexins in defence has built up. Unmistakably, future investigations on these compounds will 

enable us to comprehend and assess plant pathogen interaction and in addition give new ways to deal 

with disease control. All efforts in molecular biology and biotechnology is to bring new 

methodologies into disease control for friendlier condition. 
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