Fanshawe College FIRST: Fanshawe Innovation, Research, Scholarship, Teaching

Student Work - Public Safety

School of Public Safety

3-22-2017

Prehospital use of ipratropium bromide paired with salbutamol as treatment for shortness of breath.

Lisa Henderson Fanshawe College of Applied Arts and Technology

Follow this and additional works at: https://first.fanshawec.ca/fhcsps_publicsafety_studentpublications

Recommended Citation

Henderson, Lisa, "Prehospital use of ipratropium bromide paired with salbutamol as treatment for shortness of breath." (2017). *Student Work - Public Safety.* 2. https://first.fanshawec.ca/fhcsps_publicsafety_studentpublications/2

This Research Paper is brought to you for free and open access by the School of Public Safety at FIRST: Fanshawe Innovation, Research, Scholarship, Teaching. It has been accepted for inclusion in Student Work - Public Safety by an authorized administrator of FIRST: Fanshawe Innovation, Research, Scholarship, Teaching. For more information, please contact first@fanshawec.ca.

Paramedic Critically Appraised Topic

HLTH-1101

Alan Batt

March 22, 2017

Lisa Henderson

Topic: Prehospital use of ipratropium bromide paired with salbutamol as treatment for shortness of breath.

Clinical Scenario: Two primary care paramedics respond code 4 for a 55 year old male patient severely short of breath. Questioning his wife reveals that the patient has chronic obstructive pulmonary disease (COPD), takes Ventolin (salbutamol) when necessary and takes Atrovent (ipratropium bromide) daily. He took his Atrovent today, but experienced sudden onset shortness of breath after walking up the flight of stairs in his home.

PICO Question: In patients with shortness of breath from respiratory diseases, does the use of prehospital ipratropium bromide paired with salbutamol provide a better outcome than salbutamol treatment alone?

Search Strategy: see Appendix 1

Relevant Papers: eight relevant articles were found, but four were reviewed because they were most directly related to the topic

Key Words: FVC: forced vital capacity, amount of air which can be forcibly exhaled from the lungs after taking a full breath in FEV₁: forced expiratory volume, volume of air exhaled in one second of forced expiration ED: emergency department

COPD: chronic obstructive pulmonary disease

COAD: chronic obstructive airway disease

Author,	Population	Design	Outcomes	Results	Strengths/Weaknesses
Date					
Davis, D., 2005	371 adult patients, 18 years of age or older, transported to	Prehospital retrospective study	Change in heart rate, respiratory rate, blood pressure	 Avg. change in vital signs, Albuterol alone cohort (n=192) ΔHR: -3 bpm ΔBP: -7mmHg 	<i>Strengths</i> Used vitals as an objective way to obtain data of patient improvement. Fairly large sample size. Study could be
	the University of California		and/or oxygen saturation.	 Δresp. rate: 0 ΔSaO₂: +8% Improved clinical status: 	reproduced in other regions. Weaknesses
	ED and treated for suspected reactive		improvement or deterioration	34% of pts Avg. change in vital signs, Albuterol/Ipratropium cohort (n=179)	Retrospective design, so patients were not randomized to receive each treatment. Data relies on

airway	a	as assessed by	•	∆HR: -6 bpm	past EMS and ED records.
disease	p	paramedics.	•	$\Delta BP: -10mmHg$	Approximately one third of
(RAD). Pts			•	∆resp. rate:	patients included in study
were treated				-4 breaths/min	were diagnosed with a
with either			•	ΔSaO_2 : +8%	cardiac etiology for their
nebulized			•	Improved clinical status:	dyspnea. Analyzing
albuterol and				33% of pts	treatment effect during short
ipratropium					prehospital transport times
bromide or			The	ere was no statistically	does not indicate the longer-
just albuterol.			sigi	nificant difference, p-value	term effects.
			< 0	.05, between groups.	

Author,	Population	Design	Ou	itcomes	Results	Strengths/Weaknesses
Date	-	C				
Moayyedi,	62 patients	Randomized	•	Change in	Mean change in FEV_1	Strengths
P., 1995	admitted to	controlled		spirometric values	Salbutamol only	Examines changes over
	hospital for	trial		(forced vital	• Day 1 – 3: +0.17 mL	time to get a better picture
	acute			capacity and	• Day $1 - 7$: +0.21 mL	of the long-term effects of
	exacerbation			FEV_1) on days 1,	• Day 1 – 14: +0.06 mL	the two treatments.
	of COPD. Pts			3, 7, 14 and then	• Discharge: +0.23 mL	Extensive exclusion
	treated with			weekly and on the	Mean change in FVC	criteria to ensure minimal
	either 5mg			day of discharge.	Salbutamol only	confounding variables.
	nebulized		•	Simple subjective	• Day 1 – 3: +0.25 mL	Spirometric values
	salbutamol and			symptom score	• Day 1 – 7: +0.39 mL	obtained at 1800 hrs each
	500µg			recorded daily. Pts	• Day 1 – 14: +0.33 mL	time.
	ipratropium			asked to report	• Discharge: +0.56 mL	
	bromide, or			whether they feel	Mean change in FEV_1	Weaknesses
	just 5mg			better, worse, or	Salbutamol + ipratropium	Small sample size, also
	salbutamol,			the same as the	bromide	restricted to patients with
	both four times			day before.	• Day 1 – 3: +0.05 mL	COPD.
	a day.		•	Duration of	• Day 1 – 7: +0.15 mL	Some patients did receive
				hospital stay.	• Day 1 – 14: +0.26 mL	other IV steroid and

All pts were	•	Numbers of days	• Discharge: +0.15 mL	antibiotic medication, but
not taking		on nebulizer	Mean change in FVC	study states there was no
nebulized		treatment.	Salbutamol + ipratropium	statistically significant
bronchodilator			bromide	difference between groups.
s at home,			• Day 1 – 3: +0.04 mL	
were 45 years			• Day 1 – 7: +0.17 mL	
of age or older,			• Day 1 – 14: +0.62 mL	
and had a			• Discharge: +0.42 mL	
history of			-	
smoking more			No statistically significant	
than 10 pack			difference, p < 0.05	
years.			between groups.	

Author, Date	Population	Design	O	utcomes	Results	Strengths/Weaknesses
Koutsogiannis,	50 adult patients	Prospective,	•	Mean	Mean percentage	Strengths
Z., 2000	admitted to the	randomised,		percent	change in FEV1	Different perspective
	emergency	double		change in	• comb. treatment:	considering ipratropium bromide
	department with	blind trial		FEV_1	6.4%	was given to both groups as an
	COAD. Pts			measured at	• salbutamol:	initial treatment, then studied
	received 5mg			time=0 and	18.6%	subsequent treatments of
	nebulized			time=90	• ipratropium:	ipratropium.
	salbutamol and			mins.	4.8%	Explains the cost of ipratropium
	500µg		•	Absolute	Mean absolute	bromide and the seemingly
	ipratropium			change on	change on	minimal benefits when paired
	bromide and			pulmonary	pulmonary function	with salbutamol in the
	250mg IV			function test	test	prehospital environment.
	hydrocortisone at				• comb. treatment:	
	time=0. Then				0.06L	Weaknesses
	randomized to				• salbutamol:	Small sample size and only one
	receive 5mg				0.13L	diagnostic tool used for
	salbutamol and				• ipratropium:	comparison of improvement.
	500µg				0.023L	Standard deviation in absolute
	ipratropium					change in FEV_1 is large in all

bromide, or 5mg salbutamol alone, or 500µg	significant difference	groups, suggesting there are subgroups within the sample that may benefit from the combined
ipratropium		treatment.
bromide alone, at		
15min and 30min.		

Author,	Population	Design	Οι	itcomes	Results	Strengths/Weaknesses
Date						
Lanes, S.F.,	1064 pts aged	Pooled	•	FEV ₁ measured	Mean difference between	Strengths
1998	18 to 55 years	analysis of		at baseline, 45	FEV_1 change from time=0	Account for all
	admitted to the	three		mins and 90		differentiating factors in
	emergency	randomized		mins. Pts	Ipratropium + salbutamol	the populations studied.
	department	double-		followed up for	45 minutes	Extensively explains and
	with acute	blinded		48h after	• CAN: 587mL	accounts for all study
	asthma. Pts	clinical trials		hospital	• NZ: 461mL	biases, including the
	randomized for	conducted in		discharge for	• US: 651mL	original claims of each of
	treatment of a	the United		occurrence of	90 minutes	the studies, which did not
	combination of	States,		asthma	• CAN: 633mL	coincide with the overall
	nebulized	Canada and		exacerbation	• NZ: 519mL	conclusions when
	2.5mg	New		and	• US: 831mL	looking at all three
	salbutamol	Zealand.		hospitalization.		studies.
	plus 0.5mg		•	Reduced risk of	Salbutamol	Weaknesses
	ipratropium			need for	45 minutes	Outcome of seemingly
	bromide, or			additional	• CAN: 542mL	positive effects of the
	2.5mg			treatment,	• NZ: 369mL	combination treatment
	salbutamol			subsequent	• US: 645mL	was <10% of the overall
	alone.			asthma	90 minutes	improvement of FEV ₁
				exacerbations	• CAN: 542mL	from baseline, indicating
				and	• NZ: 416mL	only a small
				hospitalizations	• US: 851mL	improvement. Also stated
						that the data could be

	Small improvement in lung function indicated for	obscured by outliers in the U.S.A. study.
	combination treatment.	

Comments:

One major challenge that presents with this PICO question is the specificity of observing prehospital, emergency medicine data of the benefits of pairing ipratropium bromide and salbutamol. None of the studies analyzed in this CAT occurred within the last 10 years, and took place in either the emergency department or longer in-hospital stays. Moayyedi et al. completed their study over several days until patient discharge, evaluating FEV_1 and FVC, as well as some subjective symptom questions (1995). This prospective study produced no statistically significant difference between treatment groups, further suggesting that ipratropium bromide paired with salbutamol does not give any additional benefit to patients with SOB due to airway diseases. Contraindicative to these results, Lanes et al. examine FEV₁ at 0 mins, 45 mins, and 90 mins after arrival in the ED (1998). A small improvement was noted for patients who received the combination treatment, as well as reduced risk for subsequent symptoms of asthma. The large total sample size and crosscountry meta-analysis study design enhances the efficacy of the results and the ability to detect small differences in data (Lanes et al. 1998). Only one of the studies mentioned a reason for questioning the effect of the combination treatment. The cost of using a medication that does not seem to have significant benefit in prehospital treatment, is a factor to consider because that money can be put towards something else. Emergency medicine in Canada is always in need of improvements in equipment, education, community programs, and many other things. Though the cost of PCPs using ipratropium bromide may seem small, the savings of not using it over a year could have a significant benefit to another aspect of paramedicine. There is also always a risk of patients having adverse reactions to medications. So if the latest evidence-based medicine shows little to no benefit of the pairing of ipratropium bromide and salbutamol in the prehospital environment, it should be considered to be removed from PCP scope of practice.

Consider: Why would you NOT change practice, based on these articles?

Since these studies mainly look at short term treatment of ipratropium bromide and salbutamol, the long term effects of the combination is not well observed. Perhaps continuous treatment of the paired medications has a significant effect in patient presentation after several weeks. The use of the combination treatment in the prehospital environment could be beneficial for patients who are going to be prescribed these two medications and will be using them consistently from that point forward. Using it to treat these critical patients will theoretically begin their treatment at the earliest moment possible.

Clinical Conclusion:

The use of ipratropium bromide for shortness of breath due to chronic airway diseases, appears to be of little additional benefit than salbutamol treatment alone, in the prehospital environment. Paramedics should perhaps consider the costs of using the drugs paired together when deciding what to use to treat SOB. Salbutamol alone is a very effective way to dilate bronchioles, enhance ventilation and allow for reperfusion in a short period of time.

	Key Word	Results (CINAHL & EBSCO)	Results (MEDLINE)
S 1	Ipratropium bromide/albuterol	246	626
S2	Albuterol/ipratropium bromide	22	422
S 3	Ipratropium bromide/salbutamol	173	689
S 4	Salbutamol/ipratropium bromide	17	689
S5	Salbutamol	318	11492
S 6	Albuterol	1363	10061
S 7	Ipratropium bromide	160	2233
S 8	Prehospital	11606	9338
S 9	Pre hospital	1114	38437
S10	Pre-hospital	710	3279
S 11	Out of hospital	5582	95408
S12	S1 OR S3	249	724
S13	S5 OR S6	1486	12220
S14	S8 OR S9 OR S10 OR S11	17160	136985
S15	S12 AND S13 AND S14 AND S7	1	9
S16	S14 AND S7	52	

Appendix 1

Back-sourcing used

Nova Scotia EHS: Canadian Prehospital Evidence-Based Practice website used https://emspep.cdha.nshealth.ca/LOE.aspx?VProtStr=Asthma&VProtID=200

References:

- Davis, D.P., Wiesner, C., Chan, T.C., and Vilke, G.M. (2005). The efficacy of nebulized albuterol/ipratropium bromide versus albuterol alone in the prehospital treatment of suspected reactive airways disease. *Prehospital Emergency Care*, *9*(4), 386-390. DOI: 10.1080/10903120500255404
- Koutsogiannis, Z., and Kelly, A.M. (2000). Does high dose ipratropium bromide added to salbutamol improve pulmonary function for patients with chronic obstructive airways disease in the emergency department? *Aust NZ J Med*, *30*(1), 38-40. DOI: 10.1111/j.1445-5994.2000.tb01052.x
- Lanes, S.F., Garrett, J.E., Wentworth, C.E. III., Fitzgerald, J.M., and Karpel, J.P. (1998). The effect of adding ipratropium bromide to salbutamol in the treatment of acute asthma: a pooled analysis of three trials. *Chest*, *114*(2), 365-372.
- Moayyedi, P., Congleton, J., Page, R.L., Pearson, S.B., and Meurs, M.F. (1995). Comparison of nebulised salbutamol and ipratropium bromide with salbutamol alone in the treatment of chronic obstructive pulmonary disease. *Thorax*, *50*(8), 834-837. http://dx.doi.org/10.1136/thx.50.8.834