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Radiation Injury After a Nuclear Detonation: Medical
Consequences and the Need for Scarce Resources Allocation

Dr. Andrea L. DiCarlo, PhD, Commander Carmen Maher, MA, CDR-USPHS, Dr. John L.
Hick, MD, Dr. Dan Hanfling, MD, Dr. Nicholas Dainiak, MD, Dr. Nelson Chao, MD, Dr. Judith
L. Bader, MD, CDR-USPHS, Dr. C. Norman Coleman, MD, and Dr. David M. Weinstock, MD
Dr DiCarlo is with the Radiation/Nuclear Countermeasures Program, National Institute of Allergy
and Infectious Diseases, National Institutes of Health; Commander Maher is with the Office of
Counterterrorism and Emerging Threats, US Food and Drug Administration; Dr Hick is with the
Hennepin County Medical Center, University of Minnesota; Dr Hanfling is with the Department of
Emergency Medicine, The George Washington University; Dr Dainiak is with Bridgeport Hospital,
Yale University School of Medicine; Dr Chao is with the Duke University Bone Marrow and Stem
Cell Transplant Program; Drs Bader and Coleman are with the Office of the Assistant Secretary
for Preparedness and Response, US Department of Health and Human Services; Dr Weinstock is
with the Dana-Farber Cancer Institute, Harvard Medical School

Abstract

A 10-kiloton (KT) nuclear detonation within a US city could expose hundreds of thousands of
people to radiation. The Scarce Resources for a Nuclear Detonation Project was undertaken to
guide community planning and response in the aftermath of a nuclear detonation, when demand
will greatly exceed available resources. This article reviews the pertinent literature on radiation
injuries from human exposures and animal models to provide a foundation for the triage and
management approaches outlined in this special issue. Whole-body doses >2 Gy can produce
clinically significant acute radiation syndrome (ARS), which classically involves the hematologic,
gastrointestinal, cutaneous, and cardiovascular/central nervous systems. The severity and
presentation of ARS are affected by several factors, including radiation dose and dose rate,
interindividual variability in radiation response, type of radiation (eg, gamma alone, gamma plus
neutrons), partial-body shielding, and possibly age, sex, and certain preexisting medical
conditions. The combination of radiation with trauma, burns, or both (ie, combined injury) confers
a worse prognosis than the same dose of radiation alone. Supportive care measures, including fluid
support, antibiotics, and possibly myeloid cytokines (eg, granulocyte colony-stimulating factor),
can improve the prognosis for some irradiated casualties. Finally, expert guidance and surge
capacity for casualties with ARS are available from the Radiation Emergency Medical
Management Web site and the Radiation Injury Treatment Network.

Keywords
nuclear detonation; radiation injury; acute radiation syndrome

The Scarce Resources for a Nuclear Detonation Project, presented in this issue of Disaster
Medicine and Public Health Preparedness, was undertaken to guide community planning for
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the first 4 days after a nuclear detonation incident. During this period, the demand for
resources will vastly outstrip available supplies. The article by Knebel et al® in this issue
includes basic descriptions of nuclear detonation scenarios and a response framework. A
nuclear detonation differs from other mass casualty incidents in 2 ways: the very high
number of affected individuals and the release of ionizing radiation. Thus, plans for
responding to a nuclear detonation must consider the many consequences of radiation
(environmental, clinical, and psychological) across a wide population.

The present article briefly reviews pertinent aspects of clinical radiation injury gleaned from
reports of human exposure and research in animal models. Specifically, we describe the
features of acute radiation syndrome (ARS), outline data supporting a synergistic effect on
mortality from radiation in combination with either traumatic injury or cutaneous thermal
and/or radiation burns, and discuss evidence for clinical benefit from some facets of
supportive care, including antibiotics and myeloid cytokines (eg, granulocyte colony-
stimulating factor [G-CSF]). To provide context specific to nuclear detonation response, the
article includes model-based projections of the number of irradiated casualties, their
resource needs, and the anticipated resources available. Subsequent articles in this issue?—
address key aspects of radiation injury management within the context of medical response
to a mass casualty event. Because the Scarce Resources for a Nuclear Detonation Project
focuses on the initial response after the detonation, the long-term effects of radiation (eg,
cancer, teratogenesis, and heritable genetic effects) are not discussed.

IRRADIATED CASUALTIES AND RESOURCES AFTER A NUCLEAR
DETONATION

Computer modeling in Knebel et al® includes casualty estimates across a range of potential
nuclear detonation scenarios. As illustrated in Figure 1, computer modeling of a 10-kT
nuclear detonation (identified in the National Planning Scenarios®) suggests that the zone of
significant infrastructure damage would extend approximately 2 mi from ground zero, with
glass breakage and traffic crashes beyond 2 mi. As such, wider regional infrastructure would
be left largely intact and would contribute to the response.3

Despite extended regional capacity, the mismatch between casualties and available resources
close to the detonation would be striking. Using Washington, DC, as an example, Tables 1
and 2 include general estimates of demand for and availability of selected resources, using
modeling similar to the casualty modeling in Knebel and colleagues.

The limited availability of local resources contrasts starkly with the expected overwhelming
demand. For example, approximately 500 vacant functioning adult hospital beds per million
people population are available at any given time in the United States.” Based on computer
modeling, approximately 1000 beds are vacant within the Washington, DC, metropolitan
area, compared with a predicted need for 180 000 beds (Table 1). For pediatric patients, the
number of vacant beds is closer to 250/million and estimates for critical care beds are even
lower. For example, only 62 pediatric intensive care unit beds are available on an average
day in all of New York City.8

Fewer than 100 ambulances serve Washington, DC, proper (Table 1). Thus, the
overwhelming majority of people who present for medical care will arrive without
assistance from first responders or rescue vehicles. In addition, emergency responder
operations will be limited within highly radioactive zones due to radiation and, in some
areas, infrastructure damage.> Most severely injured patients with or without radiation injury
would not receive life-sustaining medical care quickly, so many would succumb to their
injuries. Thus, the effective demand for many resources such as blood products would be far

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.
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less than estimates of need based solely on the expected numbers and extents of injuries
(Table 2).

Resource scarcity after a nuclear detonation will be both location and time dependent.

Figure 2 is an illustration of this concept. Because resource availability (y-axis) declines
after detonation, the operative standard of care (defined by the Institute of Medicine®)
transitions from conventional to contingency to crisis. The 5 curves represent different
medical care settings that vary by distance from the epicenter. A radiation treatment, triage,
and transport (commonly known as RTR1) site (outlined in Knebel et all) that forms close
to the detonation is likely to have drastic resource scarcities and then disband after
evacuation is complete. Resource scarcity at local medical care sites will improve with time
after the detonation, but they may not reach normal levels for an extended period. Regional
hospitals will differ in their availability of resources based on location relative to the
detonation and their role in the community (eg, trauma or pediatric center). Finally, hospitals
and referral centers distant from the incident may not be affected for several days, but they
may face shortages or be overwhelmed as casualties arrive at their centers or supplies cannot
be replenished due to intense demand.

The effects of radiation are dependent on the overall dose, dose rate, radiation quality, and
fraction of the body that is irradiated. Higher doses (Gray units are used, which equal 100
rad), greater dose rates (Gy/h), and irradiation to larger fractions of the body produce greater
injury. The same radiation exposures can cause drastically different signs and symptoms
across a population.11 Many genetic, demographic, dietary, and other factors can contribute
to the manifestations of radiation injury, but most of the interindividual differences are
poorly understood. Thus, although radiation exposure is used to guide triage and initial
management, the overall management for each person will depend on his or her medical
course and the availability of resources.3

As outlined by Knebel and colleagues® and illustrated in Figure 1, 2 groups of casualties
would be exposed to radiation after a nuclear detonation. The first group is within 1 to 2 km
of a 10-kT blast and would receive a high dose of prompt irradiation released in a
circumferential pattern at an extremely high dose rate. Because of their proximity to the
explosion, many of the casualties exposed to prompt irradiation would also sustain traumatic
and/or burn injuries.112

The second group of irradiated casualties would be exposed in the fallout zone downwind of
the detonation, where radioactive fallout from the mushroom cloud would contaminate the
environment.> The dose rate of fallout radiation is lower than that for prompt radiation and
decreases rapidly with time.12 The clinical consequences of fallout radiation at a given dose
may be significantly fewer than for the same dose of prompt irradiation because of the lower
dose rate from radioactive fallout. In addition, many of the individuals exposed within the
fallout zone would have radiation injury only and lack trauma or burns.

Mild symptoms may develop after whole-body radiation exposures as low as 1 Gy.
Casualties exposed to >2 Gy are at risk for developing clinically significant ARS. ARS
represents a constellation of signs and symptoms that occur between several minutes and
several weeks after exposure.10.11.13 ARS primarily involves the 4 organ systems with the
greatest acute sensitivity to ionizing radiation: hematologic, gastrointestinal, cutaneous, and
cardiovascular/central nervous systems. Figure 3 illustrates the nature and time course of
symptoms, which can vary based on radiation dose. The signs and symptoms of radiation
exposure mimic those observed after therapeutic whole-body irradiation or treatment with
clastogenic chemotherapy and can range from mild nausea at low doses to rapid

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.
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neurovascular collapse at high doses (ie, >10-20 Gy). While specific organ syndromes are
discussed, multiorgan effects may mediate many clinical signs and symptoms.14

ARS classically progresses through 4 clinical phases: prodrome, latency, manifest illness,
and either recovery or death. The prodromal period is characterized by nausea, vomiting,
fatigue, and, at higher doses, autonomic instability and even loss of consciousness.1® The
latency period is characterized by partial or complete resolution of symptoms. The extent
and duration of latency are inversely proportional to dose. Casualties who receive doses >6
Gy may have little or no latency because signs and symptoms of end-organ injury can
develop within hours to days after exposure.

Peripheral blood cytopenias can develop at doses as low as 1 Gy (Figure 3) due to the
heightened apoptotic response of both differentiated and progenitor hematopoietic cells.16
The rapidity of onset and severity of peripheral blood cytopenias are proportional to dose.
Lymphocytes are particularly sensitive to irradiation and the kinetics of lymphocyte
depletion is a useful parameter for rapidly assessing the extent of radiation exposure.3
Importantly, patients experiencing burns or trauma may develop lymphopenia in the absence
of radiation exposure.17:18

White blood cell counts may also follow a predictable time course depending on the extent
of exposure (Figure 4). Evidence from radiation accident casualties indicates that a transient
increase in granulocyte count (an “abortive rise™) preceding a slow decline for 10 to 15 days
may indicate reversible hematologic ARS, and thus a higher likelihood of survival (Figure
4). In contrast, irreversible hematologic ARS (ie, myeloablation) follows a different pattern
of granulocyte kinetics, with a rapid fall between 4 and 6 days after exposure.1? In a review
of 60 radiation accident casualties with granulocyte kinetics that were consistent with
reversible hematologic ARS, all 60 ultimately achieved autologous hematopoietic recovery,
although in some cases not until 60 to 80 days after exposure.19

Many radiation accident casualties received heterogeneous doses from partial-body
shielding. Similar heterogeneity may be common in casualties exposed to prompt irradiation
from a nuclear detonation because the radiation may be blocked by buildings and other
structures. If small areas of bone marrow are relatively spared by partial shielding, then
hematologic reconstitution may occur even if the vast majority of the marrow receives a
dose that is adequate to confer irreversible injury. Dose heterogeneity may be less prevalent
among casualties exposed to fallout because fallout would broadly contaminate the
environment.

Although whole-body doses as low as 2 Gy can cause clinically significant ARS, both the
timing of death and the organ system most likely to mediate death differ between lower and
higher dose exposures. Death from hematologic ARS can occur with exposures between 2
and 6 Gy as a result of infection and/or bleeding from neutropenia and thrombocytopenia,
respectively. The long circulating life span of red blood cells makes anemia less of an issue
in the early period after radiation exposure. Death from hematologic ARS typically occurs
between 2 and 8 weeks after exposure.10 At doses >5 to 6 Gy, gastrointestinal ARS may
cause death through extensive diarrhea and transmigration of enteric organisms into the
bloodstream, typically within 1 to 2 weeks of exposure.20 Symptoms of gastrointestinal ARS
include nausea, vomiting, and diarrhea; however, nausea and vomiting are non-specific
symptoms that can occur at lower doses or even in the absence of radiation.?! At doses >8 to
10 Gy, death resulting from cardiovascular/central nervous system ARS may occur within
days after exposure; symptoms include headache, confusion, loss of consciousness, seizures,
and autonomic instability.10

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.
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The LDsq/g0 (dose at which only 50% of humans will survive at least 60 days) for adults in
the absence of supportive care is approximately 3.5 Gy.1922 Death at this dose would
primarily result from hematologic ARS and would occur 2 to 6 weeks after exposure.10.22
Casualties who survive long enough for hematologic reconstitution are likely to fully
recover. In contrast, much higher doses lead to earlier death and almost no likelihood of full
recovery. A Nuclear Regulatory Commission study?324 estimated that the LDsq/7_14 for
humans is 9.6 Gy (95% confidence interval, 5.7-17.2 Gy). Death from this higher dose
occurs within 7 to 14 days because of serious gastrointestinal tract and possibly
cerebrovascular injury, in addition to potentially irreversible hematologic ARS. As outlined
below, interventions for hematologic ARS, including fluid support, antimicrobials, and
transfusions, may increase the LDsqg0 to 600 to 700 cGy,’ but it remains unclear whether
any available intervention can reduce early death after higher doses.

ARS in organ systems other than the hematologic, cutaneous, gastrointestinal, and
neurovascular may be underappreciated, especially in casualties exposed to higher doses. In
a review of radiation accident casualties, 32 of 45 cases with severe ARS had respiratory
involvement, 20 had cardiovascular involvement (primarily manifested as heart failure), 25
had liver involvement, and 32 had urogenital involvement.8 Delayed effects of acute
radiation exposure, which can involve almost any organ system, can develop months to
years after exposure.

SOURCES OF DATA ON RADIATION INJURY

Despite more than 6 decades of research, major gaps exist in our understanding of how
genetic, demographic, geographic, and other factors would affect radiation injuries after a
nuclear detonation in a modern US city. The available literature on radiation injury derives
from 4 sources of observational and experimental research, and was largely collected in the
1950s and 1960s. None of the 4 sources fully captures the spectrum of injuries expected
after a ground-level nuclear detonation within a modern US city, but each provides some
insights.

Nuclear Bomb Detonations

Cohorts of nuclear bomb casualties from the Hiroshima and Nagasaki detonations have been
followed for more than 6 decades. Up to 70% of casualties postdetonation had combined
injury (ie, radiation plus trauma and/or burns)?>-27; however, the detonations at Hiroshima
and Nagasaki were both air bursts. Air bursts produce higher rates of combined radiation
and burn injury than would be expected after a ground-level detonation, which is the type of
event specified in National Planning Scenario 1.% In addition, both Japanese cities contained
primarily wooden structures, so building collapse and secondary fires were more common
than would be anticipated in a modern US city.? As a result, lower rates of combined injury
are expected in current scenarios, especially within the fallout zone.! Most important, little
medical care was available in the aftermath of the Hiroshima and Nagasaki detonations,
making it difficult to estimate the potential benefits of supportive care interventions.

Medical and Industrial Radiation Accidents

Between 1944 and 2003, there were 426 major radiation accidents worldwide involving
more than 130 000 people.28 Nearly 90% of the exposures resulted from the Chernobyl
accident in 1986. Most of the other accidents led to only a few casualties. As a result,
extensive resources and supportive care were available to treat those injured by these
smaller-scale accidents. Databases on radiation accident casualties, including 1 at the
Radiation Emergency Assistance Center/Training Site)29 have been established but are not
open access. The SEARCH database, established by the University of Ulm, contains details

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.
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from more than 800 whole-body radiation exposures from 70 accidents.1® Data from
SEARCH was used by the European Medical Treatment Protocols effort to establish triage
and treatment approaches for radiation accident casualties,! as outlined for granulocyte
kinetics above.

There are important shortcomings in the literature of radiation accidents that limit its
applicability to nuclear detonation response planning. First, there were no standardized
approaches applied to the casualties. Treatment was essentially ad hoc, and each center used
different combinations of cytokines, antibiotics, and even cellular therapies. Thus, the
interpretation of outcomes and even the relations between dose and clinical parameters, are
highly confounded. Second, the nature of radiation injury is likely to differ between
radiation accident and nuclear detonation casualties. For example, the fraction of radiation
from neutrons was significantly higher in industrial accidents like the Tokaimura accident
than would be expected after a nuclear detonation.3? Finally, industrial radiation accidents
affect primarily relatively young healthy men, so the effects of a particular exposure across a
range of demographic groups cannot be determined.

Radiation

The third source of information on radiation injury (and the benefit of targeted radiation
countermeasures) is from patients who have been treated with therapeutic radiation.
Extrapolation from the therapeutic radiation experience to nuclear detonation scenarios is
also problematic. Patients treated with therapeutic radiation commonly have underlying
illnesses (primarily cancer) that affect their overall health, response to radiation, and
recovery. These patients are frequently receiving other agents, such as chemotherapy, that
further complicate interpretation of the effects from radiation. In addition, most therapeutic
radiation is highly focused on a limited portion of the body and given in multiple fractions to
minimize toxicity. Even in the setting of total body irradiation for hematopoietic stem cell
transplantation (HSCT), partial shielding of radiosensitive organs, such as the lungs, is
common. Finally, therapeutic radiation is provided at expert centers as part of a
comprehensive approach designed to maximize efficacy while minimizing toxicity. Thus,
many patients treated with therapeutic radiation will also receive supportive care, myeloid
cytokines (eg, G-CSF), and even HSCT.

Animal Models

The use of human data to plan for nuclear detonation response avoids the need to extrapolate
from results in animal models; however, animal models are essential for prospective
research, including the evaluation of potential radiation countermeasures.31-33 As outlined
in Table 3, the sensitivity of different mammalian models to whole-body irradiation varies
considerably, with LDsq/3q ranging between 240 and 1000 cGy. The variability in effect that
radiation exposure has on individuals, the potential for combined injuries to affect radiation
outcomes, and interspecies variability make it extremely difficult for a single animal model
to capture the effects of radiation exposure and predict medical countermeasure efficacy
with adequate fidelity. Thus, a variety of animal species have been used. It is important to
note that depending on the radiation syndrome being analyzed, different models and/or
strains may be appropriate. For example, swine are widely considered to be the most
appropriate human surrogates for studies involving radiation injury to skin.34-36

Rodent models, particularly mice, have been used extensively for mechanistic and proof-of-
concept studies and to evaluate new and existing radiation medical countermeasures
(MCMs). Rodent models are relatively inexpensive, readily available in a wide selection of
genetic backgrounds, and can be studied humanely using survival as an endpoint. A primary
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shortcoming of all of the rodent models is the challenge of providing supportive care similar
to what may be provided to a human patient.

As noted in Table 3, the average LDsq/3 for mice exposed to whole-body gamma irradiation
is 640 cGy, but it ranges between 540 and 850 cGy depending on the strain (Figure 4). Other
strain-specific differences have been noted in radiation response. For example, a recent
report investigating the development of radiation-induced, late lung complications in
different strains of mice found that certain strains were more representative of human
responses than others3®; for example, C57BL/6 mice exhibited pleural effusions at 6 to 9
months, which are not normally observed in irradiated humans. Rat models are useful for
determining the pharmacokinetics and pharmacodynamics of candidate MCMs, but there is
less literature available to support their use as an efficacy model for radiation syndromes.
Nonetheless, rats have a long track record as the preferred animal models for studies of
radionuclide decorporation.3?

Canines (especially beagles) have been studied extensively as animal models of hematologic
ARS*0 and for radionuclide de-corporation.#! Canines have radiation responses similar to
humans and respond well to supportive care and antibiotics.1542 Other animal models for
testing radiation effects and potential MCMs have been described in the published literature,
including ovine, avian, bovine, equine, and a wide array of non-human primate species,
especially the rhesus macaque. The latter now represents the gold standard for most acute
radiation and MCM studies because of its close evolutionary relation to humans and the
similar effects of supportive care (Table 4).31

ADDITIONAL FACTORS AFFECTING OUTCOME

Studies in animal models have established several radiation-and organism-specific
determinants of radiation response. Presumably, these same determinants affect humans
exposed to radiation. The factors include the range of doses selected, radiation quality, dose
rate, and the fraction of the body exposed (eg, partial vs total body). Even the time of day of
irradiation can affect outcome.>” In animal models, sex and age can alter not only the
outcome after radiation exposure but also pharmacologic parameters important for an MCM,
such as clearance, metabolism, and safety profile. Female rodents, in general, have
decreased radiation LDsq/3q values as compared with their male counterparts.®8>2 The age
of rodents8%:61 and canines®? at the time of irradiation significantly influences their radiation
sensitivity, with LDgq/3q values for mice ranging nearly 4-fold, from 210 to 740 cGy,
depending on age at the time of irradiation. As expected, the health status of the animals
within a colony can affect radiation response. LDsg3g values are substantially lower for
mice exposed to conventional environmental pathogens than for animals maintained in
“pathogen-free” environments.%3 Even the type of food and water administered to animals
can affect their radiation response.%4

Radiation Combined Injury

Based on multiple animal models and observations in humans, the combination of radiation
with either trauma or burns markedly increases mortality compared with the same dose of
radiation alone. Outcomes among casualties of the Chernobyl accident with combined injury
were universally poor.85 In a study by Ledney,8 the LDsp/30 in mice for radiation alone was
approximately 963 cGy but dropped to 820 cGy when combined with an otherwise nonlethal
15% body surface area burn.6” LDsq/30 dropped from 963 cGy to 761 cGy when radiation
was combined with an otherwise nonlethal puncture wound. A similar study of radiation
with or without nonlethal wound is outlined in Figure 5.

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.
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In canines, a 20% body surface area burn would result in minimal mortality, but mortality
increases to 73% if the same burn is combined with only 1 Gy of whole-body irradiation.58
In rats, lethality from a burn increased from 50% when the burn was administered alone to
65% when combined with 1 Gy and 100% when combined with 2.5 Gy.% Similar findings
were reported when burn was combined with radiation in pigs’? or guinea pigs.’

The additional mortality from combined injury likely results, at least in part, from infection
by enteric organisms. Sublethal wound or burn injury increases the translocation of gut
bacteria into the bloodstream induced by sublethal irradiation.”2:”3 Whitnall et al”* reported
that sublethal doses of both radiation and K/lebsiella pneumoniae administered to mice
produce 100% mortality because of sepsis. In fact, even doses of radiation as low as 0.5 Gy
increase the mortality from bacterial infection in this model.” Wound closure is also
delayed by radiation in a dose-dependent manner,’® increasing the potential for infection
from a cutaneous source after either burn or traumatic injury.

Supportive Care

Current data suggest that supportive care can be an extremely effective radiation
countermeasure.#2 Supportive care in animal studies may be generally classified as “normal
support,” defined as administration of fluids, blood products, antibiotics, and in some cases
parenteral nutrition, or “heroic support,” defined as comprehensive, individualized care up
to and including cytokines and HSCT. In addition, the management of combined injuries,
both surgical and nonsurgical, is an essential component of supportive care.

A series of studies has demonstrated the efficacy of antibiotic support and platelet
transfusions in dogs exposed to radiation,”5-78 either in randomized trials or when compared
with historical controls followed without supportive care. Antibiotics also improve survival
in mice after combined injury.3” Even topical antibiotics can improve survival after
combined radiation and wound injury. Figure 5 demonstrates the efficacy of topical
silvadene or gentamicin applied to wounded mice also exposed to varying doses of
radiation.3” This suggests a direct effect on survival from infection by cutaneous organisms,
even at low doses, and the potential for simple interventions to improve outcome.

Supportive care in irradiated humans has been estimated to increase LDsggg0 values from
approximately 3.5 to 4 Gy up to approximately 6 to 7 Gy13 (Table 4). The LDsq/gq after the
Chernobyl incident was 8.88 Gy, although many casualties received relatively low dose
rates?2 and some underwent HSCT.80 Recommended approaches for antibiotic and myeloid
cytokine use (for both prophylaxis and treatment) after radiation exposure largely follow
algorithms for the treatment of chemotherapy-associated neutropenia.1314.81 Of note, the
management of patients with severe ARS, combined injuries, or both is highly labor and
resource intensive; a single casualty of the Tokaimura radiation accident required abundant
personnel and resources for comprehensive and intensive care, including approximately 10
L of fluid daily and extensive transfusion support.82 Presumably, resource scarcities after a
nuclear detonation would greatly reduce the number of casualties who could receive this
level of support.

Cytokine Therapy

Myeloid cytokines enhance neutrophil recovery in patients with neutropenia. Three myeloid
cytokines are approved by the Food and Drug Administration for the management of
chemotherapy-associated neutropenia: granulocyte-colony stimulating factor (G-CSF),
granulocyte macrophage-colony-stimulating factor (GM-CSF), and pegylated G-CSF. Note
that these agents are not approved by the Food and Drug Administration for use after a
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nuclear detonation but would likely be used either under an emergency use authorization or
off-label, as discussed by Murrain-Hill and colleagues.*

In a meta-analysis of trials that used G-CSF for patients treated with chemotherapy for solid
tumors or lymphoma,83 G-CSF reduced infection-related mortality by 45% from an absolute
frequency of 2.8% to 1.5%. Although this absolute benefit is small, in a scarce resources
setting, the prevention or shortening of febrile neutropenia would offer the added benefit of
reducing the need for additional medical care, including inpatient hospitalization. In the
meta-analysis, G-CSF reduced the frequency of febrile neutropenia from 39.5% to 22.4%,83
suggesting a significant potential for benefit.

Studies in irradiated primates have consistently demonstrated more rapid neutrophil
recovery after irradiation in animals treated with myeloid cytokines.10 In rhesus macaques,
G-CSF or GM-CSF increased overall survival after irradiation when given for 14 to 21
days.84-86 Some reports have suggested that the survival benefit is maximized if myeloid
cytokines are initiated within 24 hours after exposure. Studies to verify this possibility are
planned or in progress.

G-CSF and GM-CSF have been used in a subset of radiation accident casualties. In a series
of 28 cases compiled by the Radiation Emergency Assistance Center/Training Site,
neutrophil recovery appeared to have been hastened in 25; however, many of these
casualties received both agents and some also received interleukin-3.10 Myeloid cytokines
may be beneficial even several weeks after exposure. Recently, 2 radiation accident
casualties were treated with cytokines beginning as late as 28 days after exposure and both
had rapid responses with complete correction of neutropenia.8!

Few states have plans for response to a nuclear detonation,?8 but even among states that do,
stockpile targets for individual hospitals are in the range of 150 doses of myeloid growth
factors and antibiotics,2® compared with the hundreds of thousands of casualties expected to
sustain radiation injury (Table 1). Thus, it is essential to use thoughtful, effective triage
protocols for selecting which casualties should receive myeloid cytokines from local caches
or from rapid deployments from the Strategic National Stockpile. Triage guidelines along
with recommendations for myeloid cytokine use are included in the article by Coleman et
al? in this issue.

Ideally, casualties who qualify for myeloid cytokines should initiate a treatment course
within approximately 24 hours after exposure. Because early administration of the first dose
appears to be important, it is essential to develop approaches for rapidly offering these
agents to as many significantly irradiated casualties as possible. A user-managed inventory
concept is being developed (C. N. Coleman, personal communication, 2010) that would
make additional drugs available locally at a number of medical facilities by virtue of
maintaining a bubble in the supply line of dual-use drugs, such as cytokines used in cancer
therapy. This would result in more first doses available early after the detonation so that
treatment of irradiated casualties could be initiated locally and then be referred to less
resource-scarce settings to receive the remaining doses. In so doing, a 10-day course for 1
person locally becomes a 1-day course for 10 people, who can be evacuated and then receive
subsequent doses in a more resource-rich setting.

The initial dose-finding studies of G-CSF demonstrated a clear linear dose-response
effect.58-70 Thus, approaches to extend the number of recipients by reducing the dose,
extending the interval between doses, or abbreviating the course of therapy are likely to
compromise efficacy and should be avoided. Children with ARS will also benefit from
myeloid cytokines, so stockpiles should include formulations with dosing flexibility.
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Some casualties of a nuclear detonation will receive sufficient doses of radiation to cause
irreversible bone marrow damage. Allogeneic HSCT in this setting has the potential to
restore hematopoietic function. It remains unclear, however, whether HSCT has the
potential to improve survival in radiation casualties, especially those with traumatic and/or
burn injuries. HSCT has demonstrated a survival benefit in animal models3’; however,
animals in these studies typically received syngeneic (or highly genetically similar) stem cell
transplants, which eliminates or markedly reduces the likelihood of graft-vs-host disease.

To date, 31 patients have undergone allogeneic HSCT after accidental whole-body radiation
exposure. The preparative regimens given, if any, varied widely, as did antibiotics and graft-
vs-host disease prophylaxis.28:87 The median survival after transplantation among these
patients was approximately 1 month. Only 4 patients survived 1 year after HSCT; all 4
rejected the transplant and reconstituted autologous hematopoiesis, suggesting that the
transplant offered little benefit. Among the 31 HSCT recipients, graft-vs-host disease
contributed to mortality in more than 20%. It is unknown whether any of the casualties who
succumbed to transplant-related complications would have reconstituted autologous
hematopoiesis if the transplant had been withheld. Thus, there is no evidence that HSCT
improves survival in humans exposed to nontherapeutic radiation.

GUIDANCE AND SURGE CAPACITY FOR IRRADIATED CASUALTIES

The detonation of a nuclear device within a US city would create a national need for health
care practitioners to manage casualties exposed to radiation; however, only a small fraction
of practitioners have either training or experience in the field of radiation injury.

Radiation Emergency Medical Management Web Site

To establish a resource for pre- and postevent information, training and communication, the
Department of Health and Human Services (DHHS) launched the Radiation Emergency
Medical Management (REMM) Web site in March 2007.88 Recognizing the limitations of
available human and animal data as an evidence base for guiding medical management,
REMM has the following goals:

»  Provide guidance for health care providers, primarily physicians, about clinical
diagnosis and treatment of radiation injury during radiological and nuclear
emergencies

»  Provide just-in-time, evidence-based, usable information with sufficient
background and context to make complex issues understandable to those without
formal radiation medicine expertise

»  Provide Web-based information that is also downloadable in advance so that it
would be available during an event if the Internet is not accessible

Since its establishment, REMM content has expanded significantly and REMM versions
have been launched for various mobile platforms.8° The primary managers of the site are
content and technology experts at various DHHS agencies, including the National Cancer
Institute, the National Library of Medicine, the Centers for Disease Control and Prevention,
and the Office of the Assistant Secretary for Preparedness and Response, which has its own
public health emergency Web site (http://www.phe.gov/preparedness/Pages/default.aspx).

Guidelines for the diagnosis and management of radiation injury are included on the REMM
site and extensively referenced from the peer-reviewed literature. Template admission orders
for irradiated casualties are also available (http://www.remm.nlm.gov/adultorderform.htm)
and include antibacterial, antifungal, and antiviral prophylaxis; decorporation agents;
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myeloid cytokines; and other elements of radiation casualty management. Content from the
Scarce Resources for a Nuclear Detonation Project outlined in this special issue of Disaster
Medlicine and Public Health Preparedness is being incorporated into the site.

Radiation Injury Treatment Network

Many of the casualties with radiation-only injury will be salvageable but require outpatient
and/or inpatient care. Recognizing this, the US National Marrow Donor Program, the US
Navy, and the American Society for Blood and Marrow Transplantation collaboratively
developed the Radiation Injury Treatment Network (RITN), which comprises 55 HSCT
centers, stem cell donor centers, and umbilical cord blood banks across the United
States.?9-91 The goals of RITN are to develop treatment guidelines for managing
hematologic toxicity among victims of radiation exposure, to educate health care
professionals about pertinent aspects of radiation-exposure management, to assist in
coordinating the medical-situation response after a radiation event, and to provide
comprehensive evaluation and treatment for victims at participating centers.

In recent tabletop exercises,®® RITN centers volunteered to provide surge capacity for <2000
total irradiated people at their institutions. Strategies to increase bed availability and extend
staff and resources could increase surge capacity 10-fold but would require changes in
operating standards.%° Considering the large number of irradiated casualties anticipated after
a nuclear detonation (Figure 1), many centers across the country in addition to those in
RITN will be asked to participate in the management of casualties with ARS.

CONCLUSIONS

An extensive literature base has described the effects of radiation injury in humans and
animal models. Many gaps in our understanding still exist and some injuries cannot be
modeled in the laboratory, but several important findings have emerged. First, there is
marked variability in radiation response within and across species. Second, many factors
related to either the radiation or the recipient can affect the outcome of radiation injury.
Third, traumatic and burn injuries can synergistically increase the mortality from radiation.
Fourth, supportive care measures such as antibiotics, fluids, transfusion support, and
possibly myeloid cytokines can reduce the mortality of radiation injury. These findings
establish a foundation for the triage and treatment approaches outlined in this special issue.
The need is critical for just-in-time guidance and surge capacity for irradiated casualty
management. The REMM Web site8? was established to provide available evidence and
expert opinion, including pre- and postevent training for health care workers and planners.
RITN is a model for voluntary planning at centers across the country.
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Other common weather patterns include elongated fallout areas that can have potential radiation injuries out to 20 miles (33 km) away
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FIGURE 1.

Approximate prompt radiation and fallout pattern from a 10-kT nuclear detonation
Prompt radiation extends approximately 1 mile from the epicenter, while the shape of the
fallout zone is determined by upper-level winds. (Buddemeier 2009.)

Disaster Med Public Health Prep. Author manuscript; available in PMC 2013 May 03.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 18

Operative
standard
- _ of care
3 Normal fi } | _
= I . Conventional
3 i : I\
O Iy = T
o Good—i ! \\ /// T Y
o \ g ,
> A e P , | Contingency
E l |l \___/ e /'
-_6 . o ,// . A
= B e
S I v \
I / 7 Crisis
g foorli | 7
— 8 | 'mm——_———————- /./
3} .=
o' L=
T T T T >
0 1 2 3 4
Days after detonation
—— Distant referral ~ ------ MC 20 miles away
center -—-— MC 2 miles away
———MC 100 miles away == - RTR1
FIGURE 2.

Hypothetical representation of resource availability (left y-axis) after a nuclear detonation
based on location and type of site

The operative standard of care (right y-axis) follows the definitions outlined by the Institute
of Medicine.3 Centers close to the site would be immediately impacted and require crisis
standards of care. RTR1 (Radiation TReatment, TRiage, and TRansport) sites will be
established close to the epicenter shortly after the event and may be disbanded after a few
days, as salvageable victims are evacuated. Distance from the detonation will be the primary
determinant of timing and severity of resource shortages at regional medical centers (MC).
Even referral centers in other regions may experience abrupt resource shortages due to
patient transfers or depletion of nationwide supplies.
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FIGURE 3.

Simplified time courses for hematologic, gastrointestinal (GI) and central nervous system
(CNS) symptoms at different whole-body dose exposures
The relative severity of signs and symptoms is on an arbitrary scale. (Modified from

Waselenkol0).
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FIGURE 4.

Leukocyte counts based on exposure dose in patients exposed to radiation in Chernobyl
Note that doses less than 5 Gy are associated with an early abortive rise (transient increase)
in leukocytes, which are primarily composed of granulocytes. The onset of neutropenia may
not occur for weeks, especially with lower exposures, and the duration of neutropenia may
be prolonged. (Modified from Vorobiev 1997.)
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FIGURE 5.

C3H/H3N female mice were exposed to radiation alone or radiation in addition to a non-
lethal wound (combined injury)

The combination increased mortality at all doses, but mortality was reduced by applying
topical gentamicin or silvadene. (Modified from Ledney.52)
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TABLE 1

Resource Demand and Awvailability after a Nuclear Detonation in Washington, DC

Symptomatic I njured People or
Incident Demand Minimum/

M edian/M aximum Single Hospital City Nation
Peopleinjured (next column) or population 930 000/990 000/1.6 million N/A 592 000 300 million
of designated area (city, nation)
Hospital beds (unoccupied) 70 000/180 000/300 000 165 (40) 3670 (920) 947 000 (295 000)
Intensive car e unit beds (unoccupied) 24 000/61 000/110 000 20.5(1.6) N/A 118 000 (9400)
Operating rooms N/A 6 N/A 30 000
Burn beds (unoccupied) 0/0/1100 N/A 32 (5) 1760 (580)
Ambulances N/A N/A 38 48 400

Availability is indicated for a single medical center, within the city, and across the United States. The single-hospital figures are based on an
average for medical centers within Washington, DC. Minimum, median, and maximum numbers of people injured and incident demands (second
column) are for a variety of 10-kT detonation scenarios in Washington, DC, modeled by the Modeling Division of the Biomedical Advanced
Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, in association with the Public Health
Emergency Medical Countermeasures Enterprise Blood and Tissue Requirements Working Group.
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Comparison of LDsgq/39 Across Multiple Mammalian Species Compiled From the Published Literature

Species L Dsoiz0, €GY
Goat 240
Swine 250
Dog 250
Burro 255
Guinea pig 450
Monkey 600
Hamster 610
Mouse 640
Mouse (germ-free) 705
Rat 714
Rabbit 750
Hamster 856
Mongolian gerbil 1000

Mean survival times, d
ND
17
15
ND
12
14
ND
10
ND
12
10
ND
10

All survival times are approximate. ND=no data available.
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