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Abstract

A 34-year simulation of the global atmospheric circulation has been performed
using the Japan Meteorological Agency (JMA) global model. The simulated climate
of tropical outgoing longwave radiation (OLR) and precipitation are compared with
the observed climate of OLR. The seasonal mean field is generally well simulated by
the model. However, several deficiencies in the simulation can be identified. 1)
Convective activity around the Philippines is weak. 2) The convective area over Africa
is shifted eastward and the convective area over the Amazon splits into two parts. 3)
Asian monsoon precipitation extends north-eastward. 4) The arca of large inter
-annual variation of convective activity over the equatorial Pacific is shifted west-
ward.
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1. Introduction

The main objective of the climate modeling study at the National Research Institute
for Earth Science and Disaster Prevention (NIED) is to predict the posibility of a disaster
based on the prediction of future climate. For this purpose, a very accurate prediction
of the geographical distribution of precipitation is required. For reliable prediction of
precipitation, the model is required to simulate the present climate of precipitation very

accurately. Apart from this specific purpose, the accurate simulation of tropical
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precipitation is important because tropical convective heating is the major driving force
of the general circulation of the earth’s atmosphere, and therefore the model’s deficiency
in the tropical convection is likely to lead to a deficiency in the model’s global climate.

In this paper, we investigate the tropical convective activity in the Japan Meteoro-
logical Agency (JMA) global model (JMA, 1993 ; Sugi ef al., 1990). We examine the
climate of outgoing longwave radiation (OLR) as well as precipitation in the tropics
simulated by the model and compare them with the observed climate of OLR.

For the verification of the simulated convective activity, we use the observed climate
of OLR (Kawahara, 1990), which is derived from the NOAA satellite observation for the
period of 1974-1987. The observed climate of the seasonal mean OLR (Fig. 1) is
computed as the 10 year average of the seasonal mean OLR for the period 1974-85 (the
data for 1978 is absent). The seasonal mean is defined as a 3 month mean : Dec-Jan-Feb
for winter, Mar-Apr-May for spring, Jun-Jul-Aug for summer and Sep-Oct-Nov for
autumn. The interannual variation (IAV) of OLR (Fig. 3) is the standard deviation of the
seasonal mean OLR. For the computation of the intra-seasonal variation (ISV) of OLR
(Fig. 5), the pentad OLR data is used. First, the climatological average is subtracted to
remove the annual variation. Then, the nine pentad moving average is subtracted to
remove the inter-annual variation. The ISV is defined as the standard deviation of the
resultant pentad data for each season.

The simulated climate of OLR and precipitation of the JMA global model is
computed using the result of a 34-year time integration of the model, as in Sugi et al.
(1995). The same computational procedure is used for the model data as for the observed
data. The averaging period is different for the model and the observed data, but we have
checked that the difference due to the averaging period does not affect much the results

presented in this paper.

2. Outgoing longwave radiation (OLR)
2.1 Seasonal mean

The observed and simulated climates of the seasonal mean OLR are shown in Fig.
1 and Fig. 2, respectively. The areas below 220 W/m?, which correspond to active
convective areas, are shaded in both figures. Note that the contours above 240 W/m? are
not drawn in Fig. 1. Overall agreement is good between the model climate and observed
climate. However, some discrepancies can be pointed out. The active convection area

over Africa in the model is shifted eastward compared to the observations in winter,
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spring and autumn. The convection area in the model over the Amazon splits into two
parts in winter and spring. In summer, from Africa to South Asia, the belt-shaped low
OLR area extends too much in the model. In the observation, there is an active
convection area over the western Pacific near the Philippines, but it does not appear in
the model. Instead, strong convections are concentrated in the regions near the equator
such as Sumatra, Borneo and New Guinea.

2.2 Inter-annual variability (IAV)

Figs. 3 and 4 show the observed and simulated inter-annual variability (IAV) of the
seasonal mean OLR. These two figures do not agree with each other. In the observation,
the TAV signal associated with ENSQ is evident, particularly in the winter. These signals
are not seen in the OLR in the model. The largest amplitude of IAV in the model appears
over the eastern Pacific at the latitude around 10°N in the winter and spring, but the
amplitude is relatively small over this region in the observation.

2.3 Intra-seasonal variability (ISV)

Fig. 5 and 6 show the observed and simulated intraseasonal variability (ISV). The
correspondence between the simulated and observed climates is much better than in the
case of IAV. In general, the amplitude of the simulated ISV is less than that of the
observed one. Note that the contour intervals are different in the two figures. In the
maodel, there is no area where the ISV is larger than 30 W/m?. In the observation, the
large ISV areas are concentrated in the region from the Indian Ocean to the western and
middle Pacific Ocean.

In winter, the large amplitude of ISV in the model is seen in the south of 20°S, while
it is seen in the north of 20°S in the observation. In spring, two maxima of ISV are seen
over the east Indian Ocean and New Guinea in the observation, but they are not clear in
the model. In summer, over the western Pacific near the Philippines, the amplitude of
1SV is large in the observation but small in the model. The wide area over the Arabian
Sea is covered with large ISV in the observation, while the large ISV region in the model
is concentrated in a narrow band in the north of the Arabian Sea. In autumn, areas of
large ISV appear in the east Indian Ocean and around the Philippines in the abservation,

while the areas of large ISV in the model are shifted northward of these regions.
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Fig.1 Observed seasonal mean OLR (Kawahara, 1990). Contour interval
is 20 W/m® Areas below 220 W/m? are shaded. Contours above
240 W/m? are not drawn.
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Fig.2 Simulated seasonal mean OLR. Contour interval is 20 W/m?
Areas below 220 W/m? are shaded.
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Fig.3 Observed inter-annual variation (IAV) of the seasonal mean OLR

(Kawahara, 1990). Contour interval is 5 W/m? Areas above
20 W/m? are shaded.
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Fig.4 Simulated inter-annual variation (IAV) of the seasonal mean OLR.
Contour interval is 5 W/m?2. Areas above 15 W/m? are shaded.
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Fig.5 Observed intra-seasonal variation of OLR (Kawahara, 1990).

Contour interval is 5 W/m?% Contours below 20 W/m? are not
drawn. Areas above 30 W/m? are shaded.
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Fig.7 Simulated seasonal mean precipitation. Contours are 1, 2, 4, 8, ...
mm/day. Areas above 8 mm/day are shaded.
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Fig.9 Simulated intra-seasonal variation (ISV) of precipitation. Contour
interval is 2 mm/day. Areas above 6 mm/day are shaded.
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3. Precipitation
3.1 Seasonal mean

The observed and simulated seasonal mean OLR (Fig. 1 and 2) and simulated
precipitation fields (Fig. 7) agree with each other qualitatively. The discrepancies
between the ohserved and simulated OLR, such as the eastward shift of simulated
African precipitation and the split of simulated Amazon precipitation are even more
evident in Fig. 7. Concentration of simulated precipitation towards the equator over the
western Pacific in summer is also evident.

3.2 Inter-annual variability (IAV)

Different from the simulated OLR (Fig. 4}, the simulated precipitation (Fig. 8) shows
a large [AV over the western to central equatorial Pacific. The simulated maximum
IAV of precipitation is located west of the date line compared to the observed maximum
IAV of OLR located east of the data line. The amplitude of the IAV of ohserved OLR
in the winter is much larger than the other seasons, while the amplitudes of [AV of the
simulated precipitation are not so different among the seasons.

3.3 Intra seasonal variability (ISV)

The ISV of the observed OLR (Fig. 5) is large over the eastern Indian Ocean and
western Pacific, and it is relatively weak over other convectively active regions such as
Africa or Central and South America. In contrast, the areas of large ISV of simulated
precipitation (Fig. 9) almost coincide with those of large mean precipitation (Fig. 7),
although the largest ISV is concentrated in the western Pacific region. Particularly, in
the summer and autumn the large ISV in the observed OLR is located around the
Philippines, while that of simulated precipitation is located over the equator, east of New
Guinea. This seems to suggest that the rain-producing tropical disturbances are not

active around the Philippines in the model in these seasons.

4. Discussion and conclusions

The geographical distributions of seasonal mean OLR and precipitation agree well
with that of the observed OLR. The convective activity in the tropics is generally well
simulated by the model. However, there are some discrepancies between the simulation
and the observation. Four major deficiencies of the simulation can be pointed out as
follows :
1) The active convection region observed in the summer around the Philippines is not

simulated well in the model. The weak convective activity over this region may be due
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to the lack of active tropical disturbances in the model. On the other hand, convection
is active over the equatorial regions in the model. We are not sure, at present, whether
the lack of disturbances around the Philippines is a result or a cause of the concentra-
tion of convective activity over the equatorial regions in the model. Also, the weak
convective activity around the Philippines in the model seems to be closely related to
the strong south-westerly monsoon flow along the east coast of the Asian continent
and weak westerly flow over the South China Sea (Fig. 3(b) of Sugi ef @l 1995).

2) The active convection region over Africa in the model is shifted to the east of the
observed position, and the convection region over the Amazon is split into two parts
in the model. These findings indicate that the active convections over the inland
regions are not simulated well in the model. This may be related to the land surface
processes in the model. The land surface may be too dry over these regions to supply
sufficient moisture for active convective precipitation. The diurnal cycle may not be
strong enough to produce much convective precipitation over these regions in the
model.

3) The region of the simulated south-east Asian monsoon precipitation extends too far
north-eastward, with too much precipitation over the east area of the Tibetan Plateau
The lack of rain producing disturbances in the southern part of the monsoon region
may be responsible for this. Fig. 10 shows the simulated seasonal mean precipitation
by convection and large scale condensation (stable precipitation). It is clear from this
figure that the large portion of the inland precipitation is produced by stable precipita-
tion, which is mainly maintained by a stable monsoon flow and orographic effect.

4) The region of the large IAV of precipitation over the equatorial Pacific in the model
is located considerably to the west of that of the observed OLR, and it shows much less
seasonal variation in intensity as compared to the observation. This seems to be
closely related to the model's tendency of concentration of precipitation over the
western equatorial Pacific. Also, it may be related to the weak convective activity
around the Philippines in the model as mentioned above.

Generally, the distribution of the seasonal mean OLR is fairly well simulated by the
model, but the variability of OLR is not well simulated, particularly in the inter annual
time scale. Because the OLR is very sensitive to clouds, the simulation of OLR depends
on the simulation of clouds in the model. The accurate simulation of clouds is generally
difficult, and it is likely that clouds are not well simulated in the JMA global maodel.

Therefore, the disagreement between the simulated and the observed OLR does not
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necessarily mean that the convective activity in the model is different from the observa-
tion. The relationship between the convective precipitation and OLR in the model may
be different from that of the observed. Ideally, observed precipitation climate should be
used instead of OLR for verification of simulated precipitation climate. However, the
data for the IAV and ISV of precipitation is not sufficient at present. More observed
data is desirable to improve the observed precipitation climatology.

In order to cure the above-mentioned deficiencies in the simulation, further study on
the possible causes of such deficiencies is necessary. Particularly, the sensitivity of the
simulation to the parameterization scheme of cumulus convection needs to be examined.
The activity of tropical disturbances with short time scales also needs to be examined to

improve the climate of the tropical precipitation of the model.
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